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Abstract

Assessing corporate environmental sustainabil-
ity with Table Question Answering systems
is challenging due to complex tables, special-
ized terminology, and the variety of questions
they must handle. In this paper, we introduce
GRI-QA, a test benchmark designed to evalu-
ate Table QA approaches in the environmental
domain. Using GRI standards, we extract and
annotate tables from non-financial corporate re-
ports, generating question-answer pairs through
a hybrid LLM-human approach. The bench-
mark includes eight datasets, categorized by
the types of operations required, including op-
erations on multiple tables from multiple docu-
ments. Our evaluation reveals a significant gap
between human and model performance, par-
ticularly in multi-step reasoning, highlighting
the relevance of the benchmark and the need
for further research in domain-specific Table
QA. Code and benchmark datasets are available
at https://github.com/softlab-unimore/
gri_qa.

1 Introduction

Sustainability accounting is crucial to global regu-
latory efforts for corporate environmental trans-
parency. Initiatives like the European Green
Deal (European Commission, 2024) and the United
Nations’ sustainability agenda (SDGS, 2024) re-
quire publicly listed companies to disclose environ-
mental data through non-financial reports adhering
to consolidated standards, such as the Global Re-
porting Initiative (GRI) framework (GRI, 2024).
These reports provide crucial information, in par-
ticular within many and large tables, to determine
whether companies are adopting responsible envi-
ronmental practices or engaging in greenwashing,
i.e., overstating their sustainability achievements
to appear more environmentally responsible than
they truly are (Nemes et al., 2022; Moodaley and
Telukdarie, 2023; de Freitas Netto et al., 2020).

However, automatically analyzing non-financial
reports introduces many challenges due to (1) the
format and structure of the tables, which lack
standardization across companies and often fea-
ture hierarchical layouts combining top and side
headers, (2) specialized terminologies, as environ-
mental tables frequently include industry-specific
terms which, combined with performance metrics
with varying measurement conventions compli-
cates their interpretation, and (3) the nature and
variety of the questions posed by analysts, which
can range from simple value extraction to complex
calculations involving multiple elements within the
same table, across tables within the same document,
or even across tables from different documents.

These challenges highlight the need for models
capable of understanding complex table structures,
applying context-aware reasoning, and combining
general semantic knowledge with domain exper-
tise. While similar datasets exist in other sectors, as
highlighted in Section 2, an environmental domain-
specific benchmark is still missing and could repre-
sent a significant step forward. Such a benchmark
would be valuable for both domain specialization
in table question answering (QA) models and for
its technical features, requiring reasoning across
varying numbers of tables, an uncommon aspect in
other datasets.

To address this gap, we introduce GRI-QA, a
new Table QA test benchmark on environmental
tables extracted from corporate reports, with ques-
tions categorized according to the GRI standard.
GRI-QA was designed through a methodology that
requires input from domain experts (Section 3) to
reflect the specific information needs in the sector.
Figure 1 shows the question types present in GRI-
QA and provides an example of question-answer
using two tables containing BMW and Allianz CO2
emissions statistics from the 2023 non-financial re-
port. These question types feature extractive ques-
tions that require straightforward data retrieval, and
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BMW

Allianz

Figure 1: Examples of tables with related questions in the GRI-QA benchmark. The colored boxes on the tables
indicate the input values considered to compute the respective answer. The answers may span multiple tables.

hierarchical questions which require disambiguat-
ing terms based on the table’s hierarchical struc-
ture. GRI-QA contains calculated questions that
can be relational, focusing on understanding nu-
merical relationships between table entries, such
as comparisons (blue box in the Figure), superla-
tives (yellow box), or rankings (purple box). It also
includes quantitative questions, which demand pre-
cise computations (i.e., sums, averages, or percent-
age variations in pink boxes in the Figure) using
numerical data. Moreover, GRI-QA proposes multi-
step questions which require to process multiple
operations on (multiple) tables from (multiple) doc-
uments (fuchsia boxes). Some of these questions
may require a textual value as an answer, as in the
example for the multi-step superlative question.

To assess the benchmark’s complexity, we
evaluated several state-of-the-art tabular question-
answering systems and GPT models. The experi-
mental results in Section 4 highlight a significant
performance gap between humans and models, par-
ticularly in multi-step and multi-table reasoning.
While GPT-based models with CoT prompting
achieve strong results on simpler tasks, they still
struggle with more complex ones, especially when
dealing with multi-table scenarios. Financial mod-
els show promise but exhibit greater variability
depending on the dataset. These findings under-
score the benchmark’s relevance and suggest the
need for further research, particularly in addressing
complex, multi-step and multi-table questions.

In summary, our contributions are threefold: (1)
we introduce GRI-QA, a publicly available bench-

mark designed for Question Answering on envi-
ronmental tables from corporate reports, including
multi-table and multi-document reasoning; (2) we
propose a methodology to create the benchmark
with the support of domain experts; and (3) we
evaluate state-of-the-art Table QA models on GRI-
QA, highlighting their limitations and outlining
directions for future research.

