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Abstract

Automatic radiology report generation holds
significant potential to streamline the labor-
intensive process of report writing by radiol-
ogists, particularly for 3D radiographs such
as CT scans. While CT scans are critical for
clinical diagnostics, they remain less explored
compared to 2D radiographs. To date, there
has been no comprehensive benchmark for 3D
radiograph report generation (3DRRG), nor suf-
ficient investigation into the optimal training
strategies for Vision Language Models (VLMs)
in this context, particularly with respect to vi-
sion encoder choices, visual token compression,
and model scaling. In this work, we make three
key contributions. We curate CT-3DRRG, the
largest publicly available 3D CT-report dataset,
establishing a robust and diverse benchmark for
evaluating VLM performance on 3DRRG. Fur-
thermore, we propose a comprehensive train-
ing recipe for building high-performing VLMs
for 3DRRG, exploring key factors such as vi-
sion encoder pretraining strategies, visual token
compression, and the impact of data & model
scale. Guided by these findings, we introduce
Argus, a state-of-the-art family of VLMs that
achieve superior performance across different
model sizes and input 3D medical image reso-
lutions, efficiently processing high-resolution
3D images up to 512 x 512 x 256. The code
will be released at https://github.com/
cheliu-computation/Argus.

1 Introduction

Radiology reports are essential for clinical deci-
sion making, yet their manual creation is labor-
intensive and time-consuming (Bastawrous and
Carney, 2017; Rimmer, 2017; Rosenkrantz et al.,
2016). This has driven the need for automation in
radiology report generation. Existing work on this
task primarily focuses on 2D images, such as chest
X-rays (Tanida et al., 2023; Li et al., 2023c). How-
ever, compared to 2D images, 3D medical images

provide more comprehensive diagnostic informa-
tion and are crucial for identifying life-threatening
diseases such as pulmonary opacities and early-
stage cancer (Bradley et al., 2019; Self et al., 2013).

While 3D radiograph report generation
(3DRRG) has the potential to significantly improve
clinical workflows, several challenges remain
unresolved in the literature. Notably, there is no
comprehensive benchmark for 3DRRG, and many
existing studies lack robust evaluations across
multiple datasets and metrics. Traditional NLP
metrics alone are inadequate for assessing the
clinical relevance of generated reports. As a result,
new evaluation metrics, such as clinical efficacy
measures like GREEN (Ostmeier et al., 2024)
and RaTEScore (Zhao et al., 2024), are essential
for inclusion in the benchmark to evaluate report
quality in clinical settings.

Additionally, high-resolution (HR) 3D images
offer more clinical value than low-resolution (LR)
images, as certain conditions, such as pulmonary
nodules, are harder to detect in LR scans (Liu et al.,
2021b). However, most studies (Bai et al., 2024,
Wu et al., 2023) downsample HR volumes (e.g.,
512 x 512 x 256) to LR (256 x 256 x 32) for
report generation, which leads to significant infor-
mation loss and may overlook critical details. This
downsampling is primarily driven by the increased
computational cost associated with processing the
larger number of visual tokens generated by HR
volumes. Furthermore, no clear training recipe ex-
ists for effectively building Vision-Language Mod-
els (VLMs) for 3DRRG, particularly in terms of
selecting and pretraining vision encoders, visual
token compression, and optimizing model and data
scale.

This brings us to a crucial challenge: the lack of
large-scale public datasets and a comprehensive
benchmark for 3DRRG. Additionally, training
strategies for VLMs remain unclear, requiring a
systematic analysis of key components.
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Figure 1: Argus framework. A schematic illustration of our comprehensive exploration of 3DRRG, covering
key design choices from 3D vision encoder pretraining and visual token compression to training schedules and
scalability. We systematically analyze each component in Sections 4 and 5.

To address this challenge, we make 4 key contri-
butions:

* We curate the largest publicly available 3D
CT-report dataset, CT-3DRRG, comprising
49,849 CT volumes paired with radiology re-
ports from three publicly available sources:
BIMCV-R, CT-RATE, and INSPECT (Chen
et al., 2024a; Hamamci et al., 2024a; Huang
et al., 2023).

* Based on CT-3DRRG, we establish the first
comprehensive benchmark for 3DRRG, incor-
porating 8 NLP metrics and 3 clinical effi-
cacy metrics. This enables broad evaluation
across diverse sources, moving beyond single-
resource or in-house data.

* We conduct an in-depth analysis of the key
components required to build VLMs for
3DRRG, including strategies for vision en-
coder pretraining and visual token compres-
sion, the VLM training schedule, and the
impact of data and model scaling.

