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Abstract

User reviews on e-commerce platforms exhibit
dynamic sentiment patterns driven by temporal
and contextual factors. Traditional sentiment
analysis methods focus on static reviews,
failing to capture the evolving temporal
relationship between user sentiment rating
and textual content. Sentiment analysis on
streaming reviews addresses this limitation
by modeling and predicting the temporal
evolution of user sentiments. However, it
suffers from data sparsity, manifesting in
temporal, spatial, and combined forms. In
this paper, we introduce SYNGRAPH, a
novel framework designed to address data
sparsity in sentiment analysis on streaming
reviews. SYNGRAPH alleviates data sparsity
by categorizing users into mid-tail, long-tail,
and extreme scenarios and incorporating LLM-
augmented enhancements within a dynamic
graph-based structure. Experiments on real-
world datasets demonstrate its effectiveness in
addressing sparsity and improving sentiment
modeling in streaming reviews.

1 Introduction

User reviews on e-commerce platforms provide
valuable insights into customer preferences, prod-
uct performance, and user satisfaction. These
reviews reflect users’ momentary sentiments and
exhibit temporal dynamics as users interact with
products over time. Traditional sentiment analysis
methods, however, predominantly operate in static
contexts, where individual reviews are treated as
independent data points (Tang et al., 2015; Chen
et al., 2016; Kim and Srivastava, 2007; Mittal et al.,
2022; Zhang et al., 2025). This paradigm overlooks
the inherent temporal dependencies and evolving
nature of user sentiments, which are crucial for
capturing the full spectrum of user behavior in real-
world scenarios. For instance, as shown in Figure 1,
a user’s sentiment rating may initially be highly
positive (e.g., “I really enjoyed this book™) but
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Figure 1: Sentiment Evolution in Streaming Reviews.

gradually shift to neutral (e.g., “I was surprised that
I liked this book as much as I did”’) in subsequent in-
teractions. These transitions highlight the dynamic
relationship between sentiment changes and textual
cues, require models to learn sentiment change
patterns from historical reviews, and leverage this
understanding to predict future sentiment ratings.
As a solution to these limitations, the task of
“Sentiment Analysis on Streaming Reviews” has
been proposed, aiming to model the temporal
evolution of user sentiments across sequential time
windows and predict user future sentiments (Zhang
et al., 2023; Wu et al., 2023). This task emphasizes
the interplay between numerical sentiment scores
and their associated textual content over time.
However, this task also introduces significant
challenges, primarily due to the problem of data
sparsity (Guo, 2013; Du et al., 2022; Zhang et al.,
2024). Previous studies have commonly introduced
graph structure information to supplement sparse
user data in static scenarios (Zhou et al., 2023;
Wang et al., 2023; Chen et al., 2022). Despite
this, in streaming scenarios, the inclusion of
graph structure information further complicates
the classification and discussion of sparse users
(Xu et al., 2024). As shown in Figure 1, some
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users leave reviews at irregular and widely spaced
intervals, making it challenging for temporal
models to capture sequential dependencies (User
A: temporal sparsity). Others have limited social
connections, resulting in a lack of neighbor
information to support sentiment analysis (User
B: spatial sparsity). Additionally, some users
exhibit both temporal and spatial sparsity, further
complicating predictive modeling (User C: com-
bined sparsity). Existing methods fail to effectively
address these sparsity issues, struggling to model
temporal dependencies and spatial interactions.

To tackle these challenges, we propose SYN-
GRAPH, a novel framework tailored for Sentiment
Analysis on Streaming Reviews. SYNGRAPH oper-
ates within a dynamic graph structure and leverages
LLM-augmented data synthesis to enhance sparse
user representations. Specifically, SYNGRAPH
employs a decompose-and-recompose strategy to
categorize users into three scenarios—mid-tail,
long-tail, and extreme scenarios—based on their
temporal and spatial characteristics. For each
scenario, SYNGRAPH integrates three core compo-
nents: (a) Local and global graph understanding:
Captures both micro-level (local) and macro-
level (global) patterns of user-product interactions.
(b) High-order relation understanding: Explores
second-order and higher-order dependencies to
enrich graph representations. (¢) LLM-augmented
data synthesis: Utilizes large language models to
induce supplementary data for sparse users, enhanc-
ing representation robustness. Combining these
components, SYNGRAPH effectively addresses
the sparsity challenges in streaming reviews and
provides a robust solution for learning dynamic
sentiment patterns. Our main contributions can be
summarized as follows:

¢ We introduce SYNGRAPH, a novel framework
that integrates dynamic graph modeling with
LLM-augmented data synthesis to address the
problem of data sparsity in sentiment analysis
on streaming reviews.

* We propose a decompose-and-recompose
strategy to categorize users into different spar-
sity levels (mid-tail, long-tail, and extreme)
and apply tailored profile-enhancing tech-
niques to synthesize data for each category.

* We conduct extensive experiments on real-
world datasets, demonstrating that SYN-
GRAPH significantly improves sentiment pre-

/

(u1,p1,t1,d1)

y

<

ty

(u1,p2, ta, d2)

i

Ooa

t3

Dynamic
Graph
Encoder

(u1, 6, ta, d3)

Event Stream Embeddings Decoder Prediction

Figure 2: Streaming User Review Graph.

diction accuracy while effectively mitigating
the impact of temporal and spatial sparsity.