2 Related Work

2.1 Table question answering

In recent years, Table QA has become a promi-
nent research area, driving the development of var-
ious approaches. Most methods rely on tabular
language models (Badaro et al., 2023) and large
language models (Sui et al., 2024; Zhang et al.,
2024a; Xie et al., 2023; Zhu et al., 2024; Wang
et al., 2024b), which enable a deep understanding
of queries, tables, and their relations. To improve
the performance of these methods across diverse
scenarios and domains, several benchmarks have
been introduced, with key statistics summarized
in Table 1. Many of the proposed datasets are
based on tables extracted from Wikipedia and focus
on different methods of answer generation, such
as direct answer generation (e.g., WTQ Pasupat
and Liang, 2015, NQ-Tables Herzig et al., 2021),
SQL query generation (e.g., WikiSQL Zhong et al.,
2017, SPIDER Yu et al., 2018), free-form text gen-
eration (e.g., FeTaQA Nan et al., 2022), and multi-
hop question answering using both tabular and tex-
tual contexts (e.g., OTT-QA Chen et al., 2021a,
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Dataset Domain Data type Task Num. Hier. Multi-table

WTQ (Pasupat and Liang, 2015) Wikipedia Table Table QA ✗ ✗ ✗
NQ-Tables (Herzig et al., 2021) Wikipedia Table Table QA ✗ ✗ ✗
WikiSQL (Zhong et al., 2017) Wikipedia Table Text-to-SQL ✓ ✗ ✓
Spider (Yu et al., 2018) Wikipedia Table Text-to-SQL ✓ ✗ ✓
BIRD (Li et al., 2023) Kaggle Table Text-to-SQL ✓ ✗ ✓
FeTaQA (Nan et al., 2022) Wikipedia Table Table QA ✗ ✗ ✗
HybridQA (Chen et al., 2020) Wikipedia Table & Text Hybrid Table QA ✓ ✗ ✗
OTT-QA (Chen et al., 2021a) Wikipedia Table & Text Hybrid Table QA ✓ ✗ ✗
TAT-QA (Zhu et al., 2021) Finance Table & Text Hybrid Table QA ✓ ✓* ✗
Fin-QA (Chen et al., 2021b) Finance Table or Text QA ✓ ✓* ✗
PACIFIC (Deng et al., 2022) Finance Table & Text Conversational TQA ✓ ✓* ✗
ConvFinQA (Chen et al., 2022) Finance Table or Text Conversational QA ✓ ✓* ✗
DocFinQA (Reddy et al., 2024) Finance Table & Text Long-document QA ✓ ✓* ✗
AIT-QA (Katsis et al., 2022) Airlines Table Table QA ✓ ✓ ✗
HiTab (Cheng et al., 2022) Stat. reports, Wiki Table Table QA ✓ ✓ ✗
MMQA-QA (Wu et al., 2025) Wikipedia Relational Table Table QA ✓ ✗ ✓
MultiTabQA (Pal et al., 2023) Wikipedia Relational Table Table QA ✓ ✗ ✓
MultiHiertt (Zhao et al., 2022) Finance Table Hybrid Table QA ✓ ✓* ✓

GRI-QA (ours) Environment Table Table QA ✓ ✓ ✓

Table 1: Comparison of Table QA benchmarks. “Num.” refers to questions requiring numerical reasoning and “Hier.”
to hierarchical questions. The symbol ✓* refers to hierarchical questions that have not been explicitly annotated.

Hybrid-QA Chen et al., 2020). Alongside these
general-purpose datasets, several domain-specific
datasets have also been introduced, focusing on
areas such as finance, airlines (e.g., AIT-QA Kat-
sis et al., 2022), and a combination of several do-
mains (e.g., HiTab Cheng et al., 2022, TableLLM-
bench Zhang et al., 2024b, TableInstruct-QA Zhang
et al., 2024a, TableBench Wu et al., 2024, FLARE-
QA Xie et al., 2023). The datasets in the finan-
cial domain are particularly challenging because
they require advanced numerical reasoning (e.g.,
FinQA Chen et al., 2021b), analyzing long corpo-
rate documents (e.g., DocFinQA Reddy et al., 2024,
ConvFinQA Chen et al., 2022) and solving hybrid
QA scenarios where both text and table content
need to be aligned (e.g., TAT-QA Zhu et al., 2021,
PACIFIC Deng et al., 2022). A common limita-
tion of these benchmarks is their focus on queries
involving either single tables (in most cases) or
multiple tables with fixed relational schemas, as in
MMQA (Wu et al., 2025), MultiTabQA (Pal et al.,
2023), and text-to-SQL benchmarks (Zhong et al.,
2017; Yu et al., 2018; Li et al., 2023). The only
exception is MultiHiertt (Zhao et al., 2022), which
includes queries spanning multiple non-relational
tables within the financial domain. While similar
to GRI-QA in handling multi-table queries, Multi-
Hiertt extracts the tables from a single document,
leading to less variability in table structures and
vocabulary compared to those considered in GRI-
QA.

2.2 Environmental data analysis

Environmental data analysis encompasses a broad
range of tasks as ESG (Environmental, Social
and Governance) text classification (Xia et al.,
2024; Mehra et al., 2022; Pavlova et al., 2024;
Webersinke et al., 2021; Schimanski et al., 2023,
2024), topic detection (Varini et al., 2020; Nu-
gent et al., 2021), claim detection and verifica-
tion (Stammbach et al., 2022; Diggelmann et al.,
2020), question answering (Luccioni et al., 2020),
and greenwashing detection (Nemes et al., 2022;
Moodaley and Telukdarie, 2023; de Freitas Netto
et al., 2020; Mahdavi et al., 2024).

