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Abstract

Tool learning enhances Large Language Mod-
els’ (LLMs) dynamic interaction with external
tools, improving their ability to solve complex
problems. However, current empirical methods,
which primarily focus on isolated tools learn-
ing, still struggle with accurate multi-tool selec-
tion due to issues like confusing similar tools
and neglecting dependencies. To address these
challenges, we propose the Tool Experience
Network (ToolExpNet), which integrates tools
and trial-and-error experiences into a network
characterized by semantic similarity and de-
pendency relationships. ToolExpNet iteratively
conducts simulated experiments using adaptive
sampling to explore subtle differences and con-
nections between tools, and summarizes these
experiences to provide insightful guidance for
LLM tool selection. Our experiments demon-
strate that learning the relationships between
tools helps achieve more comprehensive tool
learning. Evaluations on multiple real-world
API datasets show that ToolExpNet effectively
addresses common challenges in multi-tool se-
lection, significantly outperforming existing
baselines across different foundation LLMs.

1 Introduction

Tool learning (Qin et al., 2024a; Qu et al., 2025b)
empowers Large Language Models to dynami-
cally interact with external tools, enhancing their
problem-solving capabilities for complex tasks
(Nakano et al., 2021; Xu et al., 2023; Schick et al.,
2023; Zhao et al., 2024b). This paradigm signifi-
cantly boosts performance in knowledge acquisi-
tion (Gu et al., 2024; Schick et al., 2023), exper-
tise enhancement (Kadlcík et al., 2023; He-Yueya
et al., 2023; Bran et al., 2024), automation effi-
ciency (Schick et al., 2023; Yao et al., 2022a), and
interaction capabilities (Yang et al., 2023b; Wang
et al., 2024b). To invoke external tools, LLMs
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Visual Question Answering is 
the task of answering questions 
based on an image.

DQA (also known as Document 
VQA) is the task of answering 
questions on document images.

Please help me to find the final account balance 
from this bank statement.

Visual Question Answering Doc Question Answering

Too similar to distinguish... Visual Question Answering 
might be the appropriate tool.

I just finished watching Titanic and I want some 
other movie recommendations.

Fail: VQA lacks the understanding of document structure and layout, 
while DQA excels in comprehending document structure. 

Step1: Retrieve detailed information about the movie 
Titanic. Action: GET /movie/{movie_id}

Fail: Before using GET /movie/{movie_id}, it is necessary to use 
GET /search/movie to retrieve the movie_id for Titanic.

(a)

(b)

Figure 1: Two common failure modes in real-world
tool invocation scenarios with existing methods: The
top illustration shows an incorrect tool selection due to
semantic similarity, while the bottom illustration demon-
strates a planning error due to overlooking functional
dependency.

typically conduct task planning and tool selection,
generating final answers based on tool execution
results (Song et al., 2023; Shen et al., 2023).

While tuning-based methods effectively enable
LLMs to use external tools (Lu et al., 2023; Liang
et al., 2023; Qiao et al., 2024), tuning-free methods
are irreplaceable due to their ability to learn new
tools without parameter changes and their applica-
bility to closed-source models (Liu et al., 2024c;
Zhang et al., 2024; Liu et al., 2024b). These meth-
ods primarily rely on feeding tool documentation
or memory into the LLM’s context to select the cor-
rect tool sequence, highlighting the importance of
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comprehensive and accurate tool descriptions. Re-
cent studies have improved tool understanding by
rewriting documentation (Yuan et al., 2024; Chen
et al., 2024) or incorporating trial-and-error experi-
ences into the model’s context (Zhao et al., 2024a;
Wang et al., 2024a; Qu et al., 2025a). However,
multi-tool selection accuracy remains a challenge
in real-world complex tasks.

We observe that, with enhanced foundation
model capabilities, the proportions of previously
identified error types (Song et al., 2023; Shi et al.,
2024a), such as API hallucination and format non-
compliance, have decreased. However, LLMs still
face two key challenges in selecting external tools:
confusing similar tools due to ambiguous documen-
tation and overlooking tool dependencies. Figure 1
illustrates examples of these challenges. Previous
work on LLM tool understanding has typically fo-
cused on isolated tools (Wang et al., 2024a; Qu
et al., 2025a), neglecting potential inter-tool asso-
ciations in real scenarios. This limits the LLMs’
accurate and comprehensive understanding of tools,
resulting in suboptimal performance in addressing
these challenges.

Inspired by human cognitive learning theories
(Smelser et al., 2001; Barsalou, 2014), humans inte-
grate new knowledge by associating it with existing
knowledge systems, forming structured cognitive
schemas. This associative mechanism is particu-
larly helpful in learning similar concepts, where
comparative analysis enables learners to grasp sub-
tle differences more accurately. Following this prin-
ciple, we suggest that LLMs’ tool learning strategy
should not be limited to the functional attributes of
individual tools but should focus on establishing a
network of relationships between tools.

Based on this concept, we propose the Tool Ex-
perience Network (ToolExpNet), which organizes
the available toolset and trial-and-error experiences
into a network to enhance comprehensive tool learn-
ing. Specifically, ToolExpNet’s graph structure
includes two types of edges: semantic similar-
ity edges (Es), which connect tools with similar
functional descriptions, and functional dependency
edges (Ed), representing the sequential invocation
dependencies between tools. This structure system-
atically addresses the challenges of distinguishing
between similar tools (via Es) and captures the
opportunities for combining tools (via Ed).

ToolExpNet employs an iterative contrastive-
relation trial and error process and tool insight re-
finement to explore tool interactions. Tool pairs are

sampled based on two types of links with adaptive
weights. It generates simulated queries to highlight
functional differences and dependencies between
tool pairs, answers these queries, and updates the
weights based on error rates. In the subsequent tool
insight refinement stage, the LLM summarizes the
usage experiences of tools guided by these links,
forming comprehensive tool guidance to enhance
the tool selection process.

