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Abstract

Cognitive distortion is a critical issue in psy-
chology, with most existing studies based on
Burns’ cognitive distortion theory. However,
differences in annotation standards lead to vari-
ations in building analysis tools, resulting in
inconsistent analyses and limiting the general-
izability of findings, especially in large-scale
and cross-linguistic contexts. To address this is-
sue, we collected all publicly available datasets
(four in total) and conducted a series of experi-
ments to evaluate the generalizability of various
cross-linguistic models. The results indicate
that models exhibit significant performance dif-
ferences across datasets, highlighting the gen-
eralization problem. To mitigate this issue,
we propose two solutions. First, we propose
a multi-task learning model based on teacher
student architecture solution, which demon-
strates improved generalization performance
in our experiments. Second, we introduce a
new dataset (~5,000 samples) derived from re-
annotating existing open datasets to ensure stan-
dardized alignment. The annotation process we
provided is interpretable and grounded in psy-
chological principles. Based on this, we con-
structed large language models with cognitive
reasoning chains, enhancing both generalizabil-
ity and interpretability. This study identifies
the generalization challenge in cognitive distor-
tion research, and our experiments show that
the proposed solutions significantly improve
model performance. The dataset and code are
publicly available at: https://github.com/
HongzhiQ/CrossLinCD.

1 Introduction

With the rapid pace of modern life and the increase
in stress levels, psychological health issues have
become increasingly prevalent. According to the
World Health Organization (WHO), one in eight
people globally suffers from mental disorders (Cui-
jpers et al., 2023). Among them, depression is a
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major contributor to the global burden of diseases.
Individuals with major depressive disorder (MDD)
may experience profound emotional distress and,
in severe cases, self-harm or suicide (Thapar et al.,
2022; Ribeiro et al., 2018). Thus, early identifi-
cation of depressive traits is essential for targeted
interventions and suicide prevention (Orsolini et al.,
2020). Cognitive factors play a central role in the
onset and progression of depression (Beck, 2008).
Beck’s theory posits that maladaptive cognitive
structures lead to negative biases, causing indi-
viduals to focus on adverse experiences, interpret
events pessimistically, and engage in rumination,
suppressing positive memories and exacerbated de-
pressive symptoms (Clark and Beck, 2010; Beck,
2008). Detecting cognitive distortions early is,
therefore, critical for effective prevention strate-
gies. Using artificial intelligence (AI) for large-
scale data analysis offers a promising approach to
identify such distortions early and provide timely
psychological support (Graham et al., 2019).

Despite these advances, developing tools for
cognitive distortion recognition still faces several
major challenges. First, the scarcity of publicly
available datasets limits model training and eval-
uation (Shickel et al., 2020; Wang et al., 2023b;
Elsharawi and El Bolock, 2024). Second, while
existing datasets are based on the same theoreti-
cal foundations (Burns’ cognitive distortion the-
ory (Burns, 1981)), annotation discrepancies ex-
ist due to subjective differences in human label-
ing, leading to poor model generalization across
datasets. For example, in Chinese datasets, Qi et al.
(2023) use a multi-label classification with twelve
categories, while Wang et al. (2023a) adopt a multi-
class approach with seven. In contrast, Sharma et al.
(2023) define fourteen categories for an English
dataset. These issues hinder the scalability and re-
liability of cognitive distortion detection models,
especially in multilingual contexts.

To address these challenges, we collected all
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publicly available cognitive distortion datasets and
conducted a series of cross-lingual experiments.
Our findings reveal substantial performance incon-
sistencies across datasets, highlighting the need for
improved generalization. To mitigate this issue,
we proposed two solutions. First, we developed a
multi-task learning framework that enables mod-
els to capture language-invariant cognitive distor-
tion features, improving cross-dataset performance.
Second, we propose a new dataset of 5,702 samples
by reannotating existing open datasets for standard-
ized alignment. We provide a psychological princi-
pled annotation process to support the training of
large language models with reasoning chains. Ex-
perimental results demonstrate that our proposed
dataset leads to a significant improvement in model
performance.