2 Problem Formulation

2.1 Continuous-Time Dynamic Graph

To model evolving user-product interactions, we
represent the system as a Continuous-Time Dy-
namic Graph (CTDG; Zhu et al. (2022)). Formally,
for a time span Typan = [to, ty], the dynamic graph
is defined as G, = (Gto, O[tl,tn})a where Gy,
is the initial graph at to and Oy, ;) is a sequence
of timestamped events. Each event o; € Oy, 4]
represents either a node update (v;,t;) (adding a
new user or product) or an edge update (u;, p;, t;)
(a user—product interaction).

2.2 Streaming User Review Graph

In the streaming review scenario, we observe a tem-
poral sequence of reviews E = {&,&,,...,Er},
with each review &; = (u;, pi, t;, d;, y;) capturing
the user u;, product p;, timestamp t;, review
content d;, and sentiment y;. We instantiate the
CTDG framework to form our Streaming User
Review Graph Gp, where users and products
are nodes and each review creates a directed
edge (uj,pi,t;) annotated with {d;,y;}. In this
graph, new reviews trigger node and edge updates,
seamlessly mirroring the CTDG structure. As
illustrated in Figure 2, interactions arrive as a
continuous stream and are processed by a dynamic
graph encoder that generates temporal embeddings
reflecting evolving user preferences. These embed-
dings feed into a decoder that predicts future user
sentiment at time t4: y = f(é’t ‘ {&1,... ,Et_l}).
By leveraging the CTDG structure, our approach
naturally captures both temporal dependencies and
structural evolution in user-product interactions,
thereby improving sentiment prediction.

3 SYNGRAPH Framework

We propose SYNGRAPH, a three-stage frame-
work that addresses data sparsity in Sentiment
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Figure 3: Overview of SYNGRAPH, a three-stage framework for addressing data sparsity in sentiment analysis
on streaming reviews. The three stages include: (1) Categorization of sparse users—identifying user types based
on temporal and structural patterns; (2) LLM-augmented data Synthesis—enhancing user and product profiles
using first- and second-order relationships; (3) Interpolation of different categories—integrating synthesized data to
improve representation learning and sentiment prediction.

Analysis on Streaming Reviews by leveraging
LLM-augmented dynamic graphs. The SYN-
GRAPH framework consists of three key stages:
(1) Categorization of sparse users—identifying
user types based on their temporal and struc-
tural patterns; (2) LLM-augmented representation
learning—enhancing user and product profiles
using first- and second-order relationships; (3)
Interpolation of different categories—integrating
synthesized data to improve representation learning
and sentiment prediction.

3.1 Categorization of Sparse Users

To better model user behaviors in streaming
sentiment analysis, we classify users into three
sparse categories:

(i) Mid-tail Users: These users actively contribute
reviews within specific time frames but exhibit
fluctuations in engagement across different inter-
vals. To quantify this variability, we measure the
variance in user interactions over a set of time inter-
vals T: 02, = 4530 (T(um) = T(um))”,
where I;(u,, ) represents the number of interactions
by user u,, in interval ¢, and I (u,,) is the mean
interaction count across all intervals. A higher
variance indicates greater fluctuations, suggesting
that the user’s engagement pattern is inconsistent
over time. (ii) Long-tail Users: Long-tail users
contribute a limited number of reviews and have

sparse first-order interactions, meaning they have
few direct neighbors in the interaction graph. This
limits the effectiveness of traditional neighbor-
based analysis. However, these users often
maintain a substantial number of second-order
connections, allowing for indirect information
propagation. We define first-order connectivity as:
Cr(w) = > e () W, v), where N (uy) is
the set of direct neighbors of user u;, and w(uy, v)
denotes the interaction weight between wu; and
neighbor v. A small C(u;) value indicates that
user u; has sparse immediate connections, whereas
a high Cy(v;) value suggests that second-order
neighbors provide rich contextual signals. (7ii)
Extreme Users: These users are highly sparse both
in terms of review activity and connectivity within
the interaction graph, making them challenging
to model with traditional approaches. Their
lack of both first- and second-order connections
results in minimal information propagation. We
define the overall connectivity score as: C'(u.) =
2 veN (ue) W(te, v), where N (uc) denotes the set
of all neighbors connected to u.. A near-zero
C'(ue) indicates that the user is almost completely
isolated in the network.

As illustrated in the top-left part of Figure 3
(“Categorization of Sparse Users”), these three
categories of sparse users exhibit distinct dis-
tributions. In the figure, the three types of
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sparse users are highlighted in red, the first-order
neighbors (products) in white, and the second-order
homogeneous neighbors (users) in blue, with each
node containing a subset of relevant reviews.

3.2 LLM-Augmented Data Synthesis

In this section, we introduce an LLM-augmented
Data Synthesis strategy, using LLLM to synthesize
user and product representations while incorporat-
ing structural neighbor information from dynamic
graphs. This stage consists of two main parts: Key
Components for LLM-augmented Data Synthesis
and LLM-augmented Data Synthesis.

Key Components for LLM-Augmented Data
Synthesis: To effectively handle data sparsity
in streaming sentiment analysis, we introduce
three essential components that enable LLMs to
synthesize high-quality augmented data.

(1) Local-Global Graph Understanding: In our
framework, the user profile is enhanced by
supplementing it with contextual information
derived from both local and global neighbor data.
Specifically, the local information is obtained from
the immediate neighbors that reflect recent and
direct interactions, while the global information is
collected from a broader set of neighbors, capturing
long-term trends and overall network context. Our
approach employs LLM to interpret and enrich the
user’s profile based on these local and global cues.
(2) High-order Relation Understanding: Instead
of relying solely on direct connections, we extract
second-order relationships to improve user-product
profiles. Given a user u with neighbors N (u),
we define their second-order neighborhood as:

N2(w) = (Usenin N (©) \ {u:

(3) Profile Generation: For sparse users and
products lacking explicit profiles, we utilize LLMs
to synthesize synthetic profile based on existing
reviews. These profiles can be directly extracted
from user-generated content or inferred through
second-order neighborhood information within the
interaction graph. Formally, we define the profile
generation function as: P(z) = LLM(R(z), P),
where R(x) is the selected review set for entity
x (which can be a user or a product), and P,
is the corresponding guiding prompt. In our
implementation, we use: P, for generating user
profiles, P4 for generating product profiles, and
Pjata for synthesizing the final review data.
LLM-Augmented Data Synthesis: After ob-
taining the three key components, we combine

these three methods and use them in three sparse
categories.