The development of these methods is often sup-
ported by specialized datasets. An instruction-
tuned ESG news classification dataset was intro-
duced in Xia et al. (2024) to train the ESGLlama
model. Similarly, Schimanski et al. (2024) pro-
posed several datasets for pre-training and fine-
tuning ESG models1. ClimateBERT (Webersinke
et al., 2021) utilizes over 2 million climate-related
paragraphs for text classification, while ESG-
FTSE (Pavlova et al., 2024) and multilingual ESG
issues dataset (Chen et al., 2023) focus on ESG
topic categorization. For claim verification, the
Environmental Claims dataset (Stammbach et al.,
2022) and CLIMATE-FEVER (Diggelmann et al.,
2020) provide labeled claims with supporting evi-
dence. Finally, ontologies with environmental stan-
dards (Zhou and Perzylo, 2023; Usmanova and
Usbeck, 2024) have been developed to improve the

1https://huggingface.co/ESGBERT
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GRI-QA
datasets Question types Count

(#)
GRI (%)

301 302 303 304 305 306 308

extra Extractive (100%) 1503 3.5 24.4 6.1 2.1 50.1 7.6 6.2
hier Extractive hierarchical (100%) 502 3.2 17.9 11.2 0.4 55.6 9 2.8
rel Comparison (40.3%), Superlative (27%), Ranking (32.7%) 248 0.8 30.2 8.1 0 44.8 16.1 0
quant Sum (21.4%), Average (22.6%), Percentage change (56%) 266 1.8 27.6 7.7 0 48.6 14.3 0

step
Multi-Step Superlative (35.5%), Ranking (32.5%),
Sum (10.2%), Average (21.7%) 166 3.6 29.5 13.9 0 38.6 14.5 0

mrel Multi-Table Superlative (38.3%), Ranking (61.7%) 619 0 20 7 0 66.9 6.1 0
mquant Multi-Table Sum (43.1%), Average (56.9%) 197 0 15.2 3.1 0 71.6 10.2 0

mstep
Multi-Table, Multi-Step Superlative (54.4%), Ranking (29.4%),
Sum (2.6%), Average (13.6%) 588 0 34.9 8.5 0 38.4 18.2 0

Table 2: Dataset size, question type frequency and distribution in the GRI topics.

organization and accessibility of ESG data.
To the best of our knowledge, GRI-QA is also

the first question-answering benchmark for tabular
data in the environmental domain and annotated
with industry standards such as GRI.

3 The GRI-QA Benchmark

The GRI-QA benchmark consists of a total of 4089
questions spanning 204 tables extracted from cor-
porate English reports2 published in 2023 from
companies in Germany (19), France (7), and Italy
(4). The questions are logically organized into eight
datasets based on their types, as shown in Table 2.
In particular, we divide the question types into ex-
tractive and calculated. The extractive questions
require the identification of relevant span(s) in a
table. We distinguish between extractive questions
that require to directly retrieve a value (dataset
extra) and hierarchical questions (dataset hier)
that involve tables where the row/column headers
(e.g., total amounts) are broken down into their
components, requiring an understanding of these
relationships to answer. The calculated types of
question require performing a computation over
multiple cells. The computation can refer to iden-
tifying relationships between cells, such as com-
parison, ranking, and superlative operations or to
generating quantitative results by applying sum, av-
erage, or percentage calculations. In GRI-QA, we
also introduce multi-step questions whose resolu-
tion requires applying a combination of relational
and quantitative operations to cells in the same or
in different tables. We call rel, quant, and step
the datasets with relational, quantitative, and multi-
step questions on single tables, and mrel, mquant,
and mstep their variants on multiple tables.

Finally, the questions are annotated with their
GRI topic. GRI-QA focuses specifically on envi-

2www.annualreports.com

ronmental topics (see Appendix B for a detailed
description of the GRI 300 series), with their dis-
tribution across the datasets shown in Table 2. The
distribution of topics across the datasets is unbal-
anced, reflecting their prevalence in the analyzed
corporate reports. The Emissions 305 topic is the
most common in the benchmark, while other GRI
topics such as 301 Materials or 304 Biodiversity
are less represented.

The construction of GRI-QA consists of two
phases: retrieving the tables related to specified
GRI topics in corporate reports (Section 3.1) and
generating questions based on the extracted tables
(Section 3.2).

3.1 Phase 1: Table extraction
This phase retrieves and extracts relevant tables,
i.e., those associated with the GRI topics of inter-
est, from corporate documents. The process begins
by selecting pages relevant to the target GRI topic g
where g is a textual description taken from Table 8
(Page Filtering in Figure 2a), followed by extract-
ing the tables they contain (Table Extraction).

Page filtering. Non-financial corporate reports are
typically large documents (500+ pages) covering a
wide range of topics. To reduce the search space,
this component identifies the top k sections related
to a target GRI topic using an information retrieval
method that combines sparse (syntactic) and dense
(semantic) embeddings, a technique shown to be
effective in the BEIR benchmark (Thakur et al.,
2021). In particular, given a GRI topic description
g and a report page pi,j , where i denotes the reports
and j the page number, we compute their similarity
score st with

sd(pi,j , g) = sim(ed(pi,j), ed(g))

ss(pi,j , g) = sim(es(pi,j), es(g))

st(pi,j , g) = sd(pi,j , g) + λ · ss(pi,j , g)
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Figure 2: The two phases of our annotation pipeline. boxes contain the operations performed by the annotators.

where sim is the cosine similarity, ed, es are re-
spectively a dense retriever3 (Wang et al., 2024a)
and a TF-IDF sparse retriever weighted by λ, and
sd, ss and st are the dense, sparse and total score.
If the page content pi,j exceeds the context window
of ed, we split pi,j into multiple chunks and repeat
the process. Based on empirical evaluation during
the annotation phase, we set λ = 0.3 and k = 20,
which produced favorable results. This process is
repeated for each corporate report and each GRI
topic description. The final output identifies the
pages containing environmental data along with
their associated GRI topics.

