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Abstract

Recent advancements in Large Vision-
Language Models are accelerating the
development of Graphical User Interface
(GUI) agents that utilize human-like vision
perception capabilities to enhance productivity
on digital devices. Compared to approaches
predicated on GUI metadata, which are
platform-dependent and vulnerable to imple-
mentation variations, vision-based approaches
offer broader applicability. In this vision-based
paradigm, the GUI instruction grounding,
which maps user instruction to the location of
corresponding element on the given screenshot,
remains a critical challenge, particularly due
to limited public training dataset and resource-
intensive manual instruction data annotation.
In this paper, we delve into unexplored chal-
lenges in this task including element-to-screen
ratio, unbalanced element type, and implicit
instruction. To address these challenges, we
introduce a large-scale data synthesis pipeline
UI-E21-Synth for generating varying complex
instruction datasets using GPT-40 instead of
human annotators. Furthermore, we propose
a new GUI instruction grounding benchmark
UI-I2E-Bench, which is designed to address
the limitations of existing benchmarks by
incorporating diverse annotation aspects.
Our model, trained on the synthesized
data, achieves superior performance in GUI
instruction grounding, demonstrating the
advancements of proposed data synthesis
pipeline. The proposed benchmark, accompa-
nied by extensive analyses, provides practical
insights for future research in GUI grounding.
We will release corresponding artifacts here.

1 Introduction

Graphical User Interface (GUI) agents are de-
signed to understand and automate human instruc-
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Figure 1: GUI grounding requires to localize elements
in screenshots based on user instructions, with implicit
instructions posing greater reasoning challenges than
explicit ones.
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Figure 2: Left: Existing benchmark’s element-to-screen
ratio significantly deviates from typical real-world desk-
top displays like 1080p and 1440p, on landscape sam-
ples. Right: The comparison shows Text and Icon
dominates existing benchmark, leaving the rest of ele-
ment types omitted.

tion in the digital devices, promising a future
where humans are liberated from repetitive tasks,
thereby enhancing operational efficiency and pro-
ductivity. The rise of Large Language Models
(LLMs) (Achiam et al., 2023) made it feasible to
generally understand human instructions and struc-
tured text data. Hence, early efforts (Gur et al.,
2023; Zhou et al., 2023; Shaw et al., 2023; Deng
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https://colmon46.github.io/i2e-bench-leaderboard/

et al., 2024) are made to operate GUI by under-
standing the text-rich metadata behind GUI, e.g.,
HTML. However, some research (Fu et al., 2024,
Zheng et al., 2024; WebAIM, 2024) has shown
that GUI metadata is vulnerable and highly depen-
dent on application developers for specific plat-
forms. To overcome these limitations, more recent
research (Zhang et al., 2023b; Cheng et al., 2024a;
Gou et al., 2024; Wu et al., 2024; Lin et al.) has
concentrated on training Vision-Language Mod-
els (VLMs) to mimic human behavior in GUI op-
erations, manipulating GUI elements from pixels
based on user instructions. This approach makes
GUI grounding capability as the core, which maps
the user instruction into the corresponding element
by outputting specific coordinates.

Despite these works show satisfying progress
on existing benchmark (Cheng et al., 2024b). Our
investigation shows that there still is big gap be-
tween the existing benchmark and complicated and
various GUI grounding environments. In this work,
we thoroughly study the whole progress to build
an element grounding dataset from screenshot col-
lection to final instruction generation, revealing
three main aspects that have not been fully explored
previously: (a) Element-to-screen ratio: GUI in-
struction grounding necessitates higher resolution
and smaller elements compared to natural scene
object grounding. While previous studies (Cheng
et al., 2024b; Gou et al., 2024) have discussed the
screenshot resolution in training dataset, we argue
that the key factor is the element-to-screen ratio,
i.e., the size of an element relative to the screen-
shot. This ratio is affected by both resolution and
Ul zoom level. As shown in the left of Figure 1,
the landscape samples in existing benchmark has
a larger element-to-screen ratio than typical real-
world desktop displays like 1080p and 1440p, po-
tentially leading to an overestimation of model per-
formance. (b) Unbalanced element type: Differ-
ent GUI element types exhibit diverse appearances
and interaction designs, also with varying frequen-
cies of occurrence. For instance, text buttons rep-
resent the most prevalent category, whereas check-
boxes are comparatively less common. Unlike text
buttons, whose functionality is often explicitly con-
veyed by their textual labels, checkboxes typically
rely on surrounding elements to define their pur-
pose. This distinction has not been adequately ad-
dressed in previous research. (¢) Implicit instruc-
tion: In the context of GUI instruction grounding,
users could convey their instructions based on their

own intuitive understanding of element function-
ality or position, causing lack of direct correspon-
dence with visible text on the screenshot, which we
refereed as “implicit instruction”. Figure 1 show-
cases the complexity of implicit instruction. The
implicit instruction challenges the understanding
and reasoning capability of VLMs.

To address the aforementioned challenges, we
introduce a large-scale instruction grounding data
synthesis pipeline, termed Element-to-Instruction
Synthesis, abbreviated as UI-E2I-Synth. This
pipeline utilizes GPT-40 instead of human annota-
tors to synthesize realistic grounding user instruc-
tions of varying complexity, which differs from the
element referring expressions that previous works
curated. By the principle of divide and conquer,
UI-E2I-Synth decomposes grounding instruction
synthesis into three subtasks and execute them step
by step. Initially, we collect screenshot-metadata
pairs from various sources at different resolutions,
then using a heuristic GUI metadata parser to ex-
tract reliable element attributes. Next, With these
high-quality attributes to alleviate hallucinations,
both explicit and implicit referring expressions are
prompted to generate from GPT-40. In the final
step, GPT-40 is employed again to simulate user
behavior by generating specific action parameters.
These action parameters are then combined with
the REs to synthesize final realistic user instruc-
tions.

To more comprehensively evaluate model perfor-
mance on GUI instruction grounding, we introduce
a new benchmark UI-I2E-Bench that includes de-
tailed annotations curated through a combination
of our synthesis pipeline and human annotators.
These annotations encompass various dimensions
such as element type, element-to-screen ratio, and
the level of instruction implicitness. Through rig-
orous evaluation on our proposed benchmark, we
demonstrate that existing VLMs are still far from
being satisfactory. To address the gap, we apply
the proposed UI-E21-Synth to collect a synthesized
GUI grounding dataset comprising 9.9M instruc-
tions. Then following OS-Atlas (Wu et al., 2024)
we fine-tune two different pre-trained VLMs on
the curated dataset and evaluate them. The experi-
mental results demonstrate that our models achieve
advanced performance on both the existing bench-
marks and our proposed one, with substantially
less instruction data. Notably, our models show
outstanding capabilities in comprehending implicit
instructions and handling long-tailed element types.
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These findings validate the efficacy of our data syn-
thesis framework for GUI grounding, while our
comprehensive benchmark analysis provides prac-
tical insights for future research in this domain.