(a) Mid-tail Data Synthesis: Mid-tail users have
moderate interactions, allowing profile genera-
tion from historical reviews and second-order
product relationships. Formally, the profile of
a mid-tail user u,, is generated as: P(u,,) =
LLM(R(um), P,). To incorporate second-order
product relationships, we refine the product profile
set as: Pset(Um) = LLM(Porod, N2(N (um))),
where Pproq is the prompt used for generating
product profiles. The final synthesized data is then
constructed by integrating both user and product
profiles:

Dy = LLM(Pdataa P(um)>735et(um))- 1)

(b) Long-tail Data Synthesis: Long-tail users
have significantly fewer interactions, necessitating
the use of neighbor-based augmentation. Their
profiles are constructed using both local and
global second-order relationships: P(u;) =
LLM (M?}cal (ul) ) Ng210bal (ul)a Rchosen(ul)a Pu) )

where N2 (u) and NG, (w) denote the
second-order neighbors from the local and
global graphs, respectively. Similarly, product
profiles for long-tail users are defined as:
Peet(w) = LLM(Pprod, N2(N(w;))). The
synthesized data for long-tail users is obtained by:

Dr =LLM (Pdata7 P(Ul), Pset(ul))- 2)

(c¢) Extreme Data Synthesis: For extreme users
with minimal or no interactions, we introduce
pseudo-data synthesis based on high-rated products.
The user profile is synthesized as: P(u.) =
Profile(u.), where Profile(u.) denotes a pre-
defined or externally obtained profile for the ex-
treme user u.. Popular products are incorporated as
proxies: Pset(ue) =LILM (Rchosen(Phigh)a Pprod)y
where Phigh denotes a selected set of high-rated
products and Rchosen(Fhigh) is the corresponding
review set. The final synthesized data for extreme
users is given by:

Dg = LLM(Pdataa P(Ue)a Pset(ue)) . 3)

By leveraging LLM-based profile generation,
second-order relationship modeling, and local-
global graph understanding, SYNGRAPH effec-
tively synthesizes data for sparse users, enhancing
model stability across varying sparsity levels.
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Long-tail

Extreme Interpolated Review Count

Count Proportion Count Proportion Count Proportion Count Proportion

Mid-tail Long-tail Extreme

Normal Mid-tail
Category
Magazine_Subscriptions 183 (52.59%) 8 (2.30%) 154
Appliances 11 (23.40%) 2 (4.26%) 19
Gift_Cards 203 (44.42%) 45 (9.85%) 209

(44.25%) 3 (0.86%) 67 1287 26
(40.36%) 15 (31.91%) 15 158 126
(45.73%) 0 (0.00%) 358 1753 0

Table 1: Left: User distribution across different sparsity levels. Right: Number of interpolated reviews.

3.3 Interpolation of Different Categories

After generating enriched representations for
each user category, we apply data interpolation
across different user groups to improve sentiment
modeling and ensure data balance. To quantify
the interpolation need for a given user u, we
define the interpolation factor as: Iy(u) =
%Z?:l 1{It(u):O}7 where 1{[t(u):()} is an indi-
cator function that returns 1 if the user u has
no interactions at time step t, ensuring that
interpolation is applied where necessary. Using our
interpolation position search method, we identify
the missing data points for each category and apply
interpolation accordingly. The total number of
interpolated interactions for a given category C
is computed as:

T
Lo (C) = Z Z 141, (w)=0}> “4)

ueC t=1

where C' represents a user category (mid-tail,
long-tail, or extreme). The interpolated data
is then incorporated into the training pipeline,
ensuring that each user maintains a minimum data
availability threshold of 10 interactions.

4 Experiments

4.1 Experiments Setup

Dataset statistics. We utilize three datasets from
the Amazon dataset collection (Ni et al., 2019),
specifically Magazine_Subscriptions, Appliances,
and Gift_Cards, chosen for their relatively smaller
data sizes. To preserve the integrity of the original
data distribution, we retain them in their raw
form without additional preprocessing. Users in
each dataset are categorized into mid-tail, long-
tail, and extreme users based on the definitions
established in this paper. (The detailed user
categorization process is provided in the appendix.)
The distribution of users across different sparsity
levels is presented in Table 1.

Baselines. We compare our approach against
two categories of baseline models: (1) Text-based
models: BiLSTM+Att, BERT-Sequence (Devlin

et al., 2019). (2) User and product-based models:
CHIM (Amplayo, 2019), IUPC (Lyu et al., 2020),
NGSAM (Zhou et al., 2021), and DC-DGNN
(Zhang et al., 2023). Among these, DC-DGNN
is specifically designed for continuous dynamic
graph learning on streaming data. Models marked
with * denote those trained on datasets augmented
with the three types of synthesized data synthesized
via the SYNGRAPH framework.

