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Abstract

This paper poses two critical issues in evaluat-
ing base models (without post-training): (1) Un-
stable evaluation during training: in the early
stages of pre-training, the models lack the capa-
bility to answer questions as required, leading
to unstable evaluation results. This instability
makes it difficult to provide solid conclusions
to guide the training, especially for key experi-
ments such as data ablation and scaling law. (2)
Inconsistency between base and instruct mod-
els: base models generally exhibit poorer evalu-
ation performance compared to corresponding
instruct models. This gap poses a challenge
for assessing whether a base model with bet-
ter evaluation can truly lead to a better instruct
model. To address these issues, we propose
Base model Oriented Systematic Evaluation
(BOSE), a method specifically designed to op-
timize the evaluation of base models. Specif-
ically, BOSE introduces two key innovations:
In-Context Light-instruction Prompt (ICLiP)
for open-ended tasks and Blank-ppl for multi-
choice tasks with candidate options, which
transforms the standard perplexity (ppl) met-
ric into a fill-in-the-blank format to mitigate
early-stage evaluation fluctuations. Further-
more, we are the first to propose Kendall’s rank
correlation to quantitatively measure the eval-
uation stability and consistency. Experimental
results demonstrate that BOSE significantly en-
hances both the stability of evaluations during
pre-training and the consistency between base
and instruct models, thereby providing more
reliable guidance for the LLMs’ training.

1 Introduction

Recently, large language models (LLMs) have
demonstrated remarkable achievements across var-
ious domains (Minaee et al., 2024). This has led
to the development of numerous high-performing

*Equal contributions.
†Corresponding author.

LLMs (OpenAI, 2024; Aaron Grattafiori and Abhi-
nav Jauhri, 2024; QwenTeam, 2025; GemmaTeam,
2024). To evaluate the performance of these mod-
els on a wide range of tasks, an increasing number
of benchmarks have been open-sourced (Guo et al.,
2023). These benchmarks provide a comprehen-
sive evaluation of the capabilities of LLMs, guiding
the training and improving their weakness. Eval-
uating large language models is a cornerstone in
development of LLMs.

Generally, LLMs can be divided into two pri-
mary categories based on whether they receive
post-training: base models and instruct mod-
els (Aaron Grattafiori and Abhinav Jauhri, 2024;
Fu and Khot, 2022). Instruct models undergo down-
stream adaptation, allowing them to adapt to spe-
cific tasks and answer questions as required. In
contrast, base models focus on learning founda-
tional knowledge without targeting specific tasks,
resulting in a weaker ability to respond to instruc-
tions. Consequently, most current benchmarks pro-
vide comprehensive evaluations of instruct mod-
els (Patel et al., 2024; Shi et al., 2022), while eval-
uations of base models are relatively rare. Never-
theless, base models serve as the foundation for
the entire LLM training. An accurate evaluation
for base models can provide essential insights for
training LLMs, such as experiments on scaling
laws (Kaplan et al., 2020), ablation of pre-training
data, and the selection of appropriate base check-
points for post-training (Aaron Grattafiori and Ab-
hinav Jauhri, 2024; DeepSeek-AI, 2024).

In this paper, we argue that the current evaluation
is not suited to the characteristics of base models
and lacks a systematic methodology. In a nutshell,
the challenge arises from two dimensions:

• Instability of evaluations during training.
Critical pre-training experiments, such as data
ablation and scaling laws, rely on the perfor-
mance of base models in the early stages of
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Figure 1: Illustrations of the critical issues in current base model evaluation. (left): Evaluation scores of 3
benchmarks on a series of pre-trained checkpoints, with the x-axis representing the increasing trained steps, and the
y-axis representing the evaluation scores. The evaluation scores do not improve stably during pre-training. (right):
Comparison of evaluation scores on 6 Llama base models and instruct models for several benchmarks. There is a
lack of consistency between the two score series. For example, Llama-3.1-70B achieves the highest score among
instruct models, but performs poorly in the base model.

training. However, base models cannot follow
instructions and solve problems during the
initial stages, leading to fluctuations in eval-
uation results. Figure 1 (left) illustrates the
dynamic evolution of a 1B-parameter model’s
performance across different benchmarks as
the training tokens increase. The significant
fluctuations in the evaluation make it difficult
to determine whether the model has gained
real improvement throughout the training to-
kens. This instability hinders making reliable
decisions for these critical experiments.

