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Abstract

Instruction tuning is a crucial step in improv-
ing the responsiveness of pretrained large lan-
guage models (LLMs) to human instructions.
Federated learning (FL) helps to exploit the
use of vast private instruction data from clients,
becoming popular for LLM tuning by improv-
ing data diversity. Existing federated tuning
simply consumes all local data, causing exces-
sive computational overhead and overfitting to
local data, while centralized data-efficient so-
lutions are not suitable for FL due to privacy
concerns. This work presents FedHDS, a feder-
ated data-efficient instruction tuning approach,
which tunes LLMs with a representative subset
of edge-side data. It reduces the data redun-
dancy at both intra- and inter-client levels with-
out sharing raw data. Experiments with various
LLMs, datasets and partitions show that Fed-
HDS improves Rouge-L on unseen tasks by an
average of 10.72% over the SOTA full-data fed-
erated instruction tuning methods, while using
less than 1.5% of the data samples, improving
training efficiency by up to tens of times.

1 Introduction

Large language models (LLMs) exhibit remarkable
performance on a wide range of natural language
tasks. Instruction tuning (Wang et al., 2022) is cru-
cial to improve LLMs’ responsiveness to human in-
structions, whose success hinges on the availability
of diverse and high-quality data (Wang et al., 2024,
2023; Li et al., 2024a), particularly for unseen tasks
(Wei et al., 2022). As the pool of publicly available
data is expected to be exhausted in the near fu-
ture (Villalobos et al., 2022), exploiting more data
sources, such as data on edge devices, becomes es-
sential for continued LLM improvement (Qin et al.,
2024a). However, privacy concerns and regulations
such as GDPR (Voigt and Von dem Bussche, 2017)
complicate the use of edge-side data.
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Federated learning (FL) (McMahan et al., 2017)
has emerged as a promising solution to utilize di-
verse data from edge devices to tune LLMs (Zhang
et al., 2024), especially for generalization to unseen
tasks (Qin et al., 2024a; Bai et al., 2024). Prior FL
works on LLLMs mainly focus on communication
and memory costs (Zhang et al., 2024; Babakniya
et al., 2023; Zhang et al., 2023; Che et al., 2023;
Kuang et al., 2024; Xu et al., 2024; Qin et al.,
2024a). Although these methods show promising
results, our investigation reveals that they often use
all local data for training (Qin et al., 2024a; Xu
et al., 2024; Zhang et al., 2024; Ling et al., 2024).
This strategy leads to many training steps, and thus
causes two main issues in FL contexts:

(1) Efficiency: It is time-consuming to train
LLMs, especially when edge devices have limited
GPU capacity and thus require CPU+GPU hybrid
computing (Figure 1), where iterating through the
entire dataset may incur intolerable time consump-
tion (Figure 2). (2) Generalization: FL clients usu-
ally hold data covering limited domains. Training
on redundant data increases the risk of overfitting,
harming generalization to unseen tasks. Thus, in
FL, it is necessary to explore tuning LLMs using

' CPU+GPU training is implemented with Deepspeed
(Rasley et al., 2020) and a batch size of 1 (loaded in 16-bit).

2 The most popular desktop and laptop GPUs are reported
by Steam Hardware Survey (Dec 2024).
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fewer representative data to improve efficiency and
reduce overfitting, i.e., data-efficient instruction
tuning (Chen et al., 2023; Sachdeva et al., 2024),
which has been touched in centralized scenarios,
e.g., tuning LLLMs with only high-quality samples
(Zhou et al., 2023; Li et al., 2024b; Lu et al., 2023;
Cui et al., 2023) or representative samples (a.k.a.
coreset) (Chen et al., 2023; Wu et al., 2023; Cao
et al., 2024). Among them, coreset-based methods
usually excel in reducing data volume.

Despite their success in centralized scenarios,
applying these works to FL faces two main limi-
tations. (LL1) Low compatibility with FL: Some
methods access all data simultaneously (Chen et al.,
2023; Wu et al., 2023; Cao et al., 2024), violating
FL’s fundamental principle of restricting direct ac-
cess to data by third parties, and thus failing to
detect inter-client data redundancy. (L.2) Subopti-
mal data representations: The selection of core-
sets significantly impacts the tuning accuracy (Zha
et al., 2024; Wang et al., 2024). Current methods
rely on data representations from the last Trans-
former layer (Chen et al., 2023; Wu et al., 2023;
Cao et al., 2024), which may not capture the full
spectrum of features to distinguish data samples.

Due to the limited research on federated data-
efficient instruction tuning and the shortcomings
of centralized methods in FL scenarios, we pro-
pose FedHDS, a novel framework of federated
hierarchical data selection. It clusters local data on
each client to detect intra-client data redundancy,
and then sends approximate cluster centroids to the
server for further clustering to identify inter-client
data redundancy, cutting down computational costs
and enhancing generalization to new tasks by tak-
ing the distribution of edge-side data without di-
rect data access, which is compatible with FL (L1).
Then, we propose to fuse data features from differ-
ent Transformer layers, in order to provide better
data representations for coreset selection (L2).

This work makes the following contributions:

* We propose FedHDS, a framework that tunes
LLMs using coreset while alleviating intra-client
and inter-client data redundancy. To the best of
our knowledge, this is the first study on federated
data-efficient instruction tuning for LLMs.

* We propose a simple yet effective method to
fuse features of varying abstraction levels from
different Transformer layers. It works within
FedHDS to facilitate clustering-based coreset
selection for federated instruction tuning.

* We conduct experiments on two widely-used
instruction datasets with various LLMs and non-
IID partitions, showing that FedHDS improves
Rouge-L on unseen tasks by 10.72% on average,
using less than 1.5% of the data samples com-
pared to existing practical federated baselines'.

2 Related Work

Federated Learning for LLM Tuning Feder-
ated tuning for LLMs gains widespread attention
by enabling edge-side data use without direct ac-
cess. Due to the scale of LLMs, many studies de-
velop federated tuning based on parameter-efficient
fine-tuning (PEFT) techniques to reduce mem-
ory and communication costs (Zhang et al., 2024;
Babakniya et al., 2023; Zhang et al., 2023; Che
et al., 2023). Among PEFT techniques, LoRA
(Hu et al., 2022a) gains significant attention, with
studies on initialization (Babakniya et al., 2023),
objective consistency (Sun et al., 2024), and hetero-
geneous client resources (Bai et al., 2024). Some
works focus on specific costs, such as communica-
tion by transmitting only loss values and random
seeds (Qin et al., 2024a) and memory by employing
quantization-aware training (Xu et al., 2024).
During local training, existing works typically
consume all local data (Qin et al., 2024a; Xu et al.,
2024; Zhang et al., 2024; Wu et al., 2024; Kuang
et al., 2024; Sun et al., 2024), leading to a signifi-
cant computational cost and overfitting to the local
data, as client-side data in FL often consists of
many samples from only a few domains. Unlike
existing methods, this work takes a data-centric per-
spective (Zha et al., 2024), which focuses on data
efficiency by selecting a small number of represen-
tative data samples for LLM tuning, to achieve bet-
ter efficiency and generalization on unseen tasks.

