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Abstract

Large Language Models (LLMs) encapsulate
a surprising amount of factual world knowl-
edge. However, their performance on temporal
questions and historical knowledge is limited
because they often cannot understand tempo-
ral scope and orientation or neglect the tem-
poral aspect altogether. In this study, we aim
to measure precisely how robust LLMs are for
question answering based on their ability to pro-
cess temporal information and perform tasks
requiring temporal reasoning and temporal fac-
tual knowledge. Specifically, we design eight
time-sensitive robustness tests for factual infor-
mation to check the sensitivity of six popular
LLMs in the zero-shot setting. Overall, we find
LLMs lacking temporal robustness, especially
to temporal reformulations and the use of dif-
ferent granularities of temporal references. We
show how a selection of these eight tests can be
used automatically to judge a model’s temporal
robustness for user questions on the fly. Finally,
we apply the findings of this study to improve
the temporal QA performance by up to 55%.

1 Introduction

Despite the strong zero- and few-shot performance
of LLMs, it has been recently pointed out that
LLMs suffer from a partial or imprecise understand-
ing of the temporal scope, orientation, and rea-
soning expressed in text (Chan et al., 2024; Yuan
et al., 2023; Wallat et al., 2024; Jain et al., 2023).
The inaccurate understanding of temporal orienta-
tion and grounding raises concerns regarding the
effectiveness of LLMs over a range of tasks involv-
ing temporal reasoning and intents like question-
answering and search over historical sources (Wang
et al., 2022), QA over legal and personal temporal
collections (Qin et al., 2020; Zamani et al., 2017;
Gupta et al., 2019), or fact checking (Lee et al.,
2020; Nakov et al., 2021). Moreover, questions
with temporal aspects are relatively rare in many
current QA datasets and may thus go undetected
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Figure 1: We investigate the robustness of temporal un-
derstanding with a set of tests (here: temporal reversal).
By asking the inverse question and looking for consis-
tency between the two answers, we can study if the
model understands the temporal-factual information.

in offline evaluations. In this paper, we study the
ability of LLMs (Brown et al., 2020) in temporal
QA tasks, given their excellent ability of language
understanding and reasoning.

Consider the following factual question: “Who
was the prime minister of Pakistan in 1992?”. The
answer to this question is Nawaz Sharif. When
asked this question to an LLM (say a Mistral-7B
model) by just changing the year 1992 to 1995,
2010, or 1970 – we still observe the same response.
This simple test indicates a disregard for the time
information, possibly due to popularity bias. In this
paper, we propose a series of tests that help identify
when LLMs can fail due to improper understand-
ing of time and handling of temporal information
in question-answering (Figure 1). Unlike earlier
literature that focuses on characterizing temporal
failures (Wallat et al., 2024), we provide concrete
test cases and question reformulations to automati-
cally determine the sensitivity of LLMs to tempo-
ral information in questions or lack thereof. The
tests evaluate both the LLMs’ storage abilities and
robust temporal reasoning for correct question un-
derstanding. This set of tests can be used as LLMs’
pre-deployment tests in combination with the regu-
lar task performance.
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Temporal Reversal

Yoichiro Nambu received
which award in 2008 ?

[Nobel Prize in Physics]

When did Yoichiro Nambu
receive the Nobel Prize in

Physics? [2008 ]

Event Dating

Event:
The fifth ICC T20 World
Cup in cricket is held in

Bangladesh

Predict date:
[16-03-2014 ]

Event Ordering
Event A: Albania and

Croatia join NATO
Event B: Ecuador declares
independence from Spain

Predict order:
A before B? [false]

Temporal Removal
What prize did Hemingway

win in 1954 ?

What prize did Hemingway
win ___?

Temporal Positioning
What prize did Hemingway

win in 1954 ?

In 1954 , what prize
did Hemingway win?

Relativization
What prize did Hemingway

win in 1954 ?

What prize did Hemingway
win 69 years ago ?

Fact Checking
Fact: Sri Lanka

imposes a new levy for
those leaving the country

in 2023

Classify fact:
[true/false/conflicting]

Year Shift
What prize did Hemingway

win in 1954 ?

What prize did Hemingway
win in [1953/1949/1944 ]?

Applications
Understanding temporal robustness

Section 4

Temporal robustness findings:
Phrasing matters, ordering is hard, ...

Refining trust /w automatic tests
Section 5

Can one trust the output when no
ground-truth is available?

Reformulations for better QA perf.
Section 6

Robustness findings are useful:
Guidelines on how to phrase questions

Figure 2: Overview of the different tests in our robustness test suite for temporal factual QA. We suggest a suite
of several tests that are useful in multiple applications: 1) helping to assess the temporal robustness of LLMs for
temporal QA, 2) Calibrating user trust at inference time, and 3) as guidelines on how to reformulate arbitrary
(temporal) questions to improve QA performance.

In this paper, we first introduce a range of au-
tomatic transformations that manipulate temporal
information in questions to estimate the robustness
of LLMs towards temporal questions. Our transfor-
mations consider multiple and diverse interventions
of the time component in questions like tempo-
ral removal, positioning, year-shift, and temporal
reversal (cf. Figure 2). Our tests are grounded
on well-understood properties and challenges of
event-based question answering and temporal in-
formation retrieval like temporal ordering and dat-
ing (Campos et al., 2014; Kanhabua et al., 2015;
Setty et al., 2017). Secondly, we perform exten-
sive benchmarking over three well-known tempo-
ral QA datasets (Chen et al., 2021; Wang et al.,
2021a, 2022), two additional test sets composed
of sentences containing a series of temporal facts
and important historical events, and six popular
LLMs (Brown et al., 2020). Our results show that
although LLMs can answer the questions in their
original form, they struggle under certain tempo-
ral transformations – lacking a robust understand-
ing of the underlying temporal fact. Specifically,
we see performance drops of 47-67% under the
temporal reversal query transformation. Although
LLMs can successfully date many events on the
year granularity, they find it hard to date them on
a day granularity (performance drops by 27-75%).
Also, and surprisingly, although LLMs can perform
event dating reasonably well, they find it difficult
to order events chronologically. Additionally, the
findings of this study can be applied and be valu-
able beyond informativeness: We showcase that
a subset of the tests can be used automatically to
understand better whether the model’s answer is
correct without access to the ground-truth answers.
Lastly, we show that by applying the findings from

this study to new temporal questions, we can use
guided reformulations to improve the relative QA
performance by up to 55%. Our proposal of bench-
marking allows for more precise gauging of how
robust LLMs are when it comes to the temporal
knowledge and abilities they possess. The findings
are applicable in multiple scenarios, and code &
data are available1.

2 Related Work

2.1 Time-aware Pre-trained Language Models
The pretraining approaches used in Language Mod-
els (e.g., BERT (Devlin et al., 2019)) do not specifi-
cally consider or model temporal information. Sev-
eral time-focused enhancements and adaptations
of language models have been then proposed re-
cently. A naive approach relies on training different
versions of a language model on time-segmented
portions of data (Qiu and Xu, 2022). This results in
multiple language models that require an alignment
stage as postprocessing. Other solutions explore
dynamic word embeddings (Yao et al., 2018).