* We propose a family of VLMs, Argus, that
achieves superior performance on 3DRRG,
surpassing existing methods in both NLP and
clinical efficacy metrics. Argus scales from
3B to 70B parameters and efficiently handles
3D image resolutions up to 512 x 512 x 256.

2 Related Works

Vision-Language Models. The development of
Vision-Language Models (VLMs) combines com-
puter vision and natural language processing to
enhance visual and linguistic capabilities. This in-
tegration is crucial for tasks that require both visual
perception and language comprehension. Mod-
els like CLIP (Radford et al., 2019), Flamingo
(Alayrac et al., 2022), and BLIP (Li et al., 2023a)

have improved the alignment between these modal-
ities by using extensive image-text data samples,
resulting in significant performance gains. LLaVA
(Liu et al., 2023) further simplifies this approach
by using a basic linear projector to align visual
features with language space, involving only a few
learnable parts and tailored instruction data to fully
leverage the model’s strong capabilities. Despite
their effectiveness, these approaches focus mainly
on 2D images. To explore the relatively underex-
plored area of 3D medical imaging, such as CT
scans, we extend the LLaVA framework by incor-
porating a customized 3D vision encoder specif-
ically designed for 3D image variants. Our goal
is to tackle the challenge of generating accurate
radiology reports for 3D medical images.

Radiology Report Generation for 2D Medical
Images. Radiology report generation for 2D im-
ages typically involves template-based generation
with region differentiation (Li et al., 2018; Jing
et al., 2017), knowledge integration and coherence
to highlight abnormalities (Liu et al., 2021a; Ma
et al., 2021), and cross-modal alignment using
attention to link textual and visual features (Gu
et al., 2024; Tanida et al., 2023; Li et al., 2023c).
Although effective for 2D settings (e.g., chest X-
rays), extending these methods to 3D volumetric
data (e.g., CT scans) is challenging. The 3D con-
text involves distinct patterns in each slice (e.g.,
lungs and heart in upper slices versus abdominal
organs in lower slices), whereas 2D images typi-
cally present uniform spatial structures with inten-
sity variations (Adegun et al., 2021; Puttagunta and
Ravi, 2021; Singh et al., 2020).

Radiology Report Generation for 3D Medi-
cal Images. Despite its clinical significance, only
a few studies (Hamamci et al., 2024b; Wu et al.,
2023; Bai et al., 2024) have attempted 3D radio-
graph report generation (3DRRG) with publicly
available code, while others (Lai et al., 2024; Chen
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Figure 2: Distribution of the CT-3DRRG dataset. Left: Word cloud visualization highlighting the most frequent
terms in the radiology reports. Right: Histogram showing the distribution of report lengths (measured in number of

tokens).

et al., 2024b) do not release their code, hinder-
ing direct comparisons. Current methods have
notable drawbacks: CT2Rep (Hamamci et al.,
2024b) processes high-resolution (HR) volumes
slice by slice, losing 3D context; RadFM (Wu
et al., 2023) and M3D (Bai et al., 2024) down-
sample HR inputs to low-resolution (LR) views
and use Preceiver (Alayrac et al., 2022) to com-
press large numbers of visual tokens to just 64
or apply spatial pooling, potentially corrupting
critical visual information. Preserving HR is cru-
cial because downsampling coronal/sagittal axes
can obscure subtle abnormalities (Bradley et al.,
2019; Self et al., 2013), and clinical practice of-
ten favors 256-slice CT scans for enhanced di-
agnostic detail (Klass et al., 2010; Chua et al.,
2013). Moreover, these approaches rely on small-
scale or permission-restricted datasets, limiting
their broader evaluation and generalizability.

To advance 3DRRG, we curate the largest pub-
licly accessible 3D CT-report dataset for evaluating
VLM performance. We also conduct a thorough in-
vestigation of crucial components in VLM training,
enabling our approach to process 3D scans at up to
512 x 512 x 256 resolution without downsampling,
thus preserving essential diagnostic details.

3 Benchmark Construction

3.1 Curating the CT-3DRRG Dataset

To establish a robust and diverse benchmark for 3D
Radiology Report Generation (3DRRG), we con-
struct the CT-3DRRG dataset by integrating three
publicly available resources: BIMCV-R (Chen
et al., 2024a), CT-RATE (Hamamci et al., 2024a),
and INSPECT (Huang et al., 2023). To ensure data
quality, we apply a systematic curation process to
the original datasets, as described in Section A.

Dataset Train/Val/Test Avg. Tokens | Max Tokens
‘ Split ‘ per Report | per Report
BIMCV-R | 3,726/532/1,064 97.19 406
CT-RATE | 21,715/2,412/1,564 201.40 824
INSPECT | 14,280/2,040/4,080 48.71 267
Total | 39.721/4,984/5,144 | 130.03 | 824

Table 1: Processed data details of CT-3DRRG.