Data-Efficient LLM Instruction Tuning Exist-
ing studies show that LL.Ms learn knowledge pri-
marily from pretraining, and can be taught to pro-
duce better outputs with a limited amount of in-
struction data (Zhou et al., 2023). Some studies
achieve comparable or better tuning results using
fewer samples by focusing on data quality or the
representativeness of data samples.
Quality-oriented works either filter out low-
quality samples by heuristics (Chen et al., 2024),
quality indicators (Li et al., 2024c; Chen et al.,

LOur codes are available at https://github.com/zhenq
incn/FedHDS.
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2024) or third-party LLMs (Li et al., 2024b), or cu-
rate high-quality samples by manual efforts (Zhou
et al., 2023) or third-party LLMs (Lu et al., 2023;
Cui et al., 2023). Methods based on heuristics or
quality indicators can filter out a limited number of
samples. Manual or third-party LLM-based meth-
ods are unsuitable for FL due to privacy risks.
Representativeness-based works select a few rep-
resentative samples by clustering algorithms, filter-
ing out much of the data while retaining tuning ac-
curacy (e.g., more than 95% of the dataset) (Chen
et al., 2023; Wu et al., 2023). However, existing
coreset selection methods have shortcomings in FL
contexts: 1) the nature of FL, where data stays on
the device, prevents existing methods from being
fully integrated, such as detecting data redundancy
across clients. 2) existing methods often extract
data features for clustering using only the last layer
of the Transformer (Chen et al., 2023; Wu et al.,
2023; Li et al., 2024c¢), which may result in a sub-
optimal feature space to distinguish coresets.

Table 1: Qualitative comparison between related instruc-
tion tuning methods for LLMs and FedHDS.

Reduce Intra-| Reduce Inter-Client |Full-Layer
Client Data | Data Redundancy | Feature
Redundancy |(Privacy-Preserving)| Fusion
Federated Instructi
ederated Instruction X ‘ X ‘ X
Tuning
C ali At i
entrdhz-ed DdtdA Efficient v X X
Instruction Tuning
FedHDS (ours) | v v | v

Summary As Table 1, existing federated tun-
ing overlooks data redundancy. Centralized data-
efficient methods are either impractical for FL due
to external data transmission or fail to address inter-
client redundancy (L1). They also rely on only the
last-layer Transformer outputs to distinguish data
samples, potentially causing sub-optimal data rep-
resentations (L.2). Unlike these methods, FedHDS
performs instruction tuning using a coreset while
alleviating both intra- and inter-client redundancy,
with fused features from all Transformer layers.

3 Problem Formulation

Federated Instruction Tuning Assuming there
are IV clients in an FL system, each client ¢ holds a
private dataset D; containing several instances of
instruction data. Given an LLM w € R initialized
by the pretrained weight w?, federated instruction
tuning aims at optimizing w with the private data

held by clients towards the following objective,
N
min f(w) £ Y A - Exp, [L(wW;x)], (D
v i=1

where £(w;x) is the loss evaluated on model w
for data instance x sampled from D;, and ); is
the weight of client ¢ that follows A; > 0 and
SN\ = 1. Symbol x is used as the batch size is
1 to reduce memory usage (Qin et al., 2024a). To
solve Eq. (1), FL iterates multiple rounds. In each
round r, several active clients get the latest model
parameters w” from the server and perform several
steps of stochastic gradient descent (SGD), as

Wiip1 = Wi, _W‘Vw{’tﬁ(“’g x),vx € Dy, (2)

where w; , is the model of client ¢ at the ¢-th local
step in round r, and 7 is the learning rate. Typically,
the process iterates over the local dataset D; for one
or more epochs (Qin et al., 2024a; Xu et al., 2024;
Zhang et al., 2024). After local training, each active
client sends the updated model to the server. To
alleviate communication and memory costs, FL
typically adopts PEFT techniques, where only a
small subset of model parameters is trained and
transmitted. Similarly to Zhang et al. (2024), this
work only trains and transmits LoRA adapters.

Federated Data-Efficient Instruction Tuning
Assuming each client uses a data selection function
f(x;-) — {0, 1} to construct a coreset

Di={xeDi| f(x;) =1}, 3)

and performs local training only on 21 as Eq. (2).
If f makes the model W trained on {D; } N | achieve
accuracy comparable to—or even better than—that
obtained with the full datasets, while satisfying

N ~
> [P,
i=1

then the method is data-efficient, which greatly re-
duces the computation cost than the full-data ones.

Additionally, by considering the redundancy
among local coresets, we can further reduce the
local iterations for each client. Assuming an ideal
distribution P* that each real-world data x follows
(Qin et al., 2024b), and data samples in each core-
set 75,- follow P;, where local data distributions
{P1, ..., Pn} share mutual similarity to some ex-
tent since all the client-side data can be regarded

N
/> Pl <1, @)
=1
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Figure 3: Overview of FedHDS in each round of FL. It differs from vanilla FL. (McMahan et al., 2017) by
incorporating “I. Data Selection” to select representative data samples before “II. Local Training”. Centroid c is
derived from HDBSCAN and does not correspond to specific samples. Data sample x ¢, denotes the one closest to

the centroid c; of corresponding group G;. Set 251 contains representative samples in dataset D; of the i-th client.

as sampled from P*, so that inter-client data redun-
dancy may exist. Experimental results in Section
5.4 also illustrate this. To alleviate intra-client and
inter-client data redundancy, we design FedHDS.

4 Approach

4.1 Overview

FedHDS identifies the representative data samples
with their latent features. As shown in Figure 3, in
round r, after downloading the global model w",
each client performs intra-client selection, followed
by an inter-client selection performed by the server.

In intra-client selection, client ¢ gets the hidden
state in each Transformer layer with each data sam-
ple x € D; as the input (® in Figure 3). Then, these
features are fused across different Transformer lay-
ers (@ in Figure 3). Next, clustering is performed
to partition the data into several groups (@ in Fig-
ure 3). Each group holds an approximate centroid
c that does not correspond to an individual data
point. After that, the client sends these centroids
{c1,co, ..., } to the server (@ in Figure 3).

Upon receiving the centroids from all active
clients, inter-client selection starts. The server clus-
ters received centroids into several groups (® in
Figure 3). In each group, the point closest to its cen-
troid ¢}l is designated as the chosen one. Then, the
server notifies each client regarding which of their
sent centroids are selected (® in Figure 3). Next,
each client 7 adds the data sample closest to each
of the selected centroid within the corresponding

group to coreset 51 (@ in Figure 3).

Finally, client ¢ performs local training on D; as
Zhang et al. (2024). The selection processes are
summarized in Algorithm 1 of Appendix A. In the
following, we detail the design of FedHDS.

4.2 Intra-Client Data Selection

Data samples are selected based on features. Given
an LLM with [ Transformer layers, it can extract
data features layer by layer and token by token, as

hl' h}? h) ™!
h£71 h%,Q h£771
J J J , 5)
112 -1
h;" h; h;

where hé-’b € RY is the hidden states of the b-th
token from the [-th Transformer layer for the j-
th data sample, with b=-1 denoting the last token.
From the token level, FedHDS uses the hidden
state of the last token as Li et al. (2024c¢) since it
encapsulates all preceding token information.

At the layer level, prior works often use the last
layer (Chen et al., 2023; Wu et al., 2023; Li et al.,
2024c), which may not be universally optimal since
different layers provide varying abstraction degrees
to data representations. We show it with a toy ex-
ample on Dolly-15K, clustering its 8-category in-
structions into 8 groups using K-means. Figure 4
evaluates clustering quality with Calinski-Harabasz
Index (Calinski and Harabasz, 1974), and F;-score
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Figure 4: Evaluations of clustered data groups based on
features from different Transformer layers, obtained in
a centralized scenario with LLaMA-3B on Dolly-15K.
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Figure 5: Visualization of features obtained with
DatalJuicer-1.3B on Dolly-15K (a=5.0).