More advanced approaches incorporate temporal
knowledge during the pretraining stage (Giulianelli
et al., 2020; Dhingra et al., 2022; Rosin et al., 2022;
Wang et al., 2023). A simple yet effective mod-
ification to pre-training is proposed in (Dhingra
et al., 2022), where the masked language modeling
(MLM) objective is parameterized with timestamp
information. Rosin and Radinsky (2022) propose to
enhance the self-attention mechanism by integrat-
ing timestamp information for updating attention
scores. A time-aware prompting strategy for text
generation has been proposed by (Cao and Wang,
2022). In a more recent study, Cole et al. (2023)

1https://github.com/jwallat/temporalrobustness
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Dataset Example Question Answer #Qs Scope Description
ArchivalQA What was Ankara’s official aid bill for in 1997? Cyprus 7,500 1987-2007 detailed quest.
Wikidata Yoichiro Nambu received which award in 2008? Nobel Prize 10,000 1907-2018 people
Temporal Claims China reports military clash in Henan province in 2022 False 4,196 1000-2023 claims
Wikipedia Events Former Pope Benedict XVI dies at the age of 95. Dec. 31 2022 23,550 1750-2023 events

Table 1: Overview of the temporal source datasets used to create the robustness tests in this study.

integrate content time into the transformer encoder-
decoder architecture (T5 model). They mask time
expressions in content and conduct experiments
on different temporal tasks. Wang et al. (2023)
utilize transformer encoders to leverage both the
timestamp and content time (i.e., temporal expres-
sions) in three novel pre-training tasks: document
timestamping, temporal expression masking, and
temporal information swapping. Relatedly, Han
et al. (2021) train models by masking events and
temporal indicators and Yang et al. (2023) intro-
duce a novel timeline reconstruction task.

2.2 Benchmarking LLMs Robustness

Several studies have examined the temporal reason-
ing capabilities of LLMs (Wang and Zhao, 2024;
Xiong et al., 2024; Chu et al., 2024; Jain et al.,
2023; Zhou et al., 2019; Fatemi et al., 2024). Yuan
et al. (2024) studied explanatory capabilities of
LLMs when forecasting future events, while Chan
et al. (2024) analyzed Chat-GPT on inter-sentential
relations including temporal and causal relations.
Chu et al. (2024) introduced a hierarchical tem-
poral reasoning benchmark called TimeBench and
focused on Chain-of-Thought prompting. Wang
and Zhao (2024) introduced TRAM, a temporal
reasoning benchmark encompassing temporal as-
pects of events such as order, arithmetic, frequency,
and duration. For interested readers, temporal com-
monsense reasoning datasets and approaches have
been overviewed in (Wenzel and Jatowt, 2023).

Temporal factual knowledge has also been the
focus of several recent QA datasets created to ana-
lyze the performance of LLMs (Chen et al., 2021;
Wang et al., 2022; Dhingra et al., 2022; Gruber
et al., 2024; Jia et al., 2018, 2024; Mousavi et al.,
2024; Uddin et al., 2024). For example, a di-
agnostic dataset TempLAMA introduced in Dhin-
gra et al. (2022) contains 50k temporally-scoped
subject-object relations collected from the snap-
shot of Wikidata and provided in the cloze-style
queries. The authors discuss potential problems re-
lated to encoding factual temporal knowledge, such
as averaging, forgetting, and poor temporal calibra-
tion. More recently, Wallat et al. (2024) study if

LLMs can answer temporal questions and reveal
that they struggle with simple perturbations in ques-
tions like time relativization or time shift. However,
the authors do not introduce a complete test suite
for temporal robustness as we do (e.g., event order-
ing, event dating, fact verification, time positioning,
temporal reversal), neither propose automatic ques-
tion transformations nor demonstrate how temporal
QA performance can be improved. Bajpai et al.
(2024) introduce temporally consistent factuality
probing and the corresponding dataset constructed
from a knowledge graph for measuring the tempo-
ral consistency of objects and their relations. In
another work, Beniwal et al. (2024) demonstrate
that diverse fine-tuning approaches significantly
improve the performance of open-source LLMs,
reducing errors caused by knowledge gaps.

Our research emphasizes novel approaches for
investigating temporal signals, anchoring knowl-
edge in time, and navigating and orienting over
timelines utilizing a range of different datasets and
models. We propose a set of automatic transfor-
mation steps that, given any temporal QA dataset,
allow it to be extended to gauge the temporal ro-
bustness of LLMs, and we also demonstrate how
our approach can enhance QA performance.

3 Study Details

We use several data sources to test factual knowl-
edge with time-scoped questions for assessing
LLMs’ robustness in handling temporal references:
WikiData (Time-Sensitive QA (Chen et al., 2021)),
the historical New York Times news archive
(ArchivalQA (Wang et al., 2022)), TemporalQues-
tions (Wang et al., 2021a), major world events
from Wikipedia (event dating/ordering), and fact-
checked temporal claims crawled from various
websites (Temporal Claims (Venktesh et al., 2024)).
An overview is given in Table 1. We elaborate fur-
ther on the source datasets and model & implemen-
tation details in Appendix F.

Time Relativization, Removal, Year Shift, Posi-
tioning. We sample 3k QA pairs from ArchivalQA
that end with a year reference (e.g., "in 2019?") and
modify the references according to the task (as in
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(Wallat et al., 2024)). For relativization, we convert
an absolute year reference to a relative one2. For
the year shift, we randomly decide whether we add
or deduct k years from the question’s original year.
Lastly, for the positioning test, we move the time
reference from the end of the question (e.g., "... in
2019?") to the front of it ("In 2019, ..."). Examples
of these transformations and the remaining tests
can be seen in Figure 2.

Temporal Reversal. We use WikiData informa-
tion (similar to Saxena et al. (2021)) and interpret
these factual statements as quadruples (subject,
relation, object, time). In other studies, these
quadruples have been used to construct questions
such as "Who was the American president in
2012?" Answer: "Obama," asking for the subject
or the object of the quadruple. We hypothesize
that a thorough, actual understanding of the ques-
tion’s temporal aspect would result in the model
being able to answer both the normal (forward)
question as well as a reformulation of this question
that queries for the time (e.g., "When was Obama
president of the USA?" Answer: "2009-2017"). We
utilize 10k examples from WikiData for this test
since it has quadruples with individual years and
the required intervals in which the relation was true.
We apply the set of relations used by Saxena et al.
(2021) and write templates for the reformulations.

Temporal Fact Checking. We use a dataset of
manually verified facts crawled from various verifi-
cation websites (Venktesh et al., 2024), containing
4,196 temporally scoped claims. Fact verification
requires the model to produce a judgment of true,
false, or contradicting for a given claim.