2 Related work

Autonomous GUI Agent and Vison-Language
Models. With the development of LLMs, re-
searchers have built autonomous agents to per-
form complex reasoning tasks (Sumers et al.; Yang
et al., 2024; Xi et al., 2025). Early works (Gur
et al., 2023; Zhou et al., 2023; Shaw et al., 2023;
Deng et al., 2024) have initiated the development
of GUI agent frameworks for webpages and mo-
bile platforms using GUI metadata. To address the
limitations of unstable GUI metadata, Responsi-
bleTA (Zhang et al., 2023b) introduced a vision-
based GUI agent framework and SeeClick (Cheng
et al., 2024a) highlighted the importance of instruc-
tion grounding in downstream GUI agent tasks.
While works like RUIG (Zhang et al., 2023a) im-
proved GUI grounding via reinforcement learning,
current general-purpose VLMs still lack satisfac-
tory GUI grounding capabilities. Consequently,
recent studies (Gou et al., 2024; Wu et al., 2024,
Lin et al.) have focused on enhancing the GUI
grounding abilities of VLMs. simultaneously, in
industry, closed-source solutions (OpenAl, 2025;
Anthropic, 2024) have advanced rapidly but with
minimal detail disclosure. Our work from data
perspective contributes by synthesizing large-scale
GUI grounding instructions and is intended to ben-
efit the open-source community.

Instruction Dataset Synthesis. Instruction syn-
thesis (Ding et al., 2023; Wang et al., 2022; Xu
et al., 2023) has emerged as a prevalent strategy in
the field of large language models due to its effec-
tiveness in reducing the need for human effort in
labeling datasets of millions of samples. Recent
works make preliminary exploration about GUI
grounding data synthesis. SeeClick utilizes HTML
tags to generate referring expressions for webpage
elements. UGround improves on this by employing
a hybrid pipeline that creates referring expressions
using both external LLMs and VLMs. OS-Atlas
derives instructions from sequential Ul changes but
faces scalability issues due to the need of screen-
shot traces. Our data synthesis pipeline differs
from previous works in several key aspects, most
notably in that prior studies have focused solely
on element referring expressions rather than gen-

uine user instructions. These existing approaches
overlook the complex role that users play in formu-
lating instructions and also screen-to-element ratio
and long-tailed element type.

3 Approach

Model-based large-scale GUI grounding instruc-
tion synthesis is challenging for multimodal hallu-
cinations and varying complexity of user instruc-
tion. UI-E2I-Synth includes three key steps: raw
data collection and parsing, referring expression
generation and instruction synthesis, as illustrated
in Figure 3. These steps are executed sequentially,
with each step designed to address specific chal-
lenge: extracting reliable element attributes to miti-
gate hallucinations, generating explicit and implicit
referring expressions to diversify instruction diffi-
culty, and synthesizing instructions with user action
simulation. In the following subsections we intro-
duce each step on details.

3.1 Raw Data Collection and Parsing

This component is designed to collect diverse
screenshots from multiple platforms and obtain
reliable element attributes from GUI metadata for
the following referring expression generation.

We first build data collection infrastructure
across various platforms to obtain the GUI screen-
shot and metadata pairs. For Web platform, we
use the dumped webpage metadata in Common
Crawl (Common Crawl, 2024) and re-render as
webpage screenshots. For Windows platform, we
select common applications, traverse the applica-
tion to obtain different UI screenshots. Specifi-
cally, we start from the inital UI of a given applica-
tion, parse out clickable buttons from its metadata
and click these buttons to transit to other Ul in
this application.All the process is conducted un-
der a virtual machine where no personal informa-
tion is involved and all corresponding UIA data
is recorded. For mobile platform, we leverage the
existing metadata-screenshot pairs in training set
of AndroidControl (Li et al., 2024). Different plat-
forms yield different metadata formats, such as
DOM (Mozilla, 2024) for Web, UIA (Microsoft,
2021) for Windows, VH (Google, 2024) for An-
droid. To unify element representation from dif-
ferent platform metadata, we build corresponding
heuristic element parser to extract only three key
attributes including element type, element content
and element bounding box. For element type, we
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Figure 3: Overview of proposed data synthesis pipeline UI-E2I-Synth. The three steps respectively generate a
high-quality pool of elements and their corresponding attributes, diverse element referring expressions, and user
instructions. The output of the synthesis pipeline is format as <screenshot, user instruction, element coordinates>.
GPT-4o is utilized in the component Referring Expression Generator and Instruction Synthesis.

analyze the UI element representation in different
metadata format and categorize them into five main
element types:

» Text: A button element with explicit text.

 Inputfield: An element requiring user input or
content editing.

* Dropdown: A button that allows user input by
selecting from provided options.

* Icon: A graphical button representing function-
ality through an image.

* Toggle: A two-state element, such as checkboxes,
radio buttons, and switches.

Accurately parsing every element for each plat-
form is extremely difficult, which means tons of
rules need be constructed manually. However, GUI
grounding data does not require perfect parsing for
every element in a single screenshot. Instead, our
goal is to extract sufficiently accurate element at-
tributes from large-scale screenshot-metadata pairs.
With this goal, we build our heuristic metadata
parser which contains heuristic rules to only keep
high precision but leaving recall aside.

After obtaining the three key element attributes,
we measure the element type distribution, adjust
the distribution through resampling, and compose
a balanced candidate pool for the next step.