(more evaluations are left in Appendix E.1), show-
ing that the last layer is not universally optimal,
and no single layer excels across all metrics.
Predicting the optimal layer is challenging, and
computing clustering metrics for all layers is costly.
A feasible approach is fusing features from all lay-
ers. One naive method is concatenating the last
token’s hidden states across layers, as
1,—1 3.2,—1 -1
hy = [k}~ w27 n) } (6)
However, Figure 4 shows that some layers degrade
data separability. Dimensionality reduction may
alleviate the impact of inappropriate dimensions,
e.g., low-variance dimensions have minimal impact
on distance calculation in t-SNE (Van der Maaten
and Hinton, 2008). Thus, we apply P : R©*? —
R* k < 1 x v to fuse the features from [ layers, as

7iv1|17i|} = ’hIDz‘\})'

We choose t-SNE with Barnes-Hut implementation
(van der Maaten, 2013), as it is more effective in
nonlinear spaces than earlier methods such as PCA
(Jolliffe, 2002). The fused feature dimension k is
set to 2 for efficiency. Figure 5 shows the effective-
ness of feature fusion, where a random subset of
Dolly-15K is partitioned to 4 clients with label dis-
tribution skew. If last-layer features are employed,

{hy,hy, ... P({hy, hy,...

data among clients tends to be scattered, while
fused features form relatively clear boundaries be-
tween clients, enhancing sample distinction.

After obtaining fused features of local data
D;, denoted by {hl,hg, .. .,h‘pz.|}, HDBSCAN
(Campello et al., 2013) is applied to cluster them
into groups {Gi,Go,...}. Each group G; holds
a centroid c; that does not correspond to a real
sample. These centroids are sent to the server to
determine which groups are selected for tuning.

4.3 Inter-Client Data Selection

As discussed in Section 3 and shown in Figure 5,
there may be similarities among client-side data.
Thus, we cluster the approximate centroids sent
from the clients to the server with HDBSCAN to
filter redundant data groups among clients, as

= {gll,gl,...} =HDBSCAN({ci,cs,...}). (8)

For each QH with its approximate centroid cII the
server 1dent1ﬁes the ﬁrst layer group G, Whose cen-
troid c, closest to ¢l j as the selected one, as

Gselected {G, | cs = arg mch . CHH}QHEGH )

cEg
Then, the corresponding clients will be notified of
the selection of first-layer groups. Given the parti-
tioned data groups G; = {G1,Ga, ...} of client 4,
the subset finally used for tuning D; is obtained as:

D; = {x | ¢ = arg min |[x — ¢;||}9<C-GEC(10)

xeg;

In each selected group G;, the data sample closest
to centroid ¢, is added in D; (X, in Figure 3).

4.4 Instruction Tuning with Coresets

After determining coresets, each client 7 performs
local training using only D; (II in Figure 3), as

Wiii1 = Wi—n- Vi L(W];%),Vx € D;, (11)

followed by sending the optimized model parame-

ters. Then, the server performs FedAvg (McMahan
et al., 2017) on the received parameters, as

Wil LS

ZzGMr ‘ ZEMT

where M, contains the indices of activate clients in
the r-th round of FL. Finally, the next round starts.

FedHDS only performs downsampling on the
local training data based on FedAvg, thus its con-
vergence is theoretically supported, as discussed in
Appendix B. Besides, we provide discussions on
the theoretical speedup of FedHDS in Appendix C.

wi_1,  (12)
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4.5 Further Enhancement for FedHDS

Efficiency The efficiency of FedHDS can be fur-
ther improved by faster feature extraction, since it
requires forward propagation across all the local
data with the LLM w. Motivated by studies on
retrieval augmented generation which adopt a light-
weight retrieval model to extract data features (Fan
et al., 2024), we use a smaller language model shar-
ing Transformer architecture and and next-token
prediction paradigm with w as a proxy to generate
representations for each data, i.e., a small version
of GPT-2 (about 124M parameters). We term this
approach as FedHDS-Turbo.

Privacy Although local centroids sent to the
server are two-dimensional vectors that do not cor-
respond to real samples, FedHDS offers more in-
formation than vanilla FL. We can adopt a straight-
forward differential privacy method for scenarios
requiring stronger privacy protection (Hu et al.,
2022b). We scale elements in local centroids to
[-1, 1] with tanh to maintain data distinguisha-
bility despite extreme values. Gaussian noise is
then added to the scaled centroids before transmis-
sion, deriving their differential privacy (Theorem
1). Experiments in Section 5.7 show that FedHDS
performs well with a reasonable noise scale.

Theorem 1. Let c € [—1,1] be the original cen-
troid and ¢’ = ¢+ z be the one noised by Gaussian
noise z ~ N(0,0%1) with standard deviation o.
Suppose ,0 € (0,1). Noised centroid ¢’ satisfies

(e, 9)-differential privacy if o > 27%1'25/6).

Proof. The proof follows directly by applying the
Gaussian mechanism (Dwork et al., 2014), where
the sensitivity (i.e., range of c) is 2. O

5 Evaluations

5.1 Experimental Setup

Baselines We introduce six federated tuning
methods using full data as baselines: 1) FedAvg
that tunes and transmits the full LLM, included
for reference due to high costs; 2&3) FedPTun-
ing and FedPrompt (Kuang et al., 2024) that apply
PEFT techniques of P-Tuning (Liu et al., 2023) and
Prompt Tuning (Lester et al., 2021) based on Fe-
dAvg, respectively, trained with Adam (Kingma
and Ba, 2015) optimizer; 4&5) FedIT (Zhang
et al., 2024): instruction tuning based on FedAvg
with LoRA, optimized with Adam or SGD (FedIT-
SGD); 6) FlexLLoRA (Bai et al., 2024) that supports

LoRA adapters with varying ranks based on FedIT.
Given the lack of data-efficient works in FL, we
develop two federated methods and a centralized
one using coresets: 1) Random: It randomly selects
a ratio of local data. Although being native, it is a
strong baseline (Lin et al., 2024; Sachdeva et al.,
2024) by preserving the original data distributions;
2) Perplexity that selects data with lower perplexity
scores (Chen et al., 2024); and 3) Coreset-Cent
(Chen et al., 2023) that selects a fixed ratio of data
by K-means clustering on the last-layer features.

Datasets and Evaluations Following Qin et al.
(2024a); Kuang et al. (2024), we conduct experi-
ments on Natural Instructions (Wang et al., 2022)
(NI) and Dolly-15K (Conover et al., 2023), and
employ Rouge-L on held-out tasks as the evalua-
tion metrics. After preprocessing (detailed in Ap-
pendix D.4), NI contains 738 training tasks, each
of which is assigned to a unique client, providing
non-IIDness with feature skew, and the natively
provided 119 test tasks are used for evaluation.
Dolly-15K contains 8 tasks. The last one is used
for evaluation, and the rest are partitioned to 200
clients via Dirichlet distribution with « set to 0.5
and 5.0, respectively. Experiments on these two
datasets provide scenarios where the client has hun-
dreds and dozens of data samples, respectively.

Implementation This work targets cross-device
FL, thus, 5% of the clients are randomly selected
to participate in each round. Limited by space, the
implementation is detailed in Appendix D.

5.2 Comparison on Accuracy

We compare these methods in Table 2. The results
of full-data FLL methods are derived from Qin et al.
(2024a) under the same settings, and those of others
are obtained within the best hyperparameters.