Implementation details. For user and product
embeddings, all models utilize a 128-dimensional
representation. The batch size is set to 8, and the
learning rate is 3e — 5, with training conducted for
2 epochs. Sentiment analysis is formulated as a
classification problem, and model performance is
evaluated using seven metrics: Accuracy, Precision,
Recall, F1-score, Mean Squared Error (MSE), Root
Mean Squared Error (RMSE), and Mean Absolute
Error (MAE). The dataset is split into training and
test sets at a 9 : 1 ratio. Table 1 also presents
the statistics of interpolated review counts across
different categories.

4.2 Main Results

The performance on Magazine_Subscriptions,
Appliances, and Gift_Cards datasets, illustrating
the impact of incorporating synthesized data into
sentiment analysis of streaming user reviews, are
presented in Table 2. The key observations are
as follows: (1) Across all three datasets, with a
total of 18 experimental configurations spanning
six different models, we observe that 15 out of
18 settings exhibit a significant improvement in
performance when leveraging the SYNGRAPH
framework. This result underscores the effec-
tiveness of SYNGRAPH in enhancing sentiment
analysis in streaming settings. (2) Among all
evaluated models, DC-DGNN and its augmented
variant DC-DGNN* consistently achieve the best
performance, both before and after incorporating
synthesized data. This finding highlights the
critical role of dynamic user and product modeling
in sentiment analysis for streaming reviews.
(3) A comparative analysis of test set results
before and after incorporating synthesized data
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Evaluation Metrics

Method RMSE Reduction
Accuracy (1) Precision (1) Recall () FI1 (1) MSE({) RMSE({) MAE{)
Dataset: Magazine_Subscriptions
BILSTM+Att 0.6910 0.4040 0.4054  0.4019 1.5021 1.2256 0.5837 -
BiLSTM+Att* 0.6831 0.5966 0.3667 0.3976  1.3862 1.1774 0.5628 13.93%
Bert-Sequence 0.6953 0.2589 03049  0.2791 1.2918 1.1366 0.5451 -
Bert-Sequence™ 0.7035 0.4479 0.5278  0.4792  0.5160 0.7183 0.3654 136.80%
NGSAM - - - - 1.2867 1.1343 0.7772 -
NGSAM* - - - - 0.9433 0.9712 0.6077 114.38%
CHIM 0.6084 0.3549 0.3002  0.3073  1.5392 1.2406 0.6831 -
CHIM* 0.6995 0.2453 0.2768  0.2553  1.8798 1.3711 0.6557 110.52%
IUPC 0.7039 0.2671 0.3499  0.3016  0.9442 0.9717 0.4635 -
IUPC* 0.7420 0.4800 0.5283  0.4979 0.5721 0.7564 0.3349 122.16%
DC-DGNN 0.7554 0.4290 0.4107 04016 0.7768 0.8814 0.3820 -
DC-DGNN* 0.7983 0.6879 0.5853  0.5385 0.4206 0.6485 0.2575 126.42%
Dataset: Appliances
BiLSTM+Att 0.5000 0.1250 0.2500  0.1667  1.3250 1.1511 0.7250 -
BiLSTM+A(tt* 0.7250 0.6230 0.5417  0.5605 0.3500 0.5916 0.3000 148.61%
Bert-Sequence 0.7143 0.2381 0.3333  0.2778 1.0476 1.0235 0.4762 -
Bert-Sequence™ 0.6042 0.2062 0.2404 0.2178 0.9583 0.9789 0.5417 14.36%
NGSAM - - - - 0.7007 0.8371 0.6010 -
NGSAM* - - - - 0.5069 0.7120 0.4763 114.94%
CHIM 0.5500 0.2244 0.2414  0.2230  0.9500 0.9747 0.6000 -
CHIM* 0.6000 0.2468 0.2614  0.2453  0.5500 0.7416 0.4500 123.92%
IUPC 0.7143 0.2381 0.3333  0.2778 1.0476 1.0235 0.4762 -
TUPC* 0.6042 0.2510 0.3212 02483  0.9583 0.9789 0.5417 14.36%
DC-DGNN 0.7143 0.2381 0.3333  0.2778 1.0476 1.0235 0.4762 -
DC-DGNN* 0.8571 0.5441 0.5833  0.5625 0.6667 0.8165 0.2857 120.22%
Dataset: Gift_Cards
BiLSTM+Att 0.7439 0.2690 0.2034  0.1778 0.5213 0.7220 0.3273 -
BiLSTM+Att* 0.7749 0.3066 0.2631  0.2727  0.5201 0.7211 0.3079 10.12%
Bert-Sequence 0.8754 0.2189 0.2500  0.2334 0.30064 0.5535 0.1717 -
Bert-Sequence* 0.8443 0.4417 0.4053  0.4201  0.2909 0.5393 0.1905 12.57%
NGSAM - - - - 0.4152 0.6444 0.3463 -
NGSAM* - - - - 0.2544 0.5044 0.3116 121.73%
CHIM 0.8754 0.2189 0.2500  0.2334 0.3064 0.5535 0.1717 -
CHIM* 0.7671 0.3698 0.3346 03475  0.6080 0.7798 0.3312 140.89%
DC-DGNN 0.8754 0.2189 0.2500  0.2334 0.30064 0.5535 0.1717 -
DC-DGNN* 0.8956 0.4384 0.5000 0.4671 0.1145 0.3383 0.1077 138.88%

Table 2: Performance comparison of sentiment analysis models on streaming user reviews across three real-
world Amazon datasets. | indicates that lower values are better, while 1 indicates that higher values are better.
Models marked with * denote those trained on datasets augmented with the three types of synthesized data via
the SYNGRAPH framework, and these rows are highlighted in blue. RMSE Reduction represents performance
improvement, where | indicates an performance improvement after data augmentation, while 1 indicates a

performance drop.

reveals a steady performance improvement after
augmentation. This phenomenon suggests that the
model demonstrates improved generalization and
robustness, validating the ability of SYNGRAPH to
synthesize diverse and effective user data.

