SPILL: Domain-Adaptive Intent Clustering based on Selection and Pooling
with Large Language Models

I-Fan Lin
Leiden University
Leiden, The Netherlands

i.lin@liacs.leidenuniv.nl

Abstract

In this paper, we propose Selection and Pool-
ing with Large Language Models (SPILL), an
intuitive and domain-adaptive method for in-
tent clustering without fine-tuning. Existing
embeddings-based clustering methods rely on
a few labeled examples or unsupervised fine-
tuning to optimize results for each new dataset,
which makes them less generalizable to multi-
ple datasets. Our goal is to make these existing
embedders more generalizable to new domain
datasets without further fine-tuning. Inspired
by our theoretical derivation and simulation
results on the effectiveness of sampling and
pooling techniques, we view the clustering task
as a small-scale selection problem. A good
solution to this problem is associated with bet-
ter clustering performance. Accordingly, we
propose a two-stage approach: First, for each
utterance (referred to as the seed), we derive its
embedding using an existing embedder. Then,
we apply a distance metric to select a pool of
candidates close to the seed. Because the em-
bedder is not optimized for new datasets, in the
second stage, we use an LLM to further select
utterances from these candidates that share the
same intent as the seed. Finally, we pool these
selected candidates with the seed to derive a
refined embedding for the seed. We found that
our method generally outperforms directly us-
ing an embedder, and it achieves comparable
results to other state-of-the-art studies, even
those that use much larger models and require
fine-tuning, showing its strength and efficiency.
Our results indicate that our method enables ex-
isting embedders to be further improved with-
out additional fine-tuning, making them more
adaptable to new domain datasets. Addition-
ally, viewing the clustering task as a small-scale
selection problem gives the potential of using
LLMs to customize clustering tasks according
to the user’s goals.'
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1 Introduction

Intent detection is a fundamental component in
task-oriented dialogue (TOD) systems, aimed at
classifying user utterances into pre-defined intent
categories (Ni et al., 2023). Although some re-
search has focused on addressing data scarcity (Sid-
dique et al., 2021; Lin et al., 2024), pre-defined
intent labels are insufficient for addressing all user
requests, as new intents emerge with growing com-
plexity of customer requirements and appearance
of novel domains on the business front. While the
progress of transformer-based models has greatly
enhanced intent detection performance, the identi-
fication of emerging intents in task-based conver-
sational agents continues to present a challenge
(Zhou et al., 2023; Rodriguez et al.).

To address this issue, the majority of research
aims to develop embedding models that group unla-
beled utterances into clusters based on a labeled or
unlabeled in-domain dataset (Zhang et al., 2021b;
Mou et al., 2022a; Zhang et al., 2023a; Liang and
Liao, 2023). The goal of these approaches is to en-
able the embedder to learn a robust representation
of user utterances while aligning with the cluster
objective. Contrastive learning is commonly em-
ployed for this purpose, aiming to learn a represen-
tation through comparison (Le-Khac et al., 2020).
The clustering objective is achieved through the de-
sign of a cluster loss function (Zhang et al., 2021a;
Mou et al., 2022b; Du et al., 2023). Although these
approaches yield good results, they require fine-
tuning for each dataset. (Zhang et al., 2021a).

In recent years, advancements in generative
Large Language Models (LLMs) (Touvron et al.,
2023; Riviere et al., 2024) have facilitated improve-
ments in intent clustering. Zhang et al. (2023b)
and Liang et al. (2024) used LLMs to guide the
fine-tuning of embedders, aiming to align the em-

beddings’ clustering outcomes with LLMs’ inter-
pretations. Although these studies achieve state-of-
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'The source code is available: https://github.com/
tom192180/SPILL_Clustering_LLM
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the-art results, they face two primary challenges:
First, modifying the loss function adds complex-
ity, as it involves designing different loss functions
and tuning additional hyperparameters, such as the
weight of each loss term. This makes optimization
more difficult. Second, building a new embedder
requires optimization for each dataset, which limits
generalizability.

In this paper, we propose a theoretical frame-
work for clustering, grounded by formal proofs,
and an intuitive and effective approach to address
these challenges. Our approach has three key goals:
easy implementation, no need for fine-tuning, and
the ability to adapt to unseen datasets. Our ap-
proach stays close to a theoretical rationale and we
confirm its potential by simulation analysis. The
key idea is that if we can identify a few utterances
that share the same cluster as the seed utterance
from a randomly selected subset, pooling the seed
utterance with these selected utterances will bring
them closer to the cluster centroid. Based on this
premise, we can see a clustering task as a small-
scale selection problems.

Our approach consists of two stages: In the first
stage, for each utterance (referred to as the "seed
utterance"), we use an existing embedder (a tra-
ditional encoder or a decoder-only LLM) to gain
a larger pool of similar utterances. In the second
stage, we use LLMs to further select utterances that
share the same intent cluster as the seed utterance.

Note that our proposed approach is not intended
to compete with other embedders. Instead, it is
designed to complement most existing approaches
and can strengthen each of the existing models.
With our experiments, we show that our method
can boost performance on the clustering task irre-
spective of the used embedder. In summary, we
make three contributions: (1) we provide a theoreti-
cal framework supported by formal proofs and sim-
ulations, which frame the clustering task as a small-
scale selection problem, providing both theoretical
and empirical contributions to the task. (2) We pro-
pose a novel and easy-to-implement approach that
is generalizable, regardless of the embedders used
and does not require fine-tuning and can operate
with low computational resources; (3) We show our
method enables domain adaptation in clustering for
unseen datasets, achieving state-of-the-art results
on four benchmark collections.

2 Related Work

Intent clustering with contrastive learning.
Grouping user utterances and identifying new in-
tents is essential in TOD systems (Soudani et al.,
2024; Zhang et al., 2021a,b; Mou et al., 2022a;
Liang and Liao, 2023; Du et al., 2023). Most re-
search has focused on developing embedding mod-
els to create strong representations of user utter-
ances. For instance, Zhang et al. (2021b) pretrained
a model with little labelled data and use k-means
to produce cluster assignments as pseudo labels.
They learn the intent representations under the su-
pervision of the aligned pseudo-labels. Zhang et al.
(2021a) propose a method that optimizes both the
contrastive loss and clustering loss together to build
a sentence embedding model. To prevent overfit-
ting on in-domain data during contrastive loss opti-
mization, Mou et al. (2022a) limit the comparison
to k-nearest neighbors instead of considering all
possible neighbors. As earlier research focused on
contrastive learning without fully accounting for
the semantic meanings of labels, Liang and Liao
(2023) use two-level contrastive learning to learn
representations. This approach first aligns embed-
dings with several contrastive objectives, including
their proposed label semantic alignment, then ap-
plies soft prompting to enhance the use of semantic
knowledge in intent discrimination.