Comparison to Full-Data Methods From Ta-
ble 2, FedHDS and FedHDS-Turbo outperform
full-data FL baselines across the six scenarios with
consumed data samples less than 1.5% of them.
Particularly, on NI with DataJuicer-1.3B, FedHDS
and FedHDS-Turbo relatively improve Rouge-L
over FedIT—the practical full-data FL baseline
achieving the best average accuracy—by 19.5%
and 16.3%, respectively. Averaged across the six
scenarios, FedHDS-Turbo improves the Rouge-L
score relative to FedIT by 10.72%. Besides, com-
pared to FedIT, FedHDS achieves an average im-
provement of 4.26% and 4.96% in Rouge-L on

15555



Table 2: Rouge-L (%) comparisons. Parentheses indicate the ratio of consumed data samples compared to full-data
methods. Each value is the average Rouge-L obtained in the last round of four runs with different random seeds.
Coreset-Cent and FedAvg are introduced just as references as they are not practical to end devices. Bold and
underlined numbers are the best and second-best values among approaches practical to cross-device FL, respectively.

Approach

| Natural Instructions (Meta Non-IID) |

Dolly-15K (o = 0.5)

Dolly-15K (o = 5.0)

| DataJuicer-1.3B

LLaMA-3B

| DataJuicer-1.3B

LLaMA-3B

| DataJuicer-1.3B

LLaMA-3B

35.48 £1.08 (1.00%)
34.27 £0.45 (100%)

33.27£0.33 (0.50%)
33.38 +£1.43 (100%)

35.48 £1.08 (1.00%)
33.95 £0.79 (100%)

30.30+1.16 (100%)
24.5044.78 (100%)
29.28 +£0.50 (100%)
32.84+0.99 (100%)
33.23 +£1.51 (100%)

25.33+£2.48 (100%)
32.5141.31 (100%)
27.28 £1.35 (100%)
29.17 £1.35 (100%)
30.97 4043 (100%)

29.08 +1.33 (100%)
23.94 +4.15 (100%)
29.19+0.89 (100%)
32.18 £1.28 (100%)
33.68 £1.07 (100%)

33.82+0.82 (1.50%)
33.714+0.51 (1.50%)

32.244-0.43 (1.50%)
32.2440.22 (1.50%)

34.29 +0.85 (5.00%)
33.88 +0.34 (5.00%)

Coreset-Cent | 31.3640.80 (1.00%) 34.81+0.90 (0.01%) | 33.27 +0.33 (0.50%)
FedAvg 22.08 +£1.52 (100%) 27.88+0.75 (100%) | 32.30+1.23 (100%)
FedPTuning 19.61 £2.71 (100%) 25.41+1.14 (100%) | 23.98 £3.23 (100%)
FedPrompt 6.0440.12 (100%)  8.95+2.47 (100%) | 32.73 +0.87 (100%)
FedIT-SGD 19.40+£1.83 (100%) 28.14+0.85 (100%) | 27.23 £0.68 (100%)
FlexLoRA 23.1942.14 (100%) 28.86+0.55 (100%) | 29.81 +1.06 (100%)
FedIT 22.30+£0.42 (100%) 28.13+0.50 (100%) | 30.80+0.98 (100%)
Random 26.20+1.71 (0.20%) 31.2341.37 (2.00%) | 32.59 +0.10 (1.50%)
Perplexity 24.45+40.77 (5.00%) 30.4940.21 (5.00%) | 32.73 £0.15 (1.50%)
FedHDS 26.64+0.79 (0.20%) 32.32+0.92 (0.15%) | 33.38 +0.40 (0.82%)
FedHDS-Turbo | 25.93 +£0.75 (0.23%) 32.93+0.64 (0.22%)

33.284+0.44 (1.31%)

35.40+0.78 (1.18%)
35.0140.65 (1.26%)

33.70+£0.19 (0.88%)
33.5240.20 (1.19%)

35.79+0.43 (1.34%)
35.4240.29 (1.28%)

Table 3: Comparisons on 1) client-side time (CTime) i.e., the time a client spends performing local computations
during a round of FL, 2) the overall time consumption across all rounds (total time), and 3) the speedup ratio. Time

is calculated with training using CPU+GPU due to limited GPU memory on edge devices.

| DatajJuicer-1.3B on NI |

LLaMA-3B on NI

‘DataJuicer-l.SB on Dolly-lSK‘LLaMA-Z&B on Dolly-15K

Approach ‘ CTime  Total Time Speedup‘ CTime  Total Time Speedup‘ CTime  Total Time Speedup ‘ CTime Total Time Speedup
FedIT 489S 8D9H mm 1x| 811S 13D21H == 1x(56.0S 9H20M == 1x| 114S 19H6M == 1x
Random 13.2S 5H24M 1 37.2x|35.3S 14H29M [ 23.0x| 6.5S 43M25S[ 12.89x|25.2S 4HI2M I 4.54x
Perplexity 46.6S 19HOM I 10.5x| 85S 1DIIHLC= 9.51x| 8.9S 59M27S [ 9.42x(27.5S 4H34M I 4.18x%
FedHDS 27.5S 11HI7TM 3 17.8x(40.7S 16H42M [ 19.9x| 5.2S 34M52S 1 16.06x|14.6S 2H25M I3 7.90x
FedHDS-Turbo|10.0S 4H7M [ 48.8x|20.1S 8HISM [ 40.4x| 4.5S 29M42S 18.86x[17.2S 2H5S2M L1 6.66 %

Dolly-15K when a=0.5 and a=5.0, respectively, in-
dicating that FedHDS performs better when client-
side data has certain similarity. In a cross-device FL
scenario with a large scale of clients, it is common
for different clients to have similar data distribu-
tions. These results demonstrate the effectiveness
of our approaches for improving generalization.

Comparison to Coreset Baselines Both Fed-
HDS and FedHDS-Turbo outperform Random and
Perplexity in 5 of the 6 scenarios. Only on NI
with DataJuicer-1.3B, Random slightly outper-
forms FedHDS-Turbo. From Lin et al. (2024);
Sachdeva et al. (2024), Random is a strong base-
line as it preserves the data distribution. However,
it is affected by data ratios (Cao et al., 2024), and
determining the optimal data ratio requires exten-
sive experimentation. Differently, FedHDS and
FedHDS-Turbo can automatically determine an ap-
propriate data ratio. Note that in 7 out of the 12 sce-
narios involving Random and Perplexity, the data
ratios with the best Rouge-L are inspired by our
approaches. Even so, our approaches outperform
them in the vast majority of cases, highlighting the
need for a well-designed data selection strategy.

The centralized method, Coreset-Cent, surpasses
our approaches on the complex dataset, NI, indicat-
ing room for further improvement in FL. methods.

5.3 Comparison on Time Efficiency

From Table 3, by reducing the number of local
training steps, coreset methods improve efficiency
over FedIT. FedHDS-Turbo achieves a higher
speedup due to the fewer data samples required
for better accuracy compared to other coreset FL
baselines. Particularly, on NI with DataJuicer-1.3B,
FedHDS-Turbo achieves a speedup of 48.8 x over
FedIT. Since FedHDS-Turbo is comparable to Fed-
HDS in accuracy, it may be more applicable. We
provide a breakdown of time consumption in Ap-
pendix E.4 to clearly present the time consumption
of each step in our approach.

5.4 Ablation Studies

Two-Layer Selection To clarify the contributions
of intra- and inter-client selections, we build two
methods: 1) FedHDSI: Removes inter-client se-
lection and groups data by last-layer features. 2)
FedHDS{: Uses only intra-client selection, select-
ing one data sample closest to the centroid in each
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Table 4: Rouge-L (%) comparisons for ablation studies, organized in the same manner of Table 2.