• Lack of consistency in evaluating base
and instruct models. During pre-training,
LLMs acquire more knowledge than the post-
training. However, base models typically per-
form worse on evaluations than their corre-
sponding instruct models due to the weaker
instruction-following capabilities. Taking the
Llama family models (Aaron Grattafiori and
Abhinav Jauhri, 2024) as an example, we
evaluate these models on several recently
released mathematical datasets (Tang et al.,
2024; Lewkowycz et al., 2022; Shi et al.,
2022), as shown in Figure 1 (right). The base
models’ scores are significantly lower than
their corresponding instruct models, and there
is little distinction among the different ver-
sions of the base models. This discrepancy

presents a challenge for current evaluation
methods in determining whether a base model
with better evaluation results can indeed lead
to a better instruct model.

In this paper, we propose a systematic approach
for the evaluation of base models, called Base
model-Oriented Systematic Evaluation (BOSE).
BOSE aims to address the aforementioned critical
issues by optimizing existing evaluation methods.
Specifically, we observe that base models often
struggle to understand evaluation questions, which
results in inaccurate reflections of their true capabil-
ities. This is particularly evident in their difficulty
with multi-choice questions, poor ability to fol-
low complex instructions, and tendency to generate
redundant continuations. BOSE improves evalua-
tion techniques tailored to pre-training character-
istics for two key tasks: open-ended generation
and multi-choice. It introduces In-Context Light-
instruction Prompt (ICLiP) to improve the base
model’s responses to open-ended questions and
transforms multi-choice questions into fill-in-the-
blank versions (Blank-ppl) to mitigate evaluation
fluctuations in early stage. Finally, we validate the
effectiveness of BOSE by examining two key as-
pects: training stability and consistency between
base and instruct models. This evaluation aims
to determine whether the results exhibit a stable
growth trend and whether a better base model can
lead to a better instruction model.
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In summary, our contributions are as follows:

• We propose BOSE, a systematic evaluation
method tailored to base models that incorpo-
rates ICLiP for open-ended generation tasks
and blank-ppl for multi-choice tasks. This
approach aims to better align with the charac-
teristics of base models, yielding evaluation
results that accurately reflect their true capa-
bilities.

• To assess the effectiveness of base model eval-
uation method, we define criteria based on
the stability of metrics during pre-training and
the consistency of capabilities between base
and corresponding instruct models, and pio-
neer the use of Kendall’s rank correlation as a
quantitative metric.

• We conduct comprehensive experiments on
multiple benchmarks covering knowledge,
mathematics and reasoning, using both open-
source models and our pre-trained check-
points. Empirical results demonstrate that
BOSE significantly improves the evaluation
stability during pre-training and enhances the
consistency between the base and instruct
models, which is highly beneficial for guid-
ing the model development and ensuring the
reliability of base model evaluation results.

To the best of our knowledge, this paper presents
the first systematic framework for evaluating base
LLMs, introducing empirically validated optimiza-
tion methodologies with quantitative metrics. We
believe this will yield actionable insights and prac-
tical recommendations to contribute to advance
future base LLM evaluation.

2 Related Work

In this section, we first introduce some commonly
used benchmarks and evaluation tasks for LLMs,
and then focus on the existing approaches for eval-
uating base models.

Evaluation Tasks. Based on whether there ex-
ist reference answers to be automatically calcu-
lated, evaluation tasks commonly can be classified
as either ground truth-based evaluation or human
preference-based evaluation (Chiang et al., 2024;
Guo et al., 2023). Considering that base models
typically cannot align with human preferences, we
focus on evaluation tasks with ground truths. As
for these benchmarks, the presence of candidate

answers can generally further differentiate (Open-
Compass, 2023):

• Open-ended task. This type of evaluation
tasks require the model to respond to ques-
tions according to given instructions, and em-
ploy a customized post-processing process to
extract potential answers as well as judge the
correctness, as seen in benchmarks such as
Math (Hendrycks et al., 2021b), BBH (Suz-
gun et al., 2022) and HumanEval (Mark Chen
et al., 2021).

• Multi-choice task. In these tasks, given a
question, the model needs to choose the most
appropriate option from multiple choices. As
for evaluating base models, perplexity for a
given sentence is typically calculated to eval-
uate a model’s language modeling capabili-
ties (Tom B. Brown and et al., 2020), as seen
in benchmarks such as MMLU (Hendrycks
et al., 2021a), CMMLU (Li et al., 2023), etc.

Base Model Evaluation. To our knowledge, the
evaluation of base models remains under-addressed.
Despite the availability of numerous benchmarks,
few provide detailed evaluations of base mod-
els. For instance, CMath (Wei et al., 2023b) re-
leases datasets but pays little attention to evalu-
ation prompts. Many benchmarks, such as Sim-
pleQA (Wei et al., 2024), MuSR (Sprague et al.,
2024), Multi_LogiEval (Patel et al., 2024), and
CollegeMath (Tang et al., 2024), do not distinguish
between the evaluation of base and instruct models.
Only a few benchmarks, like kor-bench (Ma et al.,
2024), consider both aspects.