Sentence embeddings with LLM feedback.
With the advancement of LLMs, research is in-
creasingly using their capabilities to improve em-
bedding. Zhang et al. (2023b) introduce a method
that constructs multiple triplet questions, each con-
sisting of an anchor data point and two candidate
points. The triplets are initially selected from dif-
ferent clusters using a smaller embedder, and the
LLM is then tasked with identifying the positive
pair for the anchor point. After fine-tuning the em-
bedder, they perform an initial clustering using the
updated embeddings and then leverage the LLM
to refine the clustering granularity. Their results
show substantially better performance than tradi-
tional embedding methods like SCCL (Zhang et al.,
2021a) while using less data for training. Liang
et al. (2024) leverage LLMs to derive intent descrip-
tors. They then design contrastive loss functions to
optimize a smaller embedder, synergizing LLMs
and smaller language models for intent recognition.
Instead of fine-tuning an embedder, Viswanathan
et al. (2024) use LLMs to improve the utterances
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by having them generate key phrases for each sen-
tence, which are then added to the sentence and
encoded into embeddings. De Raedt et al. (2023)
select prototypical utterances, generate labels for
non-prototypical ones using LLMs, and encode
both utterances and labels together.

Sentence embeddings in LLMs. While previous
research has focused on methods that rely on pre-
trained contrastive loss embedders with feedback
from LLMs, recent studies have shown that directly
extracting embeddings from LL.Ms can also be ef-
fective. Jiang et al. (2024) propose an in-context
learning approach to improve embeddings by in-
troducing a “one-word limitation.” The idea is to
instruct LLMs to summarize the input sentence into
a single word. They found that this approach can
still achieve good performance without fine-tuning.
Springer et al. (2025) propose the echo embedding
approach. Because auto-regressive embeddings do
not capture context from later tokens, they pass
the sentence through the model twice and pool em-
beddings only from the second occurrence. Their
experiment shows that this method outperforms
traditional pooling. Lei et al. (2024) propose a
meta-task prompting method with a one-word limi-
tation. The embeddings are created using a series
of carefully designed prompts that cover different
aspects of meaning, using the one-word limitation
to improve the embeddings.

3 Theoretical Framework

In this section, we introduce our theoretical deriva-
tion, followed by validations through empirical sim-
ulations.

3.1 Problem formulation

We cast the problem of identifying emerging intents
to a clustering task, where conversation utterances
are grouped into clusters, with each cluster corre-
sponding to a newly identified intent. Consider a
collection of data points D = {z;},, where each
data point z; € D corresponds to an utterance, and
N is the total number of data points. The task is
to partition D into cluster sets {5}}{‘1 1» Where M
is the number of the unique clusters. Note that
Z?ﬁl |S;| = N. The objective is to ensure that the
clustering results {S’l}f\i , are as close as possible
to the true partition {.S;},, where M is the num-

ber of unique clusters in the ground truth. Similarly,
M
> =19 =N.

3.2 Theoretical grounding and proof

For simplicity in the theoretical development, we
assume sampling is performed with replacement.
Consider cluster S € {S;}},, containing Ng data
points such that S = {x;}¥5 . For each data point
x4, we derive a d dimensional vector representation
z; € R from an embedder. This results in the
set {zl}fV: 5. We denote o7 and fip, as the variance
and mean of the cluster for the h-th dimension of
our d-dimensional space. pp is also the cluster
centroid in h-th dimension. If we randomly select
one utterance from the cluster .S, represented by its
corresponding vector Z;,” then we randomly select
k elements Z;1, Z;o, ..., Z;}, with replacement from
*

{ZZ}Z]\L 5 to derive its pooling version Z;, defined
as:

2 — Z; + Z’:nzl Zim
v 1+k '
Based on this, we formally prove that the follow-
ing inequality holds:

ey

d
> El(Zin — in)*) = El(Zin — pn)?] <0, ()
h=1

*
where Z;;, € R and Z;;, € R represent elements
ES

of the h-th dimension of Z; and Z;, respectively.
This inequality suggests that using this sampling
and pooling approach, the samples are closer to the
cluster centroid, which implies that clustering can
be approached as a small-scale selection task.

Proof. To show the inequality holds, we first to

*
show both Z;;, and Z;;, have the same mean:

* 7. k Zir
E(Zz‘h):E< ”‘+1Zrk1 : h)

k

m=1

= mlk)(uh + kun)

=

Zimh is the hth dimension element of Z;,,, (see
*

Eq. 1). Since E[Z;3] = E[Z;] = pn, the inequal-
ity (see the formula 2) can be rewritten as follows:

*We use capital to highlight it is a random vector.
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d
> Var[Zip] — Var[Zip] < 0 3)
h=1

Then, we have:

o Zin + S8\ Zimi
Var[Z ;] = Var[ T E
1 k
<
= e [Var[Zih] + Z Var[Z,-mh]}

m=1

1
= m[ﬁ*‘k'gﬂ

= —— 0} <o} = Var[Zy]

O]

Note that the step marked with ¢ holds due to
the independence of these random variables. Since
this property holds for each dimension, the entire
summation (see Eq. 3) will hold as well.

According to this inequality, instead of identi-
fying all similar utterances at once, we only need
to determine whether a randomly chosen subset of
utterances belongs to the same cluster as the seed
utterance. The idea based on the inequality is that if
we can perform selection perfectly on the subset of
data points, then any cluster will show reduced vari-
ance when each data point is pooled with randomly
selected points from the same cluster, compared to
the variation in the original points. We examine
the relationship between variance and clustering
performance in Section 3.3 using simulations.

3.3 Simulation study

Inspired by the theoretical principles outlined
above, our main goal is to identify utterances that
share the same intent as the seed utterance. To
achieve this, we only need to consider a randomly
selected subset of candidate utterances at a time.
A straightforward way to compare the seed ut-
terance with a subset is to use an LLM directly.
However, choosing the right subset size is challeng-
ing: a small subset may miss related utterances,
while a large one increases computational cost. To
address this, we use an embedding model to select
a subset of similar utterances as a starting point.
However, this approach might deviate from the
theory’s assumption that the subset is randomly
selected from the whole cluster, as it focuses only

on locally close utterances. To evaluate the impact
brought by embedder-base selection, we conduct a
simulation study.

We consider 3 clusters in a 128-dimensional
space. The mean and variances are averaged over
128 dimensions. For each experiment trial, be-
tween 50 and 250 data points are independently
sampled for each cluster. The data is drawn from
either a normal distribution or a skewed log-normal
distribution. For the normal distribution, the u
and o2 in each dimension are sampled from the
ranges (0, 1le — 10) and (20, 60), respectively. The
log-normal distribution is generated by taking the
exponential of data points sampled from the normal
distribution, with the o and 1 in each dimension
sampled from the ranges (0, le — 10) and (1.5, 2).

In the simulation experiments, we analyze two
extreme pooling strategies: (1) randomly selecting
k utterances from the same cluster to pool with the
seed utterance (strategy Rd), following the theo-
retical analysis, and (2) selecting only the top-k
closest utterances from the same cluster to pool
with the seed utterance (strategy TopK). Sampling
is performed without replacement to prevent over-
representation of certain examples, which can oc-
cur in small clusters.

Table 1 shows that both Rd and TopK pooling
strategies reduce variances while simultaneously
improving clustering metrics in both non-skewed
and skewed settings. Furthermore, the results indi-
cate that increasing the pooling size leads to better
clustering performance. Finally, even in scenarios
with a skewed distribution, both pooling methods
continue to enhance performance. We also investi-
gate whether the results hold with varying dimen-
sionality. We found that for higher dimensionality,
the variances for both Rd and TopK remain re-
duced and the clustering performance improved
(see Appendix A for more details).