‘ Natural Instructions (Meta Non-IID) ‘

Dolly-15K (o = 0.5)

Dolly-15K (o = 5.0)

‘ DataJuicer-1.3B

LLaMA-3B

Dataluicer-1.3B

LLaMA-3B

31.8240.56 (3.71%)
32.52+0.65 (2.93%)

33.66+0.48 (4.25%)
34.11+0.94 (3.97%)

32.1241.66 (3.64%)
32.7941.15 (2.99%)

33.8140.87 (4.32%)
33.98 +1.36 (4.33%)

33.38-0.40 (0.82%)
33.12+0.10 (0.74%)
33.2140.77 (0.72%)

35.40+0.78 (1.18%)
34.9040.52 (1.86%)
34.8040.95 (1.62%)

33.70+£0.19 (0.88%)
33.06+0.23 (0.74%)
33.3440.36 (0.75%)

35.79+£0.43 (1.34%)
34.60+1.08 (2.12%)
35.1140.27 (2.08%)

Approach
‘ DataJuicer-1.3B LLaMA-3B
FedHDS} 25.45+0.64 (1.62%) 28.77 +1.91 (3.86%)
FedHDSt 24.48+0.78 (0.83%) 32.27+0.12 (1.51%)
FedHDS 26.64+£0.79 (0.20%) 32.32+0.92 (0.15%)
w/i PCA 27.84+0.99 (0.09%) 32.62+0.62 (0.08%)
w/i KPCA 26.28 £3.93 (0.10%) 28.95+0.92 (0.08%)
FedHDS-Turbo | 25.93 +£0.75 (0.23%) 32.93+0.64 (0.22%)
w/i PCA 22.93+2.96 (0.21%) 29.99+0.78 (0.21%)
w/i KPCA  |25.80+2.78 (0.03%) 28.98 +£2.33 (0.20%)

33.28 £0.44 (1.31%)
33.03 £0.26 (1.40%)
32.8641.08 (1.86%)

35.01+0.65 (1.26%)
35.3540.65 (1.87%)
35.0440.73 (1.69%)

33.5240.20 (1.19%)
33.15+0.21 (0.66%)
33.4040.41 (0.71%)

35.42+0.29 (1.28%)
35.2140.54 (1.72%)
34.8841.25 (1.92%)
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Figure 6: Performance of our approaches and methods
that send data features to the server for global selection.

local group. From Table 4, intra- and inter-client
selections vary in effectiveness across different sce-
narios. FedHDS outperforms FedHDST in all sce-
narios, showing the efficacy of the two selections.
To emphasize the necessity of hierarchical selec-
tion, we construct GlobalSelect, which sends all
fused features to the server for global clustering,
and GlobalSelect-Turbo that extracts features with
GPT-2. From Figure 6, global selection may cause
poor accuracy, potentially because clustering on the
entire large-scale dataset yields suboptimal results.
Thus, it is necessary to select data hierarchically.

Feature Fusion We explore the impact of the
dimensionality reduction algorithm by replacing
t-SNE with PCA (Jolliffe, 2002) and Kernel PCA
(Scholkopf et al., 1997). From Table 4, on the
relatively simpler datasets (Dolly-15K), replacing
t-SNE brings minimal differences. However, on NI,
substituting t-SNE occasionally results in negative
effects. Thus, in practical scenarios, we recom-
mend t-SNE for more effective coreset selection.

5.5 Communication and Memory Costs

We provide the maximum memory cost and client-
side per-round communication cost of our ap-
proaches. Besides transmitting LoRA adapters as
FedIT, i.e., Comm. (Model), FedHDS additionally

Table 5: Per-round costs by 1.3B models (Dolly-15K).

Comm. | Comm. (Features

(Model) ‘ & Cluster Indices) GPU Mem.
FedIT 12 MB 0 10.56 GB
FedHDS 12 MB 44 Bytes 9.40 GB
FedHDS-Turbo| 12 MB 76 Bytes 9.32 GB

transmits 1) 2-dimensional cluster centroids and 2)
indices of a few selected clusters. From Table 5,
these bring negligible cost, i.e., just a few dozen
bytes. Detailed calculations are in Appendix F.

FedHDS’s memory usage is similar to FedIT,
with a slight reduction from filtering long samples.
Nevertheless, FedHDS makes computation offload-
ing feasible for on-device LLM tuning by signifi-
cantly reducing the required data samples, while
training on the full dataset with enabling offloading
incurs a substantial time cost (Figure 2).

5.6 Studies on Convergence and Overfitting

To illustrate the convergence trends of these ap-
proaches, Figure 7 presents the convergence curves
of FedHDS, FedHDS-Turbo, and the baseline meth-
ods using LLaMA-3B on Natural Instructions. The
involved hyperparameters are aligned with those
described in Section 5.1. It can be seen that these
methods have nearly reached a convergent state by
the 40th federated round, demonstrating that LLMs
can be effectively tuned with a limited number of
instruction data. Compared to approaches that use
the full dataset, those relying on a data subset gen-
erally achieve a lower test loss. This is because
tuning on the complete local dataset results in ex-
cessive local training steps, causing the LLM to
overfit the local data and perform worse on unseen
tasks, as discussed in Section 5.2.

To better demonstrate that training on a subset
can alleviate the overfitting problem to some extent,
we provide the training and test loss of FedHDS-
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Figure 7: Convergence of the loss value on the test tasks obtained
by FedHDS-Turbo and FedIT with LLaMA-3B on NI.

Turbo with DataJuicer-1.3B on Natural Instructions
in Figure 8, together with those of the federated
approach using the full dataset that achieves the
best average accuracy, i.e., FedIT. As shown in
Figure 8, both the training and test loss of FedHDS-
Turbo stably decrease. In contrast, the test loss of
FedIT quickly stops decreasing while the training
loss is still reducing to lower values. Finally, the
test loss of FedHDS-Turbo is lower than that of
FedIT, causing FedHDS-Turbo to perform better
than FedIT, as shown in Table 2.

From the above, we can conclude that FedHDS
and FedHDS-Turbo exhibit stable convergence and
perform on par with federated approaches that use
the full dataset. Additionally, by reducing the
amount of data used for instruction tuning, they
mitigate overfitting to local data to some extent,
leading to higher instruction-tuning accuracy com-
pared to the baseline methods.

5.7 Performance with Differential Privacy

FedHDS can perform well with noise sampling
variance no greater than 0.1, which improves the
privacy of client-side data. Limited by space, de-
tailed experiments on this are left in Appendix E.3.

5.8 Performance in Various FL Scenarios

FedHDS outperforms coreset FL baselines with dif-
ferent active client ratios, showing its applicability
in various FL scenarios. We demonstrate this with
experimental results in Appendix E.5.

6 Conclusion

Existing federated instruction tuning methods for
LLMs typically train LL.Ms using all local data,
causing significant computation cost and overfitting
to local data. This work pioneers an exploration
into federated data-efficient instruction tuning, and

----- FedIT (Train Loss)
FedIT (Test Loss)
—-— FedHDS-Turbo (Train Loss)

|
"| FedHDS-Turbo (Test Loss)
i
\

Loss Value
= N W~ 01O N

|
LA

e oot N m e et
e LRI SN O TN

0 5 10 15 20 25 30 35 40
Number of Rounds

Figure 8: Convergence of training and
test loss obtained by FedHDS-Turbo
and FedIT with DataJuicer-1.3B on NI.

proposes FedHDS, a coreset selection approach
that solves both intra- and inter-client data redun-
dancy. It fuses data features of varying abstraction
levels obtained from different Transformer layers
for better data representation. Extensive experi-
ments involving various datasets, LLMs and non-
IIDness demonstrate that FedHDS enhances the
data efficiency and Rouge-L on unseen tasks over
existing federated tuning methods.