Notably, we retain the entire CT-RATE official
test set without filtering. After curation, the num-
ber of samples in each dataset is summarized in
Table 1. The BIMCV-R and INSPECT datasets
are split into training, validation, and test sets fol-
lowing a 70%/10%/20% split. For the CT-RATE
dataset, we utilize its official test set and allocate
10% of the training set as a validation set. Thus,
the CT-3DRRG dataset consists of three subsets
corresponding to these sources.

Following curation, we propose CT-3DRRG, a
unified dataset constructed by merging multiple
publicly available datasets. The statistical details of
CT-3DRRG are presented in Table 1 and Figure 2.
During training, we combine the training sets from
all sources into a single dataset. For evaluation, we
evaluates VLM performance on the test set of each
subset separately, allowing for a thorough analysis
of robustness and generalizability across different
data distributions.

3.2 Data Preprocessing

After building the CT-3DRRG dataset, we prepro-
cess the data for training and evaluating the VLM.
The preprocessing steps are designed to standardize
the data and ensure it is in the appropriate format
for model training.

HU Value Clipping and Intensity Normaliza-
tion: The Hounsfield Unit (HU) values of the CT
scans are clipped to the range of -1000 to +1000 to
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standardize the intensity levels. Then, the intensity
values are normalized to the [0, 1] range to ensure
uniform scaling across all images.

Spatial Normalization: Following the
RadGenome-Chest CT (Zhang et al., 2024), the
spacing of the CT scans is normalized to [1, 1,
4] mm on the sagittal, coronal, and transverse
axes to ensure consistency in voxel spacing across
samples.

Resizing: All CT scans are resized to two differ-
ent resolution settings. For high-resolution settings,
the scans are resized to 512 x 512 x 256, where
512 represents the dimensions of the sagittal and
coronal axes, and 256 is the number of slices in the
transverse axis. For normal-resolution settings, the
scans are resized to 256 x 256 x 64, where 256
refers to the size in the sagittal and coronal axes,
and 64 is the number of slices in the transverse
axis.

To preserve the integrity of spatial relationships,
which is crucial for accurate interpretation of 3D
medical images, augmentation techniques such as
flipping or rotating were not employed. This de-
cision was made to avoid potential ambiguities in
spatial orientation, particularly given radiological
reports that specify locations such as the “left lung"
and “right lung."

For the instructions used during training the
VLM, we utilize the instruction: “Please gener-
ate a detailed description for the given 3D CT scan,
including both normal and abnormal patterns.".
Inspired by (Bai et al., 2024) where diverse in-
structions are employed to prevent overfitting on
a specific instruction style. To further enhance di-
versity, we use GPT-4o to rephrase the instruction
into 30 distinct variants, all maintaining the same
semantic meaning.

3.3 Selecting Appropriate Metrics

For the 3DRRG task, the most straightforward
evaluation approach involves using NLP-based
metrics such as BLEU, METEOR, CIDEr, and
ROUGE (Bai et al., 2024). However, these met-
rics primarily assess lexical and syntactic similar-
ity while overlooking the clinical correctness and
relevance of the generated reports. Some stud-
ies (Hamamci et al., 2024a,c) attempt to address
this limitation by employing text classifiers, such
as those in CT2Rep (Hamamci et al., 2024c), to
evaluate report accuracy. However, these clas-
sifiers are restricted to limited predefined cate-
gories, making them unsuitable for more diverse

datasets like BIMCV-R (Chen et al., 2024a) and
INSPECT (Huang et al., 2023). To provide a clini-
cally meaningful assessment, we adopt RadGraph-
XL (Delbrouck et al., 2024), GREEN (Ostmeier
et al., 2024), and RaTEScore (Zhao et al., 2024) as
evaluation metrics. These metrics offer a more reli-
able evaluation by focusing on structured clinical
information, factual consistency, and radiological
correctness, leveraging specifically trained models
for clinical assessment.

4 Exploring VLM Design for 3DRRG

4.1 Vision Encoder Pre-training

In this section, we investigate the pre-training strat-
egy of the vision encoder for the VLM. We use
the ViT-Base (Dosovitskiy et al., 2020) architec-
ture, incorporating 3D positional embeddings and
patching to adapt it for 3D CT volumes. To assess
the impact of resolution, we explore two settings:
for normal-resolution CT scans (256 x 256 x 64),
we use a patch size of 16 x 16 x 8, generat-
ing 2048 visual tokens; for high-resolution scans
(512 x 512 x 256), a patch size of 32 x 32 x 16
produces 4096 tokens. These configurations al-
low us to analyze how resolution influences the
encoder’s ability to learn meaningful visual repre-
sentations. To comprehensively evaluate the impact
of different pre-training strategies on the vision en-
coder, we explore a range of visual self-supervised
learning (vSSL) methods and language supervision
techniques.