Our contributions are as follows: (1) We propose
ToolExpNet, a novel tool network based on sim-
ilarity and dependency relationships. It rewrites
tool guidance to emphasize inter-tool associations,
unlike existing methods focused on isolated tools.
This approach highlights the importance of mod-
eling tool relationships during tool learning phase
and provides insights for future methods. (2) We
introduce a holistic tool learning strategy that sim-
ulates confusing and dependency queries to guide
LLMs through trial-and-error learning, forming
tool insights that significantly enhance the accu-
racy of multi-tool invocation. (3) Through exten-
sive experiments on multiple foundation models
and real-world datasets, we demonstrate that Tool-
ExpNet outperforms existing methods and provide
an in-depth analysis of its mechanisms.

2 Tool Experience Network

We propose the Tool Experience Network (ToolEx-
pNet), as shown in Figure 2, which organizes the
available toolset into a network based on similar-
ity and dependency relationships, facilitating more
systematic and comprehensive tool learning.

2.1 Graph Structure

Formally, we model the tool ecosystem as a graph
G = (V,Es ∪ Ed), where nodes represent indi-
vidual tools and edges capture complex inter-tool
relationships. Each tool node vi ∈ V is defined as a
tuple (ei, φi), where ei includes API metadata and
φi represents functional insights distilled through
LLM-based experience summarization. These in-
sights can serve as empirical knowledge for LLMs
during the tool selection phase. The edges explic-
itly characterize two fundamental relationships:

Semantic Similarity Edges (Es): These edges
connect tool pairs (vi, vj) with partial functional
overlap or semantically analogous descriptions,
which may mislead LLMs into conflating their dis-
tinct capabilities during tool selection.

Functional Dependency Edges (Ed): These
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   Instruction：You need to generate a set of 
confusing questions to simulate user queries to 
distinguish between these two similar tools ......
Tool A: { /search/tv }       Tool B: { /tv/latest }
Explorer：(a).Helper me find some popular 
movies related to 'science fiction'. (b). Show me 
the newest TV show and its reviews.

 Sampling links from ToolExpNet
 semantic similarity links dependency links

   Instruction：You need to generate a set of 
user queries to simulate the use of the following 
two tools to explore whether there is any 
dependency between them ......
Tool A: { /search/tv } | ToolB:{ /tv/{tv_id}/similar }
Explorer：Recommend some TV shows similar 
to Friends.  Dep: /search/tv → /tv/{tv_id}/similar

Actor：(a) GET /tv/polular           (b) GET /tv/latest 

/discover/tv
/tv/latest

/movie/popular

/tv/{tv_id}/
recommendations

/tv/{tv_id}/similar

/search/tv

/tv/popular

/tv/top_rated

/discover/tv
/tv/latest

/movie/popular

/tv/{tv_id}/
recommendations

/tv/{tv_id}/similar

/search/tv

/tv/popular

/tv/top_rated

Contrastive-Relation Trial and Error &
Update Tool-Usage Experience

/discover/tv /tv/latest

/tv/{tv_id}/
recommendations

/tv/{tv_id}/similar

/search/tv

/tv/popular

/tv/top_rated

/movie/popular

> You need to update the usage of the tool 
based on existing trial-and-error experiences 
and tool adjacency information.
> Target Tool: /tv/{tv_id}/similar
> Semantic similarity adjacent nodes: 
/tv/{tv_id}/recommendations
> Functional dependency adjacent nodes: 
/tv/top_rated, /search/tv, 
/tv/{tv_id}/recommendations
> Pairwise trial-and-error experiences: ......

Experience Summary Prompt
/tv/{tv_id}/similar f inds TV shows similar to a 
specified one using keywords and genres, ideal for 
discovering new interests ...
In contrast, /tv/{tv_id}/recommendations offers 
personalized suggestions based on viewing history, 
not strict similarity ...
Unlike /tv/top_rated, which lists shows by ratings, this 
tool focuses on similarity ...
The /search/tv tool is often used first to find the 
necessary TV show IDs for /tv/{tv_id}/similar ...
     ......

Tool Usage Insights
Summarize Each Tool's Trial-and-Error 
Experience Considering Adjacent Tools

Update Node's Tool Usage Insights

Simulating Confusing Queries 
for Similar Tool-Pairs

Simulating Queries for Tool-
Dependent Scenarios

①

②

③④

Figure 2: The ToolExpNet framework enhances tool usage insights by leveraging semantic similarity and dependency
links to guide trial-and-error exploration. Contrastive-relation trial and error experiments simulate user queries,
revealing functional differences and dependencies. These experiences update the tool’s experiential network.
Insights from these trials update node usage profiles, highlighting functional differences and interdependencies.
This structured approach optimizes tool usage through comprehensive relational understanding.

edges denote relationships where one tool’s func-
tionality extends or depends on another. This often
occurs when the input parameters of certain APIs
are reliant on the outputs from the execution of
other functions.

This dual-relational structure enables systematic
modeling of both the selection challenges (via Es)
and compositional opportunities (via Ed) inher-
ent in tool-augmented LLM systems. The explicit
graph formulation facilitates structured reasoning
about tool relationships while maintaining compu-
tational tractability.

2.2 ToolExpNet Initialization

Given a toolset Γ, we instantiate each tool as a node
vi ∈ V , initializing its functional insight φi directly
from raw API documentation, even when such doc-
umentation is verbose or incomplete (Yuan et al.,
2024; Qu et al., 2025a). Semantic edges (Es) are
formed between tool pairs whose documentation
embeddings exceed a similarity threshold Φ. De-
pendency edges (Ed) are established between tools
where the output data types of one tool overlap
with the input data types of another tool.

3 Tool Learning Strategy

We suggest that the role of a tool within a toolkit
is determined not only by its intrinsic properties

but also by its toolset-context. Therefore, during
the tool learning phase, we iterate the processes
of contrastive-relation trial-and-error and tool in-
sight refinement. This iterative process, similar
to how humans learn through trial and error and
then summarize their experiences, helps organize
knowledge into structured cognition and memory.
The prompts for this section are provided in Ap-
pendix A.