7 Limitations

Although our approach improves data efficiency
and generalization to unseen tasks in FL for LLM
fine-tuning, it still has certain limitations. For ex-
ample, it only selects data based on representative-
ness but overlooks data quality. Since domain divi-
sions are usually implicit, low-quality data samples
may also be treated as a separate domain. In this
case, FedHDS may select low-quality data. There-
fore, incorporating quality-based filtering mecha-
nisms may help further improve our approach.
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Appendix

We provide more discussions and experiments of
this work and organize them as follows:

Table of Contents

A Detailed Algorithm 13
B Convergence Analysis 13
C Analysis on Speedup Ratio 15
D Reproducibility 15

D.1 Experimental Environments for
Accuracy Evaluation . . . . . . 15

D.2 Experimental Environments for
Memory Footprint and Effi-
ciency Statistics . . . . . . .. 15

D.3 Detailed Hyperparameters . . . 15
D.4 Detailed Descriptions on Datasets 16

E Additional Experiments 16

E.1 Evaluation of Features from Dif-
ferent Transformer Layers . . . 16

E.2 Virtualization of Data Features 16

E.3 Performance with Differential
Privacy . . . . ... ... ... 17

E.4 Breakdown of Time Consumption 17

E.5 Performance in Various FL Sce-
narios

F Detailed Calculation of Communica-
tion Overhead 19

A Detailed Algorithm

To facilitate a better understanding of each step
of the proposed approach, we provide Algorithm
1 to explain how FedHDS selects the coresets for
activate clients in each round r, where lines 2~4
and 7~9 are performed individually by each client,
and lines 1 and 5~6 are performed by the server.

B Convergence Analysis

FedHDS shares the same global objective with Fe-
dAvg (FedIT) defined in Eq. (1). The essential
difference between FedHDS and FedAvg (FedIT)
is that it optimizes only on a subset of the origi-
nal data, as illustrated by the difference between
Eq. (11) and Eq. (2). Given the global objective

of FedHDS defined in Eq. (1), we have the local
objective of each client ¢ during local training as:
|Di]

Z Exmﬁ (w;x)].

=1

mln filw

‘D (13)

Following Li et al. (2020), we first make the fol-
lowing assumptions:

Assumption 1. The local objective of each client
i is L-smooth, ie., fi(v) < fi(w) + (v —
w)IVEi(w)+ 5 |v-—w 5, Vv € RY, Yw € RY

Assumption 2. The local objective of each client
i is p-convex, ie., fi(v) > filw)+ (v —
w)IVfi(w)+5|v—w 5, Vv € RY Yw € RY,
Assumption 3. The variance of the stochastic
gradients across each client is bounded, i.e.,
E||Vfi(Wir,x) = Vfi(wir)| < o2 where w;
denotes the model parameters of the i-th client after
T steps of updates.

Assumption 4. The expected squared norm of the
stochastic gradients stays within a uniform bound,
ie, BV fi(wir,x)|? <G>

Existing works also make similar assumptions
on the convergence analysis of federated tuning of
LLMs (Ling et al., 2024). We also mildly assume
that in each round, there are K clients on average
that will submit their tuned models to the server,
and each of them performs E steps of local training
to update their local models.

Theorem 2. Let Assumptions 1~4 hold, w* be the
optimal global model, k = % v = max {8k, E'},
B =N X062 4 6LT + 8(E — 1)2G%, C =
+E%G? and E = E|f(wr)] — f(w*), after T
iterations, we have
2K (B +C
Ty +T 7

+ 2L HWO - w*H2

(14)

Proof. In fact, FedHDS is based on FedAvg and
performs downsampling on local data, thereby af-
fecting the number of local training iterations. With
appropriate variable substitution, the convergence
of FedHDS can be derived from the proof process
in the work of Li et al. (2020). ]

Based on Theorem 2, FedHDS has a conver-
gence guarantee. Compared to FedIT, which di-
rectly adopts the training processes of FedAvg,
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Algorithm 1: Processes of Data Selection in FedHDS in each round 7 of FL.

1
2
3
4

N & W,

=)

11

12

13

14

15

17

18
19

20

21
22

Input: M., {D1,..., Dy, }-
Output: The selected coreset D; for each client ¢ active in this round, denoted as
{Dl, . ,D‘M7,|}.

Initialize a list C to stage the received centroids
fori =1,2,...,|M,| do
{c1,c2,...} =IntraClientSelection(w, D;)

C=CU{cy,c,...} // @ in Figure 3
Gselected = TnterClientSelection(C)
send indices of selected groups to corresponding clients // ® in Figure 3

fori =1,2,...,|M,|do

gj eGi 7gj eGselecled
} // @ in Figure 3

51‘ _ {X | ¢ = arg min ||x — c;|

x€G;
return the selected subset 152 for each client 1 € M.
Function IntraClientSelection(w, D):
for j=1,2,...,|D|do
extract features of x; by each layer of w, denoted by h; = h}’_l, h?’_l, e hé-’_l]
// ©® in Figure 3
reduce dimensionality of H = {hl, h,,... ,h|D|} as
{El, Hg, e l~1|Di‘} = P({hl, ho,... ,h|pi|}), obtaining the fused features // @ in
Figure 3
cluster data in D; based on their fused features, as
{G1,Ga,...} = HDBSCAN({El, Hg, A fl|pi‘ }), where each G; corresponds to an

approximate centroid c; // ® in Figure 3
return {cy,co,...}

Function InterClientSelection({cy,co,...}):
perform HDBSCAN to partition received {c1, co, . ..} into several groups {Q{H Gt .. }
// ® in Figure 3
initialize a list Gselected
for j =1,2,..., \{g{’,gg’,...}} do
§ = arg min ||c — cﬂ
ceg;-I
add gs into Gselected
return Gselected
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the convergence rate of FedHDS on the training
set theoretically has certain disadvantages, which
have been experimentally demonstrated in Figure
7. However, the advantage of FedHDS is its ability
to handle overfitting to local data. As shown in
both Figures 7 and 8, FedHDS and FedHDS-Turbo
significantly outperform FedIT in terms of test loss.
Therefore, FedHDS and FedHDS-Turbo achieve
better Rouge-L on held-out tasks than FedIT, as
presented in Table 2.

C Analysis on Speedup Ratio

In this section, we provide a brief analysis of the
speedup achievable by our approaches to better
understand their effectiveness in acceleration based
on numerical results in Table 3.

For a client with M data samples, the time com-
plexity of performing t-SNE with Barnes-Hut im-
plementation is O(M log M), and that of perform-
ing HDBSCAN is O(M log M) ~ O(M?) based
on data sparsity (we adopt the worst complexity).
Assume that v and € are the scale constants be-
tween the actual time consumption and complexity
of t-SNE and HDBSCAN, respectively, and £ and
= denote the time consumption (e.g., seconds) of
performing one-step inference and training with
one data sample, respectively. Assuming that the
proportion of training data that FedHDS can fil-
ter out is ¢, the time consumption of a client by
conducting LLM instruction tuning with FedHDS
is

v-MlogM+e-M*+&-M+Z(1-¢)M, (15)

while that of FedIT, the approach using full data,
is = - M. Therefore, the speeding-up ratio can be
formalized as:

—_
— .
—

v-MlogM+e-M?+&-M+Z(1—-¢)M
(16)

For these notations:
* Generally, = > ¢ by several times.