This study underscores the challenge of gener-
alization in cognitive distortion recognition and
presents two feasible solutions. By releasing our
datasets, we aim to facilitate future research in this
domain and contribute to the development of more
robust and interpretable cognitive distortion detec-
tion models.

2 Related work

Cognitive distortion research is vital for understand-
ing flawed thinking patterns that contribute to men-
tal health issues (Singh et al., 2024). Numerous
studies have focused on utilizing Al methods to
identify cognitive distortions within text, such as
the research by (Elsharawi and El Bolock, 2024;
Shickel et al., 2020; Wang et al., 2023b; Tauscher
et al., 2023). However, these studies have not made
their cognitive distortion datasets publicly avail-
able, thereby limiting further research. Among
the existing studies, only four datasets have been
made public (Qi et al., 2023; Wang et al., 2023a;
Sharma et al., 2023; Shreevastava and Foltz, 2021),
and these are insufficient for comprehensive re-
search. Moreover, some of the available datasets
are relatively small, such as the study by Sharma et
al.(Sharma et al., 2023) with only 698 samples.
Differences in annotation principles lead to varia-
tions in task definitions and standards. For example,
in Chinese, the dataset proposed by Qi et al. (2023)
differs from that of Wang et al. (2023a): the former
is a twelve-category multi-label classification prob-
lem, while the latter is a seven-category multi-class
classification problem. In English, the problem still
exist. For example, Sharma et al. (2023) define it

with fourteen categories, while Shreevastava and
Foltz (2021) use ten categories. Regarding perfor-
mance, Tauscher et al. (2023) proposed a model
and evaluated it on two datasets, observing a sig-
nificant performance gap (Macro F1-score: 0.68
on the CrowdDist dataset and 0.23 on MH-C). The
gap becomes even larger when analyzing across
languages, making it difficult to develop a single,
generalizable tool that performs well in both set-
tings. Although these datasets come from different
sources, all these studies (Qi et al., 2023; Wang
et al., 2023a; Sharma et al., 2023; Shreevastava and
Foltz, 2021) are based on the same psychological
theory. Therefore, we believe they share a com-
mon underlying concept for identifying cognitive
distortions.

In this study, we propose two solutions to ad-
dress these issues. The first involves a multi-task
teacher-student framework, while the second fo-
cuses on reannotating data for standardized align-
ment. Experimental results show that our solutions
significantly improve generalization in this task.
We acknowledge the diversity of annotation prin-
ciples and leave this issue as an open topic while
providing our proposed solutions.

3 Dataset

We collected all publicly available datasets related
to cognitive distortions to evaluate generalization
across datasets. Then, we invited annotators to
label them, creating a standardized and unified
dataset to enhance generalization. The dataset dis-
tribution and characteristic can be seen in Table 1.

3.1 Public datasets

* SocialCD-3k (Qi et al., 2023) (D;): A multi-
label classification Chinese dataset contain-
ing a total of 3,407 data samples and 12 la-
bels. The dataset was sourced from the com-
ment data of “Zoufan” (ZouFan, 2023) on the
Weibo social media platform.

* C2D2 Dataset (Wang et al., 2023a) (D.):
A single-label classification Chinese dataset
consisting of 7,500 data samples, each with
7 labels. To simplify annotation, this study
treats the task as multi-class classification, as-
signing only the dominant cognitive distortion
when multiple distortions are present. This
dataset is the only one treated as a multi-class
classification problem, making direct evalu-
ation impossible. Therefore, we used it as
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Table 1: The data distribution of the experimental
datasets. L represents the average number of labels
per sample, and C represents the average number of
characters per sample. Ni,qin, Nyal, Niest represent
the number of samples in the training, validation, and
test sets, respectively.