3.1 Contrastive-Relation Trial and Error

Prior studies (Shinn et al., 2024; Anokhin et al.,
2024; Zhao et al., 2024a) have demonstrated the
effectiveness of LLMs in learning through trial-
and-error experiences. Experience learning serves
as a plug-and-play approach, requiring no explicit
gradient updates, making it compatible with closed-
source LLMs. However, existing work typically fo-
cuses on self-exploration with single tools, lacking
structured preservation of cross-tool usage patterns
and inter-tool relationships.

To address this, we propose a Pairwise Explo-
ration framework to capture LLMs’ cross-tool oper-
ational knowledge. Each self-exploration iteration
generates simulated user queries and golden solu-
tions for targeted tool pairs, enabling systematic
trial-and-error learning.

Explorer (H): During each iteration, the ex-
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plorer samples a subset of edges (maximum
max_try) from Es and Ed with initial sampling
weights w0(eij) = 1. For edge eij in iteration t,
the sampling probability is proportional to wt(eij).
For semantic similarity edges (Es), H generates
contrastive user queries emphasizing functional
distinctions between tools vi and vj . For depen-
dency edges (Ed), it simulates queries requiring
sequential tool invocation while pruning spurious
dependencies. This process outputs query-label
pairs (Q,L) = H(p, vi, vj), where p denotes task-
specific prompts. Here, Q represents the simulated
queries, and L denotes the corresponding labels.

Actor (A): The actor attempts to answer
queries using tools Γ, producing responses A =
A(p,Q,Γ). Execution traces and tool selection
outcomes are logged into edge-specific experience
pools. The error rate 1− ACC(A,L) updates the
sampling weight wt+1(eij), prioritizing challeng-
ing tool pairs in subsequent iterations. The sam-
pling probability is then determined by normal-
izing the weights of all edges of the same type:
P (eij) =

w(eij)∑
e∈E w(e) , where E denotes the set of

all edges of the same type. This formula ensures
that edges with higher error rates have a greater
chance of being sampled in the next iteration, al-
lowing the model to focus on more challenging tool
pairs. Particularly, if A confuses two tools with-
out existing links, a new semantic similarity link is
added. Conversely, if tools linked by Ed show no
actual dependencies during execution, the edge is
removed.

3.2 Tool Insight Refinement
To systematically distill cross-tool operational
knowledge, we propose an experience aggregation
mechanism inspired by graph-structured message
passing. For each tool node vi = (ei, φ

t
i), we

gather its local context from semantic neighbors
Vs = {vj |eij ∈ Es} and dependency neighbors
Vd = {vk|eik ∈ Ed}, along with their interac-
tion histories. This contextualized experience is
processed through LLM-based reflection to update
functional insights φt+1

i .
Formally, the insight refinement process operates

as:

φt+1
i = Reflect

(
p, {φt

j |vj ∈ Vs ∪ Vd}︸ ︷︷ ︸
Neighbor informations

,

{(Q,A,L)|eij ∈ Es ∪ Ed}︸ ︷︷ ︸
Relevant trial experience

)

where p is a Chain-of-Thought prompt guiding
the LLM to: (1) Identify capability boundaries
by contrasting vi with Vs, analyzing failure/success
cases in Es edges to clarify functional distinctions.
(2) Discover compositional patterns by examining
Vd relationships, synthesizing multi-tool workflows
from Ed execution traces.

This graph-aware reflection enables dynamic
evolution of tool understanding without model re-
training. The updated φt+1

i is subsequently used
as additional contextual information to inform the
LLM’s tool selection.

4 Experimental Setup

4.1 Datasets and Evaluation Metrics

Datasets. We conducted experiments on two
widely-used benchmarks: RestBench (Song et al.,
2023) and ToolBench (Qin et al., 2024b), across
three scenarios. RestBench comprises two real-
world scenarios with manually curated high-quality
data. It includes TMDB, featuring 54 movie-related
APIs, and Spotify, with 40 music-related APIs.
ToolBench is a dataset collected from the RapidAPI
and BMTools, containing over 16,000 real APIs
spanning multiple categories. Due to budget con-
straints, we focused on the most challenging subset
of ToolBench, I3-Instruction, which involves com-
plex user requests requiring multiple tools from
different categories.

Evaluation metrics. Following Song et al.
(2023); Yuan et al. (2024); Qu et al. (2025a); Shi
et al. (2024b), we utilized two common metrics:
(1) Correct Path Rate (CP%), which measures the
proportion of instances where the model-generated
sequence of tool calls includes the golden tool path
as a subsequence, to assess the accuracy of the
model’s tool invocation. (2) Win Rate (WR%):
This metric evaluates the win rate of tool invoca-
tion sequences and planning processes generated by
different methods compared to ReAct. The assess-
ment is conducted through pairwise comparisons
using a ChatGPT-based judger.

4.2 Baselines

We primarily compare our method with well-
established baselines, includint:(1) ReAct (Yao
et al., 2022b), which integrates CoT reasoning
with action selection. It uses feedback to gener-
ate subsequent actions.(2) Easytool (Yuan et al.,
2024), which addresses issues of inconsistency, re-
dundancy, and incompleteness in real-world tool
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documentation. It rewrites documents with Chat-
GPT and incorporates guidelines. This enhances
the Large Language Models’ understanding of
tool functionalities and parameter requirements.(3)
DRAFT (Qu et al., 2025a), a trial-and-error-based
approach that analyzes feedback from LLMs’ in-
teractions with external tools via three stages: ex-
perience collection, learning from experience, and
document rewriting. This method dynamically re-
fines tool documentation to promote a deeper un-
derstanding and more effective utilization of tools
by LLMs.

4.3 Implementation Details

We selected several leading large language models
to validate the applicability of our method. These
include the larger-scale GPT-4o and LLaMA3-70B,
as well as the smaller-scale Qwen2.5-7B. For the
initialization of ToolExpNet, we set the similarity
threshold Φ = 0.8. The temperature of all models
are set to 0.