* From the experiments on Dolly-15K, t-SNE
on 200 samples takes 0.5 seconds, and HDB-
SCAN takes only 0.003 seconds. Based on
these statistics, v could be in the order of
104, and € could be in the order of 10~5.
Therefore, £ > v and £ > e.

¢ ¢ can exceed 99% on Natural Instructions.

Therefore, the speedup achieved by our ap-
proaches is significant, as experimentally demon-
strated in Table 3. Besides, the inference can be
significantly accelerated (by reducing &), leading to
a considerable improvement, e.g., FedHDS-Turbo
is significantly faster than FedHDS.

D Reproducibility

D.1 Experimental Environments for Accuracy
Evaluation

We implement these approaches mentioned above
with PyTorch (Paszke et al., 2019) 2.0.1, Trans-
formers (Wolf et al., 2020) 4.31.0, scikit-learn
1.5.1, PEFT (Mangrulkar et al., 2022) @.4.0, and
hdbscan @.8.37. Numerical experiments in Tables
2 and 4 are performed on platforms equipped with
NVIDIA A100 or NVIDIA A6000 GPUs, installed
with Python 3.10 and CUDA 12. 4. Efficiency re-
sults in Table 3 are obtained on a platform with an
NVIDIA A6000 GPU, installed with Python 3. 10,
CUDA 12.4 and DeepSpeed 0.15. 2.

D.2 Experimental Environments for Memory
Footprint and Efficiency Statistics

The memory footprint and time consumption in
Figures 1 and 2 are measured with a maximum
token list length of 1,024 where excessively long
data will be truncated. The adopted platform is
equipped with an NVIDIA A6000 GPU, installed
with Python 3.10, CUDA 12.4 and DeepSpeed
0.15.2. For the memory footprint, the 95th per-
centile is calculated. The selected two GPUs are
based on the most popular desktop and laptop
GPUs identified from the Steam Hardware Survey
(Dec 2024).

D.3 Detailed Hyperparameters

In approaches involving the LoRA adapter, i.e.,
FedHDS, FedHDS-Turbo, FedIT and FlexLLoRA,
the adapters are configured with the same hyperpa-
rameter settings, i.e., rank, alpha and dropout of
LoRA adapters are set to 8, 16 and 0.05 for Fed-
HDS and FedHDS-Turbo, respectively. Note that
although FlexLLoRA supports heterogeneous-rank
LoRA adapters, we adopt a homogeneous-rank set-
ting to ensure a fair comparison. Coreset-based
methods perform 60 rounds of FL on Dolly-15K
with LLaMA-3B, and 40 rounds for other scenar-
ios, where the local training is performed on the
coreset for one epoch with Adam optimizer. The
learning rate and number of rounds for federated
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approaches using full data are aligned with those
in the work of Qin et al. (2024a).

We perform a preliminary hyperparameter
search for federated approaches using coresets,
and adopt the advantageous settings for each ap-
proach in each scenario for large-scale experiments.
Specifically, we first search the learning rate in
{3x107%,1x107%,3 x 107°}. Then, for Ran-
dom and Perplexity, we search the ratio of data
samples in the final selected subsets to the full data
samples in {0.2%, 1.5%, 2%, 5%}. Note that the
thresholds of 0.2% and 1.5% are inspired by the
proportion automatically obtained by FedHDS and
FedHDS-Turbo. Considering the importance of an
appropriate data ratio (Cao et al., 2024), these two
baselines have benefited to some extent from the
data proportion provided by FedHDS and FedHDS-
Turbo. The finally adopted values for Tables 2
and 4 as as follows: All the federated approaches
with coresets adopt a learning rate 1 of 3 x 107°
on Dolly-15K. On Natural Instructions, FedHDS
and FedHDS-Turbo adopt = 3 x 1074, Ran-
dom adopt = 3 x 10~* with DataJuicer-1.3B
and 7 = 3 x 107° with LLaMA-3B, Perplexity
adopt = 3 x 10~ with DataJuicer-1.3B and
n =3 x 10~* with LLaMA-3B.

For Random and Perplexity, we searched for the
optimal data ratio within {0.2%, 1.5%, 2%, 5%},
where 0.2% and 1.5% are inspired by those auto-
matically obtained by FedHDS and FedHDS-Turbo.
Our approaches adopt learning rate n = 3 x 107°
on Dolly-15K and n = 3 x 10~ on NI. FedHDS
and FedHDS-Turbo apply HDBSCAN separately
in both intra-client and inter-client selection. Dur-
ing intra-client selection, the minimum cluster of
HDBSCAN is set to the default value, i.e., 5 for
Natural Instructions and 2 for Dolly-15K, consider-
ing the relatively small scale of Dolly-15K. During
inter-client selection, the minimum cluster of HDB-
SCAN is uniformly set to 2.

D.4 Detailed Descriptions on Datasets

This work adopts the same data preprocessing as re-
ported in (Qin et al., 2024a). Following Zhang et al.
(2024); Qin et al. (2024a), we adopt the prompt
template from Alpaca (Taori et al., 2023).

Natural Instructions includes a large collec-
tion of tasks with natural language instructions.
We adopt the dataset versioned by v2.8 and the
default split, which includes 756 tasks for train-
ing and 119 tasks for testing, each with a distinct
task definition. Considering the scale of the dataset,

experiments on it are conducted on a randomly sam-
pled subset, containing 20% of the data instances
for each training task and 2% for each test task.
After the subsampling, each training task with at
least 20 data instances is assigned to a unique client.
After the above preprocessing, a federated scenario
with 738 clients is formed, where the test tasks re-
main on the server for the held-out evaluation of
the tuned LLMs.

Dolly-15K contains 15,015 data samples cor-
responding to 8 tasks, with the 1,188 data sam-
ples from the last task used for testing. The data
from the remaining seven tasks is distributed to 200
clients for training, with each task labeled accord-
ing to its respective task and distributed according
to a Dirichlet distribution. We partition data sam-
ples to clients via Dirichlet distribution based on
the category attribute of each data sample.

After the last FL round is finished, Rouge-L
scores are evaluated using the tuned LLM after
the final FL round. These scores are calculated
based on the data samples in evaluation tasks, with
the responses as the ground-truth labels.

E Additional Experiments

E.1 Evaluation of Features from Different
Transformer Layers

To better demonstrate the statement that the last
layer is not universally optimal, and no single layer
excels across all metrics in Section 4.2, we conduct
evaluations with more LLMs and more metrics in-
cluding Silhouette Coefficient (Rousseeuw, 1987)
and Davies-Bouldin score (Davies and Bouldin,
1979), following the experimental setups aligned
to that of Figure 4. The additional experimental
results in Figure 9 further demonstrate the above
statement.

E.2 Virtualization of Data Features

In Section 4.3, we visualize the features obtained
from the last Transformer layer and the fused fea-
tures with DatalJuicer-1.3B on Dolly-15K as an
example, as presented in Figure 5. In order to illus-
trate the differences between fused features and the
final layer features in more scenarios, we supple-
mented the visualizations using different LLMs in
various scenarios. As shown in Figure 10, the fused
features create more distinct boundaries among
clients. Thus, these fused features can be utilized
to more effectively distinguish between data sam-
ples than existing solutions.
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Figure 9: Evaluations of clustered data groups based on
features from different Transformer layers, obtained in a
centralized scenario with different LLMs on Dolly-15K.

