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Abstract

Focus of this work is the prediction of reading
times as the task is customarily dealt with in
literature: that is, by collecting eye-tracking
data that are averaged and employed to train
learning models. We start by observing that
systems trained on average values are ill-suited
for the prediction of the reading times for spe-
cific subjects, as they fail to account for indi-
vidual variability and accurately analyze the
reading gestures of specific reader groups, or
to target specific user needs. To overcome such
limitation, that is to predict the reading times
for a specific subject, we propose a novel ap-
proach based on creating an embedding to com-
pactly describe her/his fixations. Embeddings
are used to individuate readers that share same
or similar reading behavior from a reference
corpus. Models are then trained on values aver-
aged over this subset of similar readers. Exper-
imental results indicate that the proposed ap-
proach consistently outperforms its correspond-
ing variants, in which predictions of reading
times for specific readers are based on data
from all subjects rather than from the most sim-
ilar ones.!

1 Introduction

Eye-tracking reading data are acknowledged as
an important resource for both natural language
processing and psycholinguistics. The ability to
model gaze features is crucial to advance our un-
derstanding of language processing (Hollenstein
et al., 2021a). Eye-tracking data typically collect
information on where readers look at in the form
of timestamped fixations. These offer a glimpse on
the path of attention deployed by readers provid-
ing valuable insights into what is the focus of the
attention of the reader through time. Eye-tracking

'The code is available at the URL https:
//github.com/calogero-jerik-scozzaro/beyond_
the_average_reader.

data mostly include measures to record the dura-
tion of the first fixation(s) on words, the number
of fixations on a given word, and the overall time
spent, going back and forth through the reading
process, on a specific word. Such measures have
been fruitfully employed to investigate linguistic
processing mechanisms, such as, e.g., frequency
and predictability effects on reading. Based on the
analysis of reading times (RTs), we know that it
typically takes longer to read infrequent words than
frequent ones (Staub et al., 2010), and also context
effects have been proven: in left-to-right languages
such as English, words that can hardly be predicted
based on their left context will also require longer
RTs than those that are predictable (Staub, 2011).
Analyzing how text documents are read is rele-
vant from a scientific viewpoint, and also has many
applications. Precious insights can be gained about
aspects as diverse as lexical access, semantic in-
tegration, individual differences including disor-
ders and deficits (Rayner, 1998), and investigating
the reading task may shed light on overall words
predictability (Smith and Levy, 2013), on the in-
crementality hypothesis (Fossum and Levy, 2012),
on the assessment of competing theories, such as
dependency locality theory vs. surprisal (Dem-
berg and Keller, 2008), on the interplay between
reader’s expertise and the features of the text doc-
uments (Ashby et al., 2005), and many other in-
triguing areas at the intersection of computational
linguistics and cognitive science. Additionally,
many sorts of applications may be drawn that ben-
efit from this kind of research. Being able to
predict RTs may impact on applications such as
the assessment of linguistic complexity and text
readability (Singh et al., 2016; Sarti et al., 2021;
Scozzaro et al., 2024b), the design of text simpli-
fication strategies (De Martino, 2023) and read-
ers profiling (Scozzaro et al., 2024a), the organi-
zation of personalized reading experiences, learn-
ing assessments, e.g., in L2 acquisition (Puimege
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et al., 2023), in problem solving skills acquisi-
tion (T6thova et al., 2021).

Eye-tracking data can be complemented with
the many analytical tools developed for language
analysis to predict reading times and readers’ be-
havior. Different approaches have been proposed,
that are based on either boosting methods relying
on tree-based algorithms, or on the use of neural
approaches casting RTs prediction to a regression
task, solved through the fine-tuning of transformer-
based language models (Hollenstein et al., 2021a).
Other approaches, mainly inspired by probabilis-
tic accounts of language processing, provided evi-
dence that reading times are correlated to the con-
ditional word probabilities estimated by language
models (Monsalve et al., 2012). In this view, un-
predictability would act as as a major source of
processing difficulty in language comprehension:
increasing effort would produce a slower reader
response (corresponding, e.g., to higher gaze du-
ration) as a consequence of the increased distance
intervening between the cognitive resource allo-
cation and the actually encountered input (Levy,
2008; Monsalve et al., 2012).

However, readers may be differently affected by
such sources of difficulty, and taking into account
such factors is crucial to predict the RTs of spe-
cific readers, which would be beneficial to analyze
the behavior of specific reader groups or to target
specific user needs. One major limitation of the
current approaches is that, to the best of our knowl-
edge, all reported work relies on average measures,
that can be extracted from reference corpora col-
lecting data on readers fixations. For example, if
the total reading time —that is, the overall dura-
tion of eye fixations received by each word— was
considered, existing resources typically provide an
average value across all readers. In point of fact,
models that are trained on reading times obtained
by averaging values over the subjects are not able
to accurately account for individual differences in
reading behavior. Provided that this approach is
in general justified by the inter-subject consistency
of the recorded data, it may overlook the fact that
different readers adopt different reading strategies,
and that the same text can be read in different ways
by different readers. If such models are employed
to predict RTs, while they will exhibit a good fit
with average RTs, they will mostly obtain lower
accuracy in predicting the RTs featuring specific
readers.