A common approach to evaluate base models is
using in-context learning (Tom B. Brown and et al.,
2020; Dong et al., 2024), particularly the few-shot
method. This method expects the base model to
leverage its in-context learning ability to respond
to questions based on given examples, thereby ad-
dressing instruction-following challenges. There-
fore, some open-source evaluation frameworks,
such as lm-eval (Gao et al., 2024) and OpenCom-
pass (OpenCompass, 2023) utilize in-context learn-
ing to evaluate the performance of base models.
However, this approach lacks systematic guidance
on how to effectively conduct in-context learning,
especially when considering the characteristics of
base models in different training stages.

Due to the above issues, although many technical
reports of open-source LLMs disclose the bench-
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Given the following question, please reason
step by step and put your final answer
within \\boxed{}.

Question:
A football team played 22 games. They won
8 more than they lost. How many did they
win?

The capital of China is?
A. Beijing 
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The capital of China is Beijing.
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Problem: John arm wrestles 20 people.  He beats 80%.  
How many people did he lose to?
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The final answer is \\boxed{4}
…… ( few-shots )
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Figure 2: Illustrations of our proposed BOSE, which in-
corporates ICLiP for open-ended generation tasks (top)
and Blank-ppl for multi-choice tasks (bottom).

marks and evaluation results used for base model
evaluation (Aaron Grattafiori and Abhinav Jauhri,
2024; QwenTeam, 2025; GemmaTeam, 2024), the
lack of unified evaluation protocol and the incom-
plete transparency of evaluation details make it
challenging to reproduce and align the evaluation
results, which may cause significant difficulties for
researchers.

3 Methodology

Different from instruct models, base model eval-
uation encounters unique challenges due to the
lack of instruction-tuning and preference align-
ment. Specifically, base models typically fail to
comprehend the intent behind prompts or follow
explicit instructions, leading to suboptimal evalu-
ation protocols that neither reflect their intrinsic
capabilities nor bring reliable evaluation results,
which becomes particularly critical during early
pre-training stages.

To facilitate these limitations and align evalua-
tion protocols with the intrinsic characteristics of
base models, we optimize the evaluation methods
for open-ended and multi-choice tasks respectively,
as illustrated in Figure 2.

3.1 Open-ended Task

Considering the inherent characteristics of base
models in generative tasks, we propose the In-
Context Light-instruction Prompt (ICLiP), which
comprises three core components:

In-context learning. In-context learning
(ICL) (Tom B. Brown and et al., 2020; Dong et al.,
2024) is an effective paradigm that enables pre-
trained language models to perform new tasks with-
out gradient updates. By providing some care-
fully prepared examples in the form of demon-

strations, the model implicitly learns to mimic
the reasoning patterns and output styles demon-
strated in the context, thereby exhibiting its intrin-
sic problem-solving abilities. Our ICLiP method in-
corporates standardized few-shot examples within
the in-context learning paradigm.

Light-instruction prompt. While prompting
techniques are effective for LLMs (Sander Schul-
hoff and et al., 2024; Wei et al., 2023a), excessive
prompting may confuse base models due to their
lack of instruction-tuning (Wang and Zhou, 2024).
We propose a lightweight prompt template, which
formulates the input using the following format:
Problem: {problem}
Solution: let’s think step by step. {cot}
The final answer is \boxed{answer}

where “{problem}” represents the problem to be
solved, “{cot}” demonstrates the intermediate rea-
soning steps, and the final answer is presented in
a specified format for few-shot examples. In the
target question, “{cot}” is left empty. We refer
to this prompt template as light-instruction, as
shown in Figure 2, demonstrating better adaptation
to the pre-training paradigm and intrinsic abilities
of base models.

With stopping criteria. Using the above few-
shot light-instruction prompt, a possible conse-
quent issue is the uncontrolled continuations in
generation, in other words, base model may fail to
complete the answering and continue to generate
another question instead. This not only degrades
evaluation efficiency but also complicates the opti-
mal answer extraction (e.g., retrieving the last nu-
merical value as the final answer). To mitigate this,
we augment the EOS token list in the generate
function with a special text "Problem:". When the
model encounters these tokens during decoding,
it terminates response immediately and prevents
redundant outputs.