* 3D-MAE (Zhou et al., 2023): Masks visual
tokens to reconstruct voxel intensities, learn-
ing visual representations.

* Yox2Vec (Goncharov et al., 2023): Aims
to learn consistent voxel-level representations
across views, enhancing voxel-wise represen-
tation consistency.

e FLIP (Li et al., 2023b): Pretrains the visual
encoder with patch masking, aligning visual
representations with textual descriptions.

* Vox2Vec + FLIP: Trains in two stages:
(1) learns voxel-wise representations with
Vox2Vec, (2) applies contrastive learning to
align 3D CT with reports.

* 3D-MAE + FLIP: Trains in two stages: (1)
reconstructs masked patches with 3D-MAE,
(2) applies contrastive learning to align 3D CT
with reports.
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Figure 3: Comparison of different model combinations involving various vision encoder pretraining strategies,
visual token compression, and connector designs under (a) normal resolution and (b) high resolution settings. The
results represent the average clinical metric across the three subsets mentioned in Section 3.

For methods involving patch masking, we set the
masking ratio to 50%. Additionally, we analyze
different masking ratios in Figure 5 to assess their
impact on model performance.

4.2 Visual Token Compression and Connector

In this section, we explore various strategies for
visual token compression and the corresponding
connectors, as the large number of visual tokens
generated from 3D CT scans increases the cost of
visual token processing in the VLM. In M3D (Bai
et al., 2024), a 3D average pooling is applied to
the ViT output visual tokens, and MLP is used
as a connector to convert the visual token dimen-
sions to the LLM embedding dimensions. Mean-
while, RadFM (Wu et al., 2023) uses a Preceiver to
compress these tokens into 64 randomly initialized
learnable queries. However, these methods all re-
sult in some loss of visual information. To address
this, we introduce pixel shuffle (Shi et al., 2016;
Team, 2024) as a non-information-loss compres-
sion method to investigate the optimal combination
of visual token compression and connectors. For
both pooling and pixel shuffle, we set the down-
sampling factor to 0.5 on each dimension. This
means that for normal resolution, 2048 tokens are
downsampled to 256 tokens, and for high resolu-
tion, 4096 tokens are downsampled to 512 tokens.

As shown in Figure 3, we combine these token
compression strategies on the features extracted
from the vision encoder, pretrained with various
methods mentioned in Section 4.1. The results
show that the 2-layer MLP with pixel shuffle, using
a vision encoder pretrained with 3D-MAE + FLIP,
outperforms the other methods across all metrics.
This provides the following key findings:

1. 3D-MAE combined with language supervi-
sion achieves superior performance. This is
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Figure 4: Comparison of different training schedules,
including multi-stage strategies and variations of ViT,
under (a) normal resolution and (b) high resolution set-
tings. The results reflect the average clinical metric
computed across the three subsets outlined in Section 3.

because 3D-MAE does not rely on data aug-
mentation techniques, unlike Vox2Vec (Gon-
charov et al., 2023), which uses rotation or
flipping that can distort the spatial relation-
ships in 3D CT scans. Additionally, the two-
stage visual pretraining helps progressively
enhance the model’s ability to learn more ac-
curate and meaningful representations.

2. Pixel shuffle is more effective than other
compression methods, as it does not re-
sult in information loss. Pixel shuffle re-
duces the number of tokens while increasing
the dimensionality of each token, retaining
all visual information. In contrast, pooling
performs brute-force averaging of all pixels,
which can lead to a loss of spatial detail. The
Preceiver method, using random query initial-
ization to compress all visual tokens into only
64 queries, results in substantial information
loss, as discussed in (Yao et al., 2024). Addi-
tionally, the 2-layer MLP with various com-
pression methods consistently outperforms
the 1-layer MLP.

Based on these insights, we recommend that the
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optimal VLM should train the vision encoder using
visual SSL combined with language supervision,
utilize pixel shuffle for visual token compression,
and adopt a 2-layer MLP as the connector strategy.

5 How to Properly Train a VLM for
3DRRG?

5.1 Training Schedules

For our VLM training, we select Llama3.1-instruct
as the LLM backbone for the 8B and 70B models,
and Llama3.2-instruct for the 3B models. For the
vision encoder and token compression strategies,
we follow the findings presented in Sections 4.1
and 4.2.