Event Dating/Ordering. Similar to (Wang et al.,
2021b), we crawl events from the Wikipedia year
pages3 to acquire fine-grained dates (containing
a day, month, and year) and short descriptions of
major events between 1750 and 2023. We then
filter out events that contain years in the description,
as these would be easy to guess. For the event
dating test, we ask the model to reproduce the date
for a given event in different granularities: year,
month, and date. For the event ordering test, we
randomly sample events from the same year or
for given distances k. We then ask the models
to answer which event happened first. The event
dating task uses 3k events for each granularity, and

2Using the answer to "What year do we have?"
3E.g., https://en.wikipedia.org/wiki/2006

the event dating has 3k event pair comparisons.

Evaluation. We utilize a set of model-specific
metrics (OpenEval and answer equivalence (Ka-
malloo et al., 2023; Bulian et al., 2022)) and model-
agnostic metrics (i.e., token recall and answer
string containment (Adlakha et al., 2024; Liu et al.,
2024; Mallen et al., 2023)). OpenEval evaluates
the correctness of an answer by querying whether
a candidate is a suitable answer given the question
and the reference answer4. The BEM metric uses
a BERT model trained on human-labeled data to
predict equivalence between a candidate answer
and a reference given a question. For each task, we
performed a human alignment study and reported
the metric with the highest alignment (Appendix H)
and a full overview of results on all metrics in Ap-
pendix I.

4 Testing Temporal Robustness

In the upcoming sections, we investigate different
classes of temporal questions and problems and
how our models react to them. For convenience,
we show an overview of all models and temporal
robustness results in Table 2.

4.1 Time Relativization

The first test that we apply is measuring the effect
that switching the time reference from an absolute
one (e.g., "2019") to a relative one (e.g., "5 years
ago") has on the models’ ability to answer temporal
factual questions. Relative temporal expressions
are a common way to refer to time points, espe-
cially when one wants to emphasize the duration
of elapsed time. Given that our models can all per-
form the reasoning needed5, one would expect the
LLMs to be robust to this paraphrase. Thus, an
ideal model should perform on par for both abso-
lute and relative questions (results in Table 3).

Interestingly, out of the 26.3% of questions that
Llama 3.1 can answer without paraphrasing, only
13.2% are also answered correctly when using the
relative time reference, resulting in a decrease of
50%. We observe similar performance decreases
in the other models (28-41%). Specifically, the
more capable models seem to be more (but not en-
tirely) robust to using relative references. Given
that all models lack robustness w.r.t. relative time
references, we question how much of the models’

4For which we utilize Flan-T5-XXL
5Which we verify by asking, "What year was 5 years ago?"
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Model Size ↔Relativ. ↓Removal Shift ↔Reversal ↑Facts ↔Date ↔Order ↔Position
Llama 3.1 8B -50.0% -48.0% -70.4% -55.6% 34.2 -75.4% -0.2% +4.8%
Gemma 2 27B -27.9% -46.1% -56.9% -60.6% 42.6 -42.6% -36.1% +3.3%
Qwen 2.5 32B -41.0% -48.9% -68.2% -67.7% 31.4 -60.9% -67.6% +0.6%
Jamba 1.5 52B -29.1% -39.5% -43.6% -62.1% 52.5 -52.3% -1.0% +3.5%
Cmd-R+ 104B -34.3% -40.3% -54.2% -54.7% 45.7 -48.7% -33.5% +0.7%
GPT 4 unk. -29.7% -46.9% -69.2% -47.4% 36.5 -26.9% -61.8% +2.9%

Table 2: Overview of the temporal robustness tests. If there is a clear preference, we denote the tests with
↔ / ↓ / ↑ (in table header) to indicate whether we expect well-performing models to be oblivious/decrease/increase
in performance on this task. For example, we expect a robust model to be oblivious to relativization and to stay
constant in its performance. We report the OE metric for all but event ordering (Contains) and dating (date-match).

Model ↔Relativization ↓Removal
Abs Abs ∩ Rel. Diff. Abs ∩ Rem. Diff.

Llama 3.1 26.3 13.2 -50.0% 13.7 -48.0%
Gemma 2 35.2 25.4 -27.9% 19.0 -46.1%
Qwen 2.5 29.8 17.6 -41.0% 15.2 -48.9%
Jamba 1.5 38.5 27.3 -29.1% 23.3 -39.5%
Cmd-R+ 40.4 26.6 -34.3% 24.1 -40.3%
GPT 4 43.3 30.5 -29.7% 23.0 -46.9%

Table 3: Results for the relativization and time removal
tests measured by the OE metric. We report the in-
tersection between the untransformed (absolute) time
references and the two transformations to understand
how many of the correct answers are still correct when
augmenting the questions to contain, for example, rela-
tive time references.

performance is due to statistical parroting or a pro-
found and usable understanding of the factual in-
formation and the corresponding time component.

4.2 Time Removal

In the time removal test, we study the relevance of
the temporal reference on the question-answering
performance. To do so, we remove the temporal
references from the questions (Table 3). The model
performance decreases by a substantial and surpris-
ingly uniform margin of 40-48%. Conversely, this
also means that many temporal questions can be
answered (or guessed) correctly without the refer-
enced year’s temporal grounding, posing questions
about how we evaluate the capture of temporal in-
formation in current temporal QA datasets.

What does lower performance mean? We think
that discarding dates from a question can result in:
(i) the question becoming underspecified and,
hence, temporally ambiguous (Piryani et al., 2024).
This means that now answers other than the gold
answer a may match the question. In general, sev-
eral different answers may become correct now
besides a, as the question can, in principle, refer
to any time period. Ideally, LLM should output in
this case all the valid answers (or, at least, ask for
clarification). In reality, it might just pick one of

the answers, likely, the most common one.
(ii) the question becoming more difficult since it

is now less informative. This is the case when only
one answer a is correct, regardless of the date. A
robust LLM should still output the valid answer a,
or at least ask for more information.

Case (i) can arise for questions on common/re-
peating types of events or about highly dynamic
facts. It is also more likely for shorter questions
as they are less specific, resulting in more answers
having a match. Case (ii) may arise for questions
related to specific events or stationary facts. It is
also more likely to happen for more specified ques-
tions (where the date is less important as much
information is already contained in the question).
Given the dynamic nature of the factual questions
discussed in our study, we expect decreasing per-
formance after removing temporal references.

4.3 Time Positioning

The time positioning test measures the impact
of changing the position of the time information
within the question on the models’ ability to answer
time-scoped questions. Specifically, we rewrite the
questions, which usually end with the time refer-
ence (i.e., "... in 2019?") to instead begin with this
time reference (i.e., "In 2019, ..."). To humans, this
rewrite of the question should not make a differ-
ence, and similarly, we expect models to be robust
to these changes (i.e., no change in performance).
The results are shown in Table 4.