Table extraction & filtering. We extract tables
from the retrieved top k relevant pages using the
Unstructured4 library, combined with Google’s
Tesseract OCR (Smith, 2007) to accurately recog-
nize the characters in the cells. The tables are then
manually corrected for structural and syntactical
errors, with annotators verifying the coherence of
assigned GRI topics. Among the total 204 clean ta-
bles, their dimensions range from 1 to 53 rows and
2 to 15 columns. Furthermore, 32.84% of tables
contain at least one hierarchical row index, 17.16%
have a hierarchical column index, and 20.59% in-
clude data related to multiple GRI topics.

3.2 Phase 2: Question generation

In Phase 2, we generate the questions and answers
for the GRI-QA datasets from the extracted tables,
as shown in Figure 2b. First, we use an LLM to
automatically generate extractive questions for the
extra and hier datasets. These questions are then
reviewed by human annotators, who validate them
and add supplementary annotations, such as the
corresponding row and column indices. Then, the
remaining datasets are created using a template-

3intfloat/multilingual-e5-large-instruct
4Unstructured Documentation

based approach. This method selects an operation
(e.g., maximum, minimum, sum, percentage) and
uses the annotated row and column indices to en-
sure the generated queries compare or combine
values in a meaningful way, reflecting real-world
scenarios. The specific process for each dataset is
detailed in the following.

Datasets extra, hier. We use an LLM, specifi-
cally gpt-4o-mini with a temperature of 0.2, to
generate extractive questions from the tables, en-
suring contextual accuracy with minor variations
in phrasing. The full prompt used is provided in
Appendix A. Human annotators verify the quality
of the questions, manually rephrase them for better
variability and report the row and column indices
(idxr, idxc) for the extracted values. Finally, they
identify which extra samples require reasoning
over hierarchical row structures, contributing to the
hier dataset.

Datasets rel, quant, step. These datasets contain
questions based on operations requiring compar-
isons, calculations, or a combination of both. In
particular, the rel dataset includes comparative, su-
perlative, and ranking operations; the quant dataset
includes sum, average, and percentage change; and
the step dataset combines these operations. For
question generation, similar to Pal et al. (2023),
we use expert-defined templates to structure the
questions. Each template is designed for a spe-
cific operation and requires access to both the input
operands and the computed result. To ensure mean-
ingful and reliable datasets, it is crucial that the
selected operands are consistent. This consistency
is guaranteed by the prior annotation conducted
for the extra dataset, which links cells identified
by the (idxr, idxc) indices in the extracted tables
to relevant GRI topics. Leveraging this annota-
tion, we automate the generation of samples for
the rel, quant, and step datasets through two al-
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ternative operand selection strategies. Given an
initial operand, row selection identifies randomly
a second operand from a different column within
the same row. Conversely, column selection iden-
tifies a second operand from the same column but
in a different row, ensuring that both values share
the same GRI topic. The answer is computed by
executing the operation and by also ensuring con-
sistency in the compared GRI topics. To maintain
quality, annotators review the generated question-
answer pairs, validate their coherence, and manu-
ally rephrase questions to enhance linguistic vari-
ability and diversity across the dataset.

Datasets mrel, mquant, mstep. In the multi-table
datasets, tables are extracted from different cor-
porate reports to simulate realistic cross-company
comparisons. A selection of 2, 3, or 5 tables is
used to generate questions of varying difficulty.
Consistency in table selection is ensured using the
previously generated GRI associations. As with the
rel, quant, and step datasets, a template-based
approach is applied to the selected tables to gen-
erate relational, quantitative, and multi-step ques-
tions for the multi-table mrel, mquant, and mstep
datasets. There are, however, two key differences.
First, questions may require identifying a specific
company name rather than computing a numerical
value. Second, due to variations in company size,
the same indicator may be presented in different
units (e.g., GJ for small firms, GWh for large ones),
necessitating implicit unit conversion for meaning-
ful comparisons in some cases.

3.3 Quality Control

The annotation of GRI-QA requires a strong un-
derstanding of GRI reporting standards and metic-
ulous accuracy in calculating target values. The
manual annotation process was conducted by two
ICT research fellows, under the guidance of a pro-
fessor specialized in economic and management
science expert in the topic. To ensure that the anno-
tators were well prepared for the task, we provided
1,038 examples that included GRI topics, tables,
extractive questions and answers, accompanied by
concise documentation of the GRI standards. This
preparation allowed the annotators to familiarize
themselves with the annotation process and resolve
any uncertainties related to domain-specific termi-
nology. The annotation process comprised three
distinct phases. Firstly, the annotators refined the
structure and content of the automatically extracted

tables, ensuring that no table contains information
that uniquely identifies people. Secondly, they an-
notated the row and column indices for the extra
dataset. Finally, they conducted a thorough review
of the generated datasets, ensuring consistency be-
tween the questions and the answers while improv-
ing the variability of the questions.

4 Experimental Evaluation

We assess the quality of GRI-QA using Table
QA models trained on both general, and financial-
domain datasets. In the follow, we present the
baselines (Section 4.1), metrics (Section 4.2), and
discuss the results obtained (Section 4.3).