3.2 Referring Expression Generation

The Referring Expression Generation step is de-
signed to enable exsiting Large VLM to generate
expressions that are both reliable and diverse in
difficulty. The element referring expressions (REs)
denote a element description from a specific per-
spective, which is independent from user action.
Generating elements and their descriptions from
scratch can be challenging for Large VLMs, as

they often struggle to produce accurate coordinates
and are prone to hallucinations (Zheng et al., 2024)
under high-resolution images. A straightforward
method of generating element REs is using Set-of-
Marks (Yang et al., 2023) to caption every marked
element. However, this method also tends to re-
sult in severe hallucinations. To address this issue,
we propose a attribute-enhanced style of RE gen-
eration. We supply a list containing the element
types and element content obtained from the previ-
ous step, with Set-of-Marks screenshots as context.
We then leverage GPT-40 as the Large VLM to
first generate a full description that explains the
function of each element and the expected outcome
when interacting with it. Next, GPT-4o0 is prompted
with generating two types of REs: explicit RE and
implicit RE. We define explicit RE as directly refer-
ring to the obvious features of the element, while
implicit RE refers to the element by describing the
semantic function or its relationship with nearby el-
ements, thus avoiding the obvious visible features.
The generated explicit and implicit REs collectively
form the element RE pool, which provides user ac-
tion object for the final step.

3.3 Instruction Synthesis

The obtained referring expressions are only descrip-
tions about element, omitting the user role in the
progress. User instruction implies intention from
user, which can be directly or implicitly related to
the element. When directly asked to generate user
instruction, we observed that Large VLM trends
to generate generally instruction from a role of as-
sistant, such as “Fill your details in the input field”
or “Click to check your profile”, even we ask it to
generate as a computer user’s first perspective view.

15671



Sample Landscape element-  Fine-grained Min type Implicitness Implicit instruction
Benchmark . . . . .
Num to-screen ratio type annotation proportion annotation proportion
ScreenSpot 1,272 0.088 3.21%" X -
Our UI-I2E-Bench 1,477 0.042 12.34% v 63.03%

Table 1: Comparison between proposed benchmark and existing benchmark. Screen-to-element ratio is calculated
as the ratio of the square roots of the areas of the box and the image. T denotes we re-annotate ScreenSpot-Web with

our fine-grained element type and calculate the number.

This phenomenon may arise because the output
message role in the Large VLM is set to “assis-
tant”, preventing it from easily simulating the user
role. Hence, here we propose to a parametrization
way to generate user instruction. We decompose
the wanted instruction into three parameters, user
action type, user action content and element object.
A prompt is utilized to instruct GPT-4o0 to simulate
a user interacting with the current application, by
generate specific user actions and content. Combin-
ing previous element referring expressions as the
element object, GPT-4o0 is further instructed with
synthesizing the final instruction with all these ac-
tion parameters. To maintain diversity in the gener-
ated instructions, both explicit and implicit element
referring expressions are employed to create dis-
tinct user instructions. To this end, the output of the
whole synthesis pipeline is format as <screenshot,
user instruction, element coordinates>.

With this pipeline, we synthesize a large-scale
grounding instruction data to train a model to
demonstrate our advancement. Dataset details are
explained in Section 5.1.

4 UI-I12E-Bench: A Comprehensive
Grounding Benchmark

As shown in Figure 1, the existing benchmark
ScreenSpot exhibits a lower level of difficulty in
element-to-screen ratio. Additionally, it lacks de-
tailed element annotations, such as element type
and implicitness, which are crucial for assessing the
element grounding capabilities of models. To ad-
dress these limitations, we introduce UI-I2E-Bench,
developed through a semi-automated workflow to
provide a more comprehensive evaluation. We first
apply our data synthesis pipeline into data collected
from multiple platforms, then we sampled the in-
structions by element-to-screen ratio and element
type. We manually review the validness of parsed
element and correctness of generated instruction
to obtain the final UI-I2E-Bench, which includes
1477 grounding instructions from Web, Windows
and Android. The further statistical data and com-
parisons with ScreenSpot are included in Table 1.

Our benchmark offers more comprehensive annota-
tions, a lower element-to-screen ratio, and a higher
proportion of implicit instructions. These features
facilitate in-depth performance diagnostics in chal-
lenging GUI instruction grounding cases.

S Experiments

To demonstrate the effectiveness of our grounding
instruction synthesis pipeline, we utilize UI-E2I-
Synth to collect a GUI grounding training dataset
and fine-tune a pre-trained VLM to develop UI-12E-
VLM. This section is structured as follows: First,
we provide details on the curation of the training
dataset and model training. Next, we introduce
various baselines and evaluate the performance of
UI-I2E-VLM against these baselines on two GUI
instruction grounding benchmarks. We analyze the
results on UI-I2E-Bench to reveal the shortcomings
of current VLMs across multiple aspects. We then
integrate UI-I2E-VLM with the GPT-40 planner
and assess its performance on the live GUI agent
benchmark OSWorld (Xie et al., 2024).

5.1 Training Details

Training data curation. In this subsection, we
briefly describe the final curated dataset leverag-
ing the UI-E2I-Synth pipeline while leaving more
details in our supplementary materials.We apply
our pipeline mainly on three platforms including
Web, Windows and Android to derive this train-
ing dataset. The Web is our main data source due
to the variety of layouts and design styles across
websites, as well as the extensive quantity of web-
pages available in Common Crawl. We start by ex-
tracting webpages from the top 500k domains with
the highest traffic for three webpages per domain.
Next, we filter out non-English and error state web-
pages, resulting in final 724,839 webpages. These
webpages are re-rendered at seven different resolu-
tions, including one mobile resolution to simulate
mobile scenarios and left six resolutions for land-
scape desktops. For Windows platform, we select
90 windows apps to totally collect 15K screenshot-
metadata pairs. For Android platform, we lever-
age existing screenshot-metadata pairs in training
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ScreenSpot

UI-I12E-Bench

Model Size #Train ScreenSpot-Pro  Avg.*
Mobile Web Desktop Avg. Explicit Implicit Avg.

InternVL2-4B 4B - 7.2 0.5 4.5 42 1.4 0.5 0.9 0.3 1.8

Qwen2-VL-7B 7B - 51.3 277 49.1 42.6 53.8 45.6 48.7 1.6 31.0
OmniParser - - 78.5 63.9 79.7 73.9 54.3 52.4 53.1 8.3 45.1
Seeclick 9.6B 1.0M 66.1 44.7 54.5 55.8 37.1 19.9 26.4 1.1 27.8
UGround 7B 9.7M 72.5 75.7 74.6 74.1 65.8 47.1 54.2 16.5 48.3
ShowUI 2B 2.M 84.6 732 69.9 76.8 51.3 35.6 41.5 7.7 42.0
OS-Atlas-4B 4B 13.6M 73.3 73.4 61.1 70.1 51.5 39.9 443 3.7 394
0OS-Atlas-7B 7B 13.6M 838  83.1 79.7 82.5 63.2 55.8 58.6 18.9 53.3
UI-I2E-VLM-4B 4B 9.9M 70.3 70.9 70.1 70.4 61.9 48.3 53.4 12.2 45.3
UI-I2E-VLM-7B 7B 9.9M 86.5 78.0 82.6 82.5 72.0 67.9 69.5 23.6 58.5

Table 2: Results on GUI grounding benchmarks. #Train denotes the instructions number in training data. We
calculate the average accuracy as correct samples divided by total samples. Avg.* denotes the arithmetic mean of

average accuracy across three benchmarks.