In this section, we explore the impact of differ-
ent training schedules. In the 1-stage approach,
we jointly train the connector and the LLM for
one epoch using supervised fine-tuning (SFT). The
2-stage approach consists of two steps: first, we
freeze the ViT and LLM while training only the
connector for one epoch; second, we train the con-
nector, MLP, and LLM together using SFT for one
epoch. We use the DeepSpeed ZeRO-3 offload set-
ting for all model scales to ensure consistency in
our experiments. The hyperparameters are detailed
in Section B

As depicted in Figure 4, we find that the 2-
stage approach consistently outperforms the 1-
stage method, aligning with the findings in (Tong
etal., 2024). Additionally, we investigate the effect
of freezing versus unfreezing the ViT. Our experi-
ments indicate that unfreezing the ViT consistently
enhances performance, particularly under the high-
resolution setting, where it achieves the highest
performance. This suggests that allowing the ViT
to update its weights refines feature representations,
leading to improved 3DRRG performance. Given
these findings, we recommend using the 2-stage
training approach with an unfrozen ViT to further
boost performance.

5.2 Investigating the Effects of Data and
Model Scales

In this section, we explore how scaling both data
and model size affects VLM training performance.
As shown in Figure 6, we begin with a dataset of
10K samples and progressively increase the size to
20K, 30K, and finally the full dataset. The results
demonstrate a consistent improvement in perfor-
mance as the dataset size increases, highlighting
the model’s scalability. We evaluate this effect
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Figure 5: Ablation study on the masking ratio for vision
encoder pretraining. We evaluate the impact of the mask
ratio with 3D-MAE combined with the FLIP strategy
using a 8B LLM.

on both normal-resolution and high-resolution set-
tings.

Additionally, we examine the impact of scaling
the LLM size from 3B to 70B parameters, as shown
in Figure 6. The results indicate that larger mod-
els yield better performance, further validating the
scalability of our training strategy. These findings
suggest that our approach is effective and can seam-
lessly scale to accommodate both larger datasets
and more powerful LLMs.

6 Argus, the State-of-the-Art VLM for
3DRRG

We leverage insights from our studies to develop
Argus, a state-of-the-art (SOTA) VLM for the
3DRRG task. To ensure a fair comparison, we
evaluate Argus alongside three existing baselines:
RadFM (Wu et al., 2023), M3D (Bai et al., 2024),
and CT2Rep (Hamamci et al., 2024c¢), all of which
have publicly available code, allowing for direct
evaluation.

To maintain consistency, we replace the LLM
backbones of these baselines with Llama3.1-
Instruct (8B and 70B) and Llama3.2-Instruct-3B,
aligning them with our LLM selection. We reim-
plement their training on our CT-3DRRG dataset
while using the official vision encoder weights from
their repositories. Additionally, we adhere to their
original implementations for token compression
strategies, connectors, and training schedules. For
the high-resolution setting, we interpolate the posi-
tional embeddings of their vision encoders to sup-
port a resolution of 512 x 512 x 256, enabling them
to process high-resolution 3D CT scans. We com-
pare Argus across both normal (256 x 256 x 64)
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Figure 6: Scaling study of Argus with different LLM sizes and data scales. We evaluate Argus at 3B, 8B, and 70B
parameters under both normal and high-resolution settings while increasing the data scale from 10K to the full
dataset. The results show a consistent improvement in performance as both model size and data scale increase,
demonstrating the robustness and scalability of our approach.
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any abnormalities. The aorta and
pulmonary artery are normal in size.
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suspicious lung lesions indicative of
metastasis are observed. The pleura is
intact, with no effusion or other
alterations.

In the abdomen and pelvis, there is an

stones.

No significant-sized lymphadenopathy
observed in the mediastinum or axillae.
Lung parenchyma with mild irregular
opacities. Small pleural effusion noted.
Liver of slightly increased size and
morphology, without focal lesion in the
left lobe. Gallbladder with slightly
thickened walls, no evidence of calcified
Pancreas of normal size and
morphology, with a small cystic lesion.

