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Abstract

Parameter-efficient fine-tuning (PEFT) large
language models (LLMs) have shown impres-
sive performance in various downstream tasks.
However, in many real-world scenarios, the col-
lected training data inevitably contains noisy la-
bels. To learn from noisy labels, most solutions
select samples with small losses for model train-
ing. However, the selected samples, in turn,
impact the loss computation in the next itera-
tion. An inaccurate initial selection can create
a vicious cycle, leading to suboptimal perfor-
mance. To break this cycle, we propose Delora,
a novel framework that decouples the sample
selection from model training. For sample se-
lection, Delora establishes a noisy label detec-
tor by introducing clean and noisy LoRA. Ben-
efiting from the memory effect, the clean LoRA
is encouraged to memorize clean data, while
the noisy LoRA is constrained to memorize
mislabeled data, which serves as a learnable
threshold for selecting clean and noisy samples.
For model training, Delora can use carefully
selected samples to fine-tune language models
seamlessly. Experimental results on synthetic
and real-world noisy datasets demonstrate the
effectiveness of Delora in noisy label detection
and text classification.

1 Introduction

LLMs are extremely powerful, yet they are ex-
pensive to train. By balancing performance with
practicality, PEFT has become a popular technique
for adapting the LLM for downstream applications.
Notable PEFT methods include Low-Rank Adapta-
tion (LoRA) (Hu et al., 2022), adaptors (Houlsby
et al., 2019), and prompts (Liu et al., 2022). Instead
of fine-tuning all weights, PEFT fixes the backbone
model parameters while adding a few learnable pa-
rameters for adaptation. While promising, PEFT
techniques rely on perfectly labeled datasets, which
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Figure 1: A comparison between other sample selection
methods (left) and our method (right) for LNL tasks.
Our method decouples sample selection (stage 1) from
model training (stage 2) by training a noisy label detec-
tor and classifier model separately.

may not be readily available in many real-world
applications, limiting their broader application.

To tackle this issue, a recent work (Kim et al.,
2024) explores PEFT methods on imperfectly la-
beled datasets (i.e., datasets with noisy labels) to
learn with noisy labels (LNL). It uses training
losses to select clean data and suggests a routing-
based PEFT method that preferentially trains PEFT
modules on clean data. Similar to previous LNL
methods (Han et al., 2018; Shu et al., 2019; Qiao
et al., 2022; Yuan et al., 2024) based on sample
selection, they both adopt the "small-loss" mecha-
nism to select clean data because the model tends to
fit clean samples earlier than noisy samples during
training. However, these methods are inherently
affected by the label noise, as losses used for sam-
ple selections are extracted from the model that is
being trained. Specifically, the sample selection
process affects subsequent training, and training
loss in turn influences the sample selection. If the
initial sample selection is poor, it leads to an in-
escapable vicious cycle. We contend that in such
a strategic feedback loop, a good sample selection
can itself fall into a new paradox, akin to: It’s
a catch-22 situation: A good sample selection
requires generalizability, while generalizability
requires sample selection.

Given this, let us leave the existing framework
and revisit the LNL task. The main difficulty here
is that we need to select clean samples to train a
strong model while avoiding the effects of noisy
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samples. Can we, perhaps, decouple sample se-
lection from the model training, making them inde-
pendent of each other? With this question in mind,
we propose a new framework that firstly leverages
PEFT modules to construct a noisy label detector
for sample selection and then trains the model us-
ing selected samples, as shown in Figure 1.

In the first stage, we introduce two distinct PEFT
modules (i.e., clean LoRA and noisy LoRA) to con-
struct a noisy label detector. The parameters in
clean LoRA are termed the ideal parameters used
to memorize clean data, while parameters in noisy
LoRA are called noise parameters used to mem-
orize mislabeled data. Our noisy label detector
can be derived from the cross-entropy between the
predictions of clean/noisy LoRA on the training
text and its corresponding labels. If the text ex-
hibits a higher cross-entropy value with the noisy
LoRA than the clean LoRA, it is considered a cor-
rectly labeled sample, i.e., a clean sample. This
design draws inspiration from a recent study (Liu
et al., 2024) that decomposes an image into its
constituent subject and style, represented as two
distinct LoRAs. This insight has inspired us to ex-
plore different LoRAs to memorize clean and noisy
samples separately in LNL. However, as we can-
not directly obtain clean and noisy samples from
datasets, controlling LoRAs to accomplish our no-
tion is a challenge. Note that the memorizing effect
(Arpit et al., 2017) demonstrates that deep networks
would first memorize clean samples and then noisy
samples. Based on this, we introduce dynamic reg-
ularization to adjust the parameter updates of the
two LoRAs over time. Specifically, we constrain
noise parameter updates of noisy LoRA in the early
training stage and make ideal parameters of clean
LoRA completely memorize clean data. As train-
ing progresses, the restrictions on noisy LoRA are
gradually lessened while the constraints on clean
LoRA are reinforced, resulting in noisy samples
being mostly memorized by noisy LoRA.

In the second stage, we train the classifier model
using samples carefully selected through the noisy
label detector. In this step, we first utilize selected
clean samples as contextual references for reliable
relabeling of noisy samples, and then merge the
clean samples and relabeled noisy samples to fine-
tune the classifier model. In this way, we can obtain
a denoised fine-tuning dataset while maximizing
data utility to improve the generalization ability
of our framework in LNL tasks. It is worth not-
ing that the sample selection is independent of the

in-training classifier model, which can effectively
avoid the issue of vicious cycles. Overall, our main
contributions can be summarized as follows:

• We propose a new framework that decouples
sample selection from model training to ad-
dress the LNL tasks, effectively avoiding the
vicious cycles common in existing solutions.

• For sample selection, we introduce two Lo-
RAs to construct a noisy label detector: the
ideal parameters of clean LoRA to memorize
clean samples and the noise parameters of
noisy LoRA to memorize noisy samples.

• Based on the memory effect, we dynamically
constrain the parameters of LoRAs so that
noisy LoRA absorbs the side effects of noisy
samples and clean LoRA fits clean samples.

• We conduct extensive experiments across di-
verse text classification datasets under varying
noise conditions, demonstrating the superior-
ity of Delora over existing baselines in both
noise label detection and text classification.

2 Related Work

2.1 Sample Selection for LNL.

Model fine-tuning often relies on large-scale,
high-quality data. However, the dataset inevitably
introduces noisy labels during collection. For
LNL, sample selection methods are popular so-
lutions that strive to select clean samples from
noisy datasets using specific criteria, such as the
widely applied "small-loss" mechanism or model
predictions. Among them, (Han et al., 2018; Shu
et al., 2019; Qiao et al., 2022) set a fixed thresh-
old for loss value to divide the noisy data, Yuan
et al. (2024) further proposes a dynamic-enhanced
threshold strategy to improve the previous method
based on fixed thresholds. However, they all re-
quire manually setting thresholds, which increases
the cost of hyper-parameter tuning. For our pro-
posed Delora, the noisy LoRA prediction func-
tions as a learnable "threshold" for identifying
noisy labels. Moreover, these approaches remain
unstable and susceptible to vicious cycles (self-
confirmation bias), particularly in high-noise sce-
narios. This instability stems from their inherent
reliance on the in-training model (Feng et al., 2024)
and their exclusive focus on learning with label
noise from scratch. Different from previous stud-
ies, our Delora decouples sample selection and
classifier model training to break this vicious cycle.
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2.2 Parameter-Efficient Fine-tuning.
As LLMs get bigger, PEFT is more essential for

conserving resources. A lot of strategies, including
LoRA, adaptors, and prompt learning, have been
put forth by researchers to improve fine-tuning
effectiveness. Among them, the PEFT based on
LoRA (Hu et al., 2022) is popular and widely used.
Recently, Kim et al. (2024) explores PEFT’s robust-
ness to noisy labels and finds that PEFT’s limited
capacity enhances robustness to noisy samples but
also hinders learning from clean samples. Then,
they propose a routing-based method to adaptively
activate PEFT modules. However, they still require
manually setting a fixed loss threshold and relying
on losses of the in-training model for sample selec-
tion. We address their shortcomings and leverage
PEFT’s limited capacity to separately memorize
clean and noisy samples.

3 Preliminaries

Problem Setup. Given a training dataset
D={(xi, yi)}Ni=1 with N samples and K classes,
where y ∈ {1, . . . ,K} is the observed label of the
sample x, and y is possibly the incorrect label.

LoRA fine-tuning. LoRA (Low-Rank Adapta-
tion) is a PEFT (parameter-efficient fine-tuning)
technique for effectively modifying LLMs for a
new downstream task. The main idea behind LoRA
is that while fine-tuning, the weight updates ∆w to
the base model weights w0 ∈ Rm×n have a low in-
trinsic rank. As a result, the update ∆w may be bro-
ken down into two low-rank matrices, B ∈ Rm×r

and A ∈ Rr×n, for efficient parameterization, with
∆w = BA. For r, it means the intrinsic rank of
∆w with r ≪ min(m,n). During training, only
A and B are updated to find suitable ∆w = BA
targeting specific tasks while keeping w0 constant.
For inference, the updated weight matrix w can be
obtained as w = w0 +∆w. Denoting the predic-
tion with LoRA modules as f(x,w0 + ∆w), the
objective with an arbitrary loss function L can be
formulated as follows:

min
∆w

L(x) = L(f(x,w0 +∆w), y), (1)

where x and y are the training sample and its label,
respectively. The model f with LoRA modules
∆w is only updated during training.