5 Results and Analysis

5.1 Overall Performance

We present our experimental results in Table 1.
Our framework generally outperforms existing
baselines across various real-world API scenarios.
Specifically, it achieves superior performance on
the CP and WR metrics compared to trial-and-error-
based methods and document-driven tool learning
approaches. This indicates better accuracy in tool
selection and more effective multi-tool planning.
Furthermore, our framework demonstrates robust
adaptability to different foundation LLMs. Even
when tested with a smaller model, Qwen2.5-7B,
which has relatively limited tool comprehension
capabilities, it consistently delivers performance
improvements. These improvements validate the
effectiveness of our model and suggest that our
tool-learning methods, which summarize the dis-
tinctions and connections between tools, could be
more effective in enhancing an LLM’s understand-
ing of tool capabilities.

5.2 Error Analysis for Tool Selection

We meticulously annotated and analyzed the failure
cases of the ReAct framework based on GPT-4o
in the TMDB task. These failures are categorized
into four main types: (1)Incomplete Invocation:
Missing critical tool calls due to overlooked user
intents or flawed task planning. (2)Dependency

Success
57%

Incomplete 
Invocation

Tool 
Misselection

Dependency 
Neglect

Others

8%

4%

18%

13%

Figure 3: Statistics of Different Types of Errors in the
ReAct Framework Based on GPT-4o on the TMDB
Dataset.

Neglect: Ignoring dependencies between function
calls, leading to errors or parameter hallucinations.
(3)Tool Misselection: Selecting incorrect similar
tools due to ambiguous documentation or overlap-
ping functionalities. (4)Others: Miscellaneous
errors, such as failures in instruction adherence or
incorrect invocation formats.The statistics of these
failures are illustrated in Figure 3.

We also observed that with the improvement in
foundation model capabilities, the proportion of
failures due to instruction adherence or tool hallu-
cination has improved compared to previous obser-
vations (Shi et al., 2024a; Song et al., 2023; Wang
et al., 2024a). However, a substantial portion of
tool selection failures still stemmed from neglect-
ing dependencies or being confused by ambiguous
intents and similar tool documentation, with these
two error types accounting for 72.09% of failures
on TMDB. Appendix B provides examples of these
error types.

This finding suggests that during the tool learn-
ing phase, LLMs should place greater emphasis
on understanding the relationships and distinctions
between tools to enhance comprehension of cross-
tool dependencies and similarities.

5.3 Why ToolExpNet Works

In Section 5.2, we summarize two common error
types in LLM tool usage. In this section, we explain
how ToolExpNet effectively addresses these issues
to achieve optimal outcomes.

While methods such as experience-based mem-
ory (Zhao et al., 2024a; Wang et al., 2024a) or tool
documentation rewriting (Hsieh et al., 2023; Yuan
et al., 2024) have been shown to improve LLMs’
ability in task planning and tool selection, previous
studies often focus on summarizing trial-and-error
processes for isolated tools. However, in most real-
world complex scenarios, multiple tools must be
invoked in a specific sequence, forming a unidi-
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Model Method RestBench-TMDB RestBench-Spotify ToolBench

CP% WR% CP% WR% CP% WR%

Llama3-70B

ReAct 72.00 50.00 49.12 50.00 41.00 50.00
EasyTool 76.00 58.00 57.89 59.65 46.00 55.00
DRAFT 86.00 59.00 66.67 63.16 53.00 61.50
ToolExpNet (Ours) 86.00 61.00 70.17 64.91 51.00 60.00

GPT-4o

ReAct 57.00 50.00 50.87 50.00 37.00 50.00
EasyTool 74.00 60.50 61.40 57.89 45.00 62.50
DRAFT 86.00 63.00 70.17 64.91 51.00 65.00
ToolExpNet (Ours) 90.00 69.00 75.44 68.42 53.00 68.50

Qwen-2.5-7B

ReAct 38.00 50.00 21.05 50.00 16.00 50.00
EasyTool 49.00 69.00 29.82 66.67 24.00 65.00
DRAFT 46.00 64.00 31.58 70.17 23.00 65.00
ToolExpNet (Ours) 49.00 67.50 38.60 77.19 29.00 69.50

Table 1: Performance comparison of different methods across three datasets. CP% and WR% denote the Correct
Path Rate and Win Rate, respectively. The best result for each LLM is highlighted in bold.

Error Type ReAct ToolExpNet

TMDB
D.N. 0.17 0.03
T.M. 0.13 0.04

Spotify
D.N. 0.30 0.09
T.M. 0.14 0.08

Table 2: Proportion of two common failure types in
total sample count across different datasets and methods.
D.N. and T.M. denote Dependency Neglect and Tool
Misselection, respectively.

Method TMDB(∆SL) Spotify(∆SL)

ReAct +0.76 +0.53
EasyTool +0.24 +0.25
DRAFT +0.22 +0.37
ToolExpNet +0.17 +0.23

Table 3: Comparison of ∆Solution Length (∆SL)
across different scenarios for various methods, repre-
senting the additional number of API calls relative to
the golden solution.

rectional flow of information. Although revising
documentation for individual tools can help LLMs
better understand when and how to use a particular
tool, it does not enhance their ability to distinguish
between similar tools or plan dependencies among
tools directly. This limitation often leads to two key
errors: Dependency Neglect and Tool Misselection.

We adopt trial-and-error guided by two types

of edges, Es and Ed, to establish relationships be-
tween similar and dependent tools. Table 2 demon-
strates that our model significantly reduces the error
rates in two common categories: Dependency Ne-
glect and Tool Misselection. This indicates that
ToolExpNet effectively optimizes these errors to
enhance the tool-using capabilities of LLMs.

In the self-explore stage of tool learning, tools
with similar or dependent functions are grouped to-
gether for targeted trial-and-error experiences. Dur-
ing the reflection and summary stages, these tools
are jointly analyzed to identify subtle differences
and explore functional extensions through combina-
tions with other tools. This learning process helps
extract insights from trial-and-error experiences,
highlighting the distinctions and connections be-
tween tools. These insights are then injected into
the LLM through in-context learning to guide its
planning and tool selection processes.