Categories Dy D, D, Dy Dyo D,
Emotional reasoning 16 751 48 169 169 | 91
Overgeneralization 141 894 115 277 277 380
Labeling 1961 | 721 104 203 203 | 2186
Mind reading 121 | 1003 81 295 295 | 416
Fortune-telling 652 682 85 210 210 | 864
All-or-nothing thinking 77 690 97 126 126 166
Should statements 84 53 135 135 171
Magnification 321 110 245 245 | 417
Personalization 188 709 80 202 202 | 329
Mental filter 378 151 151 | 487
Disqualifying the positive 27 59 46
Blaming 27 39 41
Negative feeling or emotion 102

Comparing and despairing 19

Comparing 8

Language ZH ZH EN EN EN ZH+EN
Neategories 12 7 14 10 10 12
Paradigm ML MC ML ML ML | ML
L 1.71 1 1.43 1.26 0.80 | 0.98
(¢} 42.56 | 29.68 | 91.34 | 188.70 | 869.81 | 89.46
Nirain 2043 | 4501 | 418 958 1518 | 3420
Nyal 682 | 1500 | 140 319 506 | 1141
Niest 682 | 1500 | 140 320 506 | 1141
Total 3407 | 7500 | 698 1597 2530 | 5702

a corpus to conduct experiments based on a
teacher-student architecture.

* Cognitive Reframing Dataset (Sharma
et al., 2023) (D,): A multi-label classification
English dataset containing 698 data samples,
each with 14 labels.

* Therapist Dataset (Shreevastava and Foltz,
2021) (Dy): A multi-label classification En-
glish dataset, containing 10 types of cognitive
distortions. In this study, due to differences
in data volume, we denote them as D;; with
1,597 samples and Do with 2,530 samples.

3.2 Standardized alignment dataset (D)

To improve the generalization of cognitive dis-
tortions across language models, we re-annotated
three public datasets (Dg, D, and Dy) according
to Burns’ theory and provided a detailed annotation
process, denoted as D,. The annotation process
can be seen in Figure 1. Since the Therapist-2K
dataset includes more non-cognitively distorted
data compared to Therapist-1K, we did not re-
annotate it. The data distribution for D, is shown
in Table 1 and Figure 2.

Cognitive distortion annotation In the dataset
construction’s early stages, we created an annota-
tion guide with descriptions of 12 cognitive distor-
tion labels, examples, and counteracting strategies.

Two English-fluent psychology graduate students
were recruited as annotators. We conducted two
rounds of annotation training: first, explaining the
theories behind cognitive distortions and reviewing
the guide; second, using sample cases to check un-
derstanding and accuracy. To assess inter-annotator
reliability, we randomly selected 50 samples for
joint annotation. Once Cohen’s Kappa reached
85.51%, we continued with the full annotation. For
ambiguous cases, domain experts with more than
10 years experience and annotators held discussions
to finalize the labels. This resulted in the standard-
ized dataset D, with 5,702 samples, categorized
into 12 cognitive distortion labels.

Reasoning chain annotation We constructed
cognitive chains to explain label annotations in
the aligned dataset. Domain experts first selected
a typical sample for each label and provided de-
tailed explanations of the cognitive distortion and
reasoning. By employing prompt engineering, we
leveraged the GPT-4 API (OpenAl, 2023) twice
for each sample to generate cognitive reasoning
chain information for the remaining samples. The
domain experts then selected the highest-quality
reasoning chain for each sample. Finally, the do-
main experts examined each reasoning chain until
it met the required quality standards. The final
cognitive reasoning chain, denoted as D,.

4 Experimental methods

This study does not focus on algorithmic innovation
but rather on addressing the generalization prob-
lem across datasets and languages in the cognitive
distortion classification task. Therefore, for deep
learning models, our experimental approach uses
XLM (Conneau et al., 2020) as the baseline due
to its strong cross-lingual ability. For LLMs, we
selected several popular open-source models.

4.1 Cross-linguistic baseline: XLM

We selected XLM-RoBERTa (Conneau et al.,
2020), a multilingual analysis model, as our base-
line. It is a variant of ROBERTa (Liu et al., 2019),
pre-trained on 2.5 TB of CommonCrawl data' from
100 languages. Its key features include extended
training steps, dynamic masking, and unigram Sen-
tencePiece tokenization, enabling consistent cross-
language processing.