The present study addresses this issue, and is

concerned with improving RTs predictions for spe-
cific readers. The following novelties are intro-
duced: i) a vectorial representation for describing
different behavioral (reading) gestures and apti-
tudes; if) the idea of predicting a specific subject
reading times based on the RTs of similar read-
ers; additionally, we explore the output of models
based on widely varied assumptions and features,
and prove that few readers’ data are actually needed
to build a vectorial user profile ensuring consistent
improvements in the prediction of reading times.
In all cases, we compare and contrast experimen-
tal results obtained by testing on averaged reading
time values (as done in literature) vs. the actual
values characterizing the reading performance of
specific subjects.

We created an array of experiments to test dif-
ferent models and architectures: the proposed ap-
proach always outperforms average-based variants
in predicting reading times for specific readers.
Also remarkably, this approach only requires a frac-
tion of data to overcome the traditional averaging-
based variants, thereby allowing for an efficient,
resource-saving, and effective way to predict read-
ing times.

2 Related Work

Reading involves two main eye movements, fixa-
tions and saccades. Fixations are brief stops (rang-
ing from 50 to 1500 ms) that typically occur at
each word; sometimes even more stops are needed,
also depending on words length and on lexical and
syntactic complexity. Saccades are fast (from 10
to 100 ms) movements between each two fixations,
and are used to reposition the point of focus. In gen-
eral, individual words are fixated differently: e.g.,
a pioneering work by Carpenter and Just (1983)
reports that 85% content words and 35% function
words get fixations. Among the main variables that
impact on eye movements, one must additionally
consider i) words length: shorter (2-3 letter) words
are skipped 75% of the time, while longer (8 letters
or more) words are fixated almost always (Rayner,
1978); and ii) syntactic and conceptual difficulty of
the considered text (Jacobson and Dodwell, 1979).

Several measures have been proposed to analyze
text reading and processing times. While the total
reading time (TRT) is supposed to grasp the time
taken by the overall semantic integration (Radach
and Kennedy, 2013), two partial and finer-grained
measures have been also proposed: the duration
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of the first fixation (FFD) that allows estimating
the cost underlying lexical access (Hofmann et al.,
2022), and the number of fixations (NF), which is
deemed to report about words integration in the
context of what has been read so far (Frazier and
Rayner, 1982).

Most work focused on the processes underlying
lexical access and semantic integration falls into
two broad approaches to model context. In the first
case we have models concerned with the semantic
relatedness between words and their context: in this
setting, reading times are predicted based on the
similarity between embeddings describing words
and their context. Works adopting the second ap-
proach mostly rely on a probabilistic framework
whereby words are predicted based on their (left)
context. In this view, word predictability should be
intended as a function of the probability of a word
given the context, and the probability of that word
may work, in turn, as a main predictor of reading
times: in essence, the less likely the emission of
a word, the higher the surprisal associated to that
word, and the longer the time it requires for readers
to process it. Such probabilistic device has also
proven useful in distinguishing the linguistic pro-
ductions of individuals with dementia from those
produced by healthy controls (Cohen and Pakho-
mov, 2020; Colla et al., 2022; Sigona et al., 2025).

In the last few years neural language models
gained a central role in analyzing reading as well,
since they are able to acquire conditional proba-
bility distributions over the lexicon that are also
predictive of human processing times. While word
length and frequency are widely acknowledged as
predictors for determining lexical access, different
sorts of language models have been recently com-
pared to analyze and explain syntactic and seman-
tic factors (Hofmann et al., 2022): N-gram mod-
els have been found to succeed in capturing short-
range lexical access, while models based on recur-
rent neural networks show better fit in predicting
the next-word. Other studies found that surprisal
scores are strong predictors of reading times and
eye fixations obtained through eye-tracking (Smith
and Levy, 2008; Goodkind and Bicknell, 2018),
along with a substantial linear relationship between
models’ next-word prediction accuracy and their
ability in predicting reading times (Goodkind and
Bicknell, 2018; Wilcox et al., 2020, 2023).

A different line of research hypothesizes that
the reading process may also be anticipatory (Pi-
mentel et al., 2023): in this view, readers predict

upcoming words and, based on their expectations,
allocate time to process them. This anticipatory
predictability effect is quantified as words’ contex-
tual entropy (Hale, 2006), and has been found to
be predictive of reading times as well (Linzen and
Jaeger, 2015; van Schijndel and Schuler, 2017).

The interaction between gaze and subjective
hatefulness rating has been studied by Alacam
et al. (2024), who observed that the annotator’s
gaze provides predictors of their subjective hate-
fulness rating. Specifically, the TRT and the NF
correlate with annotators’ subjective hate ratings
and improve predictions of text-only hate speech
models. The study by Haller et al. (2024) evaluates
the predictive power of surprisal and entropy at
the individual level by incorporating information
on individuals’ cognitive capacities and allowing
them to modulate the magnitude of surprisal and
entropy effects. The findings indicate that includ-
ing cognitive capacities increases the predictive
power of surprisal and entropy on reading times,
and that high performance in the psychometric tests
is associated with lower sensitivity to predictability
effects.