4.1 Baselines
As baselines, we select and evaluate state-of-the-
art models developed and trained both in general
domains and in financial domains close to the ones
addressed by GRI-QA. We do not include existing
models trained on environmental data (e.g., ES-
GLlama), as they are not designed for tabular pro-
cessing, making their assessment unfair.

General models. We experiment with four mod-
els that have not been specifically developed or
trained in environmental and financial domains: (i)
TaPEx (Liu et al., 2022), a 406M parameters BART-
based (Lewis et al., 2020) model trained to predict
SQL query results and fine-tuned on textual and
tabular inputs; (ii) OmniTab (Jiang et al., 2022), a
406M parameters model which incorporates pre-
training on synthetic data and demonstrated strong
performance on the WTQ dataset (see Table 1); (iii)
TableLLAMA (Zhang et al., 2024a), a Llama2 (Tou-
vron et al., 2023) 7B model fine-tuned on the Table-
Instruct (Zhang et al., 2024a) dataset, achieving
state-of-the-art performance on HiTab and FeTaQa
(see Table 1); (iv) gpt-4o-mini in Zero-Shot (Rad-
ford et al., 2019) and Zero-Shot-CoT (Kojima et al.,
2024) with temperature of 0.

Financial-related models. We consider two mod-
els trained on financial data extracted from corpo-
rate reports: (i) FinMA (Xie et al., 2023), a Llama2
model fine-tuned on several financial tasks, includ-
ing Table QA; (ii) TaT-LLM (Zhu et al., 2024), a
Llama2 model fine-tuned on TAT-QA, TAT-DQA
and FinQA (Table 1). We evaluate FinMA and
TaT-LLM with 7B parameters, using the step-wise
prompt for TaT-LLM, as indicated by its authors.

Human-level performance baseline. We asked
three expert users (two professors and one FinTech
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expert) to answer 400 randomly extracted ques-
tions, i.e., 50 from each GRI-QA dataset. The
experts had unlimited time to respond to the ques-
tions, which were preloaded into an instance of
the Label Studio platform (see Appendix C for ad-
ditional information). In Appendix D, we report
the results obtained by the baselines on the human-
evaluated samples from the datasets.

4.2 Metrics

We use a normalized Exact Match (EM) metric
to evaluate the performance of the baselines. We
adapted the DROP (Dua et al., 2019) evaluation
script to compare the results with the ground truth,
considering the specific output formats of each
baseline. For instance, TaT-LLM separates list
values using a hashtag (e.g., 16.5#16.1), TableL-
LAMA formats values within angle brackets (e.g.,
<16.5>,<16.1>). To ensure consistency, we ap-
ply custom post-processing operations for each
model, normalizing their outputs before compar-
ison. The post-processing operations are limited
to handling model-specific output formats and do
not modify the predicted values or their units of
measurement, which are explicitly required by the
question prompts. This normalization allows us to
use the models within their intended prompt set-
tings, minimizing the need for significant prompt
modifications that could negatively impact perfor-
mance (Kojima et al., 2024).

4.3 Discussion

The analysis of the experimental results in Table 3,
broken down into questions requiring a single table
(Table 3a) or multiple tables (Table 3b), provides
the following insights.

Humans make the difference. The accuracy
achieved by human annotators surpasses all models
by a significant margin, except in the rel dataset.
This exception is likely due to the fact that answer-
ing rel questions can be “mechanical” for a hu-
man, leading to overconfidence. The performance
gap between humans and computational models
is relatively small for single-step questions (7.1%
on average) but increases substantially for step
and multi-step datasets (37.2% on average), where
multiple calculations across different documents
are required to obtain the correct answer. Finally,
humans exhibit a lower accuracy variance across
datasets, with a standard deviation of 6.0 in single-
table questions and 1.7 in multi-table questions.

Key Takeaway #1. The significant gap between
human and computational performance high-
lights the need for further research, especially in
multi-step and multi-table reasoning tasks.

GPT-based models outperform all others. Models
based on gpt-4o-mini, particularly when using
CoT prompting, achieve significantly higher accu-
racy than other models. Focusing exclusively on
the results related to single table queries, where the
models produce the best performances, there is a
difference of about 10% and 30% between the GPT
base and CoT models respectively with respect to
the best performance for the remaining models:
54% GPT base and 73% GPT CoT versus 41% for
TaT-LLM. TaT-LLM emerges as the best non-GPT
model, followed by TableLLAMA with an average
accuracy of 31.1%. OmniTab and TaPEx achieve
slightly lower performances at 29.3% and 26%,
respectively, while FinMA records the lowest accu-
racy at 17.3%. The superiority of GPT models is
also confirmed in the multi-table question datasets.

Key Takeaway #2. GPT models outperform
state-of-the-art tabular QA systems, even spe-
cialized in the financial domain. CoT prompting
further enhances these performances.

Financial training does not always generate better
results. Excluding GPT-based models and multi-
table datasets, we observe that the average accu-
racy of general models (28.8%, standard deviation
2.6) is similar to that of financial-related models
(29.3%, standard deviation 16.9). However, the
financial-based model TaT-LLM consistently out-
performs TableLLAMA, its general-domain coun-
terpart based on the same Llama2 LLM. Mean-
while, the second financial-based model in our
benchmark, FinMA, achieves the highest non-GPT
accuracy on the rel dataset but underperforms
compared to general models on the other datasets.
This variability, also reflected in the higher standard
deviation of financial-based models compared to
general ones (16.9 vs. 2.6), suggests that while spe-
cialized models can excel in certain tasks, general
models tend to be more robust across datasets.