"https://commoncrawl.org/
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Figure 2: The distribution of label (in %) for each cognitive distortion dataset.

4.2 Large language model

LLaMA3-8B-Chinese-chat (Wang et al., 2024)
: A Chinese fine-tuned LLaMA, fully fine-tuned on
a mixed Chinese-English dataset of approximately
100K preference pairs, excels in both Chinese and
English tasks.

GLM4 (GLM et al., 2024) A bidirectional
Transformer model with RMSNorm, SwiGLU, and

extended Rotational Positional Embedding (RoPE).

It uses grouped query attention for efficient KV

cache use and improved autoregressive masking.

Pre-trained on 10 trillion tokens with 9 billion
parameters, it supports 128K token context and
aligns with human preferences. According to the
SuperCLUE leaderboard (Xu et al., 2023), as of
December 2024, this model ranks among the top
two among the 10B-level models.

“https://www.superclueai.com/

Qwen2.5-7B-Instruct (Yang et al., 2024) : Pre-
trained on 7 trillion tokens with 7 billion param-
eters, it is fine-tuned with human feedback to im-
prove instruction-following. Similarly, this model
ranks among the top two in the 10B-level models
on the SuperCLUE leaderboard, so it was selected
for the experiment.

5 Experiments design

5.1 Deep learning training

5.1.1 Single task learning

To evaluate the cross-lingual generalization abil-
ity of the cognitive distortion model across differ-
ent languages and datasets, we first trained four
separate models using four multi-label classifica-
tion datasets. Finally, we evaluated the general-
ization performance of the trained models by test-
ing them on all datasets, including unseen ones.
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Figure 3: Training process of teacher-student model in multi-task learning.

In another words, the model Mp,, represents the
baseline XLLM model trained on dataset D,, and is
evaluated across all four datasets.

5.1.2 Multi task learning

To enhance the model’s generalization ability, we
explore the multi-task learning paradigm. We train
a multi-task model based on the XLM-RoBERTa
baseline M T and evaluate it across all four datasets.
In this framework, the model first encodes the input
text using a shared encoder and then performs task-
specific predictions through distinct classification
heads. Since the model is exposed to patterns from
all datasets during training, it learns to adapt to di-
verse annotation schemes. Each classification head
is a fully connected layer, tailored to the number
of labels for the corresponding task. The model is
trained with task-specific labels, and during each
batch update, losses for different tasks are calcu-
lated independently and optimized separately.

5.1.3 Teacher student training strategy

Given the limited availability of datasets in
this field, we also experimented with a teacher-
student(¢s) training strategy to enhance generaliza-
tion. We constructed teacher and student modules,
using D, to train the teacher module, which then
provided soft labels for the student module. The
student module was trained on both the target task
data and the corresponding soft-label data pairs,
resulting in hard loss (L) and soft loss (Ls). The
final loss LL is a weighted combination of the two
loss function (a=0.8 in the experiment), defined as:

L=a-Ly+(1-a)- L (1

This experiment also employed the XLM-
RoBERTa model (Conneau et al., 2020) as the
baseline, and the training process can be seen in
Figure 3.

5.2 Large language model fine tuning
5.21

In this experiment, we fine-tuned three large lan-
guage models—LLaMA3-8B, Qwen2.5-7B, and
GLM-4-9B—on all experimental datasets using a
multi-task learning approach, as shown below:

Multi task fine-tuning

Miim=F <MLLMa > Dn) (2)
where MM represents the original pre-trained
language model, D,, denotes the dataset, and F'
is the fine-tuning function that integrates multiple
datasets into the model training process. This ap-
proach highlights the flexibility of LLMs, as they
impose no strict constraints on input formats, mak-
ing them adaptable to various tasks.