Following RestGPT (Song et al., 2023), we
adopt ∆Solution Length(∆SL) to measure the
mean number of additional API calls required to
successfully execute an instruction:

∆SL =
1

Ns

N∑

i=0

(
Li

real − Li
gold

)
· I(i, success)

where Ns is the number of successfully completed
instructions, Li

real and Li
gold are the actual and gold-

standard API call counts for the i-th instruction,
and I(i, success) is an indicator function that equals
1 if the i-th instruction is successfully completed,
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> The ``/movie/{movie_id}`` tool retrieves 
primary information about a movie, including 
its title, overview, and ... It supports the 
parameter 'append_to_response'  to ... 
> In contrast, tools like /movie/{movie_id}/     
images, /movie/{movie_id}/reviews offer    
more specific information related to images,  
reviews...  For example ...
> If the movie_id is not known,  use /search/
movie tool to find it first. This tool can be  co
mbined with other tools  like ...

A Movie Details API allows developers to 
retrieve comprehensive primary information 
about a specific movie by providing its 
unique movie_id. This includes metadata such 
as  t i t le ,  re lease date ,  genres ,  runt ime, 
production companies ,  languages,  and 
popular i ty .  This  api  a lso  suppor ts  the 
append_to_response parameter, enabling 
users to include additional related data in the 
same request.

4 1

3

25

no relevant 
information.

missing 
movie_id

1 32

Tool Guidance ( /movie/{movie_id} ) Tool Invocation Sequence

DRAFT

ToolExpNet (Ours)

∆SL = 2

∆SL = 0

 GET /search/movie

 GET /movie/{movie_id}/credits

 GET /person/{person_id}/images

 GET /movie/{movie_id}

 GET /person/{person_id}

1
2
3

4

5

Relevant APIs

Figure 4: Case Study: This figure compares the tool
guidance and performance of DRAFT and ToolExpNet
in solving the query "What does the lead actor of Titanic
look like?". DRAFT, lacking dependency modeling,
results in backtracking and an increased sequence length
(∆SL = 2). In contrast, ToolExpNet’s tool guidance
provides a detailed description of semantic similarity
tools and dependency tools to efficiently plan the tool
sequence, avoiding unnecessary steps and achieving an
optimal sequence length (∆SL = 0).

otherwise 0.

We evaluate our approach on two real-world
datasets, TMDB and Spotify. As shown in Table 3,
ToolExpNet outperforms existing baselines on the
∆SL metric. This demonstrates that the insights
generated by our method enhance its planning and
tool selection processes, reducing unnecessary API
calls caused by dependency neglect and subsequent
backtracking. Detailed examples of this behavior
are provided in Appendix B.

Figure 4 shows a concrete example. It compares
the tool-calling process guided by our method’s
tool insights with the process using DRAFT’s tool
documentation as context. Specifically, we com-
pare the tool guidance for the same API endpoint
movie/{movie_id} revised by DRAFT and ToolEx-
pNet, as well as their performance on a given user
query. The case demonstrates that our model, by
summarizing the distinctions and connections be-
tween tools during the tool learning phase, achieves
better task planning and tool selection.

Model TMDB(CP) Spotify(CP)

ToolExpNet 90.00 75.44
w/o Es 85.00 70.17
w/o Ed 83.00 63.16
w/o Trial 82.00 70.17

Table 4: Ablation Study Results on TMDB and Spotify.

5.4 Ablation Study

We conducted ablation studies on TMDB and Spo-
tify, to evaluate the impact of different components
in ToolExpNet . Specifically, we assessed the con-
tributions of semantic similarity links Es, func-
tional dependency links Ed, and the contrastive-
relation trial-and-error phase to the overall perfor-
mance. The results in Table 4 show that removing
any of these components leads to a performance
drop. To further understand the role of these com-
ponents, we analyzed how the tool usage insights
generated under different settings influence the re-
sults.

Semantic similarity links (Es) enhance the
LLM’s capacity to differentiate between simi-
lar tools. A comparison of experiments with and
without Es reveals that the absence of Es leads to
a higher rate of Tool Misselection errors (4% →
10%). When Es is removed from ToolExpNet , the
LLM, during the reflection phase, can only con-
sider tools dependency relationships. It also cannot
leverage the error experiences where confusion oc-
curred between two similar tools. This hinders
the reflection on subtle differences between similar
tools, making the LLM more prone to interference
from similar tool documentation and more likely
to select the wrong tool during the tool selection
phase.

Functional dependency links Ed improve the
efficiency of tool planning. The use of certain
tools often depends on the results obtained from
other tools. This dependency may stem from the
inherent nature of the tools (e.g., parameter fill-
ing related to IDs) or the task logic implied by the
user’s intent. When Ed is removed, it leads to a
higher rate of Dependency Neglect errors (3% →
12%). Ed enables the LLM to perform more effec-
tive planning before executing a task. As shown
in Table 3 and the examples (Figure 4), Ed encour-
ages the LLM to plan dependencies before invoking
the target tool. A smaller ∆SL indicates a more
efficient tool invocation process.
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5.5 Further Analysis
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Figure 5: Performance of GPT-4o and Qwen2.5-7B on
the I3 subset of ToolBench across different iterations.

Furthermore, we discuss the impact of different
learning iterrations in the tool learning strategy on
final performance. We conducted experiments us-
ing the models GPT-4o and Qwen2.5-7B-Instruct
on the I3 subset of ToolBench. Each iteration al-
lows a maximum sample size of 100, with all pro-
cesses using greedy decoding. As illustrated in
Figure 5, performance improves with more itera-
tions and saturates around the third iteration.