E.3 Performance with Differential Privacy

Despite that 1) the feature dimensions in our ap-
proach are significantly lower compared to the orig-
inal token-level hidden states, which often have
thousands of dimensions, and 2) the shared cen-
troids do not correspond to real data samples, Fed-
HDS still provides additional information com-
pared to the standard FL paradigm (McMahan et al.,
2017), such as the spatial distribution of client-side
centroids. As discussed in Section 4.5, scaling the
elements of the shared centroids to the range [-1,1]
and then adding Gaussian noise can enhance the
privacy protection of the proposed approaches.

To clarify the impact of adding Gaussian noise,
we present example experiments by FedHDS-
Turbo on Dolly-15K with DataJuicer-1.3B, adjust-
ing the power of the noise by varying its variance.
As presented in Figure 11, when the noise variance
is no greater than 0.1, FedHDS-Turbo still outper-
forms Random. With the noise level increasing fur-
ther, the performance of FedHDS-Turbo gradually
degrades to a level comparable to that of Random
as reported in Table 2.
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(c) Features by the last Trans- (d) Fused features by Fed-
former layer with LLaMA- HDS with LLaMA-3B in
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Figure 10: Visualization of features from the last Trans-
former layer and fused features by FedHDS.

E.4 Breakdown of Time Consumption

To illustrate the time efficiency of our approach, we
provide a detailed breakdown of the time taken by
each step, recorded on Natural Instructions (Table
6) and Dolly-15K (Table 7), respectively. From
these results, we have the following observations:

* For FedHDS, the time consumption is usually
dominated by feature extraction, due to the rel-
atively high time cost of performing inference
with an LLLM on all local data samples.

e For FedHDS-Turbo, due to its faster feature
extraction than FedHDS, its time consumption
is mainly caused by training, feature extrac-
tion, and feature fusion.
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Table 6: Breakdown of time consumption for all steps involving with FedHDS and FedHDS-Turbo on Natural
Instructions. By default, this table shows the time spent per FL round for each client, with the total time across all

clients and rounds in parentheses.

| DataJuicer-1.3B on NI

| LLaMA-3B on NI

FedHDS

All Steps: 27.5S (11H17M)

Training: 0.2S (3MS55S)

Feature Extraction: 24.8S (10H11M)
Feature Fusion: 2.5S (1HIM)

Intra-Client Clustering: 6.7 X 1073S (9.95)
Inter-Client Clustering: 4.3 x 1073S (0.2S)

All Steps: 40.7S (16H42M)

Training: 6.8S (2H47M)

Feature Extraction: 30.9S (12H42M)
Feature Fusion: 3.0S (1H13M)

Intra-Client Clustering: 6.6 x 1073 S (9.8S)
Inter-Client Clustering: 3.6 x 1073 S (0.1S)

FedHDS-Turbo | All Steps: 10.0S (4H7M)
Training: 1.4S (34M12S)
Feature Extraction: 6.6S (2H43M)

Feature Fusion: 2.0S (49M26S)

Intra-Client Clustering: 6.7 X 1073 S (9.9S)
Inter-Client Clustering: 4.3 x 1073 'S (0.2S)

All Steps: 20.1S (8H15M)

Training: 11.4S (4H40M)

Feature Extraction: 6.7S (2H46M)

Feature Fusion: 2.0S (48M20S)
Intra-Client Clustering: 6.6 x 1073 S (9.7S)
Inter-Client Clustering: 4.6 x 1073 S (0.2S)

Table 7: Breakdown of time consumption for all steps involving with FedHDS and FedHDS-Turbo on Dolly-15K.
By default, this table shows the time spent per FL round for each client, with the total time across all clients and

rounds in parentheses.

| DataJuicer-1.3B on Dolly-15K

| LLaMA-3B on Dolly-15K

FedHDS All Steps: 5.2S (34M52S)
Training: 2.0S (13M23S)

Feature Extraction: 3.0S (19M42S)
Feature Fusion: 0.3S (1M46S)

Intra-Client Clustering: 1.6 x 1073 S (0.6S)

Inter-Client Clustering: 8.5 x 107% S (3.4 x 1072 S)

All Steps: 14.6S (2H25M)

Training: 10.2S (1H41M)

Feature Extraction: 4.1S (40M37S)

Feature Fusion: 0.3S (3M21S)

Intra-Client Clustering: 1.7 x 1072 S (1.0S)
Inter-Client Clustering: 1.0 x 1073 S (6.2 x 1072 S)

FedHDS-Turbo | All Steps: 4.5S (29M42S)
Training: 3.6S (23M45S)

Feature Extraction: 0.7S (4M40S)
Feature Fusion: 0.2S (1M15S)

Intra-Client Clustering: 1.6 x 1072 S (0.6S)

Inter-Client Clustering: 1.0 x 1072 S (4.0 x 1072 S)

All Steps: 17.2S (2H52M)

Training: 16.3S (2H43M)

Feature Extraction: 0.7S (6M54S)

Feature Fusion: 0.2S (1M49S)

Intra-Client Clustering: 1.8 x 1073 S (1.1S)
Inter-Client Clustering: 1.7 x 1073 S (0.1S)
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Figure 11: Effects of adding DP noise to FedHDS-Turbo
(DataJuicer-1.3B).

E.5 Performance in Various FL Scenarios

The ratio of active clients in each round of FL af-
fects the number of centroids sent to the server, po-
tentially affecting the effectiveness of inter-client
selection. We test approaches with coresets in vary-
ing proportions of active clients in each round. As
shown in Figure 12, FedHDS-Turbo consistently
outperforms Random and Perplexity across vary-
ing active client ratios. When the active client ratio
is low (1%), all approaches perform unsatisfacto-

on
= -
9 i
~ = /A" Random
28 Perplexity
-~ FedHDS-Turbo
26
1% 5% 10% 20%

Ratio of Active Clients

Figure 12: Rouge-L with different active ratio on NI
with LLaMA-3B.

rily, where the effectiveness of intra-client selec-
tion in FedHDS-Turbo may suffer from insufficient
centroids. With an increasing active client ratio,
Random demonstrates a robust growth trend, al-
though it still lags behind FedHDS-Turbo. This
improvement is likely due to when there are more
active clients in each round, the randomly sampled
data instances follow a distribution more aligned
to the global data distribution. Considering that
clients typically participate in FL with a relatively
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low active ratio in each round in cross-device FL
scenarios (McMahan et al., 2017; Qin et al., 2024a;
Xu et al., 2024), FedHDS-Turbo is more suitable
than FedHDS for cross-device settings in terms of
both accuracy and efficiency.

F Detailed Calculation of Communication
Overhead

Apart from the transmission of model parameters
as other federated instruction tuning methods, Fed-
HDS additionally transmits data features of cluster
centers and the indices of the selected clusters for
data selection. Assuming for a client, there are p
clusters after intra-client selection. The client sends
the fused features of the p data samples closest to
these cluster centers, as:

[le11,e12], [ea1,e22], ..., [ep1,€p2]],  (17)

where e denotes a floating number, and [] denotes
an array. Then, after the inter-client selection, the
server returns indices of selected clusters to corre-
sponding clients, which are just a few integers:

[ClusterID1, ClusterIDa, . . .]. (18)

Therefore, compared to the widely recognized base-
line method FedIT, the additional communication
overhead of our approach is negligible.
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