4 Method

In this section, we present our proposed denois-
ing learning framework Delora in detail. The main

idea is to decouple sample selection and model
training during the fine-tuning of LLMs on down-
stream tasks, avoiding the issue of vicious cycles.
Overall, Delora comprises two pivotal stages. In
the first stage, Delora introduces dual LoRAs to
construct a noisy label detector, selecting clean
samples and noisy samples. In the second stage,
Delora leverages the curated clean samples and re-
labeled noisy samples to train the classifier model,
further boosting the performance of our framework
on text classification in the context of noisy environ-
ments. Figure 2 shows our proposed framework.

4.1 Identifying Noisy Labels with Dual LoRAs
In this stage, our core challenge lies in the con-

struction of a noisy label detector for identifying
noisy samples. The previous strategy is to set a
fixed threshold for loss value, such that the clean
samples are associated with a smaller mean loss
value and noisy ones with bigger values. However,
these methods (Qiao et al., 2022; Feng et al., 2024)
rely on the manual setting of thresholds, which
restricts its practical applicability. Inspired by a re-
cent study (Liu et al., 2024), we introduce two dis-
tinct LoRAs memorizing the information of clean
and noisy samples to overcome these limitations.

Introducing dual LoRAs to construct a noisy
label detector. Given a language model with
weights wi

0, we introduce two LoRAs: clean LoRA
Lc = ∆wi

c and noisy LoRA Ln = ∆wi
n. Here, i

denotes the index of layers of transformers. For
simplicity, we drop the superscript i since our
method operates over all the LoRA-enabled weight
matrices of the base model. The parameters of
∆wc are ideal parameters to memorize clean sam-
ples (desired memorization), while the parameters
of ∆wn are noisy parameters to memorize noisy
samples (undesired memorization). During train-
ing, the clean LoRA ∆wc aims to uncover distin-
guishable features by minimizing the cross-entropy
(CE) between the predicted results of samples and
their corresponding label, while the noisy LoRA
∆wn serves as a learnable sample-dependent cross-
entropy threshold to select clean samples. Specifi-
cally, the learnable threshold ϕi for the i-th training
sample xi with a label yi is formulated as:

ϕi = CE(f(xi, w0 +∆wn), yi), (2)

which represents the cross-entropy between the ob-
served label and the undesired prediction generated
by noisy LoRA ∆wn. Based on this threshold, the
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Figure 2: The architecture of our proposed framework Delora. Stage 1: We introduce two separate LoRAs (clean
LoRA ∆wc and noisy LoRA ∆wn) to construct the noisy label detector. Stage 2: We leverage the selected clean
samples and relabeled noisy samples to train the classifier model.

clean subset Dc of D can be constructed as follows:

Dc = {(xi, yi) | CE(f(xi, w0 +∆wc), yi) < ϕi} .
(3)

The proposed selection strategy outperforms tra-
ditional small loss-based approaches in two ways:
(1) it is more practical by using data-driven thresh-
olds, which eliminates the need for manual setting;
(2) the introduction of PEFT modules (LoRAs) im-
proves its robustness to label noise, allowing it to
identify challenging hard noise. However, the key
challenge is optimizing dual LoRAs (i.e., the clean
and noisy LoRA), and the noisy label detector.

Optimization for Dual LoRAs. Studies of the
memory effect show that deep networks would first
memorize clean samples and then noisy samples.
From the perspective of network parameter updates,
if we can strengthen the updates for parameters of
clean LoRA ∆wc during early training, and weaken
the updates in later training, the clean samples can
be better memorized by ∆wc. On the other hand,
for noisy LoRA ∆wn, we should limit their param-
eter ∆wn updates in early training, and strengthen
their updates in later training to memorize noisy
samples. This intuition drives us to formulate a
new optimization objective for the dual LoRA to
achieve our goal. To be specific, we design the
corresponding optimization objective:

LLoRA = τ1(t)∆σc + τ2(t)∆σn, (4)

where τ1(t) and τ2(t) are two mathematical func-
tions that are relevant to the training epoch t,
∆σc = ||∆wt

c−∆wt−1
c || = ||σt

c(B)−σt−1
c (B)||+

||σt
c(A)− σt−1

c (A)|| is defined to measure the pa-
rameter change of clean LoRA ∆wc between two
adjacent epochs via the Euclidean distance, ∆wt

c

are the parameters of ∆wc obtained in epoch t,
σt
c(A) and σt

c(B) correspond to the parameters
of two low-rank matrices in epoch t, respectively.
More specifically, ∆σc limits the parameter change
of ∆wc between two adjacent epochs. If the weight,
i.e., τ1(t), is high, ∆σc will decrease quickly.
Namely, modifications to ∆wt

c are restricted. For
noisy LoRA, the update of ∆σn = ||∆wt

n −
∆wt−1

n || = ||σt
n(B) − σt−1

n (B)|| + ||σt
n(A) −

σt−1
n (A)|| is also constrained in a similar manner.
Define for τ1 and τ2. As analyzed, combining

the memory effect of deep networks, we should
dynamically adjust the parameter update of clean
LoRA ∆wc and noisy LoRA ∆wn. That is to say,
during the early training, ∆wc should be updated
rapidly to fit clean data; while in later stages, its
updates should slow down to prevent overfitting
mislabeled data. In contrast, the update pattern
for ∆wn follows the opposite strategy. Therefore,
we define τ1(t) as a rising function to constrain
the parameter update (∆σc) of clean LoRA ∆wc

and τ2(t) as a decreasing function to constrain the
parameter update (∆σn) of noisy LoRA ∆wn. In
this work, we set τ1(t) = th1 and τ2(t) = t−h2 ,
where h1 and h2 are two hyperparameters.

Optimization for the Noisy Label Detector. Af-
ter addressing the optimization challenges of the
dual LoRA, we shift our focus to optimizing the
noisy label detector. For the noisy label detector,
optimizing the threshold ϕi in an end-to-end man-
ner might be challenging due to its indirect involve-
ment in forward propagation. We can still optimize
the associated parameters by stating the clean prob-
ability of the i-th samples as follows:

pc
i =

eCE(f(xi,w0+∆wc),yi)

eCE(f(xi,w0+∆wc),yi) + eCE(f(xi,w0+∆wn),yi)

(5)
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Obviously, selecting samples with clean probability
pci > 0.5 corresponds to the criterion provided in
Eq (3). In this way, the original threshold-based se-
lection method can be converted into binary classifi-
cation problems for determining if a sample is clean
or not. Specifically, given a sample (xi, yi) from D,
we can use the dual LoRAs as a binary classifier to
detect label noise. If the classifier makes a positive
prediction of xi, the sample is classified as clean.

To optimize the noisy label detector, we need to
create positive and negative training samples for
binary classification, i.e., correctly and incorrectly
labeled samples. Inspired by the work (Kim et al.,
2019) on negative learning, for each text xi ∈ D,
we randomly flip its class label yi to one of the other
classes, i.e., yni ∈ {1, . . . ,K} \{yi}, to construct
negative datasets Dn. For positive datasets, we first
use LLMs (i.e., GPT-4o) to generate pseudo-labels
for each text xi ∈ D, then select samples where the
generated pseudo-labels match the original labels
yi to construct the positive datasets Dp. Here, we
treat the samples in Dp as positive samples and the
samples in Dn as negative samples (see Appendix
A for details). After that, the optimization objective
can be calculated as follows:

LDetector =
1

Np

Np∑

i=1

ℓnll(p
c
i , yi) + ℓnll(1− pci , y

n
i ),

(6)
where Np denotes the size of Dp, Dp ⊆ D,
ℓnll(·, ·) is the negative log-likelihood loss, defined
as ℓnll(pi, y) = − log piy.

Although the design of LLoRA and LDetector

aim to help the noisy label detector perform sample
selection, they focus primarily on the comparison
between different LoRAs (i.e., ∆wc and ∆wn). To
enhance the noisy label detector’s ability to learn
task-specific representations, we introduce the
cross-entropy loss Lce = − 1

N

∑N
i=1 logf(xi, w0 +

∆wc +∆wn). It is worth noting that the optimiza-
tion objective Lwarm = Lce+LLoRA is computed
in the warm-up stage, the optimization objective
L = Lce + LLoRA + LDetector is computed after
warm-up. With these objectives, Delora effectively
identifies noisy samples using learned thresholds.

4.2 Training Classifier Model after Selection
After obtaining the selected clean and noisy sam-

ples, we introduce the classifier model training
stage to learn a classifier model using selected
samples. For selected clean samples, we directly
utilize the cross-entropy loss to learn from them.