Key Takeaway #3. Financial-based models can
outperform general models but exhibit greater
variability depending on the dataset.
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extra hier rel quant step avg

TaPEx 55.4 46.4 27.4 1.0 0.0 26.0 (25.4)
OmniTab 64.7 55.4 25.4 1.1 0.0 29.3 (30.0)
TableLLAMA 73.1 63.3 17.7 1.5 0.0 31.1 (34.7)
FinMA 25.7 22.9 35.1 2.6 0.0 17.3 (15.3)
TaT-LLM 79.7 74.3 25.4 26.7 0.0 41.2 (34.4)
gpt-4o-mini 86.0 78.5 61.7 43.2 0.7 54.0 (34.1)
gpt-4o-mini CoT 84.2 80.9 92.7 72.6 33.1 72.7 (23.3)

Dataset avg 67.0 60.2 40.8 21.2 4.8 38.8 (26.1)

Human† 89.3 92.0 87.3 90.0 76.7 87.1 (6.0)

(a) Single-table questions.

mrel mquant mstep avg

TaPEx 0.3 0.0 0.2 0.2 (0.2)
OmniTab 1.1 0.0 0.0 0.4 (0.6)
TableLLAMA 4.7 1.0 9.5 5.1 (4.3)
FinMA 1.8 0.0 0.7 0.8 (0.9)
TaT-LLM 5.5 0.0 8.4 4.6 (4.3)
gpt-4o-mini 16.1 1.5 13.6 10.4 (7.8)
gpt-4o-mini CoT 37.2 29.9 35.2 34.1 (3.8)

Dataset avg 9.5 4.6 9.8 8.0 (2.9)

Human† 70 70.3 67.3 69.2 (1.7)

(b) Multi-table questions.

Table 3: Accuracy (EM score) and standard deviation (in brackets) for the GRI-QA benchmark. Bold values indicate
the best results. † indicates the results obtained from 50 randomly extracted samples.

(%) Error for each question type

rel Comparison (4.0%), Superlative (10.5%), Ranking
(8.6%)

quant Sum (22.8%), Average (23.3%), Percentage change
(34.1%)

step Multi-step Superlative (61.0%), Ranking (71.9%),
Sum (64.7%), Average (73.1%)

mrel Multi-Table Superlative (51.2%), Ranking (70.3%)
mquant Multi-Table Sum (73.0%), Average (74.0%)
mstep Multi-Table, Multi-Step Superlative (55.2%), Rank-

ing (77.2%), Sum (80.0%), Average (80.0%)

Table 4: Percentage of gpt-4o-mini CoT errors per
question type.

Not all operations are equally complex. Even
within single-table datasets, which result easier for
the models in the benchmark, accuracy varies sig-
nificantly between datasets. The performance on
hier is constantly lower than in extra, ranging
from 60.2% to 67% on average, indicating that rea-
soning on hierarchical rows is a difficult task for
computational models (Katsis et al., 2022), while
humans generalize better. Accuracy on calculated
questions is even worse, with quantitative questions
appearing more complex than relational ones, both
in single- and multi-table datasets. Multi-step ques-
tions finally show the worst performances, with
GPT models reaching around 30% accuracy only
when using CoT prompting.

Key Takeaway #4. Hierarchical and quantita-
tive questions are moderately challenging, while
multi-step questions pose the highest complex-
ity. CoT’s “divide and conquer” approach helps
improve multi-step reasoning.

More documents, more complexity. Accuracy
drops significantly when operands come from dif-
ferent documents. This is evident when comparing

the results on calculated operation datasets rel,
quant, and step with their multi-document coun-
terparts, mrel, mquant, and mstep, where operands
are drawn from tables in different documents. Ta-
ble 4 shows the error breakdown for the types of
questions in the datasets for the gpt-4o-mini CoT
model. Ranking questions appear to be the most af-
fected by the multi-table setting, showing a 61.7%
increase in error rate between rel and mrel, while
the increase for the superlative questions is less
marked (40.7%, from 10.5% to 51.2%). Sum and
average questions in the quant dataset behave sim-
ilarly, with both showing an increase in error rates
of about 67%. The mstep dataset may exhibit an
anomaly, achieving an overall higher accuracy than
step. This can be explained by the presence of
questions expecting company names as answers
instead of numerical values, which are easier for
baseline models to handle. When excluding these
questions, the accuracy of gpt-4o-mini CoT on
mstep drops to 23.5%.

Key Takeaway #5. Accuracy drops when
operands span multiple documents.

Vocabulary and units of measurement matter.
Models struggle when domain-specific terminol-
ogy is involved, even in tasks that do not require
complex reasoning. To isolate the effect of vo-
cabulary and avoid confounds related to structural
complexity, we analyzed the errors on the extra
dataset designed for direct value retrieval. More-
over, we considered only questions referring to ta-
bles where rows represent indicators and columns
contain values across years. This ensures the anal-
ysis is centered on query intent interpretation and
term disambiguation, removing complexities re-
lated to table format understanding. The amount of
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Model Errors Errors (%) T1 T2 (T1+T2)
Errors

TaPEx 452 67.36% 66 298 80.53%
OmniTab 334 63.02% 33 203 70.66%
TableLLAMA 254 62.87% 19 163 71.65%
FinMA 800 71.62% 32 531 70.38%
TaT-LLM 198 64.92% 8 165 87.37%
gpt-4o-mini 144 68.25% 5 135 97.22%
gpt-4o-mini CoT 177 74.06% 1 173 98.31%

Table 5: Types of error on the extra dataset (T1, T2).
Term misinterpretations cause the majority of errors.