5.2.2 Cognitive reasoning chain instructions
fine-tuning

We performed instruction fine-tuning based on our
proposed cognitive reasoning chain D.. We se-
lected LLaMA3-8B for reasoning chain instruction
fine-tuning due to its strong bilingual capabilities
in Chinese and English, resulting in LLaMA3-8B-I,
which can generate explanations alongside predic-
tions.

5.3 Implementation details

The dataset was split into training, validation, and
test sets in a 6:2:2 ratio with a random seed of 42.

Deep learning model experiments The XLM-
RoBERTa-large model was trained using the
AdamW optimizer with a learning rate of 1 x 1072,
batch size of 16, a threshold of 0.25, and a max-
imum text length of 200. The classification head
was set to 15, corresponding to the union of all cat-
egories (including the “non” category). We adopts
a label masking strategy based on label existence.
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When processing data, a 15-dimensional label mask
is created, where existing labels are set to 1 and non-
existent ones to 0. During training and evaluation,
the mask filters out non-existent labels, ensuring
loss and metrics are calculated only for valid labels.

LLM experiments For the implementation of
LLMs, we employed LoRA (Low-Rank Adapta-
tion) (Hu et al., 2022) for parameter-efficient tun-
ing. During training, we utilized mixed-precision
training, gradient accumulation, and cosine learn-
ing rate scheduling as optimization strategies to
reduce computational resource consumption and
improve training stability and efficiency. For all the
large models, we set the batch size to 8, the number
of epochs to 5, and the learning rate to 1e-5, and
tested the model that performed best on the vali-
dation set. The LLaMA3-8B-Chinese model was
fine-tuned on the standardized alignment dataset
for a maximum text length of 1500 tokens.

To evaluate the model performance, we com-
puted the metrics using micro-averaging and re-
ported the F1-score as the evaluation metric.

6 Results

Cross-dataset generalization performance Our
study investigates the cross-dataset transferability
of models trained on different cognitive distortion
datasets. The results can be seen in Table 2.

The result reveal that while models generally
perform well on their respective training datasets,
their performance drops significantly when ap-
plied to other datasets. This suggests that the
models lack robustness in cross-dataset general-
ization, likely due to inconsistencies in annotation
standards across different datasets. For instance,
the model trained on D, achieves 56.17% accu-
racy when evaluated on the same dataset but per-
forms significantly worse on Dy (31.33%), Dyo
(13.99%), and D, (26.33%). Similar trends are
observed across other models, indicating that the
learned representations are highly dataset-specific
and do not generalize well to other data distribu-
tions. This highlights the challenge posed by non-
uniform labeling criteria, which introduce varia-
tions in data interpretation and hinder knowledge
transfer. We also incorporated a teacher-student
training framework to enhance generalizability.
While some improvements are observed, such as
a slight increase in average performance across
datasets (from 31.96% to 33.51% for Mp, and
from 38.69% to 42.18% for Mp,), the overall

gains remain limited. Notably, the TS approach im-
proves performance on certain datasets (e.g., ME”S
achieves 75.28% on D compared to 74.52% in the
baseline), but fails to provide substantial improve-
ments in cross-dataset settings, with performance
remaining relatively low. These findings suggest
that the core issue lies in the lack of standardized la-
beling across datasets, which restricts model trans-
ferability. While teacher-student training offers
marginal benefits, it does not fully mitigate the in-
consistencies caused by dataset-specific annotation
schemes. This underscores the necessity of devel-
oping a unified annotation framework or multi-task
learning strategies to enhance model generalization
across cognitive distortion datasets.

Multi-task learning paradigms for generaliza-
tion To improve cross-dataset transferability, we
explore a multi-task learning approach, where mod-
els are trained jointly on multiple datasets with
diverse annotation standards. This strategy aims
to assess whether exposure to a broader range of
data distributions can enhance generalization per-
formance on the target datasets. As shown in
Table 3, we evaluate the baseline XLLM model
in a multi-task learning setting (M), its variant
with a teacher-student training framework (M 1),
and compare them against large language models
(LLMs), including LLaMA3-8B, GLM-4-9B, and
Qwen2.5-7B.