4.3 Ablation Study

To validate the effectiveness of each proposed
component, we conducted ablation experiments
on DC-DGNN to assess the efficiency of data

synthesis for each category, denoted as -M, -L,
and -E for mid-tail, long-tail, and extreme users,
respectively. As shown in Table 3, we found that
combining data from all three categories generally
resulted in the best performance across various
datasets, such as Appliances and Gift_Cards. In
some cases, using only one type of supplementation
led to the optimal outcome, as observed in
Magazine_Subscriptions. This is because the
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Evaluation Metrics

Method
Accuracy (1) Precision (f) Recall (1) F1(1) MSE({) RMSE({) MAE()
Dataset: Magazine_Subscriptions

DC-DGNN* 0.7983 0.6879 0.5853  0.5385  0.4206 0.6485 0.2575

DC-DGNN-M 0.8155 0.6785 0.6044  0.6225 0.4292 0.6551 0.2489

DC-DGNN-L 0.7725 0.6826 0.5029  0.4661  0.5365 0.7324 0.2961

DC-DGNN-E 0.8112 0.5715 0.5521 0.5484  0.4077 0.6385 0.2446
Dataset: Appliances

DC-DGNN* 0.8571 0.5441 0.5833  0.5625 0.6667 0.8165 0.2857

DC-DGNN-M 0.7143 0.2381 0.3333  0.2778 1.0476 1.0235 0.4762

DC-DGNN-L 0.6667 0.2593 0.3111  0.2828 0.6190 0.7868 0.4286

DC-DGNN-E 0.7143 0.2381 0.3333  0.2778 1.0476 1.0235 0.4762
Dataset: Gift_Cards

DC-DGNN* 0.8956 0.4384 0.5000 0.4671 0.1145 0.3383 0.1077

DC-DGNN-M 0.8754 0.2234 0.2500  0.2359  0.1448 0.3805 0.1313

DC-DGNN-L 0.8754 0.2189 0.2500  0.2334  0.3064 0.5535 0.1717

Table 3: Results of interpolating sparse user data across different categories. DC-DGNN™ represents the results
obtained by inducing data from Mid-tail, Long-tail, and Extreme user categories. DC-DGNN-M refers to the results
obtained by inducing data from only Mid-tail users, DC-DGNN-L from only Long-tail users, and DC-DGNN-E

from only Extreme users.

datasets considered in this study are small-scale
datasets, and introducing more data could introduce
additional noise, potentially leading to a decrease
in predictive performance. Similarly, there was
no change in performance in the -M and -E cases
of the Appliances dataset, likely due to the small
number of synthesized data introduced. This is
reasonable, as attempting to improve performance
by introducing only a few data points, as shown in
Table 1, is also unlikely. As for the -L case of the
Gift_Cards dataset, overfitting still occurred, likely
due to the severe imbalance of the original labels
in this dataset, with proportions corresponding to
labels 5, 4, 3, 2, and 1 being [0.9258, 0.0519,
0.0111, 0.0074, 0.0037] respectively. Introducing
a large amount of similar data under the long-tail
scenario exacerbated this imbalance. However, it is
worth mentioning that the overfitting phenomenon
during training on the Gift_Cards dataset was
mitigated to some extent when combining the
synthesized data from all three categories.

4.4 Evaluation of Synthesized Data

To assess the quality of the LLM-synthesized data,
we conducted an evaluation using the latest GPT-
4" model across four key metrics: (1) Language
Style Similarity (LSS): Measures the alignment
between the synthesized review and the user’s

"https://openai.com/gpt-4
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Figure 4: GPT-4 evaluation of synthesized reviews
across different sparsity categories.

writing style. (2) Rating Habit Similarity (RHS):
Evaluates the consistency between the synthesized
rating and the user’s historical rating patterns.
(3) Sentiment Similarity (SS): Assesses whether
the sentiment of the synthesized review aligns
with product reviews. (4) Aspect Similarity (AS):
Determines whether the synthesized review focuses
on relevant product attributes. Figure 4 presents
the results across different sparsity categories and
datasets. We observe that mid-tail users exhibit
the highest consistency across all metrics, while
extreme sparsity scenarios result in lower LSS
and RHS scores due to limited user history. Even
in sparse cases, 5SS and AS scores remain stable,
indicating that the model effectively maintains
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Figure 5: Comparison of vocabulary richness between
LLM-synthesized and original data across different
sparsity categories.

product-level coherence.

4.5 Vocabulary Richness Analysis

To evaluate the quality of the LLM-Synthesized
data, we employ NLTK? to compute the overall
average vocabulary richness across different spar-
sity categories. We then compare these values
with those of the original dataset, as shown in
Figure 5. Our analysis reveals that the LLM-
synthesized text exhibits a vocabulary richness
pattern consistent with prior findings (Li et al.,
2023c), suggesting a potential limitation in lexical
diversity. Specifically, across all sparsity categories
and datasets, the vocabulary richness of the LLM-
synthesized text is consistently lower than that of
the original dataset. Furthermore, the richness
levels remain relatively stable across different
categories of synthesized data, indicating that while
the LLM effectively synthesizes supplementary
content, it may introduce a degree of lexical
homogeneity.