3 Readers Profiling

Eye-tracking features capture different aspects of
the reading process, such as fixation duration and
saccade length (Schotter and Rayner, 2013). In
the conventional approach, multiple participants
read the same texts, and the values of each fea-
ture are averaged across readers (Hollenstein et al.,
2021a, 2022) producing a representation that ap-
proximates the behavior of an average reader. For
example, in the Provo Corpus (Luke and Chris-
tianson, 2018), the mean values (complemented by
standard deviations) are: 198.14 (107.13) ms for
TRT, 0.95 (0.47) for NF, and 139.80 (52.00) ms
for FFD. Averaged features are assumed to provide
a generalizable representation of reading behav-
ior and are utilized for both training and evaluat-
ing models that predict reading times. However,
no studies have assessed the performance of these
models in predicting the behavior of specific read-
ers. In Section 4.4 an evaluation on this task is
presented, where performances of the common ap-
proach based on averaging RTs is compared to
the results of three reader profiling methods: in
this newly proposed approach, the values used to
train the model are obtained using only readers
who are similar to the target reader, rather than all
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Figure 1: The process of text selection, creation of the
readers embeddings, and creation of the cosine similar-
ity matrix. The matrix is symmetric, with values in the
range [0, 1], and elements on the main diagonal are by
definition set to 1.

Texts with RTs

readers data. This procedure focuses on an individ-
ually carved representation, as the reading times
predictions for each reader are based on a subset
of readers exhibiting similar behavior. Moreover,
this approach is applicable in real-world scenar-
ios where the profiling (along with the selection
of the most similar readers) of a specific reader is
computed on the basis of a limited set of texts.

A reader embedding is created using the First
Fixation Duration (FFD) and the Number of Fixa-
tions (NF) for all tokens in the selected texts.> The
procedure employed to compute the new readers
embeddings involves sampling their fixations while
reading a text, which was also read by other sub-
jects in a reference corpus. Given a text composed
of n lexical items, for each item therein both FFD
and NF data are collected, which results in a reader
embedding with a size of 2n elements.

Cosine similarity is employed as the distance
function to compare our embeddings: in particular,
a cosine similarity matrix is constructed (Figure 1),
where each cell (7,7) represents the cosine similar-
ity score between the embeddings of reader 7 and
reader j. Different selection strategies were con-
sidered to individuate the closest readers from the
dataset: Top K Similar Readers, Above Threshold,
and FFD-NF plot.

Top K Similar Readers The top £ most similar
readers of a reader ¢ are determined from the cosine
similarity matrix by selecting the k£ highest values
in row 1, excluding the cell (¢,7), which corresponds

Eye-tracking data are actually collected based on geomet-
ric areas, called ‘Areas of Interest’ (AOIs) that are defined
and individuated through an eye-tracking software. Each AOI
is a polygon encompassing an attribute of interest within the
image, a token in the case of text documents: in the present
setting, we thus refer to ‘tokens’ with only marginal loss of
descriptive precision.
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Figure 2: An example of the FFD-NF plot, where each
point represents a reader, identified by its average FFD
and NF. Red dashed lines report average values over the
whole considered population.

to the reader itself.

Above Threshold A given reader 1 is associated
only with the readers ;7 whose cosine similarity
value (cell (z,7)) in the cosine similarity matrix is
above a predetermined threshold, thereby picking a
variable number of readers ensuring at least some
degree of similarity.

FFD — NF plot For each reader, the average FFD
and NF on the selected texts are computed, and the
results are plotted as points in a FFD-NF plot. Four
classes are defined based on mean FFD and NF
values, with readers within the same class consid-
ered as similar readers. In this setting, referring to
Figure 2, we identify four classes: class 1 includes
readers featured by FFD above average and NF
below average; class 2 composed by readers that
exhibit both FFD and NF above average; class 3
with subjects whose FFD and NF are both below
average; and class 4, with subjects whose FFD is
below average and NF above average.

4 Experiments

Our hypothesis is that the prediction of individual
readers reading times may be improved by select-
ing few readers deemed as similar based on their
FFDs and NFs. To test such hypothesis we devised
an array of experiments in which we compared dif-
ferent approaches to select the most similar readers.
Additionally, we tested different models relying
on diverse learning and representational rationales.
All results reported hereafter are referred to the
prediction of the FFD measure.

15234



4.1 Data

The Provo Corpus (Luke and Christianson, 2018)
is a corpus of eye-tracking data accompanied by
predictability norms. It consists of 55 English texts
from a variety of sources, including online news
articles, popular science magazines, and public-
domain works of fiction, with an average length of
50 words. For this study, we focused exclusively
on the eye-tracking data. The texts were read by
84 native English-speaking participants from the
Brigham Young University (Provo, Utah, US), and
eye-tracking features were recorded.

4.2 Experimental Design

Four experiments were devised.