3.2 Multi-choice Task

Standard evaluation of multi-choice tasks typically
employs perplexity-based method to derive the op-
timal option, and we refer to it as option-ppl in
this paper. However, we encounter critical limita-
tions in this approach when evaluating base models
with smaller parameter sizes or those in early pre-
training stages.

The dominant approach to pre-training
LLMs typically involves language modeling,
which is commonly framed as a next-token-
prediction task (Radford and Narasimhan, 2018;
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Aaron Grattafiori and Abhinav Jauhri, 2024). To
better align with the inherent architecture of this
pre-training process, we reformulate the option-ppl
as a fill-in-the-blank format, leveraging the natural
sequential structure inherent in pre-training
corpora. Specifically, as illustrated in Figure 2, we
omit the candidate options and calculate perplexity
for each option with the concatenation of the
question and candidate text directly. This ensures
stronger contextual coherence for the true answer
while presenting higher perplexities for others.

4 Experiments

In this section, we describe systematic experiments
to investigate how BOSE enhances evaluation sta-
bility during pre-training and ensures consistency
between base and instruct models1.

4.1 Setup

4.1.1 Benchmarks
We employ 9 benchmarks, mainly categorized into
two classes by task type:

Open-ended tasks. We take 5 mathematical rea-
soning benchmarks: CMath (Wei et al., 2023b),
MGSM2 (Shi et al., 2022), Gaokao2023EN (Liao
et al., 2024), CollegeMath (Tang et al., 2024),
and Minerva Math (Lewkowycz et al., 2022),
alongside 1 multi-step logical reasoning bench-
mark Multi_LogiEval (Patel et al., 2024). These
benchmarks generally require multiple intermedi-
ate thinking steps to derive the final answers, and
are primarily employed to validate the proposed
ICLiP protocol. Answer extraction and judge func-
tions are implemented before accuracy calculation,
with greedy decoding applied throughout all exper-
iments.

Multi-choice tasks. We use 3 knowledge-driven
benchmarks (MMLU (Hendrycks et al., 2021a),
CMMLU (Li et al., 2023), and MMLU_Pro (Wang
et al., 2024)), specifically to test the blank-ppl
methodology. These benchmarks assess model
performance through perplexity-based evaluation,
where the option with the lowest perplexity is iden-
tified as the predicted answer.

We utilize accuracy as the unified evaluation met-
ric for all benchmarks. Notably, these benchmarks

1All of our experiments are implemented based on Open-
Compass (OpenCompass, 2023), and the prompt templates
are available in Appendix B.

2While the MGSM benchmark provides multilingual vari-
ants, we employ the Chinese subset for experimental in this
study, and named it with MGSM_zh for simplicity.

are mainly chosen from recent public researches,
and encompass both English and Chinese bench-
marks across the two categories of tasks, ensuring
linguistic diversity and comprehensive experimen-
tal validation. It is also applicable to a wider range
of benchmarks.

4.1.2 Models
To comprehensively evaluate BOSE, our experi-
mental framework incorporates two categories of
base models:

Pre-trained models3. These models are col-
lected from our pre-training experiments, encom-
passing 1B and 2B parameter sizes with different
training steps, 96 checkpoints in total, more details
about the training recipe can be found in Appendix
C and our technical report (LingTeam, 2025). To as-
sess the capability consistency between base mod-
els and their instruction-tuned counterparts, we fur-
ther fine-tune 24 checkpoints using identical SFT
data (size, quality, filtering criteria) and training
hyper parameters to derive the instruct models.

Open-source base models. These models
mainly cover three remarkable LLM families:
(1) Llama family (Aaron Grattafiori and Abhi-
nav Jauhri, 2024): mainly including Llama-3.1-
8B/70B, with an extended analysis incorporating
Llama-3-8B/70B and Llama-3.2-1B/3B for con-
sistency investigation; (2) Gemma family (Gem-
maTeam, 2024): Gemma-2-9B/27B; (3) Qwen
family (QwenTeam, 2025): Qwen2.5-7B/72B.

4.1.3 Metric
To assess the effectiveness of BOSE, we introduce
Kendall’s rank correlation (Kendall, 1938) as a
quantitative metric beyond intuitive results. For-
mally, the Kendall’s rank correlation τ is defined
as:

τ =
P − (n(n− 1)/2− P )

n(n− 1)/2
=

4P

n(n− 1)
− 1

where n denotes the total number of entities, P
denotes the count of concordant pairs where two
entities maintain identical ranking orders, and
n(n − 1)/2 represents the total number of pos-
sible pairwise comparisons. The correlation ranges
between -1 and 1, with 1 indicating perfect con-
cordance, -1 denoting complete discordance, and 0
corresponding to random ordinal association.