No significant-sized lymphadenopathy
observed in the mediastinum or axillae.
Lung parenchyma without alterations. No
pleural or pericardial effusion. Liver of
normal size and morphology, with no
evidence of focal lesions or dilation of
the intra- or extrahepatic biliary tract.
Gallbladder with normal walls, no evidence
of calcified stones.

atypical liver resection in the left
hepatic lobe (LHI), but no new hepatic
lesions are observed.

he kidneys

Both adrenal glands have normal
morphology, with a tiny nodular lesion on
the right. Kidneys of normal morphology,
size, and location, with mild dilation of
the collecting system. No nodular lesions
observed. Bowel loops and colon frame of
normal disposition and calibre, with mild

Both adrenal glands have
normal morphology, with no evidence of
nodular lesions. Kidneys of normal
morphology, size, and location, without
stones or ectasia of the excretory system.
No nodular lesions observed. Bowel loops

and adrenal glands show no

abnormalities.

vertebrae.

wall thickening in the ascending colon. N&l

Bladder normal. Small
lytic lesion observed in the lumbar

and colon frame of normal disposition and
calibre.

Ground Truth

M3D-8B

Argus-8B

Figure 7: Qualitative comparison between the ground truth and reports generated by existing methods (M3D-8B)
and our method (Argus-8B). Highlighted background text indicates correctly generated content, while bold red
text denotes incorrect information. M3D-8B exhibits inconsistencies in lesion description and misidentifies key
anatomical structures, whereas Argus-8B generates more accurate and clinically relevant descriptions, demonstrat-

ing its superiority in medical report generation.

and high-resolution (512 x 512 x 256) settings.

All models are trained on the same training set
from CT-3DRRG and evaluated on three test sets.
We report performance using average NLP metrics
(BLEU1-4, ROUGE-1,2,L., METEOR, CIDEr) and
clinical evaluation metrics, including GREEN, Rad-
GraphXL, and RaTEScore (Ostmeier et al., 2024;
Delbrouck et al., 2024; Zhao et al., 2024), as shown
in Table 2. Argus consistently outperforms the
baselines across the 3B-70B model range and both
resolution settings. Notably, Argus-3B surpasses or
matches the performance of other 8B models, while

Argus-8B achieves comparable results to the 70B
models of other methods. At both resolution set-
tings, Argus outperforms baselines with the same
LLM size.

We further visualize the generated reports from
M3D-8B and Argus-8B under the normal resolu-
tion setting, as shown in Figure 7. The results
demonstrate that Argus-8B accurately captures key
anatomical structures and pathological findings,
while M3D-8B exhibits inconsistencies in lesion
descriptions and misidentifies certain structures.
This highlights the superiority of our method in
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Model CT-RATE BIMCV-R INSPECT
g g g
I = £ F 3 = § F S = § F
< o & & < o & & < <) & &
Normal Resolution Setting (256 X256 x64)
CT2Rep-3B | 38.77 48.96 58.10 25.14 | 30.95 43.65 37.18 19.74 | 27.55 36.62 38.10 24.93
RadFM-3B 39.95 4946 59.02 2573 | 31.48 44.10 37.56 20.15 | 28.09 37.23 39.01 25.36
M3D-3B 40.23 5031 60.16 26.08 | 32.10 44.94 38.55 20.11 | 28.82 3796 39.62 2541
Argus-3B 41.53 54.07 64.82 28.12 | 33.52 47.12 40.83 21.28 | 30.14 40.03 41.86 27.52
CT2Rep-8B | 40.52 51.72 62.14 2645 | 32.15 45.15 39.19 2027 | 29.55 3850 41.18 26.34
RadFM-8B 40.61 5221 6278 27.14 | 32.60 45.57 40.55 20.72 | 29.89 39.09 41.65 26.68
M3D-8B 41.33 5280 6320 26.95 | 3332 46.02 40.11 21.15| 30.33 39.54 41.71 27.15
Argus-8B 4331 56.60 67.67 29.82 | 35.02 48.79 42.23 22.16 | 31.77 41.48 43.40 28.71
CT2Rep-70B | 44.02 55.10 64.42 28.15| 33.50 47.01 43.12 21.54 | 31.40 40.04 4244 2790
RadFM-70B | 44.40 55.67 65.10 28.35 | 34.18 4832 42.65 21.74 | 31.33 4090 43.12 28.14
M3D-70B 4495 56.12 6532 30.10 | 35.05 47.75 43.09 22.11 | 32.10 41.67 4395 2895
Argus-70B 4583 5824 70.02 31.07 | 36.42 50.33 44.57 23.28 | 33.04 42.72 45.51 30.03
High Resolution Setting (512x512x256)