Average RTs vs. user-specific RTs. This trial is
aimed at assessing existing models and ap-
proaches when trying to predict the actual
reading times of specific readers (SPECIFIC
READER TIMES), which substantially dif-
fers from predicting average reading times
(AVERAGE READING TIMES). In this trial
we tested in two partially different conditions
(always in a leave-one-out setting), whereby
predictions were compared both with average
values and with the specific user data. This
test is of primary relevance for systems aimed
at the prediction of real user reading times.

Selection strategy. This experiment is designed to
compare different criteria to select the readers
that are most useful to build a profile for a
specific reader 7;: based on the uniform em-
bedding representation, this step amounts to
looking for those users whose reading behav-
ior was most proximal to the reading times
collected for r;.

Profiling and models comparison. This experi-
ment investigates the performance in the SPE-
CIFIC READER TIMES setting of the best selec-
tion strategy vs. non-profiling strategy across
various models.

Sizing of profiling data. In the last trial we tried
to characterize the optimal amount of reading
data to build effective profiles.

For an extensive evaluation of the entire dataset,

we employed a leave-one-out strategy for readers

(Figure 3). For each reader, we performed 5 runs

with different random seeds, each time splitting

the texts not previously involved in the reader em-

bedding step (see Figure 1) into 90% training, 5%

validation, and 5% test sets. We evaluated the pre-

4b. Test (SPECIFIC READER TIMES)
P — — |

0. Specific reader
7 . =, being profiled

ﬁLAJ JN# il J

}—' 1. Similar readers
J (r >

y ¥ ¥ 777 2 Average reading
Voo NNy - times for each text

| 11 11 1 I
across similar
readers

3. Train/validation
4q. Test (AVERAGE READING TIMES)

Figure 3: Schema describing the implemented leave-
one-out approach on the readers. After the reader pro-
filing phase (0) and the selection of the most similar
subjects (1), we compute values averaged on this group
(2). We performed five runs with different seeds, each
using a 90/5/5 split on texts: models were trained on
the average values (3), and tested on both AVERAGE
READING TIMES (4a) and SPECIFIC READER TIMES
(4b).

dictive performance of several models and profiling
configurations on the FFD measure. To generate
the reader embeddings, we randomly selected 10
texts, corresponding to 481 tokens (17.91% of the
total tokens). For the sake of creating reader pro-
files, the best parameter setting was experimentally
determined as follows: k& = 20 was used for the
Top K selection strategy, and a similarity threshold
of 0.60 was employed for the ‘Above Threshold’
method. All eye-tracking features were scaled to
the [0, 1] range to improve numerical stability and
facilitate neural models training. Models perfor-
mance was evaluated using three accuracy metrics
recently introduced by Lento et al. (2024):

Loss Accuracy (accL) reflects the overall similar-
ity between predicted and target values, com-
puted as 1—-MAE (Mean Absolute Error).

Threshold Accuracy (accT) evaluates the fre-
quency with which the predicted value falls
within a fixed neighborhood threshold of the
target value, set to 50 ms, following Lento
et al. (2024).

Sensitivity Accuracy (accS) measures how often
the predicted value is within a dynamically
determined threshold, computed as 10% varia-
tion of the target value. To handle zero-valued
targets, a fixed offset of 25 ms was applied in
place of the 10% threshold.

All these metrics are expressed as percentages, with
higher values indicating better performance.
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Model AVERAGE READING TIMES SPECIFIC READER TIMES
accL (o) accT (o) accS (o) accL (o) accT (o) accS (o)

LGBM 93.05 (0.06) 95.29 (0.27) 89.04 (0.44) | 67.93(4.89) 31.25(6.70) 26.41(5.73)
MLP 92.46 (0.07) 94.29(0.30) 87.22(0.34) | 67.76 (4.95) 30.55(6.78) 26.53 (5.77)
LSTM 84.54 (0.15) 62.89(0.62) 51.51(0.84) | 64.44(5.16) 30.38(8.32) 25.98(7.35)
LSTM-MLP | 92.73(0.14) 95.42(0.39) 87.22(1.07) | 67.76 (4.93) 30.97(6.71) 26.62(5.74)
BERT 79.18 (0.12) 51.41(0.28) 41.40(0.35) | 61.79 (4.60) 26.27(5.07) 20.19(4.39)
BERT-FT 90.45 (0.07) 87.22(0.33) 77.38(0.31) | 67.18(4.82) 31.03(6.33) 25.74(5.60)

Table 1: Accuracy scores obtained by employing models acquired through average reading times (all readers
data) and tested on AVERAGE READING TIMES and on SPECIFIC READER TIMES. The reported values represent
percentage accuracy scores for the three metrics, with standard deviations in parentheses.

4.3 Models

We developed various models for predicting the
First Fixation Duration (FFD), including a Light-
GBM (LGBM) regressor, a basic Multi-Layer Per-
ceptron (MLP), a sequential Long Short-Term
Memory (LSTM) network, and BERT models,
from a simple architecture with a linear layer
stacked on top of a fully fine-tuned version. For
all neural models, we used the AdamW optimizer
(Loshchilov and Hutter, 2017) with a linear learn-
ing rate scheduler based on the number of epochs
and Mean Squared Error (MSE) loss. Additionally,
we applied gradient clipping with a threshold of
1 and implemented early stopping after 10 epochs
without improvement in validation accuracy.