The findings of our simulation study are as fol-
lows: (1) lower variance within a cluster is asso-
ciated with better clustering performance, (2) in-
creasing the value of k tends to improve clustering
performance, and (3) pooling based on the closest
k still shows improvement, indicating that using an
embedder as an initial selection step is a reasonable
approach.

4 Computational Method

Based on our theoretical analysis and simulation
results, randomly selecting utterances among the
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k=0 k=5 k=10 k=20
Rd TopK| Rd TopK| Rd TopK
Normal
var 39.76| 6.33 7.70 | 3.30 4.20 | 1.58 2.12
Acc 37.54169.73 65.74194.71 92.61|99.54 99.20
NMI 0.52 |33.15 32.94|80.32 77.32|97.60 96.33
Log-normal
var 28.12| 445 3.04 233 129 |1.12 047
Acc 43.52147.54 53.50|58.60 88.16|81.67 98.77
NMI 0.93 | 9.82 19.14|31.63 71.41|74.94 94.16

Table 1: Average estimated variances, mean, and clus-
tering metrics over 50 runs in our simulation study. k
is number of data points selected to pool with the seed,
and var denotes estimated variance for the one of the
cluster over 128 dimensions; we report only one of them
since all clusters have the same trend.

entire cluster to pool with a seed utterance is guar-
anteed to reduce clustering variance, which is as-
sociated with better clustering performance. The
simulation results further demonstrate that pooling
using top—k selection can still outperform no pool-
ing and can approach the performance of random
selection achieved with larger k in higher dimen-
sional spaces. Building on these findings, we pro-
pose a two-stage selection approach. In the first
stage, we implement a selection strategy based on
these findings. In the second stage, to refine the
candidates from the first stage, we leverage the ca-
pabilities of LLM to identify the best utterances in
the selection, ensuring that the selected utterances
belong to the same cluster.

4.1 First stage: Embedding based selection

In this stage, we use open-source models to ex-
tract the utterance embeddings: we feed x; into a
existing pretrained encoder or an LLM (referred
to as “embedder” in the following text) to extract
its embedding, denoted as z; := Embedder(z;).
Let d(z;,2;) be a distance function that compute
the distance between the two embeddings z; and
z;, where ¢ # j. We use Euclidean distance and
denote the distance as d;j. By sorting the dis-
tances, we can select the top [y, closest utterances
to the seed x;, which have highest chance of being
in the same cluster. These corresponding utter-
ances are denoted as {mij}?;pl. Additionally, to
introduce some variety, we also select utterances
Lrandom {a:ij}?:“’fd"m using chunk sampling: we
split the whole sample into /4,40 chunks, and
take the first closest utterance from each chunk.
This chunk sampling method introduces variety
while ensuring that relatively close utterances are
selected. Thus, the entire candidate set is given by

D = {mi} {0 {ay Yoo,

The goal of the first stage is to quickly select
utterances that are more likely to belong to the same
cluster as the seed x;. However, since the embedder
is not specifically optimized for the datasets we are
experimenting with, and the clusters may be in
overlapping areas in the vector space, it is possible
that some candidates belong to a different cluster
than the seed z;.

4.2 Second stage: LLM based selection

To address the possibility that the candidate set
D; may include utterances from different clusters
than x;, we use in-context learning with an LLM to
select utterances that share the same intent as the
seed utterance from D;. Note that D, is shuffled
before being fed into the LLM. These selected ut-
terances are denoted as [)Z-, note ﬁi C D;. We then
take the seed x; along with all elements from Di to
compute the mean pooling. This pooled represen-
tation, 2;, will be used for the clustering algorithm.
The size of Di varies for each seed utterance, as it
depends on the LLM’s selection result.

The purpose for the second stage is to leverage
the power of LLMs with a simple designed prompt
to further select the utterances sharing the same
intent as the seed utterance.

5 Experimental Settings

5.1 Datasets and models

We use SGD (Rastogi et al., 2020), Bank77
(Casanueva et al., 2020), CLINC150 (Larson et al.,
2019), Mtop and Massive for our experiments.
Statistics are provided in Table 2.

In the first stage, embeddings extraction, we
experiment with three decoder models Qwen2.5-
7B-Instruct (Yang et al., 2024), Llama3.1-8B-
Instruct (Al@Meta, 2024), and Gemma-2-9b-it
(Riviere et al., 2024), as well as two encoder mod-
els ES-large (Wang et al., 2022) and Instructor-
large (Su et al., 2023). In the second stage, we use
an LLM to verify utterances. If a decoder model is
used in the first stage as an embedder, we continue
with the same model in the second stage; for the
encoder models in the first stage, we tried all the
three LLMs in the second stage. For simplicity, we
refer to these models with shortened names: Qwen,
Llama, Gemma, ES, and Instructor in the following
sections.
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Dataset # clusters | # utterances
SGD 46 57.2K*
Bank77 77 3,080
Clinc150 150 4,500
Mtop 102 4,386
Massive 59 2,974

Table 2: Dataset Statistics. Note that for SGD, we use
only a partial set (9.6K) for setting the hyperparameters.
For other datasets, we use the same settings as Zhang
et al. (2023b).

Summarizer (Jiang et al., 2024):

The task is intent detection. The goal is to identify the purpose or goal
behind a user input. The user intent of this sentence: {sentences} means
in one word:"

Echo (Repetition) (Springer et al., 2025):

Instruct: The task is intent detection. The goal is to identify the purpose
or goal behind a user input. Give the user intent of the utterance,

User utterances: {sentences} User utterances again:{sentences }
Instructor (Su et al., 2023) and (Liang and Liao, 2023):
Bank77: Represent the bank purpose for retrieval:

Mtop: Represent the sentence for retrieval:

Clinc150 and Massive: Represent the sentence for retrieving the purpose:

Table 3: Task Instructions Prompt for the first stage.
Note that for Summarizer and Echo, we use the same
prompt across different datasets.

5.2 Prompts

First stage. We build on previous research to
implement our method for extracting embeddings.
The prompts we used can be seen in Table 3. We
follow (Jiang et al., 2024; Springer et al., 2025),
and apply minor modifications to include wording
tailored to our specific task of intent detection. For
Instructor, we adopt the same prompt used by
Zhang et al. (2023b), which is similar to the ones
used in (Su et al., 2023). For E5-large, we follow
(Wang et al., 2022) and add ‘Query:’ as prefix.

Second stage. In this stage we use the same
prompt across different LLMs, shown in Table 4.

5.3 Embedding derivation

ES and Instructor use mean pooling to derive em-
beddings for sentence representation. For Echo,
the paper shows that mean pooling over the final
hidden layer achieves better performance. Sum-
marizer uses the last token embedding from the
final hidden layer. We adopt their settings for our
follow-up experiments.

5.4 Evaluation

To evaluate the embedding quality, we assume
(for simplicity) that the true cluster number is
known. This assumption aligns with with previous
research evaluation practices (Zhang et al., 2021a,

Task Instructions:

Step 1: Identify Intent Clusters

Review the Candidate Utterances to identify their individual intents and
group them into clusters based on shared intent. Candidates may either
align with the same cluster as the Target Utterance or belong to entirely
different clusters.

Note: Intent refers to the request or the purpose the user wants to achieve.

Step 2: Match Intent with Target Utterance

Compare each Candidate’s intent to the Target Utterance, using the
clusters you identified. Select only Candidates from the same intent
cluster as the Target Utterance.

Note: Choose a Candidate only if its intent clearly aligns with the Target
Utterance’s purpose.