For selected noisy samples, we refine and leverage
them following the recent work (Yuan et al., 2024),
rather than discarding them as done in most pre-
vious works (Qiao et al., 2022; Kim et al., 2024).
Specifically, we leverage clean samples to construct
demonstrations prompting GPT-4o to relabel noisy
samples. Then, we utilize the robust loss function
to learn from the relabeled noisy samples. See Ap-
pendix B for more details. Notably, the clean and
noisy samples obtained through Eq. (3) in the last
stage, which enables the second stage to be broadly
applicable to various classifier models (pre-trained
language models or open-source LLMs) and fine-
tuning paradigms (full fine-tuning or PEFT), re-
gardless of their backbone architectures. We vali-
date the versatility of Delora in Section 5.5.

5 Experiments

5.1 Experimental Settings

Synthetic Datasets. We first fully evaluate our
approach on five text classification benchmarks by
synthesizing noisy labels with a variety of noise
types and ratios. Specifically, the experiments are
evaluated on the following benchmark datasets:
Trec (Li and Roth, 2002), SST-2 (Socher et al.,
2013), SST-5 (Socher et al., 2013), 20ng (Lang,
1995), AGNews (Gulli, 2005). Following the pre-
vious experimental setup (Qiao et al., 2022; Yuan
et al., 2024), we then artificially introduce the noise
by using three different strategies: (1) Symmetric
Noise (S) chooses one of the other classes at ran-
dom to replace the label; (2) Asymmetric Noise
(A) carries out pairwise label flipping, in which a
class i can only change to the following class (i
mode K) + 1; (3) Instance-dependent Noise (I)
alters labels according to the transition probability
determined by the related attributes of the instance.
For all kinds of noise, the noise rate is set to 20%
and 40%. See Appendix C for more details.

Real-World Datasets. We further evaluate our
approach on three real-world datasets with noisy la-
bels: Yorùbá(Hedderich et al., 2020), Hausa (Hed-
derich et al., 2020), AlleNoise (Raczkowska et al.,
2024). See Appendix D for more details.

Baselines for Noisy Label Detection. To justify
the effectiveness of Delora in detecting noisy la-
bels, we first compare our approach with two other
sample selection strategies: (1) LLMs-detection
strategy, which directly determines whether a given
sample is clean using the LLM (i.e., GPT-4o). (2)
Small-loss strategy, which selects some samples
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Dataset Method 20%S 40%S 20%A 40%A 20%I 40%I

Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec.

Trec
LLMs-detection 70.37 70.31 70.16 70.20 69.96 69.97 69.04 68.82 - - - -

Small-loss 81.15 88.55 60.16 87.82 81.53 74.02 59.41 96.20 - - - -
Delora (Ours) 99.47 95.30 99.28 96.44 99.19 98.06 99.12 97.27 - - - -

SST-5
LLMs-detection 60.91 60.71 59.93 59.92 59.80 59.85 59.46 59.38 67.11 65.47 65.56 67.58

Small-loss 80.83 79.35 59.83 78.45 79.83 77.85 59.26 76.63 80.01 74.03 60.11 73.96
Delora (Ours) 98.11 86.75 96.37 93.59 97.18 94.90 94.04 92.61 95.31 85.02 91.99 89.29

SST-2
LLMs-detection 78.94 79.62 79.41 78.78 79.53 79.31 77.88 77.53 85.97 85.08 84.58 85.64

Small-loss 80.87 85.78 59.75 80.80 80.07 85.48 61.20 68.34 80.59 74.95 61.27 81.78
Delora (Ours) 99.97 89.07 99.95 86.34 99.96 88.60 99.76 86.75 98.35 87.27 96.43 88.86

Table 1: We compare the Precision (%) and Recall (%) of Delora with LLMs-detection and small-loss to evaluate
the performance of noisy label detection (i.e., clean sample selection performance). Bold means the best score.

Model
Trec SST-5 SST-2

20%S 40%S 20%A 40%A 20%S 40%S 20%A 40%A 20%I 40%I 20%S 40%S 20%A 40%A 20%I 40%I

Base (Clean) 98.60 58.05 97.03

Base 95.20 90.20 94.20 87.40 54.08 49.59 54.81 47.70 53.07 46.76 86.43 64.62 86.70 65.88 83.85 63.15

LLM-base 71.35 70.51 91.51

Co-Teaching 95.51 90.98 95.32 89.24 53.99 49.72 55.07 47.24 52.63 46.45 87.29 67.21 89.69 69.60 85.59 67.16

SENT 95.49 91.25 95.43 90.53 54.05 49.61 55.17 47.68 53.70 46.94 87.46 67.17 89.12 69.10 85.38 66.23

LAFT 95.42 91.28 94.43 90.32 55.00 49.13 54.50 47.69 52.57 47.02 88.07 67.39 89.72 68.80 85.45 66.34

SelfMix 96.21 90.52 95.24 90.80 53.63 49.61 55.80 47.59 53.00 46.66 87.58 66.78 89.97 68.92 85.61 66.05

CleaR 96.01 90.45 95.35 90.69 53.69 49.97 54.95 47.63 53.64 46.62 87.21 66.81 89.36 69.43 85.13 66.54

NoiseAL 97.30 96.54 96.96 95.95 55.00 50.48 54.94 48.12 54.00 47.32 91.90 86.25 91.97 86.72 91.55 85.01

Delora (Ours) 98.46 97.60 98.30 97.40 57.39 55.62 57.57 55.39 57.02 55.02 96.50 95.75 96.27 95.18 96.08 95.00

Table 2: Performance (test accuracy %) comparison of Delora with other LNL baselines on synthetic noise datasets.
Base (Clean) refers to the base model trained on ground truth data without noisy labels. LLM-base refers to directly
using LLMs (GPT-4o) on the test dataset. Bold means the best score for each dataset.

with small training losses as clean via the Gaussian
Mixture Model, appearing in most LNL works.

Baselines for LNL. Then, we further compare
Delora with previous sample selection-based LNL
baselines as follows: (1) Base model (Llama3.1-
8B-Instruct (Dubey et al., 2024)) without noise-
handling; (2) Some methods that use small-loss
strategy: Co-Teaching (Han et al., 2018), SelfMix
(Qiao et al., 2022), NoiseAL (Yuan et al., 2024),
CleaR (Kim et al., 2024); (3) Other technologies
: SENT(Wang et al., 2022b), LAFT (Wang et al.,
2023). See Appendix E for more details.

Evaluation Metrics. For the first stage (noisy
label detection stage), we evaluate the selection of
clean samples using precision and recall metrics. A
higher recall suggests that more clean samples are

found in the noisy dataset, whereas a higher preci-
sion means that there are more real clean examples
in Dc. For the last stage (classifier model training
stage), we use the test accuracy to evaluate the gen-
eralization performance of our framework on text
classification in the context of noisy environments.

The implementation details are in Appendix F.

5.2 Performance for Noisy Label Detection

Table 1 presents the performance for noisy la-
bel detection on three synthetic datasets. The re-
sults presented in Table 1 show that our proposed
noisy label detector outperforms the comparison
strategies across all dataset settings, demonstrating
significant improvements in precision and recall.
The LLMs-detection strategy directly leverages the
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zero-shot ability of LLMs to perform binary clas-
sification (clean or noisy). The lack of targeted
demonstrations in LLM prompts has resulted in
lower selection performance for this strategy. In
contrast, the small-loss strategy and Delora make
better use of training samples to perform better in
precision and recall. Moreover, leveraging the dif-
ferent LoRA modules to memorize the information
of clean and noisy samples separately, Delora sur-
passes the small-loss strategy in detecting noisy
labels, particularly under severe noise settings and
fine-grained classification datasets. For instance,
in datasets with a noise rate of 40%, the small-loss
strategy performs poorly in precision, while our
method performs well in various situations. Addi-
tionally, Delora reduces the need to manually set
loss thresholds, making it a practical and effective
approach to detect label noise in real-world tasks.

Method Hausa Yorùbá AlleNoise

Noise Ratio 50.37% 33.28% 15.00%

Base 49.80±0.26 67.02±0.32 65.75±0.25

Co-Teaching 46.47±0.38 66.23±0.69 65.32±0.36

SENT 46.15±0.57 66.21±0.24 66.66±0.38

LAFT 50.56±0.31 69.13±0.54 66.57±0.81

SelfMix 50.81±2.62 69.27±1.07 67.67±3.67

CleaR 51.66±1.14 70.11±1.10 67.73±2.40

NoiseAL 52.34±0.69 72.13±0.24 69.80±0.62

Ours 60.12±0.22 78.56±0.30 76.28±0.23

Table 3: Main results on real-world noise datasets

5.3 Performance for LNL
Table 2 and Table 3 show the main results for

three synthetic and real-world noisy datasets (more
results in Appendix G). From these results, we
found that (1) Delora significantly outperforms all
baselines on synthetic datasets with varying noise
types and ratios, which validates the effectiveness
of our proposed two-stage decoupling framework
in addressing the LNL task. (2) For fine-grained
classification datasets, while most compared meth-
ods show little improvement on SST-5 due to its
fine-grained nature, Delora shows substantial im-
provement. (3) For real-world datasets with a high
noise rate, previous methods show limited improve-
ment on Hausa. In contrast, Delora achieves a sig-
nificant performance boost, showcasing its ability
to combat label noise in practical situations.