LGBM The LightGBM regressor’ is based on
the gradient boosting framework, and was proven
successful in the CMCL 2021 Shared Task on
Eye-Tracking Prediction (Hollenstein et al., 2021a;
Bestgen, 2021). The employed features include
word length, previous word length, word position
in the sentence, word frequency, previous word
frequency, and word surprisal (Hale, 2016). Sur-
prisal associated to a word wy, is defined as the
negative logarithm of the probability of emitting
wy, given its history h = {wy,wi,..., wnp—1}:
SUR(wy,) = — log P(wp|wo, w1, ..., wp—1).

MLP A Multi-Layer Perceptron (MLP), consist-
ing of a single hidden layer was implemented. The
input features for each word involve word length,
word position, word frequency, and word surprisal,
as well as these statistics for the two preceding and
two following words. The architectural details are
similar to those presented in (Lento et al., 2024),
including a single hidden layer with 10 units, sig-
moid activation functions, an initial learning rate
setto 5 - 103, a batch size of 8, and 1000 epochs.

Shttps://lightgbm. readthedocs.io

LSTM Long Short-Term Memory (LSTM) net-
works (Hochreiter and Schmidhuber, 1997) repre-
sent a more cognitively plausible architecture for
this task, as reading is inherently a sequential pro-
cess (Aurnhammer and Frank, 2019). The input
features used are the same as those in the MLP.
The LSTM consists of two layers with a hidden
dimension of 64, a batch size of 4, and a total of
3000 training epochs.

LSTM-MLP An LSTM model with an MLP on
top was also trained using the same input features.
The LSTM has a single layer with 64 hidden units,
followed by a feed-forward network with tanh acti-
vation functions. All other hyperparameters remain
consistent with the previously described LSTM
model.

BERT Bidirectional Encoder Representations
from Transformers (BERT) (Devlin et al., 2019)
is a Transformer-based encoder architecture. We
used a pretrained checkpoint* and added a final
dense layer on top. This layer, shared across all
tokens, projects the model’s hidden representation
(768-dimensional) to a single output. We evaluated
two training configurations: 7) training only the fi-
nal layer while keeping the pretrained parameters
frozen (referred to as ‘BERT”’ in the following);
i) fine-tuning the entire model (‘BERT-FT”). For
both configurations, we used a learning rate set
to 5 - 1072, trained for 100 epochs, and set the
batch size to 16, as described in (Hollenstein et al.,
2021b).

4.4 Results

In the following we report the results obtained
through four experiments: Average RTs vs. user-
specific RTs; Selection strategy; Profiling and mod-

4https://huggingface.co/google—bert/
bert-base-cased
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SPECIFIC READER TIMES
Sel. Strat. ‘ HM(accL, accT, aceS) (o)

All 34.39(5.35)
Top K 37.07(5.09)
FFD-NF 34.80(6.38)
Above T. 35.50(5.53)

Table 2: Comparison of the accuracy scores ob-
tained by applying the selection strategies (Sel. Strat.)
at stake: harmonic mean of accuracy scores
(HM(accL, accT, accS)) across all models listed in Ta-
ble 1; more specifically, each number herein represents
the harmonic mean of the 3 values listed in SPECIFIC
READER TIMES sections of Tables 4-9 averaged over
all such tables. Percentage score are complemented by
standard deviation values.

els comparison; and Sizing of profiling data.

4.4.1 AVERAGE READING TIMES vs. SPECIFIC
READER TIMES

We first evaluated the models using the standard
pipeline, in which the average reader was computed
from all readers data, and training and testing were
conducted by employing such averaged represen-
tation (in the following, such datum is referred to
as AVERAGE READING TIMES). We then assessed
their performance in the new RTs prediction task,
in which models were trained on the average reader
and evaluated on specific readers, not included in
the training set (referred to as SPECIFIC READER
TIMES). The results of these evaluations are pre-
sented in Table 1: while the performance in the
AVERAGE READING TIMES is in line with the lit-
erature,’ it significantly drops when trying to pre-
dict SPECIFIC READER TIMES. Additionally, the
increase in standard deviation values indicates vari-
ability in individual reading patterns, suggesting
the need for more precise models.

4.4.2 Selection strategy

We then evaluated the three methods for select-
ing the readers most similar to the specific reader
r;. We randomly picked 10 texts from the entire
dataset to generate the embeddings (for r; and all
other readers in the corpus). Table 2 presents the
harmonic mean of the values obtained for each
profiling configuration (including the non-profiling
selection strategy, labeled as ‘All’). For each con-

5The only comparison can be made for the BERT and
BERT-FT conditions with the work by Hollenstein et al.
(2021b) that report slightly lower figures by experimenting
with different datasets.