Answer Format:

Only provide the final selection of Candidate Utterances by listing their

numbers if they match the Target Utterance intent or request.

1. If Candidates 3, 4, 9, and 11 match, write: The Candidate utterances
numbers are: 3,4, 9, 11

2. If no Candidate matches, write: The Candidate utterances numbers
are: none
Note: Stick to the answer format and avoid providing extra explanations.

Task:

Target Utterance: {sentence 1}
Candidate Utterances:

1. {sentence 1}

L. {sentence L}

Table 4: Task Instructions Prompt. The boldface used
here is for readability and is not used in the prompt.

2022, 2023b; Viswanathan et al., 2024; Liang et al.,
2024), although our method does not require it.
Therefore, the number of clusters will correspond
to the number of labels for each dataset, and the
KMeans algorithm (Lloyd, 1982) is applied for
clustering.

Since the datasets used in our experiments are
labeled, we apply standard clustering metrics to
evaluate the results. These metrics include nor-
malized mutual information (NMI) and clustering
accuracy (Acc) (Rand, 1971; Meild, 2007; Huang
et al., 2014; Gung et al., 2023).

5.5 Hyperparameters setting

Although our proposed method does not require
updating the model parameters, it relies on one
key hyperparameter: the values used to select first-
stage candidates, specifically the values of /4., and
lrandom- We use SGD as an external dataset to
optimize these parameters. This avoids directly
applying our method to the evaluation datasets, en-
suring a fair comparison. We set our folerance 3 to
liop + lrandom = 20 and experiment with different
combinations of l;,, € {2,4,...,20}. We found
that the combination lio, = 14; l;qndom = 6 gives
the best performance, though overall results show
little difference across combinations; see more de-

3we call tolerance because increasing it adds more compu-
tation in the second stage.
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tail in the Appendix B. We fix the setting (14,6)
throughout our experiments across all different
datasets and models.

5.6 Baselines

We compare our method with the state-of-the-art
approaches, all of which operate under the same
setting. We perform clustering directly on an un-
labeled dataset, which itself serves as the test data
without the need for any additional training dataset.
Among these, SCCL and ClusterLLM involve
fine-tuning of their embedding models.

KeyphraseCluster (Viswanathan et al., 2024)
uses GPT (gpt-3.5-turbo) to generate key phrases
for each utterance, which are then concatenated
for clustering. They use Instructor-large as their
backbone of the embedder (Su et al., 2023).

ClusterLLM (Zhang et al., 2023b) uses GPT
(gpt-3.5-turbo) to construct hard triplets from the
test dataset and fine-tune a small embedder. They
use Instructor-large (Su et al., 2023) and E5-large
embedders (Wang et al., 2022). We also report their
reproduced results for SCCL (Zhang et al., 2021a),
a classic approach in text clustering.

Echo and Summarizer embeddings (Springer
et al., 2025; Lei et al., 2024) do not rely on con-
trastive learning for optimization. Instead, they use
their own prompts to derive the desired embedding
from decoder-only LL.Ms.

6 Results

6.1 Main results

Tabel 5 compares our proposed method, SPILL,
with all baselines with different encoder and de-
coder embedders. For encoder embedders, we
found that SPILL generally performs best with
Gemma, followed by Qwen, and then LLama.

Additionally, SPILL in almost all settings per-
forms better than directly using the embeddings.
In particular, our proposed method achieves re-
sults comparable to ClusterLLM (Zhang et al.,
2023b), which performs fine-tuning on the embed-
ders. For decoder embedders, our method shows
better performance than Echo and Summarizer on
most datasets, and even better than encoder embed-
ders on some datasets. This suggests that decoder
embedders without contrastive loss optimization
can outperform encoder embedders and show self-
improvement with SPILL.

6.2 Ablation and analysis

Effectiveness of the first and second stage. We
analyze how the first and second stages improve
clustering performance. Based on the results shown
in Table 6, we find that the first selection stage
generally improves performance compared to the
plain setting, and the second selection stage often
provides further performance gains compared to
the first stage.

Analysis of Performance Variations. Although
Table 5 shows that our proposed method mostly
improves performance than directly using an em-
bedder, we analyze why some results still show
lower performance. We found a higher correct
selection ratio is associated with better clustering
performance (see details in the Appendix C). We
hypothesize that reduced performance occurs be-
cause some pooled utterances come from different
clusters than the seed utterance.

To verify our hypothesis, Table 7 shows a hypo-
thetical result with 100% correct selection rate. In
this scenario, we assume that the correct candidates
in the first stage are already known, without rely-
ing on an LLM for validation. Under this assump-
tion, the results show consistent improvements over
directly using the embedder, which supports our
hypothesis, and aligns with the simulation result.

6.3 Qualitative analysis

We apply t-SNE (Van der Maaten and Hinton,
2008) to reduce the embedding dimensions for 2D
visualization. The embeddings are obtained from
Gemma with Echo prompt. We compare the re-
sults between Echo and SPILL. From Figure 1, it
is clear that our method separates the clusters bet-
ter. However, we also observe that for the Mtop
dataset, both approaches struggle with clustering it
well. As an additional analysis, we randomly select
examples from the first and second stage selections
using Gemma-Echo on the Bank77 dataset. In the
first stage, we observe that utterances with different
intents tend to appear as they become farther from
the seed. Second, the LLM can identify utterances
with the same intent as the seed. Finally, we find
that the LLM is able to select more distant same-
cluster utterances from the seed, thereby introduc-
ing greater variety. The examples are provided in
the Appendix D.
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Bank 77 Clinc150 Mtop Massive
NMI Acc NMI Acc NMI Acc NMI Acc

Fine-tuned embeddings

SCCLgs 77.34 (0.62) 63.60 (137 | 91.890.49) 77.96(1.78) | 70.42(0.34) 33.82 (1.07 | 71.57 (0.89) 54.48((1.80)

SCCLinstructor 81.77 136) 65.48 (1.36) | 92.940.44) 80.85(0.74) | 73.52(0.38) 34.28 ((0.58) | 73.90 (0.36) 54.10((1.05)

ClusterLLMgs (GPT) 84.16 036) 70.13 (1.34)|92.92 (029) 80.48 (0.93) | 74.46 0.11) 37.22 1.18) | 74.39 021y 56.08 (1.01)

ClusterLLMpstructor (GPT) 85.15 0.41) 71.20 (1.59) | 94.00 0.21y 83.80 (0.41) | 73.83 0.79) 35.04 (0.97) | 77.64 021y 60.69 (0.96)
ES-large

Plain 77.19 034) 59.60 (1.42) | 91.27 0.38) 75.92 (0.91) | 70.87 0.23) 34.21 (057) | 71.38 (0.55) 53.85 (1.28)
SPILL (Gemma) 83.56 (0.47) 70.25 (1.56) | 92.93 (0.08) 83.18 0.78) | 71.77 (0350 36.83 (1.10) | 75.40 0.51) 60.28 (1.81)
SPILL (LLama) 80.94 (029) 66.84 (0.97)|91.41 0.07) 80.09 1.31)|70.52 0.51) 35.04 (1.06) | 72.74 0.44) 58.06 (1.52)
SPILL (Qwen) 83.64 0260 70.31 (0.75) | 92.67 0.31) 82.58 (0.87)|71.20 (036) 36.48 (0.73) | 74.46 ©0.577 59.38 (1.20)
Instructor-large