Quite remarkably, all models benefit from time
references to be written at the start of the question,
with relative improvements ranging from 1% to
5% in OE score. While it has been intensively
studied that language models mostly focus on the
first and the last parts of the input while putting less
emphasis on the middle part (Liu et al., 2024), this
does not fully explain the observations at hand6.

6We hypothesize reasons in Appendix G
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Model ↔Positioning Year Shift (num. of years) ↔Reversal
Time[end] Time[front] Diff. 0 1 5 10 Diff.[0,10] Fwd Fwd ∩ Inv Diff.

Llama 3.1 26.3 27.6 +4.8% 26.3 7.8 11.0 7.8 -70.4% 7.3 3.0 -55.6%
Gemma 2 35.2 36.4 +3.3% 35.2 15.2 20.3 15.2 -56.9% 15.2 6.0 -60.6%
Qwen 2.5 29.8 30.0 +0.6% 29.8 9.5 12.5 9.6 -68.2% 12.1 3.9 -67.7%
Jamba 1.5 38.5 39.9 +3.5% 38.5 21.7 26.0 21.7 -43.6% 23.7 9.0 -62.1%
Cmd-R+ 40.4 40.7 +0.7% 40.4 18.5 23.4 18.5 -54.2% 22.4 10.2 -54.7%
GPT 4 43.1 44.4 +2.9% 43.1 13.3 17.0 13.3 -69.2% 31.4 16.5 -47.4%

Table 4: Results of the tests for changing the position of the time reference, the effect of shifting the referenced year,
and the temporal reversal test. We report OE scores.

4.4 Year Shift
Humans are not always able to remember correct
dates. For a question answering, especially over
temporal knowledge, to be useful, some lenience
regarding errors might be desired. How much ex-
actly is needed and wanted remains to be seen. We
include this task on how robust models are to cor-
rupt time references by certain amounts. This task
is related to the Removal task, but offering slightly
wrong dates might still help to anchor the model in
the correct time range. We change the years men-
tioned in the questions to be wrong by {0, 1, 5, 10}
years. The results are presented in Table 4. We ob-
serve a relatively constant decrease in performance
for shifting the years by 1 and 10, but less of a de-
crease for shifting dates by 5 years. This suggests
the existence of repeating events in the date (e.g.,
such as elections being repeated every 4 years).

4.5 Temporal Reversal
The temporal reversal test is a way to measure the
transportability of a fact in another context. Pre-
cisely, we test a forward and an inverse formulation
of a fact. The forward formulation is the standard
question like "Who was the American president in
2005? Answer: Bush". We then reformulate these
questions to their inverses, which do not query for
the object but for the time of that relation (i.e.,
"When was Bush the American president? Answer:
2001-2009"). This measures how much the models
are susceptible to parroting and how many of these
facts are actually understood and usable in differ-
ing contexts. The results are shown in Table 4. We
notice significant performance drops when looking
into questions that were correctly answered in for-
ward and inverse forms (47-68%). This suggests
that many of the correct answers are not due to a
sound temporal understanding of the fact.

4.6 Temporal Fact Checking
Next, we evaluate the models’ ability to judge the
factuality of temporal statements. To do so, we
use claims that include temporal statements and

measure the degree to which the LLMs can gen-
erate the ground-truth labels. This is estimating
whether a statement is "True," "False," or if there
is "Contradicting" information (Table 5).

Given that this task is a three-class classifica-
tion problem, the results of all models are lacking.
Interestingly, we observe lower performance for
the most capable GPT 4. Upon manual analysis,
many models avoid answering questions for their
lack of information. This might result from their
training, resulting in better-calibrated models and
lower performance on this task.

4.7 Event Dating
We next use events from Wikipedia year pages7 and
predict their date in day, month, and year precision.
In our prompt, we specify a format in which we
would like to receive the dates ("dd-mm-yyyy"),
but we observe many models not adhering to the
format. While this is not critical as long as the
answer is correct, measuring correctness with the
metrics at hand becomes difficult. The contains
metric fails understandably when "11-11-1995" be-
comes "11th of November 1995" and we also ob-
serve that BEM and OpenEval not to be robust in
terms of how dates are phrased. Based on differ-
ent formats used by the models, we built our own
date-matching metric8 and report the event dating
performance in Table 5 (middle).
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Figure 3: Difference between ground-truth and pre-
dicted years for Llama 3.1.

As expected, we find the larger models to out-
7E.g., https://en.wikipedia.org/wiki/2009
8details in Appendix J
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Model ↑Fact Checking ↔Event Dating ↔Event Ordering
Cont. OE Day Month Year Diff.[Y,D] 0 1 5 10 30 100 Diff.[100,0]

Llama 3.1 29.1 34.2 13.0 17.9 52.8 -75.4% 49.9 51.6 50.8 51.6 51.0 49.8 -0.2%
Gemma 2 39.9 42.6 32.9 49.9 70.5 -42.6% 36.3 49.4 36.8 49.4 42.1 49.4 -36.1%
Qwen 2.5 74.7 31.4 24.6 22.2 62.9 -60.9% 48.4 81.1 57.5 81.1 74.4 81.1 -67.6%
Jamba 1.5 65.5 52.5 36.0 30.9 75.4 -52.3% 49.0 49.5 50.2 49.5 51.5 49.5 -1.0%
Cmd-R+ 46.5 45.7 38.7 47.2 75.5 -48.7% 52.8 50.6 54.4 57.8 64.1 70.4 -33.5%
GPT 4 33.1 36.5 56.3 56.3 77.0 -26.9% 53.5 56.9 64.0 70.1 79.4 86.6 -61.8%

Table 5: Results for the fact checking, event dating, and ordering tasks. We report the date match metric (event
dating) and Contains (event ordering). 0,1,5,10,30,100 is the distance in years between the compared events.

Test Question Prediction Consistent /w orig. Prediction
Original Bernardo Corradi played for which team in 2006? Fiorentina
Relativization Bernardo Corradi played for which team 17 years ago? Inter Milan ✗
Removal Bernardo Corradi played for which team? Italian National Team ✗
Positioning In 2006, Bernardo Corradi played for which team? No answer ✗
Reversal When did Bernardo Corradi play for Fiorentina? He never did ✗

Table 6: Example of the automatic test suite. For a given question, we automatically create paraphrases inspired
by the temporal robustness tests and retrieve answers from the model. Looking into the consistency between the
answer to the original question and the test questions can help us judge how much model predictions can be trusted.

perform the smaller models. Also, we observe
that years, as the coarsest granularity, are better
captured than months or days. Going from year-to-
day precision, performance drops by 27% or more,
suggesting that LLMs "know" temporal facts up
to a certain precision. The date-matching metric
also allows us to measure the difference between
predicted and ground-truth dates. We plot the devi-
ation between Llama 3.1’s predicted and ground-
truth years in Figure 3.