The results indicate that multi-task learning im-
proves overall generalization. The average perfor-
mance of the baseline XLLM model in the multi-task
setting (MT') reaches 55.84%, which surpasses the
single-task training results reported in Table 3. Fur-
ther improvements are observed with the teacher-
student framework (M7T*), achieving an average
accuracy of 58.92%, demonstrating its potential to
enhance model robustness. Notably, these multi-
task models consistently outperform the evaluated
LLMs, suggesting that task-specific supervised
learning remains critical for cognitive distortion
classification.

Despite these gains, multi-task learning does
not surpass models trained exclusively on individ-
ual datasets. For instance, while M T achieves
73.94% on D, this remains lower than the model
trained specifically on Dy in a single-task setting.
Similar trends are observed for other datasets, in-
dicating a trade-off: multi-task learning improves
generalization at the cost of reduced specialization.
Additionally, LLMs underperform in this setting,
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Table 2: Performance (F1-score) under single-task learning paradigms. Here, D, denotes the social CD-3k dataset (Qi
et al., 2023), D, refers to the C2D2 dataset (Wang et al., 2023a), and D, represents the cognitive reframing
dataset (Sharma et al., 2023). Additionally, D;; and D, correspond to datasets of different sizes derived from the
therapist dataset (Shreevastava and Foltz, 2021), while D, indicates the re-annotated dataset. The notation Mp
represents the baseline XLLM model trained on dataset D,,, whereas Mlt)sn denotes the same model trained using a

teacher-student learning framework.

Data/Model

ts
Mp

Mp,

ts
ME

Mp,,

ts

Mp,,

ts

Mp, D D
Dy 74.52% 75.28% | 26.33% 32.10% | 32.45% 45.8t(1)% 29.96% 39.4%%
D, 23.66% 33.63% | 56.17% 55.93% | 21.93% 33.94% | 14.23% 24.30%
Dy 35.68% 38.75% | 31.33% 31.25% | 50.23% 50.26% | 58.68% 50.53%
Dyo 2091% 21.06% | 13.99% 14.74% | 37.75% 36.25% | 24.01% 25.41%
AVG 38.69% 42.18% | 31.96% 33.51% | 35.59% 41.56% | 31.72% 34.92%

Table 3: Performance (F1-score) under multi-task learning paradigms. Here, Dy denotes the social CD-3k dataset (Qi
et al., 2023), D, refers to the C2D2 dataset (Wang et al., 2023a), and D, represents the cognitive reframing
dataset (Sharma et al., 2023). Additionally, D;; and D, correspond to datasets of different sizes derived from the
therapist dataset (Shreevastava and Foltz, 2021), while D, indicates the re-annotated dataset. The notation MT
represents the baseline XLM model trained on four datasets in a multi-task learning setting, while MT"** denotes
the same model trained with a teacher-student learning framework.

Data/Model | MT MT®* | LLaMA3-8B GLM-4-9B Qwen2.5-7B
Dy 72.00% 73.94% | 54.66% 49.30% 46.15%
D, 49.87% 55.58% | 45.35% 38.55% 39.35%
Dy 61.52% 64.42% | 38.14% 28.38% 34.06%
Dys 39.95% 41.75% | 20.95% 18.68% 19.52%
AVG 55.84% 58.92% | 39.78% 33.73% 34.77%

due to the task’s difficulty.

These findings highlight that multi-task learning
effectively enhances cross-dataset generalization
by exposing the model to diverse annotation stan-
dards. However, it does not fully resolve the incon-
sistencies introduced by differing labeling schemes.

Ablation study on dataset composition As the
teacher-student guided multi-task learning model
MT" demonstrated the best performance in Ta-
ble 3, we further investigate how the number of
training datasets affects model performance un-
der this architecture. To this end, we conducted
an ablation study on dataset quantity in a multi-
task learning setup. Specifically, we incrementally
added datasets during training and evaluated the
classification performance across source and target
domains. The results are presented in Table 4.