errors considered for each model is indicated in the
"Errors" columns in Table 5. Despite the simplic-
ity of the task, the results reveal that a significant
proportion of errors are due to terminology inter-
pretation issues. We categorize errors into three
types: (T1) retrieving a value from an unrelated
row (indicative of misunderstanding the indicator
name), (T2) retrieving a value not present in the
table (often due to hallucinated terms or misinter-
pretation), and (T3) retrieving the correct row but
from the wrong column (e.g., incorrect year). Only
the first two types reflect vocabulary-related issues.
As shown in Table 5, these two categories account
for over 70% of all errors across all models. with
models like TaT-LLM and gpt-4o-mini reaching
87% and 97%. These values indicate that the mod-
els are proficient in identifying simple indicators
(e.g. the years in the column schema), but provide
hallucinated responses due to term ambiguity and
domain-specific vocabulary (e.g. terms related to
GRI topics). In addition to vocabulary, models also
falter when faced with inconsistent or implicit units
of measurement across tables. To assess this, we
analyzed the first 50 questions from the multi-table,
multi-step setting involving five tables, where unit
conversion is often required. For each sample, we
manually reviewed the Chain-of-Thought reason-
ings of gpt-4o-mini and annotated the errors re-
lated to unit handling. We identified 38 total errors,
of which 22 (57.9%) involved incorrect or missing
unit conversions.

Key Takeaway #6. Domain-specific terminol-
ogy and unit conversions remain major obsta-
cles, even in seemingly simple retrieval or rea-
soning tasks.

5 Conclusion

We presented GRI-QA, a new single- and multi-
table question answering benchmark on environ-

mental data. GRI-QA is composed of eight datasets
that focus on different types of questions, providing
a new challenging test bed to assess the quality of
Table QA models. Furthermore, GRI-QA provides
a set of questions on multiple non-relational tables
belonging to different corporate reports, a setting
only partially explored in previous works. The
results show that while current models are profi-
cient in extractive questions, they fail in calculated
questions, which require performing computations
over multiple cells. This gap is further increased
in multi-step and multi-table questions, where the
only model obtaining non-negligible accuracy is
gpt-4o-mini CoT. We made the datasets and the
annotation pipeline publicly available, to promote
and support further research in the area.

6 Limitations

The paper does not present a new custom baseline
model capable of addressing GRI-QA. We moti-
vate this decision by the fact that (i) GRI-QA is
supposed to provide a test benchmark rather than
training data, and (ii) the number of samples would
likely be insufficient to fine-tune existing models
and be competitive with larger foundation models
such as gpt-4o-mini. However, it would still be
interesting to leverage GRI-QA, or its data collec-
tion pipeline, to improve the performance of small
LLMs (e.g. 7B models) or define new prompting
techniques to improve foundation LLMs. More-
over, although we tried to make the dataset creation
pipeline as automated as possible, a lot of human
effort is still needed. As a result, while GRI-QA
contains a significant number of questions, it is lim-
ited in the number of corporate reports considered.
We plan to address these limitations in future work.

OpenAI models accessed via API calls are
known to provide non-deterministic outputs even
when setting the temperature to 0. This behav-
ior is aggravated in Chain-of-Thought prompting,
where the selection of different tokens may lead to
different reasoning paths and outputs. As a con-
sequence, the Chain-of-Thought results shown in
Table 3 and Figure 7 may slightly differ between
different runs.

7 Risks

A potential risk with the use of GRI-QA is the
growing focus on models that maximize accuracy,
while disregarding computational effort and energy
consumption (see Appendix D). Although these
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models can help environmental practitioners extract
relevant information from corporate reports, they
can also contribute to environmental impact.

Another issue concerns the sources of corporate
reports considered in this study. Our paper con-
siders only French, German and Italian companies
with reports written in English (see Section 3). As
a result, GRI-QA can disadvantage practitioners
analyzing companies located in other geographical
regions, as well as stakeholders relying on different
languages.

8 Use of AI assistants

When writing this paper, we used AI assistants,
such as ChatGPT and Writefull, to improve the
flow of writing and the vocabulary of the initial
drafts we manually wrote. Each suggestion has
been manually validated by the authors. Further-
more, we used gpt-4o-mini to help us debug our
code.
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A Examples of prompts

Examples of prompts are shown for: (1) the cre-
ation of the extra dataset (Figure 3); (2) generating
the tests shown in Table 3a and Table 3b (Figure 4);
(3) generating the tests shown in Table 3a and Ta-
ble 3b using the chain-of-thought technique (Fig-
ure 5).

B GRI 300 topics and disclosures

Table 8 shows the descriptions of the GRI cate-
gories, topics and disclosures. GRI-QA focuses on
tables related to topics from category 300.

C Labeling Interface

Figure 6 shows the Label Studio interface used
to obtain the human results shown in Table 3 and
Table 6. The text inside Figure 6 are the guidelines
we provided to the annotators.

D Supplementary results

Table 6a and Table 6b directly compare the results
obtained by three human annotators on 50 samples
extracted from each dataset of GRI-QA, with the
results obtained using the baseline models on the
complete datasets. To ensure a fair comparison, in
Table 6 we re-evaluate the baseline models on the
dataset samples, showing similar results to the ones
obtained in Table 3a and Table 3b.

Figure 7 shows the accuracy breakdown in multi-
table datasets as the number of tables increases.