While we observe that most predictions are
somewhat close to the actual year (53% even match-
ing it precisely), we also find many questions an-
swered with rather distant years. The worst pre-
dicted year was wrong by over 300 years (c.f. Fig-
ure 3). Interestingly, Llama 3.1 tends to output
too recent dates for many questions.

4.8 Event Ordering

Our last test is whether LLMs can order events
chronologically. To do so, we again use the major
events from the Wikipedia year pages and always
pass two events with the question asking whether
A happened before B. This will shed additional
light on whether the models have a linear under-
standing of time and whether this is present, usable
information to them. While it has been shown that
Chat-GPT performs well at event detection and rea-
soning about causal relationships, it seems not to
be proficient at identifying temporal order in the
case or discourse analysis (Chan et al., 2024). The
results of the event ordering are in Table 5 (right).

First and foremost, we find Llama 3.1, Gemma
2, and Jamba 1.5 to have consistently bad perfor-
mance similar to majority classifiers (∼ 50%). For

the remaining models, we see the performance in-
crease the further apart the events. Typically, one
would expect the models, given they are quite ca-
pable of dating events w.r.t. years, but less so w.r.t.
days, to perform worse at ordering events from the
same year than events that happened 1, 5, or 10
years apart. Even for events from 30 or 100 years
apart, where humans are likely to infer the correct
order, we only observe a maximum improvement
of 26% (GPT 4). Unlike humans, who find it nat-
ural to differentiate between events that are long
time gaps apart, LLMs find it hard to order events
despite successfully dating them.

5 Automatic Robustnesss Testing

As with all test suites, our tests for temporal robust-
ness, as discussed in the previous sections, are built
a priori and require that we know the answers to the
questions. However, many of our tests are query-
centric reformulations that can be applied to almost
generic questions (ending in a temporal reference
like “in 2007?”). Thus, we wonder whether we
could use these query-centric tests to better judge if
the model correctly processed and understood the
time component of the question. In this setting, we
are not required to know the ground-truth answer,
which allows us to use this automatic test suite on
the fly. This can be beneficial either when hosting
the chat/question-answering system to understand
when the models might output wrong answers to
users or by directly showing the results so that users
may use this additional information as contextual-
ization to decide whether they want to trust the
model answer or not (example in Table 6).
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Given the lack of robustness in the relativization,
positioning, and reversal tests, one might question
any model’s temporal literacy. Note that the model
might still produce the correct answer, even if the
predictions and their consistency might lead us
to believe it is not sure about this. However, if
the model produces the correct answer, it is more
likely due to shortcuts or chance and not because it
understood the temporal factual relation.

Next, we show that the query-centric reformula-
tions can be used to estimate whether LLM answers
are correct. We use 3, 000 questions for which
we have ground-truth answers, creating automatic
question reformulations and getting the model pre-
dictions for all questions. We evaluate the consis-
tency between the original and test question predic-
tions, resulting in four values of 0 to 1. We find
these four consistency scores to be predictive of the
actual correctness of the answer, outperforming a
majority classifier on a balanced test set by 14.9%
(Llama 3.1). This result emphasizes that besides
better understanding and calibrating user trust in
the predictions, these scores can help to evaluate
the correctness of model predictions automatically.

6 Reformulations for Better QA

Lastly, we take another approach to validate the
findings from the robustness test. We directly ap-
ply the findings about lacking robustness to ques-
tions to improve the LLMs for temporal QA. While
this was not the main intention of our study, apply-
ing the findings emphasizes the usefulness of the
study’s results. We sample 1k previously unused
questions from ArchivalQA and apply the follow-
ing transformations. First, we remove the time
to simulate the effectiveness of adding time refer-
ences in case they are missing. In subsequent steps,
we move from relative to absolute time references
and move the temporal reference to the front of the
question. The results are shown in Table 7.

Model Cmd-R+ Gemma 2 GPT 4 Avg. Gain

QNo Time 30.0 20.6 27.8 –
Q+ Relative 31.9 27.4 32.3 +18.5%
Q+ Absolute 39.2 35.7 42.2 +28.0%
Q+ Time[front] 40.9 35.5 43.5 +2.3%

Table 7: We apply the findings of our study into LLM
temporal robustness to new questions. By applying au-
tomatic transformations to questions in forms to which
the LLMs are not robust to (e.g., relative to absolute ref-
erences), we can improve the QA performance. Values
in OE scores.

Moving from no time reference to relative time
offers an average performance boost of 18.5%.
Similarly, rewriting relative to absolute references
and moving absolute references to the front offer
an improvement of 28.0% and 2.3%, respectively.
The total improvement of adding absolute time ref-
erences to the front of questions, which had no time
reference, would be 55% on average.

7 Discussion & Conclusion

The temporal robustness tests presented in this
work offer a first suite to benchmark temporal pro-
cessing abilities of LLMs. Besides actionable in-
sights – like avoiding relative time references for
most models or starting temporal questions with a
time reference – we offer tests that help investigate
what temporal understanding is present in models.

The temporal robustness tests may be used in
addition to the typical task performance as pre-
deployment checks to evaluate models’ abilities
and problems better. For example, one might take
GPT 4 and Jamba 1.5, which perform very simi-
larly on temporal QA (absolute values in Table 3)
and take a closer look at our detailed tests to un-
derstand that Jamba 1.5 is less robust to temporal
reversal (-15%) and worse at dating events in day-
precision (-25%), but more proficient at judging
temporal factual claims (+16%).

In this study, we examined the temporal robust-
ness of LLMs. We tested a variety of LLMs using
a suite of eight tests assessing different kinds of
temporal abilities and robustness to natural para-
phrases of questions. While we generally observe
higher QA performance for bigger models such
as GPT 4, we did not find these models robust to
our temporal robustness tests. This study serves
as the inaugural benchmark for LLMs’ temporal
robustness, providing valuable insights into correct
temporal information processing and model fail-
ures. Further, we found our temporal robustness
tests applicable along the entire model lifecycle:
1) For developers to benchmark their models and
understand which abilities need improvement. 2)
As pre-deployment checks to understand the dif-
ferences between similarly performing models. 3)
By using our automatic tests to help users gauge
whether or not to trust the model’s predictions. 4)
By guiding question reformulations for improved
QA performance. We believe this set of tests to
help study the temporal robustness of LLMs.
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Limitations

Are these tests a comprehensive set? We deal
with real-world events, and absolute dates matter;
hence, we use several date interventions/perturba-
tions. Temporal ordering and dating are well un-
derstood in the literature on events in the Web and
IR community (Tran et al., 2015; Campos et al.,
2021; Setty et al., 2017; Bradburn, 1999). We leave
out operations that belong to temporal algebra (von
Karger, 1998) or temporal logic (Konur, 2013) be-
cause we are not interested in arbitrary temporal
operations and rather focus on events. We are also
focused on LLM-based mistakes; our reformula-
tions are natural and not adversarial. Therefore,
each transformation is a plausible question, and we
leave out all adversarial reformulations. Having
made these assumptions (based on the useful and
real-world character of the QA task), we acknowl-
edge this is the first step that could – in the future –
be extended by rich temporal scopes such as date
spans and before & after relations.