5.4 Ablation Studies
We perform ablation studies to investigate the

contributions of each component and routing strat-

egy in Delora. Table 4 presents the ablation results.
The effect of noisy label detector. Noisy Label

Detector (NLD) effectively identifies noisy sam-
ples and partitions the noisy dataset, which can
alleviate the overfitting of noisy labels and the is-
sue of vicious cycles in the subsequent classifier
model training stage. The performance of Delora
will decrease greatly when we remove the NLD,
which indicates that utilizing the NLD is crucial.

The effect of classifier model training. The
classifier model training stage (CT) leverages the
selected samples to fine-tune the classifier model,
obtaining the best classification performance. If we
remove CT and only rely on the trained clean LoRA
to perform classification tasks, the performance
of Delora will decrease by a large margin, which
emphasizes the necessity of CT in Delora.

The effect of different optimization objectives.
In our experiments, we combine different optimiza-
tion objectives (LLoRA,LDetector,Lce) to train the
noisy label detector. The results in Table 4 demon-
strate that each component is essential for improv-
ing generalization and robustness, failing to employ
them leads to a decline in the results.

The effect of selected noisy samples. To max-
imize the use of training data without discarding
remaining noisy samples (NS), we relabel and re-
purpose them to further train the classifier model.
This process has also been proven to be crucial, as
its removal leads to substantial performance drops.

Variant Sym Asym
20% 40% 20% 40%

Delora (Ours) 98.46 97.60 98.30 97.40

w/o NLD 95.20 90.20 94.20 89.40
w/o CT 96.02 91.01 94.77 90.08
w/o LLoRA 96.46 92.00 95.68 90.43
w/o LDetector 96.91 91.98 95.07 90.75
w/o Lce 96.54 91.33 95.44 90.35
w/o NS 97.41 94.29 96.97 91.53

Table 4: Ablation study on the Trec dataset.

5.5 Analysis

Memorization performance for different Lo-
RAs. In our proposed Delora, we adopt the clean
and noisy LoRA to memorize the information of
clean and noisy samples separately. To confirm
whether different LoRA modules fit clean and noisy
samples, we compare the ratio of memorizing clean
and noisy samples for different LoRAs during fine-
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tuning. As shown in Figure 3, we observe that the
base model first memorizes clean samples and then
gradually fits noisy samples, which is consistent
with the memory effect. For clean LoRA, it en-
hances the memorization of clean samples while
reducing the memorization of noisy samples. In
contrast, noisy LoRA exhibits the opposite effect,
the parameters in noisy LoRA are restricted to ab-
sorb the side effects of mislabeled data. These
results indicate that Delora effectively constrains
different LoRA modules to memorize clean and
noisy samples separately, thereby facilitating the
successful construction of the noisy label detector.
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Figure 3: Memorization performance of different Lo-
RAs during fine-tuning on Trec under 20%A. The green
line refers to the base model without noise handling.
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Figure 4: Precision and recall of noisy label detection
with BERT as the backbone on the Trec dataset.

Impact of Noisy Label Detector Backbones.
Table 1 has demonstrated the superiority of Delora
in detecting noisy labels based on Llama 3.1-8B.
To evaluate the impact of different language model
backbones on noise detection, we use the small
language model BERT as the backbone and re-

port the results in Figure 4. As shown in Figure 4,
our method maintains consistently superior perfor-
mance, underscoring its resilience across different
backbones. We analyze how our method consis-
tently outperforms others across different language
models. Generally, for LNL, incorrect labels can
propagate errors during backpropagation, causing
adjustment bias across all trainable parameters. De-
lora effectively mitigates this issue by ensuring that
the influence of incorrect labels is restricted to the
noise-specific parameters within the noise LoRA,
thereby preserving the integrity of the clean LoRA,
which is dedicated to learning from clean data. This
solution achieves functional segregation at the pa-
rameter level, which is architecture-independent.

Delora for Various Classifier Models. The re-
sults in Table 4 highlight the crucial role of the
classifier model training stage in our method. No-
tably, Delora seamlessly integrates with various
classifier models at this stage. To showcase the
versatility of our proposed LNL framework, we
conduct experiments on Trec using a diverse set of
models, including BERT (full fine-tuning), Llama
3.2-3B (Dubey et al., 2024), Gemma 2-9B (Rivière
et al., 2024), Llama 3.1-8B. As shown in Table 5,
Delora exhibits the best performance on average.

Architecture BERT Llama3.2 Gemma2 Llama3.1

Base 93.60 93.88 94.49 94.20
Co-Teaching 94.88 94.81 95.74 95.32
SelfMix 95.16 96.05 95.12 95.24
NoiseAL 96.80 96.23 97.14 96.96
Delora 97.40 97.50 98.12 98.30

Table 5: Test accuracy (%) using various classifier mod-
els on Trec under 20%A. Bold means the best score.

Analysis of Efficiency. In this part, we explore
the efficiency of our proposed methods. Although
the proposed methods introduce additional train-
able parameters, we perform the systematic multi-
dimensional efficiency comparisons (see the Table
6, from the perspective of final classification perfor-
mance) to demonstrate that our method achieves a
superior Pareto frontier in the accuracy-parameters-
memory trade-off space. Specifically, from the
Table 6, there are some key findings as follows:

(1) Compared to the base model with the stan-
dard single LoRA, we require only +13.6 MB pa-
rameters and +3.2 GB memory but achieve +3.26%,
+7.40%, +4.10%, and +10% accuracy on the Trec
dataset with different noisy settings, respectively.

(2) Compared to other baselines (SelfMix and
NoiseAL), our proposed method outperforms them
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Methods Parameter (M) Memory (GB) 20%S 40%S 20%A 40%A

standard single LoRA 13.7 10.4 95.20 90.20 94.20 87.40

SelfMix 28.3 19.3 96.21 (+1.01) 90.52 (+0.32) 95.24 (+1.04) 90.80 (+3.40)

NoiseAL 28.4 21.7 97.30 (+2.10) 96.54 (+6.34) 96.96 (+2.76) 95.95 (+8.55)

Ours 27.3 13.6 98.46 (+3.26) 97.60 (+7.40) 98.30 (+4.10) 97.40 (+10.00)

Table 6: Detailed results for Trec datasets with the LLaMA 3.1 8B as backbone.

Methods 20%S 40%S 20%A 40%A

Single LoRA → SelfMix +0.07% / +1M params +0.02% / +1M params +0.07% / +1M params +0.23% / +1M params

Single LoRA → NoiseAL +0.19% / +1M params +0.56% / +1M params +0.24% / +1M params +0.76% / +1M params

Single LoRA → Ours +0.24% / +1M params +0.54% / +1M params +0.30% / +1M params +0.74% / +1M params

Table 7: Parameter efficiency on Trec datasets with different noisy settings.

Methods 20%S 40%S 20%A 40%A

Single LoRA → SelfMix +0.11% / +1G memory +0.04% / +1G memory +0.12% / +1G memory +0.38% / +1G memory

Single LoRA → NoiseAL +0.14% / +1G memory +0.43% / +1G memory +0.19% / 1G memory +0.58% / +1G memory

Single LoRA → Ours +1.02% / +1G memory +2.31% / +1G memory +1.28% / +1G memory +3.13% / +1G memory

Table 8: Memory efficiency on Trec datasets with different noisy settings.

with relatively fewer resources. Moreover, we fur-
ther compare our method with other baselines by
quantifying parameter efficiency via accuracy gain
per parameter (∆Acc/∆Params) (see the Table 7)
and memory efficiency via accuracy gain per pa-
rameter (∆Acc/∆Memory) (see the Table 8). In
the above experiments, we chose the LLaMA 3.1
8B as the backbone.

In general, while the dual LoRA modules intro-
duce additional parameters, our systematic anal-
ysis of parameter efficiency (∆Acc/∆Params)
and memory efficiency (∆Acc/∆Memory) demon-
strates that the increased parameterization is jus-
tified. Moreover, through comparative analysis
across different methods, we quantify the accuracy
gain per additional 1M parameters or 1GB mem-
ory, ultimately proving that our approach achieves
a superior Pareto frontier in the three-dimensional
trade-off space of accuracy, parameter count, and
memory usage.

6 Conclusion

In this work, we mitigate the issues of the vi-
cious cycle in current mainstream sample selection
methods and further explore the PEFT methods in
the era of LLMs to solve the LNL tasks. Specifi-
cally, we decouple this task into sample selection
and classifier model training. For sample selection,

we introduce the dual LoRA to construct a new
noisy label detection approach, which restricts the
clean LoRA to fit clean data and the noisy LoRA
to absorb the side effects of mislabeled data. Then
we can train the robust classifier model by lever-
aging the carefully selected samples. Extensive
experiments have convincingly demonstrated the
superior performance of Delora in both noisy la-
bel detection and text classification. Moreover, our
in-depth analysis has demonstrated that Delora can
generalize to other language models.

Limitations

While Delora has demonstrated significant im-
provements in text classification tasks, there are
some limitations to consider in the following as-
pects: (1) Due to resource constraints, we have not
evaluated our framework on larger language mod-
els, such as Llama-3.2 70B. (2) The experiments
in this paper are limited to the text classification
task and do not explore other tasks (Wang et al.,
2022a), such as text generation tasks. Interestingly,
we discovered a recent study (Luo et al., 2024) that
extends the NoiseAL method, originally designed
for text classification, to text generation tasks. This
opens up new perspectives and potential improve-
ments for our work. We leave the exploration of
this direction as promising future work.