Figure 7 shows the energy consumption of each
model tested. Even though TaT-LLM, FinMA
and Table-LLAMA share the same Llama2 back-
bone, TaT-LLM leads to higher energy consump-
tion due to its step-wise prompting. The results for
gpt-4o-mini, in both Zero-Shot and Zero-Shot
CoT prompting, are omitted as the energy con-
sumption of API calls cannot be measured.
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extra generation prompt

You will be given a table (in HTML) and a GRI description.

Extract the values that can reply to the given description. Then, select one of the values and
generate an unambiguous question that can be replied by the value. By unambiguous question we
mean that, based on the table, the question can have only one answer. Hence, make sure to include
the correct column header in the question.

As output, provide a Python dictionary that has the questions as keys and the extracted values are
the values of the dictionary. Do not write anything else. Do not provide any Markdown formatting.

Table: {table}
GRI description: {description}
Question:

Figure 3: Prompt to generate the samples of extra.

GPT prompt template

You must answer the following question given the provided table.

If the question is boolean, write exclusively a ’yes’ or ’no’ answer. If the question asks for a list of
values, separate them with a comma. Write the numerical values with exactly 2 decimal values.
Do not write anything else. Do not write any Markdown formatting.

Question: {question}
Table: {table}
Answer:

Figure 4: GPT prompt template used for the tests in Table 3a and Table 3b. Tables are provided in their HTML
representation.

GPT CoT prompt template

You must answer the following question given the provided table.

First write your reasoning. Then, in the end, write "The final answer is:" followed by the answer.
If the question is boolean, write exclusively a ’yes’ or ’no’ answer. If the question asks for a list of
values, you must answer with a list of values separated with a comma. Write the numerical values
with exactly 2 decimal values. Do not write any Markdown formatting.

Question: {question}
Table: {table}

Let’s think step-by-step.

Figure 5: GPT CoT prompt template used for the tests in Table 3a and Table 3b. Tables are provided in their HTML
representation.
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Figure 6: Label Studio annotation interface (www.labelstud.io), along with the textual guidelines provided to the
annotators to answer the questions.

GRI-QA avg
extra hier rel quant step

TaPEx 54 36 32 2 0 24.8 (23.3)
OmniTab 52 48 28 0 0 25.6 (25.1)
TableLLAMA 74 54 22 2 0 30.4 (32.6)
FinMA 22 26 22 4 0 14.8 (11.9)
TaT-LLM 86 70 24 25 0 41.0 (35.7)
gpt-4o-mini 90 80 56 44 2 54.4 (34.6)
gpt-4o-mini CoT 84 80 98 70 31 72.6 (25.3)

Human 89.3 92.0 87.3 90.0 76.7 87.1 (6.0)

(a) Single-table questions.

GRI-QA avg
mrel mquant mstep

TaPEx 0 0 0 0.0 (0.0)
OmniTab 0 0 2 0.7 (1.2)
TableLLAMA 6 0 0 2.0 (3.5)
FinMA 2 0 0 0.7 (1.2)
TaT-LLM 6 0 20 8.7 (10.3)
gpt-4o-mini 14 2 20 12.0 (9.2)
gpt-4o-mini CoT 40 30 38 36.0 (5.3)

Human 70 70.3 67.3 69.2 (1.7)

(b) Multi-table questions.

Table 6: Accuracy (EM score) on 50 samples extracted from each GRI-QA dataset.

GRI-QA avg
mrel mquant mstep

2 tables 56.6 58.7 43.7 53.0
3 tables 34.3 20.8 32.7 29.3
5 tables 19.5 0.0 25.5 15.0

Table 7: EM scores of gpt-4o-mini CoT for multi-
table questions in the mrel, mquant and mstep
datasets.

Figure 7: Total energy consumption (kWh) of each
model on the extra dataset, measured using an
NVIDIA L40S.
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Topics Disclosures Descriptions

301
(Materials)

301-1 Materials used by weight or volume
301-2 Recycled input materials used
301-3 Reclaimed products and their packaging materials

302
(Energy)

302-1 Energy consumption within the organization
302-2 Energy consumption outside the organization
302-3 Energy intensity
302-4 Reduction of energy consumption

302-5
Reductions in energy requirements
of products and services

303
(Water and Effluents)

303-1 Interactions with water as a shared resource
303-2 Management of water discharge-related impacts
303-3 Water withdrawal
303-4 Water discharge
303-5 Water consumption

304
(Biodiversity)

304-1
Operational sites owned, leased, managed in,
or adjacent to, protected areas and areas of
high biodiversity value outside protected areas

304-2
Significant impacts of activities,
products and services on biodiversity

304-3 Habitats protected or restored

304-4
IUCN Red List species and national conservation list
species with habitats in areas affected by operations

305
(Emissions)

305-1 Direct (Scope 1) GHG emissions
305-2 Energy indirect (Scope 2) GHG emissions
305-3 Other indirect (Scope 3) GHG emissions
305-4 GHG emissions intensity
305-5 Reduction of GHG emissions
305-6 Emissions of ozone-depleting substances (ODS)

305-7
Nitrogen oxides (NOx), sulfur oxides (SOx),
and other significant air emissions

306
(Waste)

306-1 Waste generation and significant waste-related impacts
306-2 Management of significant waste-related impacts
306-3 Waste generated
306-4 Waste diverted from disposal
306-5 Waste directed to disposal

308
(Supplier Environmental

Assessment)

308-1
New suppliers that were screened
using environmental criteria

308-2
Negative environmental impacts in the supply chain
and actions taken

Table 8: Summary of GRI 300 topics and disclosures
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