SPECIFIC READER TIMES

Model Sel. Strat. | HM(accL, accT, accS) () HM(A)
LGBM Al 36.76(5.77) -
(Table 4) Top K 39.58(5.06) +7.78
MLP All 37.07(5. 86) -
(Table 5) Top K 39.71(5.39) +7.27
LSTM All 36.01(6.72) -
(Table 6) | Top K 40.08(6.12) +10.95
LSTM-MLP | All 36.81(5.76) -
(Table7) | Top K 39.52(5.08) +7.44
BERT All 26.93(4.57) -
(Table 8) | Top K 28.89(4.15) +7.45
BERT-FT All 35.46(5.73) -
(Table9) | Top K 37.72(5.13) +6.56

Table 3: Comparison between the non-profiling (‘All’:
by taking into account data from all readers, no profiling
is de facto adopted) and ‘Top K strategies. The values
represent the harmonic mean of the three evaluation
metrics (accL, accT, and accS) for the test on SPECIFIC
READER TIMES, with the harmonic mean of the standard
deviation values shown in parentheses. Delta values in-
dicate the harmonic mean of the performance difference.
Complete results for each model are provided in the
Appendix (Tables 4-9).

sidered strategy, the harmonic mean was calculated
across all models and all evaluation metrics, and
should be thus intended as a synthetic value for all
figures provided in Tables 4-9 (Appendix A). These
results reveal that the Top K strategy performs best
in the SPECIFIC READER TIMES prediction, and
also exhibits the lowest standard deviations, which
seems to confirm that it is the most suited to capture
the diverse aspects of individual reading behaviors.

4.4.3 Profiling and models comparison

Given these results, we performed an extensive
comparison between the non-profiling and Top K
selection strategy, using the harmonic mean of the
three evaluation metrics for each model. As shown
in Table 3, the Top K strategy consistently outper-
forms the non-profiling one across all tested mod-
els. The improvement in performance is noticeable,
with A values ranging from +6.56% in the BERT-
FT model to +10.95% in the LSTM model, with
the last model also achieving the highest absolute
accuracy rates. To further assess the reliability of
these differences, we computed 95% confidence
intervals and conducted significance tests. These
analyses confirmed that the improvements obtained
with the Top K strategy over the non-profiling strat-
egy are statistically significant, with p-values less
than 0.05.
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4.4.4 Sizing of profiling data

Given the significant improvement obtained
through the LSTM model, we further investigated
the optimal number of texts required for generating
reader embeddings. To explore this point, we ana-
lyzed the effect of varying the number of texts used
in the embedding process. As shown in Figure 4,
we found that a set of 10 texts, representing ap-
proximately 18% of the total tokens in the dataset,
provides an optimal balance between the need of
selecting data to find out the closest (and thus more
homogeneous) subjects, and ensuring enough data
for training purposes. All metrics assessing the
output of the Top K strategy confirm that for the
present setting adopting the 10 text documents pro-
vides the best accuracy; conversely, in the ‘All’
setting we observe a trend that is independent on
the size of the samples for the readers profiling
step, and on the balance between such split and
training data. More specifically, the curves por-
trayed in the Figure may be explained with the fact
that by resorting to more than 10 texts we end up
with a reduced number of training examples and,
as a consequence, with decreasing accuracy. Inter-
estingly enough, even when the Top K strategy is
employed with a reader embedding created from a
single text (comprising just 42 tokens), there is still
an improvement in the model’s ability to predict
the behavior of specific subjects. This suggests that
even a small amount of text can provide valuable
information for profiling, enhancing the model’s
ability to cope with previously unseen readers.

5 Conclusions

We started by identifying a key issue: the RTs
predictions delivered through systems trained on
average values (as is customarily done in litera-
ture) are not suited for the prediction of specific
subjects. Models trained on average values will
mostly learn to predict average values, disregard-
ing (since they were not exposed to them) elements
related to individual variability. Being able to pre-
dict how a specific user behaves while reading a
text excerpt may be beneficial for many different
purposes, such as to improve text accessibility (e.g.,
for specific groups, either based on age or suffering
from the same disorder or disease), to stimulate
learning and engagement with text, and more in
general to improve the overall reading experience
in a personalized way.

We introduced a novel approach to improve RT
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Figure 4: Analysis of the effect of varying the number of
texts used to generate embeddings in the LSTM model
for the SPECIFIC READER TIMES prediction. Using 10
texts (17.91% of the total tokens in the dataset) yields
the optimal balance.

predictions on specific readers. First, it builds on a
vectorial representation whereby subjects are rep-
resented through a collection of fixation data (FFD
and NF information is embedded to build such vec-
tors) reporting about how they read texts: this al-
lows creating a shared representational space where
readers can be placed, directly compared, and se-
lected based on similarity accounts.® In the same
spirit as for word embeddings, such vectors can
be thought of as points over a multidimensional
Euclidean space, where distance acts like a proxy
for similarity. Secondly, few similar readers are
identified, and for each such subject a small frac-
tion of all available data (10 texts, along with their
RTs) are then employed to select the most similar
readers to a specific reader. Once these profiles
have been created, and the reader under considera-
tion has been equipped with a set of readers with
analogous reading behavior, various models have
been trained that ensure up to 10% improvement
(averaged over three measures, accL, accT, accS)
in the accuracy of RTs predictions.