15300



References
Devansh Arpit, Stanislaw Jastrzebski, Nicolas Ballas,

David Krueger, Emmanuel Bengio, Maxinder S.
Kanwal, Tegan Maharaj, Asja Fischer, Aaron C.
Courville, Yoshua Bengio, and Simon Lacoste-Julien.
2017. A closer look at memorization in deep net-
works. In Proceedings of the 34th International Con-
ference on Machine Learning, ICML 2017, Sydney,
NSW, Australia, 6-11 August 2017, volume 70 of
Proceedings of Machine Learning Research, pages
233–242. PMLR.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang,
Archi Mitra, Archie Sravankumar, Artem Korenev,
Arthur Hinsvark, Arun Rao, Aston Zhang, Aurélien
Rodriguez, Austen Gregerson, Ava Spataru, Bap-
tiste Rozière, Bethany Biron, Binh Tang, Bobbie
Chern, Charlotte Caucheteux, Chaya Nayak, Chloe
Bi, Chris Marra, Chris McConnell, Christian Keller,
Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Al-
lonsius, Daniel Song, Danielle Pintz, Danny Livshits,
David Esiobu, Dhruv Choudhary, Dhruv Mahajan,
Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova,
Emily Dinan, Eric Michael Smith, Filip Radenovic,
Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Geor-
gia Lewis Anderson, Graeme Nail, Grégoire Mialon,
Guan Pang, Guillem Cucurell, Hailey Nguyen, Han-
nah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov,
Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan
Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan
Geffert, Jana Vranes, Jason Park, Jay Mahadeokar,
Jeet Shah, Jelmer van der Linde, Jennifer Billock,
Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi,
Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu,
Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph
Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia,
Kalyan Vasuden Alwala, Kartikeya Upasani, Kate
Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, and
et al. 2024. The llama 3 herd of models. CoRR,
abs/2407.21783.

Chen Feng, Georgios Tzimiropoulos, and Ioannis Patras.
2024. Clipcleaner: Cleaning noisy labels with CLIP.
In Proceedings of the 32nd ACM International Con-
ference on Multimedia, MM 2024, Melbourne, VIC,
Australia, 28 October 2024 - 1 November 2024, pages
876–885. ACM.

Aritra Ghosh, Himanshu Kumar, and P. S. Sastry. 2017.
Robust loss functions under label noise for deep neu-
ral networks. In Proceedings of the Thirty-First AAAI
Conference on Artificial Intelligence, February 4-9,
2017, San Francisco, California, USA, pages 1919–
1925. AAAI Press.

Antonio Gulli. 2005. The anatomy of a news search
engine. In Proceedings of the 14th international
conference on World Wide Web, WWW 2005, Chiba,

Japan, May 10-14, 2005 - Special interest tracks and
posters, pages 880–881. ACM.

Bo Han, Quanming Yao, Xingrui Yu, Gang Niu,
Miao Xu, Weihua Hu, Ivor W. Tsang, and Masashi
Sugiyama. 2018. Co-teaching: Robust training of
deep neural networks with extremely noisy labels. In
Advances in Neural Information Processing Systems
31: Annual Conference on Neural Information Pro-
cessing Systems 2018, NeurIPS 2018, December 3-8,
2018, Montréal, Canada, pages 8536–8546.

Michael A. Hedderich, David Ifeoluwa Adelani, Dawei
Zhu, Jesujoba O. Alabi, Udia Markus, and Dietrich
Klakow. 2020. Transfer learning and distant supervi-
sion for multilingual transformer models: A study on
african languages. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing, EMNLP 2020, Online, November 16-20,
2020, pages 2580–2591. Association for Computa-
tional Linguistics.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin de Laroussilhe, Andrea Ges-
mundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. In Pro-
ceedings of the 36th International Conference on Ma-
chine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA, volume 97 of Proceedings
of Machine Learning Research, pages 2790–2799.
PMLR.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. Lora: Low-rank adaptation of
large language models. In The Tenth International
Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net.

Yeachan Kim, Junho Kim, and SangKeun Lee. 2024.
Towards robust and generalized parameter-efficient
fine-tuning for noisy label learning. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
ACL 2024, Bangkok, Thailand, August 11-16, 2024,
pages 5922–5936. Association for Computational
Linguistics.

Youngdong Kim, Junho Yim, Juseung Yun, and Junmo
Kim. 2019. NLNL: negative learning for noisy labels.
In 2019 IEEE/CVF International Conference on Com-
puter Vision, ICCV 2019, Seoul, Korea (South), Oc-
tober 27 - November 2, 2019, pages 101–110. IEEE.

Ken Lang. 1995. Newsweeder: Learning to filter net-
news. In Machine Learning, Proceedings of the
Twelfth International Conference on Machine Learn-
ing, Tahoe City, California, USA, July 9-12, 1995,
pages 331–339. Morgan Kaufmann.

Xin Li and Dan Roth. 2002. Learning question classi-
fiers. In 19th International Conference on Computa-
tional Linguistics, COLING 2002, Howard Interna-
tional House and Academia Sinica, Taipei, Taiwan,
August 24 - September 1, 2002.

15301

http://proceedings.mlr.press/v70/arpit17a.html
http://proceedings.mlr.press/v70/arpit17a.html
https://doi.org/10.48550/ARXIV.2407.21783
https://doi.org/10.1145/3664647.3680664
https://doi.org/10.1609/AAAI.V31I1.10894
https://doi.org/10.1609/AAAI.V31I1.10894
https://doi.org/10.1145/1062745.1062778
https://doi.org/10.1145/1062745.1062778
https://proceedings.neurips.cc/paper/2018/hash/a19744e268754fb0148b017647355b7b-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/a19744e268754fb0148b017647355b7b-Abstract.html
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.204
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.204
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.204
http://proceedings.mlr.press/v97/houlsby19a.html
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.18653/V1/2024.ACL-LONG.322
https://doi.org/10.18653/V1/2024.ACL-LONG.322
https://doi.org/10.1109/ICCV.2019.00019
https://doi.org/10.1016/B978-1-55860-377-6.50048-7
https://doi.org/10.1016/B978-1-55860-377-6.50048-7
https://aclanthology.org/C02-1150/
https://aclanthology.org/C02-1150/


Chang Liu, Viraj Shah, Aiyu Cui, and Svetlana Lazeb-
nik. 2024. Unziplora: Separating content and style
from a single image. CoRR, abs/2412.04465.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengx-
iao Du, Zhilin Yang, and Jie Tang. 2022. P-tuning:
Prompt tuning can be comparable to fine-tuning
across scales and tasks. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), ACL 2022,
Dublin, Ireland, May 22-27, 2022, pages 61–68. As-
sociation for Computational Linguistics.

Junyu Luo, Xiao Luo, Kaize Ding, Jingyang Yuan, Zhip-
ing Xiao, and Ming Zhang. 2024. Robustft: Robust
supervised fine-tuning for large language models un-
der noisy response.

Xiangwei Lv, Guifeng Wang, Jingyuan Chen, Hejian
Su, Zhiang Dong, Yumeng Zhu, Beishui Liao, and
Fei Wu. 2025. Debiased cognition representation
learning for knowledge tracing. ACM Transactions
on Information Systems.

Paulius Micikevicius, Sharan Narang, Jonah Alben,
Gregory F. Diamos, Erich Elsen, David García,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev,
Ganesh Venkatesh, and Hao Wu. 2018. Mixed pre-
cision training. In 6th International Conference on
Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30 - May 3, 2018, Conference
Track Proceedings. OpenReview.net.

Dan Qiao, Chenchen Dai, Yuyang Ding, Juntao Li,
Qiang Chen, Wenliang Chen, and Min Zhang. 2022.
Selfmix: Robust learning against textual label noise
with self-mixup training. In Proceedings of the 29th
International Conference on Computational Linguis-
tics, COLING 2022, Gyeongju, Republic of Korea,
October 12-17, 2022, pages 960–970. International
Committee on Computational Linguistics.

Alicja Raczkowska, Aleksandra Osowska-Kurczab,
Jacek Szczerbinski, Kalina Jasinska-Kobus, and
Klaudia Nazarko. 2024. Allenoise - large-scale text
classification benchmark dataset with real-world la-
bel noise. CoRR, abs/2407.10992.