CT2Rep-3B | 41.05 51.02 60.53 27.83 | 32.68 46.12 3845 2149 | 29.62 3892 40.64 26.53
RadFM-3B 41.78 5152 6124 28.24 | 3324 4649 39.06 21.86 | 30.06 39.42 4131 26.88
M3D-3B 4232 52.18 62.02 28.66 | 34.02 47.07 39.77 22.03 | 30.64 39.83 42.16 27.26
Argus-3B 43.03 55.56 66.53 29.52 | 35.11 48.82 42.33 22.72 | 31.74 41.53 43.59 28.93
CT2Rep-8B | 43.70 53.10 66.12 29.57 | 35.54 4931 42.02 22.63 | 3248 41.12 43.66 29.21
RadFM-8B 44.03 53.62 66.64 30.07 | 36.00 49.83 4244 23.14 | 32.84 41.59 4421 29.66
M3D-8B 4475 5423 6720 30.62 | 36.48 50.10 43.11 23.39 | 33.38 42.05 44.58 30.05
Argus-8B 4581 5842 70.68 32.04 | 37.07 51.27 44.58 24.19 | 33.82 43.47 4592 30.72
CT2Rep-70B | 46.35 56.25 68.20 30.27 | 36.15 49.60 45.01 23.60 | 33.35 42.62 45.00 30.66
RadFM-70B | 46.72 57.36 68.85 30.56 | 36.62 50.22 45.39 23.77 | 33.70 43.09 44.55 30.04
M3D-70B 4726 57.12 69.34 31.55 | 37.15 50.64 46.81 24.22 | 34.15 43.53 4534 30.62
Argus-70B 4798 60.22 72.53 33.07 | 38.62 52.43 47.05 25.53 | 35.22 45.02 47.72 32.31

Table 2: Performance comparison of Argus across different scales on three sub-test sets of CT-3DRRG. We evaluate
models ranging from 3B to 70B parameters and compare them with CT2Rep (Hamamci et al., 2024b), RadFM (Wu
et al., 2023), and M3D (Bai et al., 2024) under both normal and high-resolution settings. Argus-3B outperforms
other 8B models and even achieves comparable performance with larger-scale models. Argus-8B matches the
performance of other 70B variants, while at the 70B scale, Argus surpasses all competing methods. These results
demonstrate the superiority of our approach, highlighting its scalability and effectiveness across resolutions.

generating clinically precise and coherent radiol-
ogy reports. We also implement human expert
evaluation on all method results as shown in Sec-
tion C, where the expert feedback corroborates our
findings, further emphasizing the advantages of
Argus-8B in terms of clinical accuracy and report
quality. Argus achieves SOTA performance and
efficiency across model scales, demonstrating the
effectiveness of our architectural and training strate-
gies without the need for larger model sizes.

7 Conclusion

In this work, we present CT-3DRRG, the first and
largest dataset comprising 3D volume-report pairs
for 3DRRG, built entirely from publicly available
resources. We critically examine key components

of VLMs, including vision encoder pre-training, vi-
sual token compression, and associated design and
training strategies, while also analyzing the impact
of scaling both data and model sizes. Leveraging
these findings, we introduce Argus, a family of
VLMs ranging from 3B to 70B parameters, which
achieves superior performance on 3DRRG task.
Thanks to our efficient design, even smaller mod-
els such as Argus-3B outperform existing methods
utilizing larger LLMs (e.g., 7B), demonstrating the
effectiveness and efficiency of our approach. Our
study provides valuable insights into how these fac-
tors influence VLM performance in 3DRRG tasks
and establishes a strong foundation for future re-
search, fostering the development of more efficient
and scalable VLMs for 3DRRG.
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Limitation

In this work, we design a comprehensive bench-
mark for 3DRRG and investigate various compo-
nents of VLMs, but due to the costly nature of
human evaluation, generated reports cannot be
evaluated manually for every report. Additionally,
human evaluation is inherently difficult to quan-
tify, which poses challenges in establishing clear
metrics for report quality. Moreover, due to data
scarcity and computational resource limitations,
scaling the dataset to the millions, as seen in natu-
ral image domains, remains a significant challenge.
In the future, we aim to develop more efficient
evaluation metrics that can automate the quality as-
sessment process and explore strategies for scaling
both the dataset and model more effectively.
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A Details of CT-3DRRG Dataset
Curation

The CT-3DRRG dataset is curated from three
public datasets: BIMCV-R (Chen et al., 2024a),
CT-RATE (Hamamci et al., 2024a), and IN-
SPECT (Huang et al., 2023). Each of these datasets
contains paired 3D CT scans and corresponding
radiology reports. The curation process involves
several key steps to ensure the dataset’s quality and
relevance for training and evaluation.

* CT-RATE Dataset: In the CT-RATE
dataset (Hamamci et al., 2024a), each sample
contains both the ‘FINDINGS’ and ‘IMPRES-
SION’ sections of the radiology report. These
two sections are concatenated into a single
report.

* BIMCV-R and INSPECT Datasets: These
datasets only contain one part of the report.
For these, we directly use the available report
without modification.