Plain 82.38 0.59) 65.70 (1.78) | 93.25 032) 81.12 227 | 71.69 (0.60) 34.06 2.51) | 74.56 (037) 56.62 (1.75)
KeyphraseClust. (GPT) 82.4 00 653 00 ]926 00 794 ©0 - - - -
SPILL (Gemma) 85.01 0299 71.05 0.83) | 93.77 035 85.14 (1.04)| 72.65 0320 37.11 (1.62) | 77.62 0.46) 62.42 (2.06)
SPILL (LLama) 83.37 022) 69.55 (0.60)|92.96 (0.18) 84.31 (0.72) | 71.41 031) 35.18 (1.12) | 75.28 (0.83) 58.79 (2.75)
SPILL (Qwen) 85.12 (0300 71.48 0.27)93.63 0.32) 84.43 (1.38)| 72.18 (0.43) 36.33 (0.70) | 76.84 (0.58) 61.37 (1.83)
Qwen

Echo 63.80 0.66) 40.28 (1.62) | 85.19 (0350 65.80 (0.97) | 64.57 (035) 28.49 (0.68) | 62.19 (0.64) 42.57 (1.63)
SPILL (Qwen) 73.66 0.66) 53.44 (1.57)|90.62 0.22) 75.73 0.99) | 68.15 0279 31.45 0.74) | 69.06 0.34) 49.09 (1.68)
Summarizer 64.80 0.35) 42.92 (1.41)| 91.55 0.18) 77.54 0.94) | 76.33 (0.48) 39.08 (0.90) | 76.43 (0.89) 61.91 2.35)
SPILL (Qwen) 70.98 0.22) 49.94 (0.67) | 94.10 0.19) 85.02 (1.04) | 77.41 (0.24) 42.45 (1.42) | 78.12(0.40) 65.33 (127
Llama

Echo 68.40 0.46) 46.20 (0.46) | 87.03 0.47) 70.60 (0.79) | 68.19 (0.48) 31.49 (1.24) | 61.62 0.76) 42.24 (1.45)
SPILL (Llama) 73.44 035 53.50 0.60) | 90.49 0.29) 78.89 (0.47) | 70.53 0.27) 33.55 (1.19) | 67.42 (0.64) 47.57 (1.82)
Summarizer 67.47 021y 43.99 (1.19) [ 92.49 0.31) 81.26 (127)|76.51 0.19) 40.10 (0.86) | 74.67 0.66) 59.23 (1.62)
SPILL (Llama) 70.31 (020) 48.62 0.99) | 93.59 0.17) 86.12 (0.96) | 76.26 (0.48) 40.59 (1.25) | 76.20 (0.47) 63.19 (1.77)
Gemma

Echo 71.20 045 50.32 (1.88)|90.13 0.24) 73.36 0.65) | 71.24 0.18) 32.82 (0.80) | 70.51 0.93) 50.13 (0.89)
SPILL (Gemma) 79.37 051y 60.25 (1.94) | 93.77 0.09) 82.97 (1.32) | 74.74 034y 38.70 (1.38) | 76.24 (0.40) 58.75 (0.73)
Summarizer 69.74 0.28) 47.16 (1.14)| 94.10 0.24) 83.67 (0.74) | 78.90 (0.32) 45.14 (1.87) | 77.83 (0.58) 63.48 2.22)
SPILL (Gemma) 75.38 022) 55.12 0.65) | 95.49 0.08) 88.25 0.70) | 79.01 0.48) 43.77 .04 | 79.11 (0577 64.33 2.54)

Table 5: Results for the four benchmarks. Scores are averages over 5 runs, with standard deviations shown in
parentheses. Model names in bold denote the embedding model, with names in parentheses indicating the LLM used.
Plain refers to directly using the embedding for clustering. Boldface numbers highlight the highest values globally,
while underlined values indicate the best within each embedder. Results for ClusterLLM, and KeyphraseClust are
taken directly from previous papers.

X, A Azt &

(a) Bank77 (b) Clinc150

S

(c) Mtop (d) Massive
Figure 1: T-SNE plots for the four datasets (20 clusters for each). Left: Echo (Gemma). Right: SPILL
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Bank 77 Clinc150 Mtop Massive
NMI Acc NMI Acc NMI Acc NMI

ES-large

Plain 77.19 034 59.60 (1.42) | 91.27 (038) 75.92 091y | 70.87 023y 34.21 057 | 71.38 (0.55) 53.85 (1.28)
w\1st stage 79.79 ©024) 66.16 0.80) | 91.49 ©031) 81.59 069 | 70.62 (0.53) 33.37 ©0.93) | 71.32 0269 55.70 (1.13)
w\2nd stage (Gemma) 83.56 ©047) 70.25 (.56 | 92.93 0.08) 83.18 0.78) | 71.77 035 36.83 (1.10) | 75.40 051 60.28 (1.81)
w\2nd stage (Llama)  80.94 0.29) 66.84 0.97) | 91.41 .07y 80.09 (1.31) | 70.52 051y 35.04 (1.06) | 72.74 0.44) 58.06 (1.52)
w\2nd stage (Qwen)  83.64 ©026) 70.31 075 | 92.67 (0.31) 82.58 0.87) | 71.20 036) 36.48 (0.73) | 74.46 0579 59.38 (1.20)

Gemma

Echo 71.20 045y 50.32 1.88) | 90.13 0.24) 73.36 (065 | 71.24 0.18) 32.82 0.80) | 70.51 0.93) 50.13 (0.89)
w\Ist stage 72.09 0399 51.55 0.94) | 90.75 0.17) 79.46 (0.41) | 71.70 0.42) 34.17 1.13) | 70.45 0.33) 49.17 (0.54)
w\2nd stage 79.37 .51y 60.25 (1.94) | 93.77 0.09) 82.97 (1.32) | 74.74 034y 38.70 (1.38) | 76.24 0.40) 58.75 (0.73)

Summarizer 69.74 028) 47.16 (1.14) | 94.10 (0.24) 83.67 (0.74) | 78.90 (0320 45.14 .87 | 77.83 (0.58) 63.48 (2.22)
w\1st stage 70.98 0.36) 49.84 (0.65) | 94.28 (0.08) 86.64 (0.41) | 77.89 (0.55) 41.65 (1.31) | 77.82 025) 63.38 (1.14)
w\2nd stage 75.38 0.22) 55.12 (0.65) | 95.49 0.08) 88.25 (0.70) | 79.01 0.48) 43.77 .04 | 79.11 0577 64.33 2.54)

Table 6: Ablation study for the first and selection stage. Results are average over 5 runs. The results of other

embedders are in the Appendix C.