What about retrieval? Using a retrieval system
and adding additional information is a logical step
when striding toward effective QA or chat systems.
However, we focus on the innate abilities and tem-
poral robustness of LLMs. When we add context
containing the answer to a question, the problem
changes from recalling factual information and han-
dling time to a reading comprehension problem –
and LLMs are quite proficient at these. The critical
part in the retriever setting is retrieving the correct
information, which is by no means trivial, espe-
cially when discussing historical information that
might be relatively rare or incomplete. We deem
the retrieval setting to be out of this work’s scope.

Do QA metrics work for temporal questions?
As discussed in Section 3 and Appendix H not all
metrics work equally well for all temporal tasks in
this study. Specifically, handling dates and time
occurrences with their various surface forms was
not robust by the existing metrics. Therefore, ex-
ploring temporal QA and IR metrics might be a
worthwhile endeavor for future work.

Ethics Statement

We observe the brittle behavior of LLMs for tem-
poral factual questions. While this may be used
to achieve sub-optimal performance, we do not
believe this is a directly suitable attack vector to

achieve harmful behavior. While not directly deriv-
able from this work, it might be possible to use
adversarial attacks to intentionally bias the outputs
of LLMs for temporal questions, given the brittle
behavior showcased in this study. If successful,
this could result in LLMs outputting fake historical
information.
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B Scientific Artifacts

B.1 Did you cite the creators of artifacts you
used?

Yes, see Section 3

B.2 Did you discuss the license or terms for
use and / or distribution of any artifacts?

1. ArchivalQA: Apache 2.0, https://github.
com/WangJiexin/ArchivalQA

2. Temporal Facts (Quantemp): CC BY-NC
4.0, https://github.com/factiverse/
QuanTemp

3. Time-Sensitive QA: BSD 3-Clause,
https://github.com/wenhuchen/
Time-Sensitive-QA

4. Wikipedia Year pages: CC BY-SA 4.0, e.g.,
https://en.wikipedia.org/wiki/2006

We do not plan to distribute these artifacts our-
selves but provide scripts to construct the data used
in the paper.

B.3 Did you discuss if your use of existing
artifact(s) was consistent with their
intended use, provided that it was
specified? For the artifacts you create, do
you specify intended use and whether that
is compatible with the original access
conditions (in particular, derivatives of
data accessed for research purposes
should not be used outside of research
contexts)?

The used artifacts specify non-commercial use. Our
usage was consistent with their specifications.

B.4 Did you discuss the steps taken to check
whether the data that was collected / used
contains any information that names or
uniquely identifies individual people or
offensive content, and the steps taken to
protect / anonymize it?

We only collect data from Wikipedia year pages.
This may contain names of public figures such as
presidents, government figures, or prominent peo-
ple, and therefore, did not anonymize their names.

B.5 Did you provide documentation of the
artifacts, e.g., coverage of domains,
languages, and linguistic phenomena,
demographic groups represented, etc.?

We cover an overview of the used artifacts in Sec-
tion 3 as well as Appendix F.1.

B.6 Did you report relevant statistics like the
number of examples, details of train / test
/ dev splits, etc. for the data that you used
/ created?

We cover an overview of the used artifacts in Sec-
tion 3 as well as Appendix F.1.

C Computational Experiments

C.1 Did you report the number of parameters
in the models used, the total
computational budget (e.g., GPU hours),
and computing infrastructure used?

The model parameters are listed in Table 8. We did
not train or fine-tune models, but ran inference on a
larger set of models. Our used infrastructure was a
mixture of A100 with 40/80GB memory. Running
the entire test suite may take ca. 1 day on one GPU
per model, resulting in 6 GPU/days for all models
combined.

C.2 Did you discuss the experimental setup,
including hyperparameter search and
best-found hyperparameter values?

We did not run a hyperparameter search, but
we described our experimental setup both
in Section 3 and made our code available
at https://anonymous.4open.science/r/
temporalrobustness-B3D3/. The repository
contains hyperparameters, prompts, etc.

C.3 Did you report descriptive statistics about
your results (e.g., error bars around
results, summary statistics from sets of
experiments), and is it transparent
whether you are reporting the max, mean,
etc. or just a single run?

We are reporting single-run results since this study
contains descriptive results and does not try to show
a clear benefit of using one model over another.
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C.4 If you used existing packages (e.g., for
preprocessing, for normalization, or for
evaluation, such as NLTK, Spacy,
ROUGE, etc.), did you report the
implementation, model, and parameter
settings used?

Details available at: https://anonymous.4open.
science/r/temporalrobustness-B3D3/

D Human Annotators

D.1 Did you report the full text of instructions
given to participants, including, e.g.,
screenshots, disclaimers of any risks to
participants or annotators, etc.?

N/A, did not use human annotators

D.2 Did you report information about how
you recruited (e.g., crowdsourcing
platform, students) and paid participants,
and discuss if such payment is adequate
given the participants’ demographic (e.g.,
country of residence)?

N/A, did not use human annotators

D.3 Did you discuss whether and how consent
was obtained from people whose data
you’re using/curating?

N/A, did not use human annotators

D.4 Was the data collection protocol approved
(or determined exempt) by an ethics
review board?

N/A, did not use human annotators

D.5 Did you report the basic demographic
and geographic characteristics of the
annotator population that is the source of
the data?

N/A, did not use human annotators

E Use of AI Assistants

E.1 Did you include information about your
use of AI assistants?

We did not use AI assistants to generate text or
perform research directly. We did use ChatGPT and
Grammarly to perform reformulations of existing
text as well as to fix grammatical errors.

F Additional Setup Details

F.1 Extended Discussion of Temporal Source
Datasets

Time-sensitive-QA dataset (Chen et al., 2021) is
constructed by mining time-evolving facts from
WikiData and aligning them to their correspond-
ing Wikipedia pages, employing crowd workers
to verify and calibrate noisy facts, and generat-
ing question-answer pairs based on the annotated
time-sensitive facts. The dataset contains 40,000
question-answer pairs focusing on around 5,500
time-evolving facts; it is structured into two vari-
ants based on difficulty: easy and hard.

TemporalQuestions dataset (Wang et al., 2021a)
is designed to evaluate the capability of QA sys-
tems to handle time-scoped questions. This dataset
focuses on questions related to specific events and
their temporal aspects, derived from historical news
archives and other temporally rich sources. The
dataset contains 1,000 human-generated questions
about major events, half of which are explicitly and
half implicitly time-scoped, meaning half of the
questions contain temporal expressions. In contrast,
the remaining ones lack any temporal references.

ArchivalQA (Wang et al., 2022) is a large-scale
collection designed specifically for temporal news
QA, containing 532,444 question-answer pairs, of-
ten on detailed and minor aspects. These pairs are
derived from the New York Times Annotated Cor-
pus, which spans news articles published between
January 1, 1987, and June 19, 2007. The dataset-
constructing framework with automatic question
generation and filtering steps ensures high-quality
and non-ambiguous questions.