5 Related Work

Data sparsity is a persistent challenge in e-
commerce recommendation, where traditional
methods enhance preference representations by
leveraging user attributes (Volkovs et al., 2017; Zhu
et al., 2020), integrating social networks (Sedhain
et al., 2014; Du et al., 2022), or transferring
knowledge across domains (Hu et al., 2018; Li and
Tuzhilin, 2020; Gao et al., 2023; Zhu et al., 2021).
Few-shot learning techniques further mitigate
sparsity by leveraging semantic associations in
graph-structured data (Wang et al., 2018; Zhou
etal., 2023; Wang et al., 2023; Chen et al., 2022) or
employing meta-learning to enhance adaptability

2https://www.nltk.org/

across domains (Wu and Zhou, 2023; Lu et al.,
2020; Lee et al., 2019). Howeyver, these approaches
treat sparsity as a static issue, failing to model
the temporal evolution of user interactions and the
structural complexity of dynamic streaming data.

Recent advances in LLMs offer new oppor-
tunities to address sparsity by leveraging their
reasoning abilities and extensive pretrained knowl-
edge. Prompt engineering has been explored
for mathematical QA (Yu et al., 2024), chain-of-
thought reasoning (Liang et al., 2023), symbolic
data generation (Ye et al., 2023), and hybrid
human-LLM annotation strategies (Staab et al.,
2024; Li et al., 2023a,b). In recommendation
systems, LLMs have been employed to enrich
sparse user data by integrating first-order neighbor
information (Wei et al., 2023) or inferring user
profiles from textual descriptions (Sun et al.,
2023). However, these methods often overlook
the structural complexity of graphs, limiting
their effectiveness in leveraging higher-order
relationships. Moreover, temporal dependencies
are frequently ignored, leading to suboptimal
modeling of evolving user preferences in streaming
environments.

Despite these advancements, an effective frame-
work that jointly models temporal dynamics, high-
order structural dependencies, and LLM-based
augmentation remains underexplored. Our work
fills this gap by introducing a unified approach that
systematically integrates these factors, offering a
more comprehensive solution to the challenges in
sentiment analysis on streaming user reviews.

6 Conclusion

We propose SYNGRAPH, a dynamic graph-based
framework that mitigates data sparsity in sentiment
analysis on streaming reviews. By integrating
LLM-augmented enhancements, it effectively mod-
els local and global structures, high-order relation-
ships, and supplementary data. It adapts to different
sparsity scenarios through a flexible decomposition
and recombination mechanism. Experiments on
three real-world Amazon datasets demonstrate its
effectiveness in improving sentiment analysis on
streaming reviews under sparse conditions.
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Limitations

While our data synthesis approach effectively
mitigates user data sparsity and demonstrates
strong performance, several aspects warrant further
investigation:

* Neighbor Selection Strategy: To balance
efficiency and computational cost, we adopt
a random sampling strategy when selecting
next-hop neighbors. While this method proves
effective in our study, particularly for datasets
with limited sample sizes, its impact may
vary in large-scale scenarios where sampling
variance becomes more pronounced. Future
work could explore more principled selection
mechanisms that optimize for both efficiency
and representational quality.

¢ LLM Understanding of Graph Structures:
Our framework integrates local and global
graph structures to enhance representation
learning. However, we do not explicitly
analyze how LLMs differentiate between
these two types of graphs or the extent to
which each contributes to the final represen-
tations. A deeper investigation into LLMs’
ability to process and leverage hierarchical
graph structures could further improve the
robustness of graph-based data augmentation.

» Mitigating Hallucination in Data Synthesis:
Like many applications of LLMs, our ap-
proach is susceptible to hallucination, where
synthesized data may not always faithfully
reflect real-world distributions. While our
framework benefits from LLM-augmented
synthesis, ensuring the reliability and factual
consistency of synthesized data remains an
open challenge. Future research could focus
on refining prompt designs or incorporating
external validation mechanisms to enhance
the trustworthiness of synthesized content.

Despite these considerations, our approach
provides a solid foundation for addressing data
sparsity in sentiment analysis on streaming reviews,

and we believe that further refinements in these
areas can further enhance its applicability.
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A Experiment Details

Sparse User Categorization. Users with more
than five reviews are considered non-sparse, while
those with five or fewer are categorized as sparse
based on clustering results. Table 4 shows the
proportion of reviews contributed by these two
groups, which together constitute the majority of
reviews. Thus, we focus on these user types, where
users with O to 5 reviews are classified as sparse
(long-tail or extreme), and those with 5 to 10
reviews are non-sparse.

Mid-tail User Identification. Figure 6 further
divides non-sparse users who exhibit temporal
sparsity. We compute the number of reviews
per user per day and apply K-means clustering
using statistical indicators such as mean, standard
deviation, minimum, and maximum review counts.
The top-right region in the figure represents highly
active users with fluctuating review frequencies,
while the top-left region corresponds to similarly
active users with more stable review patterns. The
bottom-right region consists of less active users
who occasionally review in bursts, and the bottom-
left region contains users with consistently low
review activity. Based on these distributions, we
define mid-tail users as those in the top-right and
bottom-right groups.

Long-tail and Extreme User Categorization.
Figure 7 illustrates the distinction between long-tail
and extreme users based on second-order neigh-
borhood connectivity. Sparse users with limited
self-data but sufficient second-order neighbors are
classified as long-tail users, as their profiles can be
supplemented with synthesized data. Conversely,
users with both limited self-data and few second-
order neighbors are categorized as extreme users,
where direct data synthesis is required.

Temporal Distribution of Interpolated Data. In
data interpolation, selecting insertion positions is
crucial for synthesizing meaningful data. Figure 8
presents the temporal distribution of interpolated
data across 10 time intervals.

