PredictaBoard: Benchmarking LLM Score Predictability

Lorenzo Pacchiardi, Konstantinos Voudouris, Ben Slater, Fernando Martínez-Plumed, Jose Hernandez-Orallo, Lexin Zhou, Wout Schellaert


Abstract
Despite possessing impressive skills, Large Language Models (LLMs) often fail unpre-dictably, demonstrating inconsistent success in even basic common sense reasoning tasks. This unpredictability poses a significant challenge to ensuring their safe deployment, as identifying and operating within a reliable “safe zone” is essential for mitigating risks. To address this, we present PredictaBoard, a novel collabo-rative benchmarking framework designed to evaluate the ability of score predictors (referred to as assessors) to anticipate LLM errors on specific task instances (i.e., prompts) from existing datasets. PredictaBoard evaluates pairs of LLMs and assessors by considering the rejection rate at different tolerance errors. As such, PredictaBoard stimulates research into developing better assessors and making LLMs more predictable, not only with a higher average performance. We conduct illustrative experiments using baseline assessors and state-of-the-art LLMs. PredictaBoard highlights the critical need to evaluate predictability alongside performance, paving the way for safer AI systems where errors are not only minimised but also anticipated and effectively mitigated. Code for our bench-mark can be found at https://github. com/Kinds-of-Intelligence-CFI/PredictaBoard
Anthology ID:
2025.findings-acl.790
Volume:
Findings of the Association for Computational Linguistics: ACL 2025
Month:
July
Year:
2025
Address:
Vienna, Austria
Editors:
Wanxiang Che, Joyce Nabende, Ekaterina Shutova, Mohammad Taher Pilehvar
Venue:
Findings
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
15245–15266
Language:
URL:
https://preview.aclanthology.org/display_plenaries/2025.findings-acl.790/
DOI:
Bibkey:
Cite (ACL):
Lorenzo Pacchiardi, Konstantinos Voudouris, Ben Slater, Fernando Martínez-Plumed, Jose Hernandez-Orallo, Lexin Zhou, and Wout Schellaert. 2025. PredictaBoard: Benchmarking LLM Score Predictability. In Findings of the Association for Computational Linguistics: ACL 2025, pages 15245–15266, Vienna, Austria. Association for Computational Linguistics.
Cite (Informal):
PredictaBoard: Benchmarking LLM Score Predictability (Pacchiardi et al., Findings 2025)
Copy Citation:
PDF:
https://preview.aclanthology.org/display_plenaries/2025.findings-acl.790.pdf