F.2 Additional Model Details

As shown in Table 8, we use a selection of com-
petitive LLMs. Specifically, we use thee following
versions: Llama 3.19, Gemma 210, Jamba 1.511,
Qwen 2.512, Cmd-R+13, and GPT 414.

9https://huggingface.co/meta-llama/Llama-3.
1-8B-Instruct

10https://huggingface.co/google/gemma-2-27b-it
11https://huggingface.co/ai21labs/AI21-Jamba-1.

5-Mini
12https://huggingface.co/Qwen/Qwen2.

5-32B-Instruct
13https://huggingface.co/CohereForAI/

c4ai-command-r-plus-4bit
14https://platform.openai.com/docs/models/gp#

gpt-4-turbo-and-gpt-4
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Model Name Mode Size Notes Cutoff
Llama 3.1 8B Instruction-tuned version Dec. 2023
Jamba 1.5 12B active, 52B total Mixture-of-Experts model that combines mamba (state-space) and transformer blocks. 8bit quant. Mar. 2024
Gemma 2 27B Instruction-tuned version Jun. 2024
Qwen 2.5 32B Instruction-tuned version 2023
Cmd-R+ 104B params RAG-optimized language model, weights openly available. Uses 4-bit quantization N.S.
GPT 4 N.S. OpenAI’s flagship GPT model (gpt-4-1106-preview) Apr. 2023

Table 8: Summary of different models with their respective details

F.2.1 Temporal QA Performance
We evaluate the temporal robustness of LLMs in the
study. Still, for completeness reasons, we also pro-
vide the downstream QA performance of our mod-
els on three established temporal QA benchmark
datasets. The results are shown in Table 9. The
performance of all models, on all metrics, leaves
an opportunity for improvement.

F.2.2 Effect of Prompts
We note that most of our study uses the standard
prompts and did not include any prompt engineer-
ing or established best practice (e.g., Chain-of-
Thought (Wei et al., 2022) or role-playing15 (Kong
et al., 2024)) prompts. We also experiment with
these two best practice prompts16 and show the re-
sults for a selection of models in Table 10. While
the historian role-playing prompt performs compet-
itively across the board, the CoT prompt does not
and might be unsuitable for factual recall, which
usually might not involve multi-step reasoning.
Lastly, we expect prompt tuning to improve the
overall model performance. Still, we did not see
clear evidence that better-performing models con-
sistently outperform others in robustness to our
temporal paraphrases.

G More discussion on the Effect of
Positioning Time

Given that we employ a system prompt and a
prompt that specifically asks for the following ques-
tion to be answered, the time reference at the front
of the question is hardly at the beginning of the
model input. However, the time reference at the
end is almost at the end of the input and should,
therefore, be focussed on by the model. Yet, the
performance is found to be superior when the time
reference is before the question. We hypothesize
that a different thing is at play here: The residual
stream does not have enough bandwidth to store
all historical information on certain entities and

15"You are a historian [...]"
16All prompts will be made available with our code.

relations. Meng et al. (2022) found that when an-
swering factual questions about entities, the em-
beddings of the last entity token would be enriched
with as much information as possible on that en-
tity by retrieving it from the feed-forward layers.
This information is then copied to the last token
embedding, where the attention mechanism selects
the information necessary to answer the question
from the embedding.

Let us look at an example in our normal ques-
tion form: Who was the American president in
2019? Remember that all LLMs in this study are
autoregressive language models (i.e., their atten-
tion may only look at the previous context of a
given token). We see that the token "president," in
which the factual information will be aggregated,
has no "understanding" that it needs to find infor-
mation on what was the case in 2019. Therefore,
it would either save the most recent information or
try to aggregate all information. Using the most
recent information will likely fail with historical
knowledge (and given our other results, we do not
believe this to be the case). Trying to enrich the
embedding with all information on the American
president might fail because there is too much in-
formation. When the last token’s attention then
tries to retrieve the correct information about our
year, it might not be accessible, and the question
might be answered incorrectly. However, if the
question starts with the time–reference, the entity
token ("president") can be precisely enriched with
the information from the correct years and infor-
mation from other years may be then de-prioritized
or discarded. While this hypothesis needs to be
thoroughly tested, for our case of measuring tem-
poral robustness, we can conclude that the desired
output would be models that are robust to where
the time references occur in the question. When
aiming for the best QA performance, however, this
result suggests formulating temporal questions to
start with their temporal references.
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Model ArchivalQA TemporalQuestions Time-Sensitive-QA
Recall Cont. BEM OE Recall Cont. BEM OE Recall Cont. BEM OE

Llama 3.1 22.2 18.5 41.4 23.2 63.1 58.9 76.8 62.1 13.3 7.7 30.7 13.7
Jamba 1.5 30.0 24.3 49.9 35.4 73.3 68.6 86.9 74.2 28.6 18.2 44.7 32.3
Gemma 2 29.3 25.0 40.6 32.3 76.8 72.2 85.7 78.4 23.4 16.0 32.4 26.0
Qwen 2.5 25.6 21.1 31.6 26.0 63.6 60.1 72.1 64.4 19.5 10.0 18.6 16.5
Cmd-R+ 31.8 26.1 46.5 37.0 76.3 72.1 81.5 79.1 30.7 21.1 38.6 32.7
GPT 4 38.5 32.8 46.3 39.8 81.7 76.3 86.7 81.9 44.2 33.2 46.3 39.3

Table 9: Performance of our models on common temporal factual QA benchmarks.

Model Prompt ArchivalQA TemporalQuestions Time-Sensitive hard QA
Recall Cont. BEM OE Recall Cont. BEM OE Recall Cont. BEM OE

Cmd-R+
default 31.8 26.1 46.5 37.0 76.3 72.1 81.5 79.1 30.7 21.1 38.6 32.7
CoT 12.9 12.2 20.5 35.2 34.3 30.9 43.7 71.0 13.6 8.3 16.8 43.8

historian 32.5 26.1 46.4 36.0 74.7 69.7 82.2 77.2 32.5 21.9 38.8 33.6

Jamba 1.5
default 30.0 24.3 49.9 35.4 73.3 68.6 86.9 74.2 28.6 18.2 44.7 32.3
CoT 29.9 24.4 49.7 35.1 73.2 68.5 87.6 72.5 28.5 18.3 45.5 32.9

historian 30.6 25.0 47.5 36.1 74.7 69.6 83.9 76.7 30.3 20.0 46.4 34.5

Llama 3.1
default 22.2 18.5 41.4 23.2 63.1 58.9 76.8 62.1 13.3 7.7 30.7 13.7
CoT 5.2 3.3 10.3 36.1 11.6 8.9 18.8 71.8 7.9 3.3 11.9 33.8

historian 23.0 19.2 41.1 23.6 64.4 60.1 76.2 60.9 15.5 9.8 29.9 15.1

Table 10: Overview of the temporal QA of our models when using different prompting schemes.