Model Size #Train Platform Element Type
Web Desktop Mobile Button Icon Dropdown Input Toggle

OmniParser - - 30.8 45.5 67.6 68.4  60.5 65.9 58.9 26.9
Seeclick 9.6B 1.0M 18.2 15.8 37.2 316 262 22.5 29.6 22.1
Uground 7B 9.7M 53.0 443 61.8 573  49.7 76.4 64.2 37.0
ShowUI 2B 2. M 29.6 30.4 539 520 441 51.1 52.8 18.9
OS-Atlas-4B 4B 13.6M  54.6 19.9 58.6 435 441 46.6 46.3 422
0OS-Atlas-7B 7B 13.6M 522 48.9 68.1 69.1 587 80.3 70.1 323
UI-I2E-VLM-4B 4B 9.9M 60.9 38.9 61.4 543  50.0 61.2 68.6 39.0
UI-I2E-VLM-7B 7B 9.9M 62.1 64.0 76.2 770  68.2 84.8 86.2 444

Table 3: Detailed results on UI-I2E-Bench. #Train denotes the instruction number in training data.

set of AndroidControl (Li et al., 2024). Then we
run the UI-E21-Synth pipeline on all the collected
screenshot-metadata pairs to derive our synthsized
dataset. Combined wuth the existing mobile GUI
dataset MOTIF (Burns et al., 2022) and Widget-
Caption (Li et al., 2020) for grounding purpose,
we final training dataset includes 1.6M screenshots
and 9.5M instructions. The detailed training data
statistics are provided in AppendixA. Our data has
passed our ethics review where personal informa-
tion has been examined and removed.

Base models. Following OS-Atlas (Wu et al.,
2024), We consider InternVL2-4B (Chen et al.,
2023) and Qwen2-VL-7B (Wang et al., 2024) as
our base models. The pretraining data of Qwen2-
VL-7B incorporate GUI screenshots, whereas In-
ternVL2 does not. Both models support multi-
resolution image processing. We name our models
as UI-I2E-VLM-4B and UI-I2E-VLM-7B, with
training details provided in Appendix B.

5.2 GUI Instruction Grounding Evaluation

In this section, we compare UI-I2E-VLM with Om-
niParser (Lu et al., 2024), SeeClick (Cheng et al.,

2024b), UGround (Gou et al., 2024), ShowUI (Lin
et al.) and OS-Atlas (Wu et al., 2024) on multi-
ple GUI grounding benchmarks. OmniParser is
a screen parsing tool containing a series of mod-
els. We combine OmniParser with GPT-40 to per-
form GUI grounding as its original paper suggests.
SeeClick, UGround, ShowUI and OS-Atlas are
VLMs fine-tuned for GUI instruction grounding
tasks. Following their inference setting, we prompt
SeeClick, UGround and ShowUI to generate (X, y)
coordinates. For OS-Atlas and UI-I2E-VLM, we
prompt the model to generate a bounding box and
use its center point as the predicted coordinate.

For the evaluation benchmarks, we not only in-
clude the proposed benchmark but also the pop-
ular ScreenSpot even a concurrent benchmark
ScreenSpot-Pro. ScreenSpot is a popular GUI
grounding benchmark consisting of 1,272 cross-
platform samples. ScreenSpot-Pro is a very recent
benchmark focusing on professional desktop appli-
cations with high resolution. We use accuracy as
the evaluation metric, where a prediction is consid-
ered as a correct one if the coordinate falls within
the ground-truth bounding box.
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Main result comparison. We present a compre-
hensive performance comparison across the afore-
mentioned three benchmarks to evaluate the mod-
els’ cross-domain generalization capabilities. As
demonstrated in Table 2, UI-I2E-VLM-7B achieves
superior performance across all benchmarks, sur-
passing the previous state-of-the-art model, OS-
Atlas-7B, with a 9.7% relative improvement in av-
erage performance. Notably, the robust improve-
ment on all the three distinct benchmarks is attained
with a training set containing only 72% of the in-
struction quantity used in OS-Atlas, which makes
our curated data quality more impressive. For our
UI-I2E-VLM-4B, despite its base model being pre-
trained without GUI-specific data, still achieves
impressive performance compared to the models
of similar parameter size. These findings highlight
the effectiveness of our data synthesis pipeline.

By comparing the numerical results between
ScreenSpot and UI-I2E-Bench, our findings indi-
cate that the reported progress in GUI grounding
capabilities has been substantially overestimated.
A notable example is ShowUI, which demon-
strates seemingly impressive performance metrics
on ScreenSpot despite utilizing significantly fewer
model parameters and training data. However, its
performance drops markedly when evaluated on Ul-
I2E-Bench and ScreenSpot-Pro, revealing critical
limitations in the complexity and representative-
ness of the original ScreenSpot benchmark.

Teardown diagnostic on UI-I2E-Bench. Lever-
aging the diverse annotation aspects provided in
UI-12E-Bench, we conducted a detailed teardown
analysis of model performance on UI-I2E-Bench.
We report the detailed performance on the three di-
mensions separately in Table 2 and 3. Compared to
the explicit instruction category, we observe more
significant improvement happening to the implicit
ones. The most outstanding model, OS-Atlas-7B
falls behind of us for 12.1 percentage on this dimen-
sion, which means previous works underrate on the
complexity of instructions. Another interesting ob-
servation is that OmniParser shows a competitive
result on implicit instruction with understanding
abilities of GPT-40. However, it falls behind on
simpler explicit instructions. It suggests that the
primary bottleneck of OmniParser lies in localizing
smaller and long-tailed element.