B Prompt Templates

We use OpenAl’s gpt-3.5-turbo? for data synthesis,
employing specific prompts tailored for different
user categories. In the mid-tail scenario, Py,
(Figure 9) is used for user profile generation, P,
(Figure 10) for product profiles, P, (Figure 11)

3https ://platform.openai.com/docs/
api-reference/models

for selecting second-order products, and Py
(Figure 12) for data synthesis. In the long-tail
scenario, P,; (Figure 13) is used for generating user
profiles, while P,; = P, is applied to product
profiles. The prompts Pg, and Py; remain the
same as in the mid-tail setting. For extreme users,
Pye = Pum is used for user profiles, Py = Py,
for product profiles, and P,4 follows the same
prompt as in mid-tail users.

C Synthetic-Data Proportion
Experiments

We conduct a series of controlled experiments
on three datasets (Appliances, Gift_Cards, Mag-
azine_Subscriptions) using the DC-DGNN frame-
work, in which synthetic data is inserted at six
stages: 0% (NoSynth), Front 20%, Front 40%,
Front 60%, Front 80%, and 100% (FullSynth).

Appliances (approximately 100 users) In this
extremely sparse setting, adding a small amount
of synthetic data (Front 20%) yields negligible
changes in Accuracy or F1 and may introduce mi-
nor fluctuations due to noise. As the synthetic data
ratio increases most metrics improve but Accuracy
at Front 80% slightly dips, which indicates that
moderate augmentation often outperforms both no
augmentation and full augmentation in very small
datasets (see Table 5).

Gift_Cards and Magazine_Subscriptions
(larger scale) Both datasets show a generally
monotonic increase in Accuracy and F1 as the
synthetic data ratio increases, which suggests that
when ample real data is available the negative
impact of noise is reduced and the model benefits
consistently from additional synthetic samples (see
Tables 6 and 7).

Based on these results, we conclude that for very
small and sparse datasets such as Appliances with
only approximately 100 users moderate synthetic
data ratios (for example 40 to 60%) achieve the
best balance between performance improvement
and noise. Therefore, the synthetic data ratio and
insertion stage must be calibrated on a per dataset
basis.
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Dataset Total R Ul10R U10R proportion USR US R proportion

Magazine_Subscriptions 2330 1178 0.506 764 0.328
Appliances 203 87 0.429 116 0.571
Gift_Cards 2966 1502 0.506 1044 0.352

Table 4: Statistical analysis of the ratio of user-associated reviews to the total review count across various hierarchical
levels. U10 R refers to the number of reviews associated with users with ten or fewer reviews. U5 R refers to the
number of reviews associated with users with five or fewer reviews.

Variation Accuracy Precision Recall F1 MSE RMSE MAE
Appliances_0%_NoSynth ~ 0.7143 0.2381  0.3333 0.2778 1.0476 1.0235 0.4762
Appliances_Front20% 0.7143 0.2381  0.3333 0.2778 1.0476 1.0235 0.4762
Appliances_Front40% 0.7619 0.4250 0.4778 0.4492 0.5238 0.7237 0.3333
Appliances_Front60% 0.7619 0.4556  0.5389 0.4889 0.7619 0.8729 0.3810
Appliances_Front80% 0.7143 0.4000 0.4556 0.4222 0.5714 0.7559 0.3810
Appliances_FullSynth 0.8571 0.5441  0.5833 0.5625 0.6667 0.8165 0.2857

Table 5: Results on the Appliances dataset under different synthetic data proportions.

Variation Accuracy Precision Recall F1 MSE RMSE MAE
GiftCards_0%_NoSynth  0.8754 0.2189  0.2500 0.2334 0.3064 0.5535 0.1717
GiftCards_Front20% 0.8721 0.1780  0.1992 0.1880 0.1751 0.4184 0.1414
GiftCards_Front40% 0.8721 04732  0.2897 0.3064 0.1481 0.3849 0.1347
GiftCards_Front60% 0.8923 0.3787  0.3667 0.3706 0.1279 0.3577 0.1145
GiftCards_Front80% 0.8990 0.7241  0.5086 0.5030 0.1212 0.3482 0.1077
GiftCards_FullSynth 0.8956 0.4384  0.5000 0.4671 0.1145 0.3383 0.1077

Table 6: Results on the Gift_Cards dataset under different synthetic data proportions.

Variation Accuracy Precision Recall F1 MSE RMSE MAE
Magazine_0%_NoSynth  0.7554 0.4290  0.4107 0.4016 0.7768 0.8814 0.3820
Magazine_Front20% 0.7639 0.5851  0.4753 04830 0.5193 0.7206 0.3133
Magazine_Front40% 0.7768 04126  0.4794 0.4370 0.5064 0.7116 0.3004
Magazine_Front60% 0.8155 0.7670  0.6302 0.6210 0.3133 0.5597 0.2189
Magazine_Front80% 0.8155 0.5576  0.5495 0.4991 0.3906 0.6249 0.2361
Magazine_FullSynth 0.7983 0.6879  0.5853 0.5385 0.4206 0.6485 0.2575

Table 7: Results on the Magazine_Subscriptions dataset under different synthetic data proportions.
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User Clustering Results User Clustering Results

Dataset: Appliances Dataset: Gift_Cards
2,00
° © Clustero O Clustero o °
© Cluster1 07 @ Cluster1
X Centroids X Centroids °

175 o
> ° > 06 ° o ° o
] ° § °
5 150 X 5 ° °]
g & )
g ° 205
8 g e © ° o
2125 H o
5 - N LRVCS
5 5 X. e 8
g g
g 100 < e © o
3 3
3 S o3 °
3 o 3 o 8
s 3 °
Sors 2 o § o
2 < o
s s a
@ @ 02 G-

o & o
050 o
X Sle
o 01 X
0z © ©
01 02 03 04 [ 06 07 001 002 003 0.04 005 006 007 008
Mean tweets per day Mean tweets per day