H Do Metrics align with Human
Judgement?

To check whether our metrics align with human
judgment, we randomly sampled 100 QA pairs
from Gemma 2 and manually scored every answer.
Table 11 presents the resulting correlation and
agreement scores. Generally, all metrics align well
with human judgment with agreement rates of 87%
and above.

I Results for other Metrics

The following tables contain results on other met-
rics not presented in the main content of the paper
for space limitations.

Table 12 contains the results for the relativization
and removal tests.

Table 13 contains the results for the positioning
and year shift tests.

Table 14 contains the results for the event order-
ing task.

Table 15 contains the results for the Temporal
inverse tests.

Table 16 contains the results for the fact check-
ing and event dating tests.

J The Date-Match Metric

Although the human alignment results on the Event
Dating task (Figure 11) suggest that Contains and
OpenEval would be suitable choices, we manually
found several cases where both OE and contains
did not correctly identify the correct answers. This
was usually the case when models did not adhere

to the format specified in the prompt. Considering
GPT 4’s answer: "The event you’re referring to
is the establishment of Reykjavík, which occurred
on 18 August 1786 [...]". Given the ground-truth
string of "18-08-1786", both OE and contains did
not correctly identify the answer as correct. The
contains metric did understandably fail as soon as
the answer’s format did not precisely match the
ground-truth format applied for the event dating
task ("dd-mm-yyyy"). We, therefore, use our own
date-matching metric that we built using the python
dateutil17 library, which tries to parse a date object
from the predicted answers. If the ground-truth
date and the parsed date match, the answer is scored
with a 1 and otherwise with a 0. After manually
inspecting 100 predicted answers for each model,
we find 20 different ways to write the dates being
used and verify that our metric correctly parses all
of them (Table 17). Additionally, we handle incom-
plete predictions: Per default, the dateutil package
that we use parses “April 2020” to “1st of April
2020”, so in case of a missing day, it will use the
first day of the month. For ambiguous predictions
such as 11-10-2020 we assume the format provided
in the prompt. In our prompt for the event dating
task, we specify the format (“dd-mm-yyyy”). So
11-10-2020 would be parsed as the 11th of October.

K Prompts

Prompts for the tasks are shown in Table 18. Addi-
tionally, we include the utilized system prompts in
Table 19.

17https://github.com/dateutil/dateutil/
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Task Metric Matthews Correlation Pearson Correlation Cohen Kappa Agreement Rate
Cont. 0.7522 0.7522 0.7420 0.89

QA BEM 0.7322 0.7322 0.7241 0.87
OE 0.9778 0.9778 0.9776 0.99
Cont. 0.757 0.757 0.729 0.88

Fact Checking BEM 0.391 0.391 0.307 0.62
OE 0.826 0.826 0.811 0.92
Cont. 1.0 0.9999 1.0 1.0

Event Dating BEM 0.6624 0.6624 0.6099 0.8
OE 1.0 0.9999 1.0 1.0
date-match 1.0 0.9999 1.0 1.0
Cont. 1.0 1.0 1.0 1.0

Event Ordering BEM 0.081 0.081 0.080 0.54
OE 0.0 n.d 0.0 0.5

Table 11: Correlation of QA metrics with human judgment on 100 (QA) and 50 (remaining tasks) randomly sampled
data points.
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Model ↔Reversal
Fwd Fwd ∩ Inv Diff.

Cont. BEM OE Cont. BEM OE Cont. BEM OE
Llama 3.1 3.4 16.5 7.3 0.9 6.5 3.0 -72.6% -61% -55.6%
Gemma 2 7.6 25.1 15.2 1.6 9.5 6.0 -79.3% -62% -60.6%
Qwen 2.5 5.6 15.6 12.1 1.2 4.5 3.9 -77.8% -71% -67.7%
Jamba 1.5 8.8 35.5 23.7 1.8 15.9 9.0 -79.9% -55% -62.1%
Cmd-R+ 10.7 29.8 22.4 2.3 15.0 10.2 -78.6% -50% -54.7%
GPT 4 16.5 36.9 31.4 4.5 20.4 16.5 -72.9% -45% -47.4%

Table 15: Results of the tests for the temporal reversal test. We report Contains, BEM, and OpenEval scores.

Model ↑Fact Checking

Cont. BEM OE
Llama 3.1 29.1 73.1 34.2
Gemma 2 39.9 74.7 42.6
Qwen 2.5 74.7 92.4 31.4
Jamba 1.5 65.5 97.5 52.5
Cmd-R+ 46.5 75.4 45.7
GPT 4 33.1 65.3 36.5

Table 16: Results for the fact checking task.

Date Format
"this is a full sentence July 18, 1956."
"October 19, 1763."
"March 24, 1935"
"December 2019"
"2019"
"Dec, 2019"
"September 27, 1941"
"October 17, 1961 (10-10-1961)"
"27 February 1977"
"24 May 1899."
"2nd December 1959."
"10th of July, 1806."
"16th of October, 1756"
"12-December-1957."
"01-01-1930."
"01-09-1950."
"14-11-1972."
"100712"
"01012022"
"28/3/1941"
"04 03 1809"
"20111104"
"2011-11-04"
"1502-02-11"
"Jan 9, 2021"
"Jun 11, 2023"
"9 Jan 2021"
"21 NOV 1859"
"9-Jan-2021"
"11-Jun-2023"
"The event occurred on 23-25-2020 (DD-MM-YYYY)."
"The Peking Opera was born on 1759-01-01, which is January 1, 1759"
"The Bhadla Solar Park was commissioned on March 25, 2012. Therefore, the event happened on 25"

Table 17: Different formats of dates given by the models in this study. We made sure that the date-match metric
properly parses at least these variations.
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Task Prompt Template
QA Please answer the question:

{question}
Answer:

Event Ordering Please answer the question with ’True’ or ’False’.
Question: Did A happen before B?

A: {event1}
B: {event2}

Answer:

Fact Checking Please answer the claim with ’True’, ’False’ or ’Conflicting’.
Claim: {claim}
Answer:

Event Dating (Day) Here is an event:
{event}
Please answer with the date on which the event happened (DD-MM-YYYY).
Answer:

Event Dating (Month) Here is an event:
{event}
Please answer with the date on which the event happened (MM-YYYY).
Answer:

Event Dating (Year) Here is an event:
{event}
Please answer with the date on which the event happened (YYYY).
Answer:

Completion Please complete the following sentence:
{question}

Table 18: Prompt Templates for Different Tasks.

Mode Description
Default You are a helpful assistant.

Historian Provide direct and concise answers to historical or temporal questions. You are a historian
specializing in temporal question answering. Please avoid speculation and present verified
historical knowledge wherever possible.

CoT You are a helpful assistant that thinks step by step.

Table 19: Different system prompts.

15705