3Since the open-source LLMs do not provide publicly
accessible intermediate model weights, we take our pre-trained
models for experiments.
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Tasks Benchmark
1B 2B

Original BOSE Improve Original BOSE Improve

Open-ended

CMath 0.418 0.669 0.251 0.524 0.736 0.212
MGSM_zh 0.375 0.234 -0.141 0.376 0.617 0.241

Gaokao2023EN 0.537 0.629 0.092 0.543 0.597 0.054
CollegeMath 0.345 0.684 0.339 0.691 0.721 0.030

Minerva Math 0.264 0.089 -0.175 0.296 0.200 -0.096
Multi_LogiEval 0.099 0.146 0.047 0.324 0.362 0.038

Multi-choice
MMLU 0.637 0.845 0.208 0.795 0.834 0.039

CMMLU 0.754 0.895 0.141 0.941 0.893 -0.048
MMLU_Pro 0.382 0.778 0.396 0.603 0.874 0.271

AVG 0.423 0.552 0.129 0.566 0.648 0.082

Table 1: Details of evaluation stabilities on our pre-trained 1B and 2B parameter models

BOSE 2B Original 2B BOSE 1B Original 1B

Figure 3: Intuitive results of evaluation stabilities across
different benchmarks. X-axis: pre-training steps; y-axis:
evaluation scores.

Upon this metric, we further introduce two
measurements to inspect the effectiveness of base
model evaluation results:

Stability during pre-training: calculated with
the Kendall’s rank correlation between evaluation
scores and pre-training tokens sequences.

Consistency with instruct models: measured by
the Kendall’s rank correlation between base mod-
els’ evaluation scores and corresponding instruct
models’ scores, which is inspired by previous work
within the community (Agarwal et al., 2024).

4.2 BOSE Improves Evaluation Stability
During Training

In this subsection, we validate the stability of
model capabilities during pre-training using our
pre-trained 1B and 2B parameter models with vary-
ing trained steps, including their performance on 6
open-ended tasks and 3 multi-choice tasks.

4.2.1 Intuitive Results

As visualized in Figure 3, our experimental results
demonstrate how model evaluation scores grow
with increasing trained steps across different bench-
marks. We observe that, original evaluation meth-
ods exhibit some fluctuations approaching random
variation across most benchmarks, whereas BOSE
achieves relatively smoother trends.

We argue that instabilities still emerge in
specific benchmarks (e.g., Minerva Math and
Multi_LogiEval), potentially due to the high dif-
ficulty of these benchmarks and the limitations in
model size or consumed token number.

4.2.2 Quantitative Metrics

To further analyze the improvements of evaluation
stabilities with BOSE, we calculate Kendall’s rank
correlations between evaluation scores of two meth-
ods and pre-training steps, as detailed in Table 1.

In open-ended tasks, we achieve average τ
improvements of 0.129 (+30.5%) and 0.082
(+14.5%) in 1B and 2B parameter models respec-
tively, sustained improvement trends across most
tasks except Minerva Math; as for multi-choice
tasks, 5/6 experiments demonstrate improved τ val-
ues, with correlation levels remaining high (τ =
0.893 in the single degradation case), which con-
firm BOSE significantly enhances evaluation sta-
bility during pre-training.

In summary, we demonstrate that BOSE aids in
enhancing capability monitoring throughout LLMs’
pre-training, thus providing solid guidance for
the training process or early detection of training
anomalies through stability metric deviations.
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Benchmark Original ICLiP Improve
CMath 0.467 0.867 0.400

MGSM_zh 0.467 0.867 0.400
Gaokao2023EN 0.467 0.867 0.400

CollegeMath 0.467 0.733 0.266
Minerva Math 0.000 0.600 0.600

Multi_LogiEval 0.602 0.733 0.131
AVG 0.412 0.778 0.366

Table 2: Consistency on 6 models from Llama family

4.3 ICLiP Enhances the Consistency between
Base and Instruct Models

As discussed previously, we expect to not only
ensure stable model evaluation with increasing pre-
training tokens but also enhance the consistency be-
tween base models and corresponding instruct mod-
els, thereby reflecting real model capabilities. This
implies a fundamental hypothesis: a base model
that performs better in evaluation leads to a better
instruct model, and vice versa.

We conduct systematic experiments to compare
base models with their post-trained instruct models
across both open-source models and our pre-trained
checkpoints. Specifically, for each benchmark, we
calculate the Kendall’s rank correlation τ between
evaluation results from a series of base models
and corresponding post-trained instruct models, of
which instruct models are assessed with commonly
used instruct prompt, while base models are evalu-
ated using both instruct prompt and our proposed
ICLiP method, refer to appendix A for further de-
tails.