Bank 77 Clinc150 Mtop Massive
NMI Acc NMI Acc NMI Acc NMI Acc
ES-large
Plain 77.19 034 59.60 (1.42)|91.27 0.38) 75.92 (0.91)| 70.87 (0.23) 34.21 (0.57)|71.38 (0.55) 53.85 (1.28)
Ground truth 91.74 0.15) 83.40 0.97)|98.17 0.17) 94.28 (1.11)| 81.87 (0.50) 45.44 (1.65)|87.08 (0.39) 73.16 (1.87)
Gemma
Echo 71.20 045 50.32 (1.88)|90.13 (0.24) 73.36 (0.65)| 71.24 (0.18) 32.82 (0.80)|70.51 (0.93) 50.13 (0.89)

Ground truth 86.47 0.46) 71.49 (0.88)

Sum

69.74 0.28) 47.16 (1.14)

Ground truth 81.05 0.33) 62.23 (1.59)

97.76 (0.19) 92.21 (0.85)

94.10 (0.24) 83.67 (0.74)
97.68 (0.09) 92.67 (0.46)

82.06 (0.62) 45.74 (1.85)

78.90 0.32) 45.14 (1.87)
83.65 0.44) 49.84 (1.17)

86.37 (0.54) 69.00 (1.76)

77.83 (0.58) 63.48 2.22)
85.94 0.40) 73.34 (1.14)

Table 7: Average results of ground truth pooling (%) over 5 runs. Ground truth pools each seed utterance with
same-cluster utterances from 20 candidates in stage one. Results for other embedders are in the Appendix C.

7 Conclusions

We proposed Selection and Pooling with Large Lan-
guage Models (SPILL), an intuitive and domain-
adaptive method for intent clustering without fine-
tuning. SPILL is applicable to any embedder and
does not require fine-tuning. We found that: (1)
our proposed method enables viewing a clustering
task as a small-scale selection problem, providing a
novel perspective on the clustering process; (2) our
method demonstrates general improvements regard-
less of the embedding model used, highlighting its
versatility; (3) our method can achieve comparable
results to other SOTA research studies without fine-
tuning and by using smaller models; (4) it proves
to be effective in data-limited domains, showing
its adaptability in challenging scenarios. For future
work, we see potential for improved prompting, the
addition of few-shot settings, and generalisation to
other languages.
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Limitations

Language. Like most of the prior work, we only
focus on English utterance datasets. This is rel-
evant because most of benchmark datasets are in
English.

Prompt design Our research uses only one prompt
in the second stage across different models and
datasets. Our main goal is to avoid overdoing
prompt engineering and to make our approach gen-
eralizable. The prompt simply explains the task
and ensures the desired answer format for easy ex-
traction. However, this also implies there still be
room for improvement in our results because we
did not specifically design a unique prompt for each
LLM or dataset.

Few-shot settings. Our research focuses solely
on the scenario of an unlabeled dataset. However,
in the second stage of selection. However, in our
second stage selection, we use LLMs for selection.
If LLMs are provided with some examples with
known intents, they could potentially identify the
relevance between seed and candidate utterances
more effectively. This exploration will be left for
future work.
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Appendix
A Simulation with varied dimensionality

Figure 2 shows TopK pooling performs even better
in higher dimension than Rd when the cluster is
skewed. For a normal distribution, Rd consistently
outperforms TopK.

B Hyperparameter selection process

We use Instructor as our first-stage embedding
model to align with previous research, such as
Zhang et al. (2023b) and Viswanathan et al. (2024),
who proposed methods built on this embedder. For
the second stage, while both studies use GPT, we
instead use the smaller and open-source model
Llama for the reproducibility and accessibility.

Although a higher tolerance gives us a better
chance to cover more utterances from the same
cluster, this also increases the computation required
for the second stage. We set L = 20.

We experiment with different combinations of
liop € {2,4,6,8,10, 12,14, 16, 18,20} utterances.
Figure 3 shows that the (l1op, lrandom) = (14, 6)
overall gives the best performance.

C Ablation analysis for all encoder and
decoder embedders

Here, we provide the complete results of the abla-
tion study. Details of the performance contributions
in both the first and selection stages can be found in
Table 8. The average correct ratio and the number
of selected items are presented in Table 9, while the
details of the ground truth analysis can be found in
Table 10.

D Some examples of Selection

We randomly select three examples extracted
from the first selection using Gemma-Echo and
our method Gemma-SPILL from the Bank77
dataset. In the first stage, the selection is ordered
by the distance from the seed (starting at 15,
derived through chunk sampling). First, we
observe that in the initial stage, utterances with
different intents appear in the later part of the
selection. Second, it can be seen that the LLM
effectively selects utterances with the same intent
as the seed. Additionally, the LLM is capable of
correctly selecting utterances from the later part
of the list, introducing more variety to the pool
while maintaining consistency with the seed. For
instance, in Example 1, the furthest utterance is

selected by the LLM without any mistakes in
selecting incorrect utterances.

Example 1:
Seed utterance: I would appreciate it if I could get
an item refunded (intent: request refund)

Gemma-Echo-1stStage
1. Would I be able to get a refund for something I
bought? (request refund)
2. I don’t want the item, I bought it on accident,
can I get a refund? (request refund)
3. I would like a refund for something I bought
(request refund)
4. I want to get an item refunded (request refund)
5. I bought something but now I would like a
refund. How do I do that? (request refund)
6. I am not Happy with this product can i get a
refund? (request refund)
7. Can I have an item refunded? (request refund)
8. I bought this item and was charged the wrong
amount can I get a refund? (request refund)
9. I am unhappy with my purchase, how do I cancel
the order? (request refund)
10. I would like to cancel a payment. I purchased
something several days ago and i still have not
received it. (request refund)
11. I would like to know why I was charged twice
for my purchase. (transaction charged twice)
12. I would like to know why my payment is still
pending, can you help? (pending transfer)
13. Hello! I recently made a purchase and I'm
needing to cancel my order and process a refund as
soon as possible. (request refund)
14. I would like a refund on one of your products
that has been sold to me (request refund)
15. Can I receive a refund for my item? (request
refund)
16. Can I have a refund? (request refund)
17. I want to reverse a purchase. Can I cancel it?
(request refund)
18. I need a refund on an item I have not received.
Am I able to simply cancel the payment? I don’t
know how to do this. (request refund)
19. I requested a refund, and never received it.
What can I do? (Refund not showing up)
20. Hi there! I need to cancel an order I recently
made and start processing a refund. Can you
please help me with this and set up the refund as
soon as possible? It’s very urgent. (request refund)
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k = 10. We only present variance from one of the three clusters (they all have the same trend) for readability. The
simulation process is the same as Table 1, and only varies in dimension.
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Figure 3: The average clustering accuracy (Acc) and
NMI for different values of I, over 5 runs. The dashed
line refers to the result obtained by directly using the
embedder.