To further study the impact of element-to-screen
ratio in GUI grounding, we analyze the accuracy
across different ranges of the element-to-screen ra-

Model Mobile Desktop ‘Web Ave,
Text Icon Text Icon Text Icon
0S-Atlas-Web 352 249 670 307 709 398 449
UL-E2I-Synth-Web  89.0 34.1 933 429 79.6 447 65.8
- Inst. Synth. 854 205 840 186 69.6 30.1 54.3(1L5)
- GPT-4o 586 370 521 379 46.1 442 46.9( 18.9)
Table 4: Data curation ablation experiment on

ScreenSpot. Different 500k instruction data is sampled
to separately fine-tune and evaluate the same model.
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Figure 4: Accuracy comparison by the proportion of
element size to image size, evaluated on UI-I2E-Bench.

tio between our UI-I2E-VLM-4B and UGround, as
shown in Figure 4. Grounding accuracy drops as
the element size ratio decreases, highlighting the
importance of benchmarks that emphasize smaller
elements and higher-resolution images. Benefit-
ing from our training data and larger number of
input image tokens, UI-I2E-VLM achieves better
performance on small elements.

In element type analysis of Table 3, we observe
a significant performance gap in the Icon and In-
putfield types compared to previous models, indi-
cating that prior work has largely overlooked these
long-tail categories. It supports our data synthesis
pipeline to use a relatively balanced distribution of
element types when curating the training dataset.

Data curation ablation study. To fairly evaluate
the quality of our curated dataset and analyze com-
ponents in our data synthesis pipeline, we compare
our synthesized data with public released data from
OS-Atlas (Wu et al., 2024) and variations from our
own synthesis pipeline. Since OS-Atlas only con-
structs data on the web at a large scale, we also cu-
rate data on web domain. The comparison includes:
(1) OS-Atlas-Web, the synthesized data from OS-
Atlas dataset, derived from FineWeb (Penedo et al.,
2024); (2) UI-E2I-Synth, 500k instructions sam-
pled from the web portion of our final training
dataset; (3) - Inst. Synth., a variant that skips
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Figure 5: Typical failure cases in UI-I2E-Bench. Blue box denotes the correct elements while red ones are wrong

prediction from our model.

Setting OS Office Daily Profess. Workflow Overall
Screenshot only* 8.3 2.6 6.5 0 2.1 3.6
+0S-Atlas 304 27 11.7 16.3 22 85
+UI-I2E-VLM 26.1 52 23.4 18.8 2.8 12.0

Table 5: Task success rate on OSWorld. *Report as the
performance reproduced by us. In this experiment, the
environment and settings are consistent.

the instruction synthesis step and uses referring ex-
pressions as instructions; and (4) - GPT-4o, a con-
figuration using only raw element attributes as in-
structions. We sample 500k instruction from above
configurations and fine-tuned the same InternVL2-
4B model separately on each dataset and evaluated
the trained models on the ScreenSpot benchmark.
As shown in Table 4, the results demonstrate that
our dataset yields significant performance improve-
ment compared to OS-Atlas-Web. While this ad-
vantage diminishes with OS-Atlas larger training
data in Table 2, it also demonstrate the effectiveness
of our curated data. Furthermore, the performance
degradation observed when eliminating instruction
synthesis and GPT-40 components provides evi-
dence for our UI-E2I-Synth design.

Failure case analysis. Figure 5 illustrates com-
mon errors of UI-I2E-VLM on UI-I2E-Bench, in-
cluding: (1) failure to recognize icons without
text due to limited knowledge, (2) incorrect po-
sitioning of elements within rows or columns, (3)
misinterpretation of spatial relationships, (4) mis-
understanding hierarchical relationships, and (5)
misclassifying element types, such as confusing
checkboxes with adjacent text.

5.3 Agent Task Online Evaluation

OSWorld. We evaluate our model on OS-
World (Xie et al., 2024), a live benchmark built

in real computer environment for GUI agents.
OSWorld consists of 369 open-ended computer
tasks across various operating systems, including
Ubuntu, Windows, and macOS. Following its orig-
inal screenshot-only design, we use GPT-40 as the
planner, providing only screenshots as the obser-
vation space. For every step, the planner is given
the user task and the screenshot of current stage to
predict the next action to take in next step. Then for
the screenshot and the predicted action, we lever-
age VLMs to provide corresponding element co-
ordinates to compare the effect of different VLMs.
For screenshot only baseline, we use GPT-40 to
directly generate element coordinates. The prompt
used in evaluation is provided in Appendix F. The
result comparison is shown in Table 5. The results
show that UI-I2E-VLM helps to address GPT-40’s
limitations in grounding and shows competitive per-
formance, which prove our data synthesis pipeline
can benefit the GUI agent development.

6 Conclusion

This work tries to identify and address critical
challenges in GUI instruction grounding, such as
element-to-screen ratio, unbalanced element types,
and implicit instructions, through the introduction
of a large-scale data synthesis pipeline, UI-E2I-
Synth. Moreover, we propose a new GUI instruc-
tion grounding benchmark, UI-12E-Bench, which
overcomes the limitations of existing benchmarks
by incorporating diverse annotation aspects. Our
model, trained on the synthesized data, outperforms
the previous state-of-the-art grounding models with
less data and a smaller model size. We hope this
work provides valuable insights and tools for the
future development of GUI instruction grounding.
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Limitations

While the introduction of a large-scale data syn-
thesis pipeline (UI-E2I-Synth) has significantly
improved the generation of extensive instruction
datasets, there is still potential for further scaling
the data size and model size. Increasing the dataset
size could enhance the robustness and generaliz-
ability of the model, addressing more diverse and
complex GUI scenarios. Another limitation is this
work only focuses on English instruction, we hope
to further apply our data synthesis pipeline on other
lanugages.

Ethical considerations

Automated GUI agents can liberate human from
repetitive tasks in digital devices but also could be
used to launch robot attacks, such as brute force lo-
gin attempts, automated spam, or denial-of-service
attacks, by interacting with web interfaces at a
speed and scale beyond human capability. They
might be used to automate phishing attacks, where
the agent mimics legitimate user interactions to
steal sensitive information. It necessitates the main-
taining transparency about the capabilities and lim-
itations of GUI agents.
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Appendix

The writing of this paper was limitedly assisted by
Al, with refinement focused on language and style,
and no original ideas generated by the Al

A Data Statistics

We present a detailed summary of the statistics for
the complete training dataset we used in Table 6.
All the external dataset used are publicly available
with Apache 2.0 License.