As acknowledged in the first paragraph of Sec-
tion 4, all our experiments addressed first fixation
durations (FFDs); however, we set up further ex-

®As regards as the contribution of the FFD and NF metrics,
we ran a preliminary ablation experiment, involving the base
LSTM architecture, whereby NF information was dropped: in
this setting we observed slightly lower figures (overall —0.10
over the three considered evaluation metrics). While we defer
to future work a conclusive and extensive experimentation on
this point, we presently employ NF information as this allows
for better predictions on the number of fixations.
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periments, not reported here for the sake of brevity,
that show encouraging results also when testing
on complementary measures, such as number of
fixations (NFs) and total reading times (TRTs). In
both cases the improvement in the accuracy in the
prediction of the SPECIFIC READER TIMES is in
the order of +4% accL (that is, 1-MAE), as re-
ported in Table 10 in Appendix. The proposed
approach is thus general enough to deal with such
additional measures. We also explored the possibil-
ity of training models directly on the target reader’s
own data. Although intuitively appealing, this ap-
proach consistently underperformed. Training the
LSTM model solely on the reader’s data resulted
in a harmonic mean of 32.52% (£4.39%) across
the three evaluation metrics, which is 9.71% lower
than the ‘All’ selection strategy, and 18.71% lower
than the best-performing model. We also tested a
variant in which the target reader’s data were used
for fine-tuning the best model, yielding a harmonic
mean of 33.16% (+4.34%), that is 17.27% lower
than the same model without fine-tuning. These
results suggest that, based on current evidence, us-
ing the target reader’s data is less effective than
leveraging patterns learned from similar readers.

We reported the results obtained in four exper-
iments testing different models and architectures:
the proposed approach always outperforms average-
based variants in predicting reading times for spe-
cific readers, providing evidence that the approach
itself is beneficial, regardless of the specific learn-
ing algorithm used. Also remarkably, this approach
only requires a limited quantity of data to overcome
the traditional averaging-based variants, thereby
allowing for an efficient, resource-saving, and ef-
fective way to predict reading times.

6 Limitations

This study relies on first fixation duration (FFD) as
the primary measure: provided that the embeddings
employed to pick similar readers are composed of
both FFDs and NFs, the models training and testing
is conducted on FFDs. While this measure is ac-
knowledged to be associated with lexical access in
early cognitive processing, it does not fully capture
attentional mechanisms, that would require inte-
grating additional eye-tracking measures, such as
NF, TRT, skipping rate, and regression rate. Such
limitation will be addressed in future work. Ex-
panding the scope to predict a wider range of eye
movement measures would be helpful to better as-

sess the accuracy of profiling models with respect
to non-profiling ones, as well as to improve the un-
derstanding of the underlying cognitive processes.

Another limitation of this study is the use of
different input features for the various models em-
ployed in Section 4. This choice was made to align
with configurations previously tested in the litera-
ture (Bestgen, 2021; Scozzaro et al., 2024a; Lento
et al., 2024). While employing different feature
sets limits direct comparability between models,
our primary objective was to demonstrate the ben-
efits of the reader embedding approach across dif-
ferent architectures, rather than to compare the ar-
chitectures directly. Future work could explore a
more controlled feature selection to enable fairer
model comparisons, and to better identify the best-
performing architecture.

Finally, the embedding process itself should be
considered as a first attempt at building a vectorial
representation to describe readers; it might be ex-
tended by incorporating information on saccadic
features, regressions, and skipping behavior to pro-
vide a richer representation of reading patterns and
therefore better quality for the resulting embed-
dings. Despite the fact that the proposed approach
relies on a simple (and to some extent limited) rep-
resentation— which is, strictly speaking, a limita-
tion of this work— its consistent improvement over
the traditional counterpart highlights its robustness.
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A Appendix

This appendix provides additional performance de-
tails for all the models evaluated in this study. Ta-
bles 4, 5, 6, 7, 8, and 9 display the performance of
the LGBM, MLP, LSTM, LSTM-MLP, BERT, and
BERT-FT models, respectively.

Table 10 shows a comparison between the “Top
K’ and ‘All’ selection strategies using the best-
performing model (LSTM) for predicting total read-
ing time (TRT) and number of fixations (NF) in the
SPECIFIC READER TIMES setting.
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AVERAGE READING TIMES SPECIFIC READER TIMES A SPECIFIC READER TIMES

Sel. Strat. accL (o) accT (o) accS (o) ‘ accL (o) accT (o) accS (o) ‘ accL accT accS
All 92.39(0.07) 93.23(0.31) 87.23(0.47) | 67.88(4.90) 32.31(6.82)  27.83(5.90) - - -
Top K 91.71(0.46)  85.94(1.33)  76.87(1.79) | 73.52(3.97) 34.96 (6.19) 29.77(5.57) | +8.31 +8.20 +6.97
FFD-NF 90.99(0.96)  86.24(6.79)  76.64(8.38) | 70.78 (5.1 ) 34.00(6.68)  27.78(6.84) | +4.27 +5.23 —0.18
Above T. 92.26 (0.89)  90.73(8.90)  84.19 (9. 57) 69.89(4.79)  33.03(6.28)  28.50(5.69) | +2.96 +2.23 +2.41

Table 4: Performance of the LGBM model in predicting both the AVERAGE READING TIMES and SPECIFIC READER
TIMES. The last three columns report the difference (A) in performance for each selection strategy compared to the
‘All’ strategy in the SPECIFIC READER TIMES setting. Percentage score are complemented by standard deviation
values. The best value in each column is highlighted in bold.