Morgane Rivière, Shreya Pathak, Pier Giuseppe
Sessa, Cassidy Hardin, Surya Bhupatiraju, Léonard
Hussenot, Thomas Mesnard, Bobak Shahriari,
Alexandre Ramé, Johan Ferret, Peter Liu, Pouya
Tafti, Abe Friesen, Michelle Casbon, Sabela Ramos,
Ravin Kumar, Charline Le Lan, Sammy Jerome, An-
ton Tsitsulin, Nino Vieillard, Piotr Stanczyk, Sertan
Girgin, Nikola Momchev, Matt Hoffman, Shantanu
Thakoor, Jean-Bastien Grill, Behnam Neyshabur,
Olivier Bachem, Alanna Walton, Aliaksei Severyn,
Alicia Parrish, Aliya Ahmad, Allen Hutchison, Alvin
Abdagic, Amanda Carl, Amy Shen, Andy Brock,
Andy Coenen, Anthony Laforge, Antonia Pater-
son, Ben Bastian, Bilal Piot, Bo Wu, Brandon
Royal, Charlie Chen, Chintu Kumar, Chris Perry,
Chris Welty, Christopher A. Choquette-Choo, Danila
Sinopalnikov, David Weinberger, Dimple Vijayku-
mar, Dominika Rogozinska, Dustin Herbison, Elisa

Bandy, Emma Wang, Eric Noland, Erica Moreira,
Evan Senter, Evgenii Eltyshev, Francesco Visin,
Gabriel Rasskin, Gary Wei, Glenn Cameron, Gus
Martins, Hadi Hashemi, Hanna Klimczak-Plucinska,
Harleen Batra, Harsh Dhand, Ivan Nardini, Jacinda
Mein, Jack Zhou, James Svensson, Jeff Stanway,
Jetha Chan, Jin Peng Zhou, Joana Carrasqueira,
Joana Iljazi, Jocelyn Becker, Joe Fernandez, Joost
van Amersfoort, Josh Gordon, Josh Lipschultz,
Josh Newlan, Ju-yeong Ji, Kareem Mohamed, Kar-
tikeya Badola, Kat Black, Katie Millican, Keelin
McDonell, Kelvin Nguyen, Kiranbir Sodhia, Kish
Greene, Lars Lowe Sjösund, Lauren Usui, Laurent
Sifre, Lena Heuermann, Leticia Lago, and Lilly Mc-
Nealus. 2024. Gemma 2: Improving open language
models at a practical size. CoRR, abs/2408.00118.

Jun Shu, Qi Xie, Lixuan Yi, Qian Zhao, Sanping Zhou,
Zongben Xu, and Deyu Meng. 2019. Meta-weight-
net: Learning an explicit mapping for sample weight-
ing. In Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Informa-
tion Processing Systems 2019, NeurIPS 2019, De-
cember 8-14, 2019, Vancouver, BC, Canada, pages
1917–1928.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Y. Ng,
and Christopher Potts. 2013. Recursive deep mod-
els for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2013, 18-21 October 2013, Grand Hyatt
Seattle, Seattle, Washington, USA, A meeting of SIG-
DAT, a Special Interest Group of the ACL, pages
1631–1642. ACL.

Lidong Wang, Yin Zhang, and Keyong Hu. 2022a.
FEUI: fusion embedding for user identification across
social networks. Appl. Intell., 52(7):8209–8225.

Song Wang, Zhen Tan, Ruocheng Guo, and Jundong
Li. 2023. Noise-robust fine-tuning of pretrained
language models via external guidance. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2023, Singapore, December 6-10, 2023,
pages 12528–12540. Association for Computational
Linguistics.

Zhihao Wang, Zongyu Lin, Junjie Wen, Xianxin Chen,
Peiqi Liu, Guidong Zheng, Yujun Chen, and Zhilin
Yang. 2022b. Learning to detect noisy labels using
model-based features. In Findings of the Association
for Computational Linguistics: EMNLP 2022, Abu
Dhabi, United Arab Emirates, December 7-11, 2022,
pages 5796–5808. Association for Computational
Linguistics.

Bo Yuan, Yulin Chen, Yin Zhang, and Wei Jiang. 2024.
Hide and seek in noise labels: Noise-robust collabo-
rative active learning with llms-powered assistance.
In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), ACL 2024, Bangkok, Thailand, August
11-16, 2024, pages 10977–11011. Association for
Computational Linguistics.

15302

https://doi.org/10.48550/ARXIV.2412.04465
https://doi.org/10.48550/ARXIV.2412.04465
https://doi.org/10.18653/V1/2022.ACL-SHORT.8
https://doi.org/10.18653/V1/2022.ACL-SHORT.8
https://doi.org/10.18653/V1/2022.ACL-SHORT.8
http://arxiv.org/abs/2412.14922
http://arxiv.org/abs/2412.14922
http://arxiv.org/abs/2412.14922
https://openreview.net/forum?id=r1gs9JgRZ
https://openreview.net/forum?id=r1gs9JgRZ
https://aclanthology.org/2022.coling-1.80
https://aclanthology.org/2022.coling-1.80
https://doi.org/10.48550/ARXIV.2407.10992
https://doi.org/10.48550/ARXIV.2407.10992
https://doi.org/10.48550/ARXIV.2407.10992
https://doi.org/10.48550/ARXIV.2408.00118
https://doi.org/10.48550/ARXIV.2408.00118
https://proceedings.neurips.cc/paper/2019/hash/e58cc5ca94270acaceed13bc82dfedf7-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/e58cc5ca94270acaceed13bc82dfedf7-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/e58cc5ca94270acaceed13bc82dfedf7-Abstract.html
https://aclanthology.org/D13-1170/
https://aclanthology.org/D13-1170/
https://aclanthology.org/D13-1170/
https://doi.org/10.1007/S10489-021-02716-5
https://doi.org/10.1007/S10489-021-02716-5
https://aclanthology.org/2023.findings-emnlp.834
https://aclanthology.org/2023.findings-emnlp.834
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.426
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.426
https://doi.org/10.18653/V1/2024.ACL-LONG.592
https://doi.org/10.18653/V1/2024.ACL-LONG.592


Zhilu Zhang and Mert R. Sabuncu. 2018. Generalized
cross entropy loss for training deep neural networks
with noisy labels. In Advances in Neural Information
Processing Systems 31: Annual Conference on Neu-
ral Information Processing Systems 2018, NeurIPS
2018, December 3-8, 2018, Montréal, Canada, pages
8792–8802.

15303

https://proceedings.neurips.cc/paper/2018/hash/f2925f97bc13ad2852a7a551802feea0-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/f2925f97bc13ad2852a7a551802feea0-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/f2925f97bc13ad2852a7a551802feea0-Abstract.html


A Construction of Positive and Negative
Sample

Given the original dataset D, for each text xi ∈
D, we randomly flip its class label yi to one of
the other classes, i.e., yni ∈ {1, . . . ,K} \{yi}, to
construct negative datasets Dn. For texts and their
corresponding labels in Dn, we regard them as neg-
ative samples, which train the noisy label detector
in such a logical form: "input text does not belong
to this complementary label."

For positive datasets, we first use LLMs (i.e.,
GPT-4o) to generate pseudo-labels for each text
xi ∈ D, subsequently select samples where the
pseudo-labels match the original labels yi to con-
struct the positive datasets Dp. Here, we treat the
samples in Dp as positive samples, which train the
noisy label detector in such a logical form: "in-
put text belongs to this label." The details of LLM
prompts are in Appendix H.

B Learning From Clean samples and
Noisy samples

In this part, we present the details of the clas-
sifier model training to learn from clean samples
and noisy samples. Denote f(x) ∈ RK as the
output of the classifier model f , where K is the
number of classes. The confidence of x for each
class k ∈ {1, . . . ,K} can be represented as fol-
lows: p(k;x) = ef(k;x)∑K

k=1 e
f(k;x)

.

Learning from Clean Samples. For the se-
lected clean samples xi ∈ Dc, we directly utilize
the cross-entropy loss for the classifier model:

LDc = − 1

N

NDc∑

i=1

logp(yi;xi) (7)

where Dc is the selected clean subsets, NDc de-
notes the size of Dc, and N denotes the size of the
entire dataset.

Learning from Noisy Samples. After selecting
clean samples from D by the noisy label detector,
the remaining samples are considered noisy sam-
ples. To maximize the utilization of training data,
we construct the demonstrations via clean samples
and leverage the strong in-context learning ability
of LLMs (GPT-4o) to generate new labels for these
noisy samples. Then, we put these corrected sam-
ples in the correction subsets Do. With the help
of LLMs (GPT-4o), the number of noisy samples
has greatly decreased. However, even the most

powerful LLM cannot generate the right labels for
each noisy sample. To learn from the corrected
noisy samples in Do, we resort to the reversed
cross-entropy loss function. This loss function has
a noise-robust property, which can let us optimize
the classifier model given a dataset with a lower
noise ratio (Ghosh et al., 2017; Zhang and Sabuncu,
2018; Yuan et al., 2024). Specifically, we utilize
the reversed cross-entropy loss for sample (xi, yi)
in Do:

LDo = − 1

N

NDo∑

i=1

K∑

k=1

p(k;xi)log q(k|xi), (8)

where q(k|x) is the ground-truth distribution
over labels, NDo denotes the size of Do.

Overall Learning Objectives. Finally, we train
the classifier model on selected clean samples and
relabeled noisy samples by: L = LDc + LDo .