We observe that the performance on D,, D;1,
and D,s consistently improves as more datasets are
incorporated into the multi-task training process,
indicating effective positive transfer and enhanced
generalization in more challenging or underrep-
resented domains. Meanwhile, the performance
on Dg remains relatively stable across different

dataset configurations, suggesting that the core task
signals are preserved even as additional training
domains are introduced. These findings highlight
a typical generalization—specialization trade-off in
multi-task learning. Adding more datasets brings
potential for improved generalization, especially
on diverse or low-resource domains, but also risks
performance drops due to domain mismatches.

Standardlized alignment for generalization To
further improve cross-dataset transferability, we
propose a second solution: expert reannotation to
establish a standardized dataset. This approach
aims to address the inconsistencies in existing
datasets by aligning labeling criteria through expert
judgment. The results on the standardized align-
ment dataset are presented in Table 5. Given the
bilingual nature of the dataset, we analyze model
performance separately for English (D) and Chi-
nese (DaZ ).

The baseline XLLM model trained on the full
dataset (Mp,) achieves the highest overall per-
formance, with 66.92% F1-score across both lan-
guages. When evaluated separately, the model
trained on Chinese (Mpz) achieves 75.20% F1-
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Table 4: Ablation study on the performance (F1-score) impact of dataset quantity under the teacher-student multi-
task learning framework. Here, the notation M denotes the baseline XLLM model trained on different datasets within

this framework.

Data/Model M5 MFP s p, Mp ip,py  MPip,ipyipy,
Dy 75.28% 73.84% 73.90% 73.94%
D, 33.63% 52.53% 53.33% 55.58%
Dy 38.75% 39.47% 51.70% 64.42%
Do 21.06% 22.51% 38.94% 41.75%
AVG 42.18% 47.09% 54.47% 58.92%

Table 5: Performance (F1-score) on the standardized alignment dataset D,. To better analyze model performance
across languages, we divide the dataset into DZ for English and DZ for Chinese. The notation M, represents
the baseline XLLM model trained on dataset D,,. LLMs without ‘-I’ are finetuned by D, and the LLMs with ‘T’ is
fine-tuned by D¢ which include both data-label pair and cognitive reasoning chain.

Mpr Mpz Mp, LLaMA3-8B GLM-4-9B Qwen2.5-7B | LLaMA3-8B-1
DE 14034% 38.54% 46.42% | 29.00% 18.74% 18.92% 30.97%
DZ | 51.30% 75.20% 75.00% | 49.72% 51.27% 48.32% 54.37%
D, | 46.80% 62.65% 66.92% | 44.64% 45.90% 43.16% 48.41%

score on DZ, significantly outperforming other
models, indicating that the reannotated Chinese

dataset is well-structured and internally consistent.

We also evaluate fine-tuned large language mod-
els (LLMs), including LLLaMA3-8B, GLM-4-9B,
Qwen2.5-7B, and LLaMA3-8B-1. While these
models exhibit lower accuracy than the deep learn-
ing baselines, they bring an additional advantage:
interpretability, offering more transparent decision-
making processes. Although its overall perfor-
mance (48.41%) is behind that of traditional deep
learning models, its ability to generate interpretable
results makes it a valuable complementary ap-
proach. Comparing LLaMA3-8B-I, trained with
the cognitive reasoning chain D¢, to LLaMA3-8B,
trained on D,, we observe the benefits of integrat-
ing the reasoning process, with a 3.77% point im-
provement in F1-score.

These findings suggest that standardized aligned
data annotation can substantially enhance dataset
consistency and improve model generalization.
Furthermore, while deep learning models still
achieve higher classification accuracy, LLMs con-
tribute meaningful interpretability, which is crucial
for cognitive distortion analysis. Future research
could explore hybrid strategies that integrate high-
accuracy deep learning models with LLM-based
explainability mechanisms to achieve both strong
performance and interpretability.