5.6 Computational Complexity Analysis

We present an empirical evaluation of the compu-
tational complexity associated with our ToolExp-
Net model in this section. Despite theoretical pre-
dictions that the number of edges might increase
quadratically with the number of tools, Liu et al.
(2024b) indicates that tools typically have only a
limited number of potential successor tools to in-
voke. This suggests that dependencies among tools
are inherently sparse. Our observations align with
this finding, and we also discovered that similari-
ties among tools exhibit similar sparsity. To further
validate this, we assessed the sparsity of tool simi-
larities in practical applications. Table 5 presents
descriptive statistics for ToolExpNet. The results
show that even with a significant increase in the
number of tools, the average degree of tool nodes
remains stable across different scenarios. Specif-
ically, in the ToolBench scenario, which includes
hundreds of tools, the computational cost does not
explode due to the increase in relational edges. In-
stead, it grows proportionally. This characteristic
makes the graph-based tool structure scalable and
may inspire future research.

Spotify TMDB ToolBench
Nt 40 54 282
Ne 137 108 716
d̄ 3.45 2.00 2.54

Table 5: Descriptive statistics of ToolExpNet: Nt de-
notes the number of tool nodes, Ne represents the num-
ber of edges, and d̄ is the average degree.

6 Related Work

6.1 LLM Tool learning

Recent studies have demonstrated that large lan-
guage models can significantly enhance their capa-
bilities and tackle complex problems by leverag-
ing external tools (Qu et al., 2025b; Shen et al.,
2023; Qin et al., 2024b). Specifically, with the
assistance of external tools, LLMs can acquire up-
to-date information (Schick et al., 2023; Komeili
et al., 2022; Gou et al., 2024), enhance their exper-
tise (Inaba et al., 2023; Bran et al., 2024), and auto-
mate various tasks (Schick et al., 2023; Yao et al.,
2022a; Zhuang et al., 2023). Existing methods be
broadly categorized into two types: tuning-based
and tuning-free (Qu et al., 2025b). Tuning-based
methods involve further training LLMs on tool-
related datasets to improve their tool usage capabil-
ities (Liu et al., 2024a; Yang et al., 2023a; Hao et al.,
2023; Patil et al., 2024). However, these methods
are typically applicable only to open-source mod-
els and require substantial computational resources.
In contrast, non-fine-tuning methods rely on the
context learning ability of LLMs by providing tool
documentation or a small number of usage exam-
ples, enabling the LLMs to understand how to use
the tools (Wei et al., 2022; Hsieh et al., 2023; Qu
et al., 2025a; Zhao et al., 2024a). These methods
offer greater flexibility but are prone to errors in
tool selection and parameter filling due to insuf-
ficient tool understanding (Shi et al., 2024a; Qu
et al., 2025a). In this paper, we propose a novel
approach that organizes tools and trial-and-error
experiences into a network structure to facilitate
more comprehensive tool understanding by LLMs.

6.2 Experience Enhenced LLM

Large Language Models face significant chal-
lenges in multi-tool calling tasks (Qu et al., 2025b;
Anokhin et al., 2024). To enhance the performance
of LLMs in complex real-world tasks, researchers
are exploring how to enable LLMs to learn from
their own experiences and thereby strengthen their
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tool-calling capabilities (Shinn et al., 2024; Zhao
et al., 2024a; Wang et al., 2024a). For instance,
Reflexion (Shinn et al., 2024) allows LLMs to re-
flect on their actions after task completion, identify
the causes of failures, and improve subsequent at-
tempts. ExpeL (Zhao et al., 2024a) enables LLMs
to gather experiences through trial and error across
multiple tasks, extract lessons from both successes
and failures, and use these insights to optimize
decision-making in subsequent tasks. Wang et al.
(2024a) enhance LLMs’ understanding of tools
by incorporating trial and error, imagination, and
memory mechanisms. Other methods often in-
volve summarizing and updating tool documen-
tation from trial experiences, transforming ambigu-
ous, redundant, or incomplete tool documentation
into more structured tool memories with model in-
sights (Yuan et al., 2024; Qu et al., 2025a; Wu et al.,
2024). Such approaches exhibit enhanced adapt-
ability to new tools. However, prior work has pre-
dominantly focused on single-tool trial-and-error
processes. In real-world multi-tool task scenarios,
LLMs are required to accurately select and execute
tools in sequence from a pool of interdependent and
potentially confusing tools (Lu et al., 2023; Li et al.,
2023; Gao et al., 2024). This raises higher demands
on the LLM’s ability to comprehend cross-tool in-
teractions. To address this, we explicitly model
two common types of tool relationships, namely
dependency and similarity, to enhance LLMs’ com-
prehensive understanding of cross-tool utilization
in real-world scenarios.

7 Conclusion

In this paper, we propose ToolExpNet, a novel
framework that organizes tool usage insights and
trial-and-error experiences into a network based
on semantic similarity and dependency relations,
addressing the limitations of existing methods that
focus on isolated tools learning. Experimental re-
sults on various foundation models and real-world
datasets demonstrate that ToolExpNet outperforms
existing methods, providing a comprehensive un-
derstanding of tool usage and improving multi-tool
invocation accuracy.

Limitations

Although our method significantly reduces the num-
ber of tokens in tool usage guidelines compared to
redundant original documents (Yuan et al., 2024;
Qu et al., 2025a), it results in a larger token length
than single-tool-focused trial-and-error and docu-
ment rewriting methods (e.g., +42.86% compared
to DRAFT (Qu et al., 2025a) using the Qwen2.5-
7B-Instruct tokenizer). This increase is due to the
detailed tool distinctions and dependency informa-
tion that our method incorporates to enhance tool
selection and invocation accuracy. While these en-
hancements improve tool invocation outcomes, the
larger context length may pose challenges for Large
Language Models with limited context windows.
Future work will focus on optimizing the genera-
tion of tool guidelines to achieve higher informa-
tion density and exploring the use of rewritten tool
guidelines in the tool retrieval phase (Qu et al.,
2025b) to improve efficiency. These advancements
aim to balance the trade-off between detailed tool
descriptions and the practical constraints of large
language models, ultimately enhancing the applica-
bility and performance of our method in real-world
scenarios.
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A Prompts in Tool Learning Strategy

Here, we present the primary prompts used in the
Tool Learning Strategy. These prompts are de-
signed to guide the Explorer in generating sim-
ulated queries involving pairs of similar tools, cre-
ating queries that require multiple tools to solve
a problem to explore potential dependencies, and
facilitating the reflection process of summarizing
tool usage experience to form concise tool guid-
ance through a Chain of Thought process.