C Detailed Process for Generating Noisy
Labels

High-quality data is typically crucial. However,
in real-world scenarios, collected data often con-
tains biases (Lv et al., 2025) and noise. We have
simulated such non-ideal conditions in our experi-
ments. Specifically, in our evaluative experiments,
we first select the following datasets: Trec, SST-2,
SST-5, 20ng, and AGNews. Then we synthesize
noisy labels with a variety of noise types and ratios
for these datasets. When the noise ratio ε ∈ [0, 1)
is given, we explain the details of synthetic noise
generation processes in the following:

Symmetric noise. Symmetric noise chooses
one of the other classes at random to replace the
label. Each class has the same probability of in-
correctly flipping to any other class. To generate
this noise, we establish the noise transition matrix
T ∈ RK×K , where K represents the number of
classes. We then modify the elements in the noise
transition matrix according to the following for-
mula:

Tij =

{
ε, i = j
1−ε
k−1 , i ̸= j ,

where i and j respectively represent the horizon-
tal and vertical axes in the noise transition matrix.
Lastly, we flip the labels in training samples based
on the probability in the matrix.

Asymmetric noise. Asymmetric noise carries
out pairwise label flipping, in which a class i can
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only change to the following class (i mode K) + 1.
That is to say, similar classes are mistakenly flipped
between each other. To generate this noise, we
establish the noise transition matrix T ∈ RK×K ,
where K represents the number of classes. We then
modify the elements in the noise transition matrix
according to the following formula:

Tij =





ε, i = j

1− ε, i = j + 1 (mod K)
0, otherwise

where i and j respectively represent the horizon-
tal and vertical axes in the noise transition matrix.
Lastly, we flip the labels in training samples based
on the probability in the matrix.

Instance-dependent noise. Instance-dependent
noise alters labels according to the transition prob-
ability determined by the related attributes of the
instance. The generation of such noise is affected
by text features, which is more consistent with
the noise generation process in the real world, and
more challenging. We follow previous works (Yuan
et al., 2024) for instance-dependent noise genera-
tion. The detailed algorithm of noisy label genera-
tion is summarized in Algorithm 1.

D Details of Real-World Datasets with
Noisy Labels

In our evaluative experiments, we also select
the following real-world datasets with noisy la-
bels: Hausa, Yorùbá, and AlleNoise. Yorùbá and
Hausa are low-resource African languages with
five and seven categories, respectively, in their text
categorization datasets. With a level of 33.28%
for the latter and 50.37% for the former, they both
incorporate real-world noise. AlleNoise comprises
502310 brief texts categorized by 5692 types. Due
to incorrectly categorized data points, there is a
15% noise level in it.

Table 9 introduces detailed statistics about all
datasets used in our experiments.

E Details of Baselines

In our evaluative experiments, we compare our
Delora with the following LNL methods:

Basic models. We train the LLaMA-3.1-8B-
Instruct only with standard cross-entropy loss with-
out noise handling.

Co-Teaching (Han et al., 2018). Co-Teaching
trains two models simultaneously and lets them
instruct one another using each mini-batch.

#Dataset #Class #Training #Validation #Test

Trec 6 4952 500 500
20ng 20 9051 7527 2263
AGNews 4 112400 7600 7600
SST-2 2 5099 1820 1820
SST-5 5 8544 1101 2210
Hausa 5 2045 290 582
Yorùbá 7 1340 189 379
AlleNoise 5692 400k 50k 50k

Table 9: The detailed statistics of all datasets used in
our experiments.

SelfMix (Qiao et al., 2022). SelfMix uses the
Gaussian Mixture Model to split samples and semi-
supervised learning to manage label noise.

SENT(Wang et al., 2022b). SENT transfers the
noise distribution to a clean set and trains a model
to distinguish noisy labels from clean ones using
model-based features.

LAFT (Wang et al., 2023). LAFT examines the
possibility of using supervision data—such as con-
fidence scores—produced by ChatGPT to address
the noisy label issue in pre-trained language model
fine-tuning.

NoiseAL (Yuan et al., 2024). NoiseAL is a
novel framework that introduces active learning
to combine the non-pretrained model (BiLSTM),
pre-trained language model (BERT), and LLMs for
learning from noisy labels.

CleaR (Kim et al., 2024). CleaR is a new PEFT
technique that minimizes the impact of noisy data
while adaptively activating the PEFT modules to
enhance generalization ability.

F Implementation Details and Setups

In this section, we detail to implement the base-
lines and our Delora.

For Delora and all baselines, we report the aver-
age performance on 5 different seeds considering
their stochasticity. In the main experiments, we
chose the LLaMA-3.1-8B-Instruct as the backbone
model for Delora (both the noisy label detection
stage and the model training stage) and other base-
line methods, the LLaMA was fine-tuned by using
LoRA.

LoRA implementation. For Delora, we set the
bottleneck deminsion r for the clean LoRA and
noisy LoRA as 32. For these two LoRAs, we only
apply LoRA weights on query and value attention
weights.
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Algorithm 1 Instance Dependent Noise Generation
Input: Clean samples (xi, yi)ni=1, yi ∈ [1, . . . , k] ; Noisy ratio ε;
1: Train an LSTM classifier f ;
2: Get output from an LSTM classifier fxi ∈ Rk for all i = 1, . . . , n;
3: Set Nnoisy = 0;
4: while Nnoisy < n× ε do
5: Randomly choose a sample xi, argmax(softmax(fxi)) ̸= yi;
6: set its noisy label ȳi = argmax(softmax(fxi));
7: Nnoisy = Nnoisy + 1;
8: end while

Output: Noise samples (xi, ȳi)ni=1 ;

Hardware Details. We train our framework on
Nvidia RTX 3090 and Nvidia A100 GPU. We uti-
lize mixed precision training (Micikevicius et al.,
2018) to expedite the training procedure. All the
implementations are performed with Python, Py-
Torch, and HuggingFace.

Hyper-parameters. In order to strike a balance
between effectiveness and efficiency, we set 8 train-
ing epochs for the noisy label detection stage,
and 6 training epochs for the classifier model
training stage. Moreover, in the noisy label de-
tection stage, we perform model warm-up for 2
epochs on all datasets. We select the batch size
from [16, 32], and sweep the learning rates in
[1e− 4, 2e− 4, 3e− 4, 4e− 4, 5e− 4] for Delora.
The selection of hyper-parameters is selected ac-
cording to the performance on a clean development
set.

In our work, our proposed Delora is a two-stage
framework consisting of a noisy label detection
stage and a classifier model training phase. The
pseudo-code is presented in Algorithm 2.

G More detailed Results

To further demonstrate the broad applicability of
our proposed method, we have evaluated the pro-
posed methods on the 20ng and AGNews datasets.
Table 10 shows the evaluation results for noisy la-
bel detection. Table 11 shows the evaluation results
for text classification.

H Construction of Prompt

In this section, we list the prompt used in our
experiments. To optimize the noisy label detector,
we leverage the LLM in the construction of positive
datasets. The prompt is as follows:

Zero-Shot-CoT Prompt

Below is a text classification problem. Note
that you can only select the label in {op-
tions}. Let’s think step by step and give
your answer.
SENTENCE: {text}
LABEL:

Then, in the training of classifier models, we use
the selected clean samples to construct demonstra-
tions, prompting LLM to generate the new labels
via Few-Shot-CoT. The prompt is as follows:

Few-Shot-CoT Prompt

Below is a text classification problem. Note
that you can only select the label in {op-
tions}. Let’s think step by step and give
your answer.
SENTENCE: {text1}
LABEL: {label1}
SENTENCE: {text2}
LABEL: {label2}
. . .
SENTENCE: {text}
LABEL:

I More Detailed Analysis

I.1 Results under Extreme Noise Conditions.

To further validate the robustness of the proposed
methods under extreme noise conditions, we eval-
uate our model on Trec datasets under large noise
ratios. Table 12 reports the precision and recall
for noise detection, where Delora exhibits a robust
capability in identifying severe noise. Table 13 re-
ports the test accuracy for text classification, where
Delora exhibits a robust capability in classifying
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Dataset Method 20%S 40%S 20%A 40%A 20%I 40%I

Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec.

20ng
LLMs-detection 97.97 59.80 98.17 58.97 98.40 59.62 98.17 58.88 98.63 59.75 97.76 59.46

Small-loss 81.71 86.50 63.02 83.78 81.07 88.17 61.00 85.97 81.16 86.50 61.59 80.25
Delora (Ours) 79.68 71.34 60.17 58.43 80.46 72.80 60.04 59.56 96.16 85.14 72.54 86.90

AGNews
LLMs-detection 99.81 63.69 99.31 63.52 99.25 60.34 98.82 60.32 99.45 60.34 98.74 53.69

Small-loss 80.82 92.24 81.09 90.19 80.95 91.22 80.61 92.24 81.09 90.19 80.95 91.22
Delora (Ours) 99.28 93.85 97.70 93.86 99.16 93.94 96.71 94.29 99.36 95.01 97.39 94.85

.

Table 10: We evaluate the performance of noisy label detection (i.e., clean sample selection performance) on the
20ng and AGNews datasets by comparing the precision (%) and recall (%) of Delora with LLMs-detection and
small-loss. The best results results are highlighted in Bold.