(a) Appliances_Mid-tail_Split (b) Gift_Cards_Mid-tail_Split

User Clustering Results
Dataset: Magazine_Subscriptions

O Cluster0 °
@ Cluster1
X Centroids °
0.7 o
°
>
g ° o
Tos Q
g
0 ° °
]
05 °
Z °
5
§
=04 ° o °
H
3
'c ° °
503
K]
] o
2] 02 9 o
5 o
01 X o
o
0.01 0.02 0.03 0.04 0.05 0.06 0.07

Mean tweets per day

(c) Magazine_Subscriptions_Mid-tail_Split

Figure 6: Non-Data Sparse User Division. This section discusses users who are sparse in time rather than in data.
The data points in the upper right corner indicate users with abundant but uneven data. The red dots in the figure are
defined as mid-tail users.
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Scatter Plot of Neighbor Counts Scatter Plot of Neighbor Counts
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Figure 7: Data-Sparse User Division and Corresponding Proportions. The orange points exhibit abundant second-
order homogeneous relationships and are defined as long-tail users, while the blue points have sparse second-order
homogeneous relationships and are defined as extreme cases.
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Appliances: Mid-Tail Users Appliances: Long-Tail Users
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Figure 8: Distribution of interpolation positions along the timeline corresponding to different sparse categories
across datasets.
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Summarize the following user profile for user ID {user_id}:
{user_review_list}
Summary: [Your generated user profile here]

Figure 9: The prompt used for generating user profiles in the mid-tail and extreme scenarios, defined as P,,,,, and
P .. in the paper, respectively, takes as input the selected reviews of the user.

Summarize the following product profile for product ID {product_id}:
{product_review_list}

Summary: [Your generated product profile here]

Figure 10: The prompt used for generating product profiles in the mid-tail, long-tail, and extreme scenarios, defined
as P, Py, and P, in the paper, respectively, takes as input the selected reviews of the product.

Analyze the relationship between the product profile and its second-order
homogeneous products' profiles, then provide a list of products within the
second-order homogeneous product IDs that are similar to this product. Only
provide the final ID list, without analysis.

Product's own profile:
{product_profile}

Second-order homogeneous products’ profiles:

[
{“product_id”: {product_id_1}, "product_profile": {product_profile_1}},
{"product_id": {product_id_2}, "product_profile": {product_profile_2}},
{“product_id”: {product_id_3}, “product_profile”: {product_profile_3}},

.

Product ID List: [Your generated homogeneous product IDs here]

Figure 11: The prompt used for selecting second-order homogeneous products in the mid-tail and long-tail scenarios,

defined as P, in the paper, takes as input the profile of the product itself along with the profile of the second-order
homogeneous products.
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Generate a synthetic review and provide a score (out of 5) for product ID
{product_id} based on the following user profile and product summary:

User Profile:
{user_profile}

Product Summary:
{product_profile}

Synthetic Review: [Your generated Review here]

Score: [Your generated score here, out of 5] (must be an integer)

Figure 12: The prompt used for inducing data for mid-tail, long-tail, and extreme user scenarios, defined as P4 in
the paper, takes as input the user profile and the product profile.

Generate a profile for the user based on the user's own reviews, reviews from local
second-order homogeneous users corresponding to the user, and reviews from
global second-order homogeneous users corresponding to the user.

User's own reviews:
{user_own_reviews}

Local second-order homogeneous users' reviews within a specific time frame:
{local_homogeneous_user_reviews}

Global second-order homogeneous users' reviews across the entire time frame:
{global_homogeneous_user_reviews}

Summary: [Your generated user profile here]

Figure 13: The prompt used for understanding the local and global user relationships in the long-tail scenario,
defined as P,,; in the paper, takes as input the user’s own reviews, the reviews of locally second-order homogeneous
users, and the reviews of globally second-order homogeneous users.

User ID: 2

User ID 2 has left five reviews. The reviews have mostly positive ratings, with four
out of five reviews being rated 5.0 overall. The user has reviewed a variety of
products, including items with ASINs 1.0, 26.0, 15.0, 35.0, and 23.0. The user
has also left positive comments about the products, describing them as "worked
great,"” "wonderful," and "works great." The reviews were left between November
2016 and February 2018.

Figure 14: Example of user profiles generated by GPT.

Product ID: 10

Product ID 10 is a dryer vent hose that fits well and is easy to install.
Reviewers have found it to be a nice product and it fits perfectly. The hose
comes with compression clamps for easy installation, but some reviewers have
also used their own screw clamps. Overall, the product has received positive
reviews and high ratings.

Figure 15: Example of product profiles generated by GPT.
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Synthetic Review: | recently purchased the Gardus RLE202 LintEater 10-Piece Rotary Dryer
Vent Cleaning System and | am extremely satisfied with it. The kit includes all the necessary
rods for easy attachment to a drill, making the whole process hassle-free. | followed the
recommendations of using tape to reinforce the joints and setting the drill to a clockwise
rotation, and it worked like a charm. My dryer's efficiency has significantly improved and
my drying times have been reduced. This product is definitely worth the investment for
maintaining the performance and safety of your dryer.

Score: 4

Figure 16: Example of synthesized data demonstrating positive sentiment generated by GPT.

Synthetic Review: This product is just okay. It lasted for a decent amount of time and it
was not too expensive. However, it did not blow me away with its quality. Overall, it was
a satisfactory purchase.

Score: 3

Figure 17: Example of synthesized data demonstrating neutral sentiment generated by GPT.
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