Simulating Confusing Queries for Seman-
tic Similar Tool-Pairs

# Instruction
You have an opportunity to further explore
the subtle differences between the follow-
ing two similar tools. You need to imagine
scenarios where users might use these tools
and produce simulated queries.
# Tool Pair
Below are two similar tools and their de-
scriptions:
1. {tool1_info}
2. {tool2_info}
# Requirements
- Create a diverse set of user request exam-
ples (at least 5) for each tool to simulate
its usage scenarios. Note that user requests
typically do not mention the specific name
of the tool, as the tool is abstracted from the
user’s perspective.
- The generated user requests should be as
diverse as possible, covering different usage
scenarios.
- There should be a certain level of complex-
ity and potential for confusion between the
two sets of simulated queries, highlighting
the subtle differences between the two tools.
# Output Format
The output user request examples should be
in a JSON format, as in the example below:
{output_example}

Simulating Queries for Tool-Dependent
Scenarios

# Instruction
You have an opportunity to further explore
the dependencies between the following two
tools. You need to imagine scenarios where

users might use these tools and generate
simulated subtasks. Subtasks are part of a
task planning decomposition.
# Tool Pair
Below are two potentially dependent tools
and their descriptions:
1. {tool1_info}
2. {tool2_info}
# Requirements
- Generate a set of subtasks for these two
tools to simulate their usage scenarios.
These problems must be solved using both
tools. Note that user requests typically do
not mention the specific name of the tool,
as the tool is abstracted from the user’s per-
spective.
- The generated user requests should be as
diverse as possible, covering different usage
scenarios and input-output conditions.
- Additionally, you need to indicate whether
there is a parameter dependency or func-
tional expansion relationship between the
two tools, and whether they must be called
in sequence.
- Provide the specific parameters necessary
for calling the API, especially if the param-
eter cannot be obtained from the result of
any API.
# Output Format
The user request examples should be a
JSON, indicating the sequence of tool calls.
For example: {output_format}

Process of Tool Guidance Refinement

# Instruction
You need to leverage existing tools’ trial-
and-error experience and related informa-
tion to optimize the guidance for the tool
{tool_name}.
# Background
- Tool documentation: {tool_doc}
- Potentially dependent adjacent tools:
{composition_tools}
- Functionally similar adjacent tools: {simi-
lar_tools}
- Trial-and-error experience, each record in-
cludes the user question (question), your
decision result (pred), and the golden path:
{trial_exp}
# CoT Guideline
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1. Analyze the subtle differences between
this tool and similar tools, determine under
what circumstances to use which tool, and
how to distinguish them.
2. Analyze how this tool forms more com-
plex functions with dependent tools and
whether it needs to depend on other tools
before being called.
3. Summarize the typical scenarios in which
this tool is used in user requests.
4. Rewrite and optimize the tool’s descrip-
tion to make it more concise and clear. Re-
move redundancy, distinguish easily con-
fused tools, explain dependencies on other
tools, and possible use cases.
# Output Format
Generate a JSON dictionary in the follow-
ing format: {output_example}

B Error Type Examples

Table 6 shows specific cases corresponding to sev-
eral types of errors in the tool selection phase of
LLMs. Note that IDs and other parameters have
been anonymized to protect privacy. To enhance
readability, we have only presented the effective
tool invocation paths, omitting the intermediate
thought processes and retries caused by issues such
as API call exceptions.

C Tool Insight Refinement Examples

In Table 7, we present several specific examples.
During the tool insight refinement phase, the LLM
identifies tools that share semantic similarities and
dependencies with the tool that requires refinement.
It also reviews related trial-and-error records to
facilitate reflection and synthesis, leading to the
creation of tool guidance.

D Ablation Studies

Table 8 shows the differences in the insights formed
for tool usage after removing semantic dependency
links and dependency links in the ablation experi-
ments.

Removing a type of edge implies that in both the
trial-and-error phase and the Tool Insight Refine-
ment phase, the LLM cannot perceive the presence
of other tools that have relevant associations with
the given tool. This results in a fragmented tool
usage insight, where only the retained type of con-
nection can be perceived. Removing any type of

edge leads to a decline in the overall performance
of multi-tool invocation and an increase in the fail-
ure rate related to those specific error types. This
indicates the effective role of modeling inter-tool
relationships in facilitating tool learning.
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Error Type: Dependency Neglect

Question: I’m watching the tv series The Last of Us and I need some more recommendations.
Golden Path: "GET /search/tv" → "GET /tv/{tv_id=1024}/recommendations"
LLM Path: "GET /tv/ {tv_id=3566} /recommendations" → "GET /tv/{tv_id=3566}"
Reason: The function of /search/tv is to search for a TV show, while /tv/{tv_id} retrieves a show’s
details by ID. To find the ID for "The Last of Us", the process should start with /search/tv. However,
the LLM ignored this dependency, hallucinated a fictional tv_id, and produced an incorrect result.

Error Type: Tool Confusion

Question: Please recommend me some TV shows similar to Breaking Bad.
Golden Path: "GET /search/tv" → "GET /tv/{tv_id}/similar"
LLM Path: "GET /search/tv" → "GET /tv/{tv_id}/recommendations"
Reason: The failure occurred because the LLM confused two similar tools. The endpoint
/tv/{tv_id}/similar is intended to find TV shows similar to a given show by analyzing keywords
and genres, while /tv/{tv_id}/recommendations is used for getting recommendations based on the
show’s existing data. The LLM incorrectly used the recommendations endpoint instead of the
similar endpoint.