* Duplicate CT Scans in CT-RATE: The CT-
RATE dataset includes duplicate CT scans
for each sample, generated through different
reconstruction methods. To maintain consis-
tency with the RadGenome-Chest CT (Zhang
et al., 2024), we retain only one CT scan per
sample and pair it with the corresponding re-
port.

Following dataset preparation, we implement
several filtering and cleaning steps to ensure the
quality of the reports:

* Removal of Numerical Values Not Directly
Obtainable from CT Scans: Using GPT-4o,
we filter sentences that contain numerical val-
ues that cannot be directly inferred from the
CT scans. For example, sentences such as
“SAT O2 without oxygen of 93" and “Fever up
to 38” are removed, as these values are typ-
ically obtained from the patient’s electronic
health records (EHR) rather than from the CT
scan.

* Removal of Numerical Measurements De-
pendent on External Tools: We also remove
sentences containing numerical values that re-
quire external tools for precise measurement,
such as “Increase in trunk caliber of the 39
mm pulmonary artery”. Since the goal of the

3DRRG dataset is to generate patterns rather
than measure exact sizes, such sentences are
discarded.

* Removal of Sentences Comparing to Previ-
ous Studies: Sentences referencing previous
studies, such as “It is compared to the pre-
vious study of March 2019, not mediastinal,”
are also removed. These comparisons are im-
practical as not all samples are paired with
prior CT scans. Furthermore, our work aims
to build a benchmark for 3DRRG using single
CT scans, rather than longitudinal data.

* Minimum Report Length: To ensure the
relevance of the reports, we remove samples
with reports containing fewer than 10 tokens.

After these curation steps, the dataset consists of
the following number of samples for each source
dataset: 5, 322 samples for BIMCV-R, 25, 691
samples for CT-RATE, and 20, 400 samples for
INSPECT. These samples are then split into train-
ing, validation, and test sets, as shown in Table
1.

As a result of these curation efforts, we have
created the largest publicly available dataset for
3D Radiology Report Generation (3DRRG), which
we have named CT-3DRRG. This dataset is en-
tirely based on public resources, ensuring both its
accessibility and relevance to the broader research
community. The CT-3DRRG dataset is now a valu-
able resource for advancing research in the field of
automated radiology report generation from 3D CT
scans.

B Hyper-parameters of Training

In this study, we implement supervised fine-tuning
(SFT) for the 3DRRG task over two epochs, con-
ducting all experiments on eight A100-80G GPUs.
For computational efficiency, we employ mixed
precision with bf16, as detailed in Table 3. The
training process uses a total batch size of 8 with a
gradient accumulation factor of 2, resulting in an
effective batch size of 16. The maximum sequence
length is restricted to 1024 tokens.

Regarding learning rates, we use 1 x 10~4 during
the first stage, where only the connector is updated,
and 1 x 107° during the second stage, where the
ViT, connector, and LLM are updated. For the 3B
and 8B models, we update all LLM parameters,
while for the 70B model, we apply LoRA with an
alpha value of 64, a rank of 128, and a dropout
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Table 3: Hyperparameters for our method.

Hyperparameter Value
Mixed precision bf16
Total epochs 1
Total effective batch size 16
Gradient accumulation 1
Maximum sequence length 1024
Learning rate (Stage 1) 1x107%
Learning rate (Stage 2) 1x10°6
Optimizer AdamW
Schedule Linear
Warm-up ratio 0.05
Weight decay 0.0

rate of 0.1 to reduce memory consumption while
maintaining fine-tuning efficiency.

Our models are optimized using the AdamW
algorithm with a linear learning rate decay, a warm-
up ratio of 0.05, and a weight decay of 0.0. We
utilize the same configuration for all existing meth-
ods unless their official codebase specifies different
hyperparameters.

C Human Evaluation of Generated
Reports

Model CT-RATE BIMCV INSPECT

CT2Rep-7B 29+13 27+£14 26=£1.1
RadFM-7B 32+09 30+13 28%13
M3D-7B 33+£1.1 314+£09 28+12
Argus-7B 41+07 37+£08 34+1.0

Table 4: Comparison of CT-RATE, BIMCV, and IN-
SPECT scores for different models.

We conducted a human evaluation of the model-
generated reports from CT2Rep-7B, RadFM-7B,
M3D-7B, and Argus-7B under normal resolution
setting. We generated 100 reports for each test sub-
set and asked three human experts to evaluate the
correctness of the generated reports on a scale of 1
to 5. The results are shown in Table 4. As shown,
Argus-7B achieved the highest score, demonstrat-
ing its superior performance in generating accurate
and reliable reports.
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