Gemma-Echo-2ndStage
1. Can I have a refund? (request refund)
2. Can I receive a refund for my item? (request
refund)
3. Would I be able to get a refund for something I
bought? (request refund)
4. I would like a refund on one of your products
that has been sold to me (request refund)
5. I am not Happy with this product can i get a
refund? (request refund)
6. I need a refund on an item I have not received.
Am I able to simply cancel the payment? I don’t
know how to do this. (request refund)
7. I want to get an item refunded (request refund)

8. I would like a refund for something I bought
(request refund)

9. Hi there! I need to cancel an order I recently
made and start processing a refund. Can you please
help me with this and set up the refund as soon as
possible? It’s very urgent. (request refund)

10. I bought this item and was charged the wrong
amount can I get a refund? (request refund)

11. I don’t want the item, I bought it on accident,
can I get a refund? (request refund)

12. Can I have an item refunded? (request refund)
13. I bought something but now I would like a
refund. How do I do that? (request refund)

Example 2:

Seed utterance: When getting my ID checked,
what are the steps involved? (intent: verify my
identity)

Gemma-Echo-1stStage
1. What kind of documents do I need for the iden-
tity check? (verify my identity)
2. What will I need for identity verification? (verify
my identity)
3. Are there any documents needed for the identity
check? (verify my identity)
4. What’s the process for ID verification? (verify
my identity)
5. Is there any documentation needed for the iden-
tity check? (verify my identity)

15735



Bank 77 Clinc150 Mtop Massive
NMI Acc NMI Acc NMI Acc NMI Acc

E5-large

Plain 77.19 (0.34)  59.60 (1.42) | 91.27 (0.38) 75.92 (0.91) | 70.87 (0.23) 34.21 (0.57) | 71.38 (0.55) 53.85 (1.28)
w\lst stage 79.79 (0.24) 66.16 (0.80) | 91.49 (0.31) 81.59 (0.69) | 70.62 (0.53) 33.37 (0.93) | 71.32 (0.26) 55.70 (1.13)
w\2nd stage (Gemma) 83.56 (0.47) 70.25 (1.56) | 92.93 (0.08) 83.18 (0.78) | 71.77 (0.35) 36.83 (1.10) | 75.40 (0.51) 60.28 (1.81)
w\2nd stage (Llama)  80.94 (0.29) 66.84 (0.97) | 91.41 (0.07) 80.09 (1.31) | 70.52 (0.51) 35.04 (1.06) | 72.74 (0.44) 58.06 (1.52)
w\2nd stage (Qwen)  83.64 (0.26) 70.31 (0.75) | 92.67 (0.31) 82.58 (0.87) | 71.20 (0.36) 36.48 (0.73) | 74.46 (0.57) 59.38 (1.20)

Instructor-large

Plain 82.38 (0.59) 65.70 (1.78) | 93.25 (0.32) 81.12(2.27) | 71.69 (0.60) 34.06 (2.51) | 74.56 (0.37) 56.62 (1.75)
w\lst stage 82.83 (0.45) 68.69 (1.80) | 93.48 (0.17) 86.18 (0.72) | 71.65 (0.34) 32.63 (1.27) | 75.29 (0.59) 59.35 (3.06)
w\2nd stage (Gemma) 85.01 (0.29) 71.05 (0.83) | 93.77 (0.35) 85.14 (1.04) | 72.65 (0.32) 37.11 (1.62) | 77.62 (0.46) 62.42 (2.06)
w\2nd stage (Llama)  83.37 (0.22) 69.55 (0.60) | 92.96 (0.18) 84.31(0.72) | 71.41 (0.31) 35.18 (1.12) | 75.28 (0.83) 58.79 (2.75)
w\2nd stage (Qwen)  85.12 (0.30) 71.48 (0.27) | 93.63 (0.32) 84.43 (1.38) | 72.18 (0.43) 36.33 (0.70) | 76.84 (0.58) 61.37 (1.83)

Qewn

Echo 63.80 (0.66) 40.28 (1.62) | 85.19 (0.35) 65.80 (0.97) | 64.57 (0.35) 28.49 (0.68) | 62.19 (0.64) 42.57 (1.63)
w\lst stage 65.10 (0.50) 42.84 (0.85) | 87.06 (0.25) 70.95 (1.05) | 65.79 (0.13) 29.43 (0.26) | 63.88 (0.58) 43.69 (1.73)
w\2nd stage 73.66 (0.66) 53.44 (1.57) | 90.62 (0.22) 75.73 (0.99) | 68.15 (0.27) 31.45 (0.74) | 69.06 (0.34) 49.09 (1.68)

Summarizer 64.80 (0.35) 42.92 (1.41) | 91.55 (0.18) 77.54 (0.94) | 76.33 (0.48) 39.08 (0.90) | 76.43 (0.89) 61.91 (2.35)
w\lst stage 65.21 (0.39) 43.95(0.47) | 92.35 (0.15) 83.69 (0.56) | 76.13 (0.25) 39.21 (1.11) | 76.66 (0.49) 63.67 (2.03)
w\2nd stage 70.98 (0.22) 49.94 (0.67) | 94.10 (0.19) 85.02 (1.04) | 77.41 (0.24) 42.45(1.42) | 78.12 (0.40) 65.33 (1.27)

Llama

Echo 68.40 (0.46) 46.20 (0.46) | 87.03 (0.47) 70.60 (0.79) | 68.19 (0.48) 31.49 (1.24) | 61.62 (0.76) 42.24 (1.45)
w\lst stage 70.25 (0.56) 48.88 (1.03) | 87.57 (0.14) 74.09 (0.48) | 68.91 (0.42) 32.07 (0.49) | 63.19 (0.40) 42.97 (0.92)
w\2nd stage 73.44 (0.35) 53.50 (0.60) | 90.49 (0.29) 78.89 (0.47) | 70.53 (0.27) 33.55 (1.19) | 67.42 (0.64) 47.57 (1.82)

Summarizer 67.47 (0.21) 43.99 (1.19) | 92.49 (0.31) 81.26 (1.27) | 76.51 (0.19) 40.10 (0.86) | 74.67 (0.66) 59.23 (1.62)
w\lst stage 68.54 (0.34) 46.11 (0.77) | 93.15 (0.11) 85.55 (0.23) | 75.87 (0.32) 39.41 (1.34) | 75.81 (0.33) 63.30 (1.82)
w\2nd stage 70.31 (0.20) 48.62 (0.99) | 93.59 (0.17) 86.12 (0.96) | 76.26 (0.48) 40.59 (1.25) | 76.20 (0.47) 63.19 (1.77)

Gemma

Echo 71.20 (0.45) 50.32 (1.88) | 90.13 (0.24) 73.36 (0.65) | 71.24 (0.18) 32.82 (0.80) | 70.51 (0.93) 50.13 (0.89)
w\lst stage 72.09 (0.39) 51.55(0.94) | 90.75 (0.17) 79.46 (0.41) | 71.70 (0.42) 34.17 (1.13) | 70.45 (0.33) 49.17 (0.54)
w\2nd stage 79.37 (0.51) 60.25 (1.94) | 93.77 (0.09) 82.97 (1.32) | 74.74 (0.34) 38.70 (1.38) | 76.24 (0.40) 58.75 (0.73)

Summarizer 69.74 (0.28) 47.16 (1.14) | 94.10 (0.24) 83.67 (0.74) | 78.90 (0.32) 45.14 (1.87) | 77.83 (0.58) 63.48 (2.22)
w\lst stage 70.98 (0.36) 49.84 (0.65) | 94.28 (0.08) 86.64 (0.41) | 77.89 (0.55) 41.65 (1.31) | 77.82 (0.25) 63.38 (1.14)
w\2nd stage 75.38 (0.22) 55.12(0.65) | 95.49 (0.08) 88.25 (0.70) | 79.01 (0.48) 43.77 (1.04) | 79.11 (0.57) 64.33 (2.54)

Table 8: Contribution of the first and selection stage (%). Results averaged over 5 runs.