Error Type: Incomplete Invocation

Question: When is the lead actor of The Mandalorian born?
Golden Path: "GET /search/tv" → "GET /tv/{tv_id}/credits" → "GET /person/{person_id}"
LLM Path: "GET /search/tv" → "GET /person/{person_id}"
Reason: The LLM overlooked the user’s implicit need to find the lead actor’s information. This
required retrieving the TV show’s credits to identify the lead actor’s person_id. By skipping this
step, the LLM failed to gather sufficient information to correctly answer the question.

Error Type: Others

Question: Add the first song of The Dark Side of the Moon in my playback queue.
Golden Path: "/search" → "/albums/{id}/tracks" → "/me/player/queue"
LLM Path: None
Reason: The LLM misunderstood the task, producing an incorrect and unparsable call format that
cannot be executed.

Table 6: Examples of failure types for ReAct using GPT-4o as the backbone model on the TMDB and Spotify
datasets. Note that for privacy reasons, all sensitive function parameters, such as specific IDs, have been anonymized.
The parameters in the examples are fictional. Placeholders such as {id} represent specific parameters.

15720



Table 7: Examples of tool trial-and-error experience summaries. The process of Chain-of-Thought (CoT) reflection
and forming insightful tool guidance during the tool insight refinement stage.

Tool Name: /search/collection

> Semantic similarity: The /search/collection tool is used to search for collections based on a text query,
which is useful when you dont́ have specific collection IDs. In contrast, /collection/{collection_id} and
/collection/{collection_id}/images are used when you already know the collection ID and need detailed
information or images for that specific collection. Use /search/collection to find collections by keywords,
and use the other two tools to get detailed information or images once you have the collection ID.
> Dependency and composition: To perform a comprehensive search and retrieve detailed information
about collections, you can first use /search/collection to find collections based on a query. Once you
have the collection IDs from the search results, you can use /collection/{collection_id} to get detailed
information about each collection and /collection/{collection_id}/images to get images associated with
the collections. Typically, users can provide the query for /search/collection, but they will need to use the
search results to obtain the collection IDs required for the other two tools.
> Examples: 1. I want to find collections related to modern art. 2. I need detailed information about the
collection with A. 3. Can you show me the images for the collection with A?
> Tool guidance: The /search/collection tool allows you to search for collections using a text query. This
tool is particularly useful when you do not have specific collection IDs and need to find collections
based on keywords. The query parameter is required and should be URI encoded. You can also
specify the page number for paginated results. Once you have the collection IDs from the search
results, you can use /collection/{collection_id} to get detailed information about a specific collection and
/collection/{collection_id}/images to retrieve images associated with that collection.

Tool Name: /movie/{movie_id}/similar

> Semantic similarity: The /movie/{movie_id}/similar tool is specifically designed to fetch a list of
movies that are similar to a given movie based on keywords and genres. This is different from the
/movie/{movie_id}/keywords tool, which only retrieves the keywords associated with a movie, and the
/search/movie tool, which allows for a broader search of movies based on a text query and various filters.
The /movie/{movie_id} tool provides comprehensive information about a specific movie, but does not
focus on finding similar movies.
> Dependency and composition: To use the /movie/{movie_id}/similar tool effectively, you may need
to first retrieve the movie ID using the /search/movie tool if you do not already have it. Once you have
the movie ID, you can use it to get similar movies. This tool does not directly depend on other tools,
but combining it with /movie/{movie_id}/keywords can provide a deeper understanding of why certain
movies are considered similar.
> Examples: 1. Can you show me movies similar to Inception? (First, use /search/movie to find the movie
ID for Inception, then use /movie/{movie_id}/similar with the obtained ID)
2. I want to find movies like The Matrix. What are some recommendations? (First, use /search/movie to
get the ID for The Matrix, then use /movie/{movie_id}/similar with the obtained ID)
> Tool guidance: Fetch a list of movies similar to a specified movie based on keywords and genres. This
tool is distinct from the recommendation system and focuses on similarity in terms of content. To use this
tool, you need the movie ID, which can be obtained using the /search/movie tool if not already known.
The response includes a paginated list of similar movies. Example usage: "Find movies similar to The
Godfather."
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ToolExpNet w/o Es

Tool Name:/person/{person_id}
Experience Insights:Retrieve primary details of a person using their ID. This tool supports
the /append_to_response parameter for additional data. It can be used in conjunction with
other tools like /search/person to find the person ID, and /person/{person_id}/tv_credits, /per-
son/{person_id}/movie_credits, and /person/{person_id}/images for more detailed information.
Recent updates include the addition of the /known_for_department field and support for transla-
tions.
Cases: The tool /person/{person_id} can be used in combination with other tools to provide
comprehensive details about a person. For instance, to get a person’s TV show credits, you can
use /person/{person_id}/tv_credits. If you need to find a person’s ID, you can use /search/person
with a query parameter to search for the person by name. Once you have the person ID, you can
use /person/{person_id} to get primary details, /person/{person_id}/images to get images, and
/person/{person_id}/movie_credits to get movie credits.

ToolExpNet w/o Ed

Tool Name: /movie/{movie_id}/reviews
Experience Insights: Fetch user reviews for a specific movie using its movie_id. This tool allows
you to retrieve detailed feedback and opinions from users about a particular movie. It is useful
for understanding audience reception and sentiments. To specify which page of reviews to query,
use the page parameter. This tool is distinct from /search/movie, which is used for finding movies
based on search criteria.
Cases: The tool /movie/{movie_id}/reviews is specifically designed to fetch user reviews for a
particular movie identified by its movie_id. In contrast, the /search/movie tool is used to search for
movies based on various criteria such as title, release year, and other filters. While /search/movie
helps in finding movies, /movie/{movie_id}/reviews provides detailed user feedback for a specific
movie. Use /movie/{movie_id}/reviews when you need to gather opinions and reviews about a
particular movie, and use /search/movie when you need to find movies that match certain search
criteria.

Table 8: Examples comparing the tool usage experiences and insights formed by the LLM after removing the two
different types of edges, Es and Ed from ToolExpNet .
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