Dataset Platform #Screenshots #Instructions

UI-E2]-Synth-Web Web 1,536,200 9,097,736
UI-E2I-Synth-Desktop Desktop 14,087 334,397
UI-E2I-Synth-AndroidControl ~ Mobile 40,199 109,126
MOTIF(Burns et al., 2022) Mobile 30,699 320,219
WidgetCaption(Li et al., 2020)  Mobile 14,409 38,103
Total - 1,635,594 9,899,581

Table 6: Grounding training datasets statistics.
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We further analyzed the statistics of the synthetic
data. In our synthetic data, the proportion of non-
text elements is 23.0%. For comparison, we ran-
domly sampled 100 elements from the SeeClick
web data, manually labeled the non-text elements,
and calculated their proportion. In SeeClick, non-
text elements only account for 8.7%. Our dataset
exhibits a more balanced distribution across differ-
ent element types.

Additionally, we randomly sampled 1,000 ele-
ments from landscape screenshots in both datasets
and calculated their element-to-screen ratio. The
distribution in shown in Table 7. Compared to
SeeClick, we constructed our dataset with more
data for smaller and more challenging targets, in
order to optimize the model’s performance in high-
resolution real-world scenarios.

Element-to-screen | Proportion (%) Proportion (%)
Ratio Range (SeeClick) (Ours)
0.00 - 0.02 11.49 36.92
0.02 - 0.04 43.30 40.43
0.04 - 1.00 45.21 22.65

Table 7: Element-to-screen ratio comparison between
SeeClick web dataset and our synthetic web dataset.

B Training Details

UI-I2E-VLM-7B. To maintain consistency
with the Qwen2-VL training data, we con-
verted the format of the bounding boxes to
<|box_start|>(x1,y1), (x2,y2)<|box_end]|>,
where (x1, y1) and (x2, y2) represent the coordi-
nates of the upper left and bottom right corners of
the box, normalized within the range [0, 1000).
<|box_start|> and <|box_end|> are treated as
special tokens. We pack the samples corresponding
to the same image into a single conversation, with
no more than 15 samples per conversation. To
achieve better performance on high-resolution
images, we set the max_pixels to 1500%1500. We
perform full-parameter fine-tuning on our dataset.
The whole training process costs around 60 hours
on 16 A100 GPU cards.

UI-I2E-VLM-4B. Following the pre-training set-
ting, we convert bounding boxes into the format
<box>[[x1, y1, x2, y2]]</box>, where [x1, y1, x2,
y2] are the original coordinates on the image with-
out normalization. <box> and </box> are treated
as special tokens. Through experiments we found
that packing the data caused a performance degra-

dation of InternVL2-4B, so we did not perform
packing.

We apply the 2-D bounding box tile tag proposed
in (Dai et al., 2024) to improve the model’s visual
ability. Since InternVL-2 leverages Dynamic As-
pect Ratio to handle images of varying resolutions,
during both training and inference, we transform
the original coordinates to align with the resized
image size within the model. To accommodate the
high-resolution nature of the UI interface, we set
patch_num to 12, which means that each image is
divided into 12 tiles of 448x448 pixels.

We perform full-parameter fine-tuning on the
language model on our dataset. The whole training
process costs around 90 hours on 64 A100 GPU
cards.

C Details of UI-I2E-Bench Annotation

Error Category Severity Proportion (%)

Element Box Serious 9.7
Slight 24.1

Element Instruction  Serious 17.3
Slight 79

Table 8: Distribution of error types of UI-E2I-Synth
generated data in UI-I2E-Bench

To reduce the workload of manual annotation,
we adopt our UI-E2I-Synth pipeline on multiple
platforms to construct the UI-I2E-Bench. We do
balanced sampling for every element type, resulting
in 1,987 elements. Then we manually annotated
each data, including box quality, instruction quality
and instruction type. For box quality, we consider
bounding boxes that do not enclose any interactive
Ul elements as serious errors. Boxes that contain
the correct element but are slightly misaligned or
have inaccurate boundaries are labeled as slight
errors. We retained data with slight errors in our
benchmark and manually adjusted the boxes. For
instruction quality, we consider instructions that are
completely unrelated to any elements to be serious
errors. Instructions that are unclear or ambiguous
are labeled as slight errors. Similarly, we modi-
fied the slightly erroneous instructions and retained
them. In addition, we annotated the instruction
type for each data. Instructions that directly refer
to an element are labeled as explicit, while those
describe the element indirectly by position, appear-
ance, or other references are implicit.

After manual annotation, we removed data with
serious errors, resulting in a benchmark containing
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Figure 6: Performance of model trained on 500k UI
elements with different proportions of non-text elements
in training dataset. The Average represents accuracy on
the entire ScreenSpot, while the Non-text represents
accuracy specifically on icons/widgets in ScreenSpot.

1,477 element-instruction pairs. The distribution of
error types of data are shown in Table 8. We present
some examples of our benchmark in Figure 7. All
annotators are authors of this work and they all are
Asian using English.

D Ablation on Non-Text Element
Proportion

In unfiltered data, the quantity of non-text elements
is usually smaller than that of text elements. How-
ever, identifying non-text elements is much more
challenging. When computational resources are
limited, adjusting the proportion of non-text ele-
ments in the total dataset can help to improve model
performance. We investigate the impact of the pro-
portion of non-text elements on accuracy. We use
InternVL2-4B as the base model, and sample 500K
elements from 250K images for each proportion.
The results are shown in Figure 6. Within a cer-
tain range, increasing the proportion of non-text
elements can effectively improve the accuracy of
non-text elements.

E Related literature discussion

GUI agent is a multimodal agent designed for
GUI scenarios, which requires multi-step plan-
ning and reasoning ability as general language
agents (Sumers et al.; Yang et al., 2024; Xi et al.,
2025) do. However, due to the incompleteness
and opacity of Ul metadata, the information within
a GUI cannot be fully represented through pure
language. It is necessary to leverage the multi-
modal perception capabilities of models to under-
stand the current task state via GUI screenshots.
During action execution, multimodal capabilities
are also required to extract the coordinates of in-
teractive elements from the current GUI screen-

shot, with GUI grounding playing a crucial role.
Nevertheless, current general-purpose VLM, espe-
cially open-sourced leading MLLMs such as In-
ternVL2 (Chen et al., 2023) and Qwen2-VL (Wang
et al., 2024), exhibit relatively limited perception
and planning capabilities for GUI tasks. Hence, the
collection of corresponding training data is essen-
tial and warrants community attention.