4.3.1 Experiments on Open-Source Models

We select six base models across three re-
leased Llama versions (Llama-3-8B, Llama-3-
70B, Llama-3.1-8B, Llama-3.1-70B, Llama-3.2-
1B, Llama-3.2-3B) along with their corresponding
instruction-tuned models, to calculate the capabil-
ity consistencies on each benchmark. As shown
in Table 2, BOSE significantly enhances the rank
correlation of evaluation scores between base and
instruct models compared to the original method,
achieving an average Kendall’s τ coefficient im-
provement of 0.366 (+88.9%).

Intuitively, we take Cmath and CollegeMath as
examples to visualize the evaluation results. As
shown in Figure 4, the base and instruct models
exhibit stronger trend consistency, providing more
coherent capability rankings; moreover, we observe

Benchmark Original ICLiP Improve
CMath -0.070 0.367 0.437

MGSM_zh 0.050 -0.150 -0.200
Gaokao2023EN 0.020 0.128 0.108

CollegeMath 0.142 0.483 0.341
Minerva Math 0.314 0.507 0.193

Multi_LogiEval -0.017 0.230 0.247
AVG 0.073 0.261 0.188

Table 3: Consistency on our pre-trained models
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Figure 4: With Llama family models, ICLiP ensures
more consistent and comparable evaluation scores be-
tween base models and instruct models for Cmath and
CollegeMath.

that BOSE enables pre-trained models to achieve
comparable performance to their instruction-tuned
models, ensures more reliable evaluation results.

4.3.2 Experiments on Our Pre-trained Models

Similarly, we conduct another experiment on a
series of our pre-trained base models(16 check-
points in total, with each undergoing supervised
fine-tuning to obtain the corresponding instruct
model). As shown in Table 3, by calculating the
rank correlation of the scoring sequences between
base and instruct models for each benchmark, we
observe an effective improvement in 5 out of 6
benchmarks, with an average Kendall’s τ enhance-
ment of 0.188.

We conclude that, ICLiP ensures more consis-
tent capabilities between base and instruct models,
and enables base models to achieve more reliable
scores as well. This advancement provides more
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Models Methods
Mathematics Reasoning

AVG
CMath MGSM_zh Gaokao2023EN CollegeMath Minerva Math Multi_LogiEval

Llama-3.1-8B

instruct_0shot 20.58 1.60 1.04 2.91 0.74 0.00 4.48
instruct_fewshot 52.46* 3.60 1.04 0.32 6.99 7.96 12.06

light-instruction_0shot 32.51 16.00 9.35 9.17 9.17 18.47 15.78
ICLiP 53.37 43.60 23.38 18.86 11.03 71.03 36.88

Llama-3.1-70B

instruct_0shot 17.67 11.60 5.97 3.26 0.74 0.00 6.54
instruct_fewshot 67.76 2.80 0.26 0.50 6.25 0.05 12.94

light-instruction_0shot 45.26 47.60 16.88 22.51 0.00 21.03 25.55
ICLiP 76.05 59.60 36.62 30.77 17.28 74.96 49.21

Gemma-2-9B

instruct_0shot 17.30 10.00 2.08 1.31 3.31 0.05 5.68
instruct_fewshot 68.21* 5.20 0.78 0.43 7.72 49.56 21.98

light-instruction_0shot 5.01 26.80 14.29 26.76 0.00 7.86 13.45
ICLiP 69.13 55.20 33.77 33.56 16.18 61.65 44.92

Gemma-2-27B

instruct_0shot 3.64 8.00 8.57 2.20 1.84 17.94 7.03
instruct_fewshot 75.96 3.20 0.78 0.21 8.46 49.34 22.99

light-instruction_0shot 24.41 55.20 17.14 29.30 0.00 17.42 23.91
ICLiP 75.87* 66.40 40.52 35.11 21.32 75.68 52.48

Qwen2.5-7B

instruct_0shot 30.69 61.60 53.51 39.62* 22.06 58.54 44.34
instruct_fewshot 80.87 10.80 14.29 11.86 37.87 57.67 35.56

light-instruction_0shot 83.97 69.60 22.34 33.65 33.65 46.08 48.22
ICLiP 88.07 70.80 51.43 40.45 23.53 57.81* 55.35

Qwen2.5-72B

instruct_0shot 74.32 68.40 61.30 42.28 36.03 68.89 58.54
instruct_fewshot 85.52* 6.40 4.94 12.89 34.93 71.54 36.04

light-instruction_0shot 85.97 79.20 40.78 38.37 0.00 34.08 46.40
ICLiP 83.06 81.60 55.06 40.26 29.04 74.00 60.50

Table 4: Ablation study results on 6 open-source models. Scores in bold indicate the highest scores among 4
methods, while scores with “*” indicate sub-optimal scores within 1 point gap.

meaningful guidance for assessing the performance
of pre-trained models and selecting optimal check-
points for post-training.