Model
20ng AGNews

20%S 40%S 20%A 40%A 20%I 40%I 20%S 40%S 20%A 40%A 20%I 40%I

Base (Clean) 88.14 96.16

Base 83.85 72.78 82.98 63.79 81.80 70.12 91.46 88.39 91.71 88.88 91.62 88.57

LLM-base 72.15 84.52

Co-Teaching 85.35 72.85 83.98 63.94 82.16 71.97 92.03 88.75 92.55 89.38 92.88 88.88

SENT 84.17 73.97 83.80 64.40 82.44 71.56 92.57 89.31 92.37 89.91 92.6 89.45

LAFT 85.64 74.17 83.95 64.37 82.64 71.58 93.09 91.38 93.19 89.82 92.81 90.65

SelfMix 80.87 78.99 78.19 65.52 77.68 70.54 92.22 89.45 92.88 90.65 91.97 89.24

CleaR 84.58 72.89 83.28 64.87 83.58 70.44 92.98 90.30 92.76 89.39 92.46 89.80

NoiseAL 85.95 77.11 85.89 75.79 84.62 75.69 92.20 90.31 93.08 89.02 92.69 90.31

Delora (Ours) 88.51 82.16 88.40 79.60 86.87 80.90 95.64 95.29 95.84 95.17 95.64 95.86

Table 11: Performance (test accuracy %) comparison of Delora with other LNL baselines on synthetic noise datasets
(20ng and AGNews datasets). Base (Clean) refers to the base model trained on ground truth data without noisy
labels. LLM-base refers to directly using LLMs (GPT-4o) on the test dataset. Bold means the best score for each
dataset.

texts. Compared to other baselines, our methods
show superior performance under high noise ratios.

I.2 Further Analysis for the modules in Noisy
Label Detector.

As outlined in Section 4.1, our proposed noisy la-
bel detector consists of three key modules: the dual
LoRA ( the clean and noisy LoRA), a constraint
on the parameter update ∆σc of the clean LoRA,
and a constraint on the parameter update ∆σn of
the noisy LoRA. In this part, we conduct further

Dataset Method 60%S 60%A

Prec. Rec. Prec. Rec.

Trec
LLMs-detection 60.26 60.32 60.04 60.05

Small-loss 59.14 73.45 58.58 69.76
Delora (Ours) 97.75 92.97 97.04 92.25

Table 12: We evaluate the performance of noisy label
detection (i.e., the clean sample selection performance)
on the Trec by comparing the Precision (%) and Recall
(%) of Delora with LLMs-detection and Small-loss.

15307



Dataset Trec

Noise(↓) / Method(→) Base Co-Teaching SENT LAFT SelfMix CleaR NoiseAL Delora

60%S 78.40 80.06 81.28 81.46 81.52 79.93 81.12 84.53

60%A 56.20 61.27 62.25 63.68 65.36 65.52 67.21 71.96

Table 13: The detailed results (test accuracy %) on Trec datasets. Bold means the best score.

Modules Trec

dual LoRAs constraint on ∆σn constraint on ∆σc 20%S 40%S 20%A 40%A

% % % 95.20 90.20 94.20 87.40

" % % 82.27 77.82 80.96 75.63

" " % 96.37 95.21 95.86 95.01

" " " 98.46 97.60 98.30 97.40

Table 14: Further ablation study for the noisy label detector on the Trec dataset.

ablation studies to elucidate the factors that con-
tribute to the success of our approach. Experiments
are performed on Trec datasets, and experimental
results are shown in Table 14.

Firstly, we only introduce two LoRA modules
and do not constrain their parameter update, it can
be seen that the classification performance on the
test set is very poor. Since dual LoRA modules
are simultaneously influenced by noisy labels dur-
ing training, they fail to learn distinct representa-
tions for clean and noisy samples. As a result, they
struggle to effectively identify noisy samples in
the noisy label detection phase, ultimately hinder-
ing the training of the downstream classifier model.
That is to say, simply introducing more LoRA mod-
ules itself will not bring any performance improve-
ment and even have negative impacts.

Secondly, if we add the constraint on the param-
eter update ∆σn of noisy LoRA, the test accuracy
is significantly improved. This suggests that im-
posing a constraint on ∆σn allows the noisy LoRA
to absorb the adverse effects of mislabeled data,
enabling the clean LoRA to focus on learning from
clean samples more effectively. That is to say, it
can help different LoRAs to learn distinct represen-
tations for clean and noisy samples.

Thirdly, we introduce an additional constraint
on the parameter update ∆σc of the clean LoRA.
The results show that this further enhances test
accuracy, indicating that restricting ∆σc helps the
clean LoRA retain less mislabeled data, leading to
improved performance.

Overall, further studies show that combining the
three modules of our proposed noisy label detector
can achieve a steady performance improvement,
which proves the necessity of each module in the
noisy label detector.

I.3 Further Analysis for the Hyper-parameter
Setting in Constraint Functions.

As we mentioned in Section I.2, we add a con-
straint on the parameter update ∆σc of the clean
LoRA ∆wc, and a constraint on the parameter up-
date ∆σn of the noisy LoRA ∆wn. Specifically,
in this paper, we set τ1(t) = th1 and τ2(t) = t−h2

to constrain the parameter update of clean LoRA
and noisy LoRA, where h1 and h2 are two hyper-
parameters. Here, we explore the hyper-parameter
setting in these two constraint functions.

Hyper-parameter h2. Specifically, in Figure 5
(a), we compare the performance of different h2
values under various Asym noise conditions. For
each noise setting, we identify the optimal h2 value
and visualize the results in Figure 5 (c). Similarly,
in Figure 5 (b), we compare the performance of
different h2 values under various Sym noise con-
ditions. For each noise setting, we identify the
optimal h2 value and visualize the results in Figure
5 (d).

From the results in Figure 5 (c-d), we observe a
positive correlation between the optimal h2 value
and the noise ratio. In other words, as the noise
ratio increases, a larger h2 accelerates the updates
of ∆wn, allowing the noisy LoRA ∆wn to better
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Figure 5: Analysis for the choice of hyper-parameter h2 under different noise ratios on the Trec datasets.

absorb the impact of mislabeled data.

Hyper-parameter h1. In Figure 6 (a), we com-
pare the performance of different h1 values under
various Asym noise conditions. For each noise set-
ting, we identify the optimal h1 value and visualize
the results in Figure 6 (c). Similarly, in Figure 6
(b), we compare the performance of different h1
values under various Sym noise conditions. For
each noise setting, we identify the optimal h1 value
and visualize the results in Figure 6 (d).

From the results in Figure 6 (c-d), we observe a
negative correlation between the optimal h1 value
and the noise ratio. That is to say, as the noise
ratio increases, a smaller h1 accelerates the updates
of ∆wc, allowing the clean LoRA ∆wc to better
prevent the impact of mislabeled data.

Overall, adding the constraint on the parameter

update ∆σc of the clean LoRA and on the parame-
ter update ∆σn of the noisy LoRA can make differ-
ent LoRAs focus on learning different information
from clean and noisy samples, thereby increasing
the robustness of the noisy label detector.

I.4 Effect of Robust Loss Function
As discussed in Section B, due to GPT-4o being

unable to generate correct labels for each noisy
sample selected by the noisy label detector, we
utilize the reversed cross-entropy loss functions to
better learn from Do with a certain noise ratio. We
conduct an ablation experiment (see Table 15) to
verify the effectiveness of this robust loss function
by replacing it with cross-entropy loss functions.
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Figure 6: Analysis for the choice of hyper-parameter h1 under different noise ratios on the Trec datasets.

Dataset Trec SST-5 SST-2

Loss function(↓) / Noise(→) 20%S 40%S 20%A 40%A 20%S 40%S 20%A 40%A 20%I 40%I 20%S 40%S 20%A 40%A 20%I 40%I

cross-entropy loss 97.21 96.1 96.98 95.98 56.34 54.04 56.32 53.41 55.39 53.59 94.6 94.07 94.51 93.33 94.73 93.74

reversed cross-entropy loss 98.46 97.60 98.30 97.40 57.39 55.62 57.57 55.39 57.02 55.02 96.50 95.75 96.27 95.18 96.08 95.00

Table 15: Ablation study for loss functions on Do. Bold means the best score.
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Algorithm 2 The proposed framework Delora

Input: A training dataset D={(xi, yi)}Ni=1, y ∈ {1, . . . ,K}, warmup epochs Tw, epochs Td to train
the noisy label detector, epochs Tc to train the classifier model, clean LoRA parameters ∆wc, noisy
LoRA parameters ∆wn.

1: // Stage 1: Training the Noisy Label Detector
2: while epoch ≤ Tw do
3: Warm-up the LLM containing dual LoRAs on the D by Lwarm = Lce + LLoRA

4: epoch = epoch + 1
5: end while
6: while epoch ≤ Td do
7: Construct the clean subset Dc by Eq. (2) and Eq. (3)
8: Construct the positive and negative samples
9: Update parameters of ∆wc and ∆wn by L = Lce + LLoRA + LDetector

10: epoch = epoch + 1;
11: end while
12: // Step 2: Training the Classifier Model
13: while epoch ≤ Tc do
14: Compute the cross-entropy loss LDcfor selected clean samples by Eq.(7)
15: Compute the reversed cross-entropy loss LDofor relabeled noisy samples by Eq.(8)
16: Update the parameter of the classifier model by L = LDc + LDo

17: epoch = epoch + 1
18: end while
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