F Prompt templates

We display the prompts for the instruction synthesis
in UI-E2I-Synth, prompts for OmniParser evalu-
ation and prompts given to GPT-40 in OSWorld
evaluation as follows.

G Insights on failure cases in
UI-I2E-Bench

Here we provide preliminary analysis about the
typical failure cases in UI-I2E-Bench separately:

Counting error and spatial relationship misun-
derstanding. The spatial understanding has al-
ways been two of the challenges faced by MLLMs.
Due to the bias in MLLM pre-training data, models
are typically better at detecting whether an object
exists in the image but struggle with identifying
its quantity and location. We believe this issue
can be mitigated by adding data with instructions
related to quantities and spatial relationships dur-
ing training. In fact, through our synthetic data
pipeline, our model has already made considerable
progress compared to the baseline models in ad-
dressing these issues.

Element type misclassification. In Ul environ-
ment, the interactive region of different element
types naturally varies. In general, large-scale train-
ing data contains elements with the same contents
but different types, with some types of elements
dominating in quantity(e.g., text). As a result, the
model is more likely to assume that elements be-
long to these dominate types, leading to incorrect
judgements on their interactive regions.

Lack of external knowledge. While some com-
mon cases can be addressed by scaling up the range
of training data, it is important to note that covering
all icons from a variety of specialized software in
the training data is challenging. We believe that for
specific software, creating explanatory documen-
tation for its icons and providing it as contextual
reference for the model could be a potential solu-
tion in the future.
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Figure 7: Examples in our benchmark UI-I2E-Bench. Red boxes denote the target elements. In the examples shown
in this figure, we cropped only a portion of the original image.
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Model Size #Train Mobile Desktop Web Avg.
Text Icon/Widget Text Icon/Widget Text Icon/Widget
InternVL2-4B 4B - 9.2 4.8 4.6 4.3 0.9 0.1 4.2
Qwen2-VL-7B 7B - 61.3 39.3 52.0 45.0 33.0 21.8 42.6
OmniParser - - 87.4 67.9 93.2 60.9 77.8 48.3 73.9
CogAgent 17B  37M*  67.0 24.0 74.2 20.0 70.4 28.6 47.4
SeeClick 9.6B 1.0M 78.0 52.0 72.2 30.0 55.7 32.5 55.8
UGround 7B 9.7M 82.8 60.3 82.5 63.6 80.4 70.4 74.1
ShowUI 2B 2.7TM 92.3 75.5 76.3 61.1 81.7 63.6 76.8
OS-Atlas-4B 4B 13.6M  85.7 58.5 72.2 45.7 82.6 63.1 70.1
OS-Atlas-7B 7B 13.6M  93.0 72.9 91.8 62.9 90.9 74.3 82.5
UI-I2E-VLM-4B 4B 9.9M 87.6 49.8 87.6 45.7 85.7 54.4 70.4
UI-I2E-VLM-7B 7B 9.9M 94.1 77.3 90.7 71.4 87.4 67.5 82.5

Table 9: Full results on ScreenSpot. *Train data for CogAgent includes both pre-training and multi-task finetuning

data.

Model Development Creative CAD Scientific Office Operating Systems Overall Avg
InternVL2-4B 0.3 0.0 0.0 0.4 04 0.5 0.3
Qwen2-VL-7B 1.3 0.9 0.4 3.5 3.0 0.5 1.6
OmniParser+GPT-40 13.7 1.5 7.7 9.4 14.3 4.6 8.3
SeeClick 0.3 0.6 1.9 2.0 0.9 1.5 1.1
UGround 14.7 17.0 11.1 19.3 27.0 9.7 16.5
ShowUI 9.4 53 1.9 10.6 13.5 6.6 7.7
OS-Atlas-4B 3.7 2.3 1.5 7.5 4.8 3.1 3.7
OS-Atlas-7B 17.7 17.9 10.3 24.4 274 16.8 18.9
UI-12E-VLM-4B 12.7 12.6 5.7 134 15.2 14.3 12.2
UI-I2E-VLM-7B 24.1 23.5 9.2 27.6 38.3 19.9 23.6

Table 10: Full results on ScreenSpot-Pro(simple view).

UI hierarchical misunderstanding. Most cur-
rent grounding models directly output bounding
boxes, lacking an analysis and reasoning progress
regarding UI hierarchies. In fact, when dealing
with grounding tasks that need page semantic un-
derstanding, the model sometimes needs to perform
multi-step reasoning. In the example of Figure 5
Task 4, the model needs to first locate the login
module and then identify the e-mail input field. A
potential mitigation strategy is to use CoT reason-
ing.

H GPT-40 response example in
Instruction Synthesis

For the parameter-based instruction synthesis, we
do not simply repeat the already generated action
parameters and assemble them to instruction. In-
stead, we use them as reference to guide the final
generation of first-person perspective instructions.
We here provide examples of the action parameter
and corresponding synthesized instructions sam-

pled from generated dataset. Rather than merely
rigidly assembling the given parameters, the synthe-
sized instructions generated from GPT-40 demon-
strate naturalness and fluency, exhibiting newly
generated content that diverges from the provided
action parameters.
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Prompts for instruction synthesis in UI-E2I-Synth

Stepl:

You are a screen Ul expert. Here is a Ul screenshot image with highlighted bounding boxes and corresponding
labeled ID overlayed on bottom of them, and here is a list of corresponding UI element (icon/button/inputfield) box
description within these bounding boxes. You should first ensure you understand the screenshot’s status and every annotated
UI element bounding box on it. Then output the updated element list with below template as JSON format.

NOTE: Ensure all referring exprression should UNIQUELY correspond to the element when generating them.
Here is the output template:

{
"elements”: [
{
"id": "<copy corresponding labeled ID on the bottom of element>",
"shortDescription”: "<copy from given input list>",
"fullDescription”: "<a comprehensive description that explains the function of the
— element and the expected outcome when interacting with it>",
"explicitRefer"”: "<a referring expression that explicitly refers to the element, from a
< computer user's first perspective>",
"implicitReferByElementFunction”: "<a referring expression that does NOT explicitly
— refer to this element content or obvious visual feature, but implicitly refers to
— it by its function in the whole page or expected outcome after interacting with
- it>",
"implicitReferByNearElement"”: "<a referring expression that does NOT explicitly refer
< to this element content or obvious visual feature, but implicitly refers to it by
< its relationship with near elements or emphasizes it from similar elements by
< spatial order>"
}
]
}
Step2:

You are a computer expert user. You will be given a UI element list from a Ul screenshot which includes elements and their
referring expressions as shown in the following input template. You should simulate a user using the UI screenshot, generate
possible action type and action content, then generate instructions for every element according to the given element referring
expressions, as shown in the following output template. Return as JSON format.