4.4 Ablation Study

To investigate whether all components of the pro-
posed ICLiP methodology are indispensable, we
conduct ablation experiments here. The follow-
ing variant prompt templates are considered as
comparative methods: (1) instruct_0shot: in-
struct prompt with 0-shot, also referred to as the
original method, (2) instruct_fewshot: instruct
prompt with few-shot, (3) light-instruction_0shot:
light-instruction prompt with 0-shot, (4) ICLiP,
our proposed method. Here, light-instruction
refers to the prompt template used in our proposed
method, while instruct prompt is the prompt
template typically used for instruct model evalua-
tion. Please refer to Appendix A for further imple-
mentation details.

1 2 3 4

ICLiP(1.31)

Light-instruction 0-shot(2.64) Instruct few-shot(3.00)

Instruct 0-shot(3.03)

Figure 5: Average ranks of different methods, with a
lower rank indicating better performance.

As demonstrated in Table 4, ICLiP achieves op-
timal performance in 28 out of 36 experiment re-
sults and suboptimal performance in 2 cases with
marginal differences (within 1-point gap). In terms
of different LLM families, ICLiP shows dominant
superiority for models from Llama and Gemma
families, while achieving competitive performance
in majority of experimental results with Qwen fam-
ily. Moreover, the proposed method shows con-
sistently superior average performance across dif-
ferent benchmarks, confirming the effectiveness
and generalizability of ICLiP in evaluating base
models.

More interestingly, we introduce a statistical
analysis of the average rankings of 4 methods (rank-
ing among 4 methods for each experiment, and
then averaging across 36 experiments, with 1 rep-
resenting the best theoretically). As depicted in
Figure 5, ICLiP behaves optimally with an ex-
cellent average rank of 1.31. Additionally, the
light-instruction format consistently performs
better than the instruct prompt, and the few-shot
results always outperform the 0-shot results under
the same prompt template, highlighting the effec-
tiveness of each component in ICLiP.

To further sourcing the improvements of our pro-
posed method, we conduct two supplementary in-
vestigations, and once again proves the validity of
the proposed approach. Evaluation details can be
found in Appendix B .
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5 Conclusion

In this paper, we propose a systematic evalua-
tion method tailored to base model, named BOSE,
specifically designed to enhance the stability of
base model evaluations during pre-training and en-
sure consistency with evaluations of instruct mod-
els. For open-ended tasks, BOSE develops a few-
shot prompt template with light-instruction to guide
the base model more effectively. For multi-choice
tasks, BOSE innovatively transforms the standard
perplexity (ppl) metric into a fill-in-the-blank for-
mat. These adaptations align better with the in-
herent characteristics of base models and facilitate
more accurate evaluations to reflect the real capa-
bilities of base models. Moreover, we are the first
to adopt Kendall’s rank correlation to quantitatively
assess the stability and consistency of base models’
evaluation. This metric provides a robust and reli-
able way to compare the evaluation results of the
base models with those of corresponding instruct
models. Extensive experiments demonstrate the ef-
fectiveness and superiority of our proposed BOSE,
validating its potential to significantly improve the
evaluation and provide more meaningful insights
into the true capabilities of base models.

6 Limitations

Our work aims to address some critical issues
in base model evaluation, such as instability dur-
ing pre-training and lack of consistency with in-
struct models. There may be some subjective
biases in our comparative methods, such as the
design of instruction prompt templates. As for
the considered models, we use our pre-trained
checkpoints and 3 open-source LLM families, and
there are more open-source LLMs worth explor-
ing, such as DeepSeek (DeepSeek-AI, 2024), Chat-
GLM (GLMTeam, 2024), Mistral (Jiang et al.,
2023). At the same time, we mainly conduct experi-
ments on three categories of benchmarks, and some
other capability categories (such as code, reading
comprehensive, etc.) also need to be considered
to provide more comprehensive and enriching ex-
perimental results. In addition, our method still
has some flaws in some experiments, and we are
consistently studying and optimizing the proposed
method.
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A Prompt Templates

Prompt templates in different methods are illus-
trated in table 5 to table 10, instruct_0shot and
Option-ppl are regarded as original methods in our
experiments for open-ended tasks and multi-choice
tasks respectively.