7 Discussion

In the task of cognitive distortion recognition, the
challenge of generalization arises due to significant
annotation differences across datasets, despite be-
ing grounded in the same theoretical framework.
These inconsistencies limit model transfer and re-
quire strategies to enhance generalization. To ad-
dress this, we explored multiple approaches, includ-
ing multi-task learning, standardized annotation
alignment.

Multi-task learning was investigated as a means
to enhance generalization by enabling the model to
learn from multiple datasets simultaneously. Given
that different datasets may emphasize distinct as-
pects of cognitive distortion, training a shared
model across multiple tasks allows for a more com-
prehensive representation. This approach mitigates
dataset-specific biases and encourages the model to
learn transferable features that improve robustness
across varied data distributions.

To further reduce inconsistencies, we introduced
a standardized dataset by aligning annotation cri-
teria across different sources. Standard alignment
plays a crucial role in reducing variability intro-
duced by subjective annotation differences. By
defining a unified labeling scheme, we ensured that
the model is trained on a consistent dataset, min-
imizing annotation-induced discrepancies. How-
ever, while standardization improves uniformity,
excessive alignment may inadvertently obscure
dataset-specific nuances, necessitating a careful
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balance between standardization and preserving
valuable diversity in the data. To preserve such nu-
ances, one promising direction is to retain original
annotation metadata during training—such as label
variants or annotator notes—as auxiliary signals.
Additionally, future work could explore multi-view
contrastive learning frameworks, where models si-
multaneously learn from both the standardized and
the original label structures. Such designs may
offer a compromise between generalizability and
granularity, enabling better cultural and contextual
sensitivity in cross-lingual cognitive distortion anal-
ysis.

Beyond data alignment, we explored inter-
pretable LLMs to enhance generalization by in-
creasing transparency in decision-making. Inter-
pretability allows models to provide explicit rea-
soning for their predictions, which not only aids in
model validation but also increases trust and usabil-
ity. Moreover, an interpretable LLM can help un-
cover potential biases in training data and suggest
corrective measures to refine learning strategies.
However, despite the benefits of interpretability,
our experiments have shown that the current per-
formance is suboptimal. It highlights the need for
future research to explore ways to enhance model
performance without sacrificing transparency.

Our findings indicate that generalization in
cognitive distortion recognition requires a multi-
faceted approach, combining structured learning
strategies, data standardization, and model inter-
pretability. While each of these strategies con-
tributes to mitigating dataset-specific limitations,
their combined effect is likely to yield the most
robust improvements in generalization. Future re-
search can further investigate the interactions be-
tween these methods and explore additional do-
main adaptation techniques to refine generalization
across diverse datasets. In addition, it is crucial
to consider ethical and practical risks when han-
dling sensitive mental health data. Although our
study relies on publicly available and anonymized
sources, we acknowledge the possibility of re-
identification and unintended harm. Thus, we advo-
cate for stricter anonymization protocols, human-
in-the-loop deployment, and future research into
privacy-preserving techniques and model auditing
tools to ensure responsible use of such technolo-
gies.

8 Conclusion

This study explored strategies to improve general-
ization in cognitive distortion recognition, address-
ing annotation inconsistencies and model limita-
tions. We propose a multi-task learning approach
and a standardized dataset to enhance generaliza-
tion. Our results demonstrate that these two solu-
tions significantly improve generalization, and the
proposed open-source dataset can further support
research in this domain. Future work should fo-
cus on domain adaptation, and further improving
model interpretability and robustness.

Limitations

This study has several limitations. The model’s per-
formance is constrained by the availability and con-
sistency of bilingual cognitive distortion datasets,
and cross-lingual generalization remains a chal-
lenge due to cultural and linguistic differences.
While the large language model’s interpretability is
improved using few-shot prompting, human-level
reasoning is not fully captured. Additionally, the
model focuses on text-based data, limiting its appli-
cability to multimodal mental health assessment.

Ethics statement

Ethically, we ensure data anonymity and fairness in
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