NOTE:

1. For inputfield element type, the generated instruction should contain the possible input content from a computer user’s first
perspective. For example, "fill James as last name", "enter Boeing747 in search field", "select article in recent six months".
2. Ensure all instruction should UNIQUELY correspond to the element when generating them.

Here is the input template:

{
"elements”: [
{
"id": "<copy corresponding labeled ID on the bottom of element>",
"shortDescription”: "<a short description about the element, including element type and
— element content>",
"fullDescription”: "<a comprehensive description that explains the function of the
— element and the expected outcome when interacting with it>",
"explicitRefer”: "<a referring expression that explicitly refers to the element, from a
< computer user's first perspective>",
"implicitReferByElementFunction”: "<a referring expression that does NOT explicitly
< refer to this element content or obvious visual feature, but implicitly refers to
« it by its function in the whole page or expected outcome after interacting with
- it>",
"implicitReferByNearElement”: "<a referring expression that does NOT explicitly refer
< to this element content or obvious visual feature, but implicitly refers to it by
< its relationship with near elements or emphasizes it from similar elements by
— spatial order>"
}
]

3

Here is the output template:

{

"elements”: [
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[ (cont.) Prompts for instruction synthesis in UI-E2I-Synth

{
"id": "<copy corresponding labeled ID on the bottom of element>",
"shortDescription”: "<copy from given input list>",
"instructionArgs”: {
"actionType": "<choose appropriate action type>",
"actionContentDescription”: "<describe what is the possible action content about. if
— CLICK: leave empty string. if TYPE: specific input content which is appropriate
— for current UI screenshot. if Toggle, Checkbox and Switch, ON or OFF>",
"actionContent”: "<According to ~actionContentDescription™ to fill the specific
— content, if CLICK: leave empty string>"
}!
"convertedUserInstructionByElementFunction”: "<including above ~actionContent™ if not
< empty, convert above “implicitReferByElementFunction™ into a computer user's first
— perspective instruction, concise and less than 15 words>",
"convertedUserInstructionByNearElement”: "<including above ~actionContent™ if not
< empty, convert above “implicitReferByNearElement™ into a computer user's first
< perspective instruction, concise and less than 15 words>"
}

[ Prompts for OmniParser Evaluation

Here is a Ul screenshot image with bounding boxes and corresponding labeled ID overlayed on top of it, and here is a list of
icon/text box description: {parsed_local_semantics}.

Your task is { task}. Which bounding box label you should operate on? Give a brief analysis, then put your answer in the
format of:

Box with label ID: [xx]

[ Prompts for GPT-40 in OSWorld

You are an agent which follow my instruction and perform desktop computer tasks as instructed.

You have good knowledge of computer and good internet connection and assume your code will run on a computer for
controlling the mouse and keyboard. For each step, you will get an observation of an image, which is the screenshot of the
computer screen and you will predict the action of the computer based on the image.

You are required to use ‘pyautogui‘ to perform the action grounded to the observation, but DONOT use the
‘pyautogui.locateCenterOnScreen‘ function to locate the element you want to operate with since we have no image of the
element you want to operate with. DONOT USE ‘pyautogui.screenshot()‘ to make screenshot.

Return exactly ONE line of python code to perform the action each time. At each step, you MUST generate the corresponding
instruction to the code before a # in a comment (example: # Click \"Yes, I trust the authors\" button\n pyautogui.click(x=0,
y=0, duration=1))

You need to to specify the coordinates of by yourself based on your observation of current observation, but you
should be careful to ensure that the coordinates are correct. You ONLY need to return the code inside a code block, like this:
“‘python

# your code here

Specially, it is also allowed to return the following special code: When you think you have to wait for some time, return
““WAIT“*; When you think the task can not be done, return “‘FAIL*‘, don’t easily say “‘FAIL*‘, try your best to do the task;
When you think the task is done, return “*“DONE*‘.

Here are some guidelines for you:

1. Remember to generate the corresponding instruction to the code before a # in a comment.

2. If a click action is needed, use only the following functions: pyautogui.click, pyautogui.rightClick or pyauto-
gui.doubleClick.

3. Return “‘Done‘*‘ when you think the task is done. Return “‘Fail“‘ when you think the task can not be done.

4. If there are many times in the history of the same repeated action, first try to change the expression of the instruction, and
if it still fails, try something else.

My computer’s password is 'password’, feel free to use it when you need sudo rights. First give the current
screenshot and previous things we did a short reflection, then RETURN ME THE CODE OR SPECIAL CODE I ASKED
FOR. NEVER EVER RETURN ME ANYTHING ELSE.

Please generate the next move according to the Ul screenshot, instruction and previous actions.
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[ (cont.) Prompts for GPT-40 in OSWorld

Instruction: {instruction}.
Previous actions: {previous_actions}

\

[ GPT-40 response example in UI-E2I-Synth

L

"instructionArgs”: {
"actionType"”: "TYPE",

"actionContent”: "Gangsta-Groove"
}!
"convertedUserInstructionByElementFunction”: "Enter 'Gangsta-Groove' in the search bar”,
"convertedUserInstructionByNearElement”: "Type 'Gangsta-Groove' in the search field above

— the article”,

"instructionArgs": {
"actionType"”: "CLICK",

"actionContent”: ""
}!
"convertedUserInstructionByElementFunction”: "Review price based on net area.”,
"convertedUserInstructionByNearElement”: "Check near rent/total price toggle.”,

"instructionArgs": {
"actionType"”: "SELECT",

"actionContent”: "preferred language"
3,
"convertedUserInstructionByElementFunction”: "Select your preferred language”,
"convertedUserInstructionByNearElement”: "Choose a language next to Contact Us",

"instructionArgs": {
"actionType"”: "CLICK",

"actionContent”: ""
}!
"convertedUserInstructionByElementFunction”: "Click to learn more about us”,
"convertedUserInstructionByNearElement”: "Click the second button on the menu”

"instructionArgs”: {
"actionType"”: "CLICK",

"actionContent”: ""
}’
"convertedUserInstructionByElementFunction”: "Return to the top of the page”,
"convertedUserInstructionByNearElement”: "Click the bottom right corner icon”,
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