PROMPT

Question: {question}
A. {content of optionA}
B. {content of optionB}
C. {content of optionC}
D. {content of optionD}
Answer: A

Table 5: Prompt of Option-PPL, where the underlined
part is used for calculating the Perplexity (PPL).

PROMPT

{question} {content of optionA}

Table 6: Prompt of Blank-PPL, where the underlined
part is used for calculating the Perplexity (PPL).

PROMPT

You’re a {domain} expert. Given the follow-
ing question, please reason step by step and
put your final answer within boxed{}.
{question}

Table 7: Prompt of Instruct_0shot

B Ablation study for sourcing the
improvement

We provide some additional ablation studies to
further source the improvements of our proposed
method. Specifically, with open-ended tasks in con-
sideration, we take Instruct_0shot as a comparative
method for simplicity and conduct two supplemen-
tary investigations:

i. Comparable evaluation with math_verify4.
We take the newly released mathematical expres-
sion evaluation package math_verify from hugging-
face to conduct the post-processing and judgment,
to identify potential limitations in our current eval-
uation process.

4https://github.com/huggingface/Math-Verify

PROMPT

You’re a {domain} expert. Given the follow-
ing question, please reason step by step and
put your final answer within boxed{}.
{question_1}
{answer_1}

...

{question_k}
{answer_k}

{question}

Table 8: Prompt of Instruct_fewshot

PROMPT

Problem: {question}
Solution:

Table 9: Prompt of Light-instruction_0shot

PROMPT

Problem: {question_1}
Solution: {answer_1}

...

Problem: {question_k}
Solution: {answer_k}

Problem: {question}
Solution:

Table 10: Prompt of ICLiP
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Benchmark
Instruct_0shot ICLiP

current math_verify upper bound ratio current math_verify upper bound ratio
CMATH 20.58 16.21 22.67 0.715 53.47 52.10 53.91 0.966

Gaokao2023EN 1.04 0.26 4.94 0.053 23.38 23.38 24.42 0.957
CollegeMath 2.91 9.22 9.94 0.928 18.86 23.42 24.41 0.959

Table 11: Ablation study results for sourcing the improvement. current: results with current evaluation metrics;
math_verify and upperbound: results evaluated with Math_verify and LLM judge respectively; ratio: score
with math_verify / score with LLM judge, indicating the extent to which the LLM’s predictions follow the format in
different methods.

1B 2B
vocab size 126464 126464
layer num 22 22
hidden size 2048 2560

intermediate size 5632 10240
attention heads 32 40
key value heads 4 8

# Para. (B) 1.487 2.724
# Non-emb. Para. (B) 0.969 2.076

sequence length 4096 4096
learning rate 6.37E-04 5.23E-04

batch size 806 1227

Table 12: The details of architecture and training param-
eters for pre-trained models in Section 4.1.2

ii. Loose judgement with LLM as upper
bound. To further investigate whether our pro-
posed method effectively ensuring the model’s
problem-solving capabilities or simply fitting the
answer extraction pattern, we employ GPT-4o to
assess the correctness of Base model’s prediction,
where only question (NOT prompt) along with pre-
diction and gold answer are provided for judgment
and thus eliminate the influence of answer extrac-
tion. These scores are regarded as upper-bound
evaluation results, with no constraint imposed on
the answer format.

As shown in Table 11, we observe that our im-
provement sources from two aspects:

Better reflection of true capability. While eval-

uation scores slightly differ across different post-
processing methods (relatively bigger difference
in the CollegeMath), our proposed method consis-
tently outperforms the comparative methods(i.e.,
Instruct_0shot).

Higher fitness to the answer extraction.
ICLiP exhibits superior alignment with loose
scores(upper-bound) compared to both current eval-
uation process and math-verify judgement, thereby
enabling higher tolerance for the post-processing.

The above results further demonstrate the effec-
tiveness of the proposed method.

C Architecture and Pretraining Setup

We use a GQA (Grouped Query Attention) archi-
tecture based on the standard decoder-only Trans-
former, comprising an embedding layer, alternating
layers of attention mechanisms and feed-forward
networks. Positional information is handled us-
ing RoPE (Rotary Positional Embedding). For
training parameters, the pre-trained models are
initialized with a standard deviation of 0.006 and
optimized using AdamW, with hyperparameters
set to β1 = 0.9, β2 = 0.95, ϵ = 1e−8 and
weight_decay = 0.1. The learning rate follows
a WSD (Warm-up, Stabilization, Decay) strategy,
where the first 1% of training steps involve linear
warm-up. Further architectural and pretraining de-
tails are available in Table 12 and our technical
report (LingTeam, 2025).
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