6. What are the steps I need to take to verify my
identity? (verify my identity)

7. Do I need any kind of documentation for the
identity check? (verify my identity)

8. What do I do for the identity check? (verify my
identity)

9. What is needed to prove my identity? (verify my
identity)

10. Let me know the steps for the identity checks
(verify my identity)

11. What is the need to verify my identity? (why
verify identity)

12. What are the steps to verify my identity? (verify
my identity)

13. What all am I required to show for the identity
check? (verify my identity)

14. What things do I need to verify my identity?
(verify my identity)

15. Is there a specific type you need for identity
verification? (verify my identity)

16. What do I need to do to verify the source of my
funds? (verify source of funds)

17. What’s with not verifying my 1d? (unable to
verify identity)

18. I need the source of my funds verified. How do
I do this? (verify source of funds)

19. What do i need to verify my id? (unable to

verify identity)
20. What other methods are there to verify my
identity? (why verify identity)

Gemma-Echo-2ndStage

1. What are the steps I need to take to verify my
identity? (verify my identity)

2. What'’s the process for ID verification? (verify
my identity)

3. Let me know the steps for the identity checks
(verify my identity)

4. What are the steps to verify my identity? (verify
my identity)
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Bank 77 Clinc150 Mtop Massive
Ratio(%) # Selection |Ratio(%) # Selection | Ratio(%) # Selection | Ratio(%) +# Selection
E5-large
Plain w\Ist stage 62.01 20.00 71.90 20.00 71.56 20.00 59.12 20.00
w\2nd stage (Gemma)  80.30 10.54 93.05 8.05 84.26 591 80.88 6.12
w\2nd stage (Llama) 71.14 12.13 86.52 9.50 80.12 7.09 73.42 7.38
w\2nd stage (Qwen) 80.52 8.61 90.80 7.14 82.45 4.72 78.65 5.17
Instructor-large
w\Ist stage 67.84 20.00 78.17 20.00 75.41 20.00 65.38 20.00
w\2nd stage (Gemma)  80.66 11.28 93.43 8.15 85.46 5.94 81.85 6.27
w\2nd stage (Llama) 73.48 13.12 88.79 9.89 81.98 7.26 76.34 7.73
w\2nd stage (Qwen) 81.12 9.41 92.06 7.31 84.50 4.82 79.70 5.38
Qwen
Echo
w\lst stage 44.11 20.00 65.69 20.00 70.18 20.00 56.66 20.00
w\2st stage 72.99 6.94 90.22 6.24 83.29 3.84 78.96 4.25
Summarizer
w\lst stage 43.44 20.00 78.49 20.00 83.28 20.00 71.47 20.00
w\2st stage 69.95 7.30 93.03 6.72 89.15 4.17 82.78 4.94
Llama
Echo
w\lst stage 48.89 20.00 66.84 20.00 73.51 20.00 55.20 20.00
w\2nd stage 61.90 10.54 85.84 8.41 82.83 6.23 71.70 6.32
Summarizer
w\lst stage 47.85 20.00 81.76 20.00 83.46 20.00 71.66 20.00
w\2nd stage 57.70 11.54 89.90 9.58 87.09 6.97 79.37 7.42
Gemma
Echo
w\lst stage 50.85 20.00 71.15 20.00 77.01 20.00 61.25 20.00
w\2nd stage 75.12 9.60 93.92 7.54 88.46 4.94 82.02 5.45
Summarizer
w\lst stage 52.11 20.00 84.68 20.00 85.34 20.00 74.49 20.00
w\2nd stage 73.00 10.10 95.32 8.01 90.19 543 84.60 6.13

Table 9: Average correct selection ratio and average number of utterances selected over 5 runs. Note: the number
for the first stage remains constant as L = 20 is fixed. The ratio is defined as the number of same-cluster utterances
out of the total number of selections.

Bank 77 Clinc150 Mtop Massive
NMI Acc NMI Acc NMI Acc NMI Acc
ES-large
Plain 77.19 (0.34) 59.60 (1.42)|91.27 (0.38) 75.92 (0.91) | 70.87 (0.23) 34.21 (0.57) | 71.38 (0.55) 53.85 (1.28)

Ground truth ~ 91.74 (0.15) 83.40 (0.97)|98.17 (0.17) 94.28 (1.11) | 81.87 (0.50) 45.44 (1.65)|87.08 (0.39) 73.16 (1.87)
Instructor-large

Plain 82.38 (0.59) 65.70 (1.78) | 93.25 (0.32) 81.12 (2.27)|71.69 (0.60) 34.06 (2.51)|74.56 (0.37) 56.62 (1.75)

Ground truth ~ 92.68 (0.32) 84.54 (0.91) | 98.54 (0.10) 95.44 (0.40) | 81.29 (0.27) 43.69 (1.10) | 87.30 (0.35) 72.04 (1.87)
Qwen

Echo 63.80 (0.66) 40.28 (1.62) | 85.19 (0.35) 65.80 (0.97) | 64.57 (0.35) 28.49 (0.68) | 62.19 (0.64) 42.57 (1.63)

Ground truth ~ 81.64 (0.68) 64.21 (1.87)|95.60 (0.15) 87.15 (0.68) | 76.14 (0.42) 38.35 (1.25) | 79.49 (0.46) 60.56 (1.22)

Sum 64.80 (0.35) 42.92 (1.41)|91.55 (0.18) 77.54 (0.94) | 76.33 (0.48) 39.08 (0.90) | 76.43 (0.89) 61.91 (2.35)

Ground truth ~ 77.05 (0.56) 57.58 (0.79) | 97.33 (0.17) 91.91 (0.71) | 83.19 (0.40) 49.35 (1.15) | 86.99 (0.33) 74.72 (0.90)
Llama

Echo 68.40 (0.46) 46.20 (0.46) | 87.03 (0.47) 70.60 (0.79) | 68.19 (0.48) 31.49 (1.24) | 61.62 (0.76) 42.24 (1.45)

Ground truth  85.44 (0.39) 68.84 (0.82)|95.74 (0.11) 88.45 (0.75) | 79.27 (0.28) 40.69 (0.79) | 78.74 (0.79) 59.48 (2.75)

Sum 67.47 (0.21) 43.99 (1.19) | 92.49 (0.31) 81.26 (1.27) | 76.51 (0.19) 40.10 (0.86) | 74.67 (0.66) 59.23 (1.62)

Ground truth ~ 80.08 (0.30) 59.68 (0.74) | 97.56 (0.08) 93.41 (0.62) | 82.77 (0.29) 48.53 (0.79) | 85.66 (0.64) 72.53 (2.05)
Gemma

Echo 71.20 (0.45) 50.32 (1.88) | 90.13 (0.24) 73.36 (0.65) | 71.24 (0.18) 32.82 (0.80) | 70.51 (0.93) 50.13 (0.89)

Ground truth ~ 86.47 (0.46) 71.49 (0.88) | 97.76 (0.19) 92.21 (0.85) | 82.06 (0.62) 45.74 (1.85) | 86.37 (0.54) 69.00 (1.76)

Sum 69.74 (0.28) 47.16 (1.14) | 94.10 (0.24) 83.67 (0.74) | 78.90 (0.32) 45.14 (1.87)|77.83 (0.58) 63.48 (2.22)
Ground truth ~ 81.05 (0.33) 62.23 (1.59)| 97.68 (0.09) 92.67 (0.46) | 83.65 (0.44) 49.84 (1.17) | 85.94 (0.40) 73.34 (1.14)

Table 10: Average results of ground truth pooling (%) over 5 runs. Ground truth refers to each seed utterance being
pooled with other same-cluster (i.e., always selected correctly from a pool of 20 candidates) utterances from the
first-stage collection.
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