Sel. Strat AVERAGE READING TIMES SPECIFIC READER TIMES A SPECIFIC READER TIMES
) : accL (o) accT (o) accS (o) ‘ accL (o) accT (o) accS (o) ‘ accL accT accS
All 92.28(0.07) 92.72(0.26) 86.60(0.35) | 67.86(4.94) 32.35(6.98) 28.35(6.01) - - -

Top K 91.13(0.79)  82.98(3.17)  T4.17
FED-NF | 90.62(0.45)  85.03(6.25)  76.07
Above T. | 91.91(0.91) 89.44(8.68)  82.76

2.93) | 73.45(3.99) 34.67(6.88) 30.22(6.22) | +8.24 +7.17  +6.60
6.87) | 70.72(5. 14) 34.62(7.03)  28.26(7.78) | +4.21 +7.02  —0.32
9.44) | 69.83(4.83) 33.19(6.83) 29.02(5.88) | +2.90 +2.60  +2.36

Table 5: Performance of the MLP model in predicting both the AVERAGE READING TIMES and SPECIFIC READER
TIMES. The last three columns report the difference (A) in performance for each selection strategy compared to the
‘All’ strategy in the SPECIFIC READER TIMES setting. Percentage score are complemented by standard deviation
values. The best value in each column is highlighted in bold.

AVERAGE READING TIMES SPECIFIC READER TIMES A SPECIFIC READER TIMES

Sel. Strat. accL (o) accT (o) accS (o) ‘ accL (o) accT (o) aceS (o) ‘ accL accT accS

All 83.91(0.11) 60.03(0.55) 49.18(0.45) | 64.54(5.17) 31.91(8.36)  27.42(7.48) - - -

Top K 84.70(1.11) 54.27(3.67) 4573 (4. 11) 71.11(4.12) 35.24(8.51) 30.85(7.69) | +10.18 +10.44 +12.51
FFD-NF | 83.83(1.85)  56.58(3.66) 45.52(6.18) | 67.37(6.20) 30.86(11.20) 26.30(10.35) | +4.38  —3.20  —4.08
Above T. | 84.21(0.75)  58.36(4.74)  47.69(4.01) | 66.93(5.28) 33.36(8.08) 28.93(7.32) | +3.70  +4.54  +551

Table 6: Performance of the LSTM model in predicting both the AVERAGE READING TIMES and SPECIFIC READER
TIMES. The last three columns report the difference (A) in performance for each selection strategy compared to the
‘All’ strategy in the SPECIFIC READER TIMES setting. Percentage score are complemented by standard deviation
values. The best value in each column is highlighted in bold.

Sel. Strat AVERAGE READING TIMES SPECIFIC READER TIMES A SPECIFIC READER TIMES
: ) accL (o) accT (o) accS (o) ‘ accL (o) accT (o) accS (o) ‘ accL accT accS
All 92.01(0.16) 91.66(0.64) 84.75(0.72) | 67.76(4.90) 32.74(6.80)  27.63(5.90) - - -

Top K 91.47(0.50)  84.81(1.57)  75.80
FED-NF | 90.82(0.96)  85.25(6.68)  75.96
AboveT. | 91.94(0.84) 89.21(8.42) 82.33(8

2.10) | 73.44(3.96) 34.91(6.26) 29.71(5.60) | +8.38 +6.63  +7.53
8.04) | 70.72(5. 10) 33.97(6.53) 27.73(6.91) | +4.37 +3.76  +0.36
8.90) | 69.83(4.78) 33.36(6.54) 28.68(5.72) | +3.05 +1.89  +3.80

Table 7: Performance of the LSTM-MLP model in predicting both the AVERAGE READING TIMES and SPECIFIC
READER TIMES. The last three columns report the difference (A) in performance for each selection strategy
compared to the ‘All’ strategy in the SPECIFIC READER TIMES setting. Percentage score are complemented by
standard deviation values. The best value in each column is highlighted in bold.

Sel. Strat. AVERAGE READING TIMES SPECIFIC READER TIMES A SPECIFIC READER TIMES
accL (o) accT (o) accS (o) ‘ accL (o) accT (o) accS (o) ‘ accL accT accS
All 77.13(0.11) 45.70(0.21) 38.12(0.31) | 60.57 (4.77)  23.91(4.95) 18.84 (4.08) - - -
Top K 78.06 (0.81) 39.56(1.20)  31.95(1.26) | 67.17(3.57) 25.25(4.71) 20.26 (4.33) | +10.90 +5.60 +7.54
FFD-NF 77.58(0.84)  44.28(4.19)  33.99(2.13) | 63.69(5.08)  24.17(5.43) 18.61 (5.64) +5.15  +1.09 —1.22
Above T. 77.43(1.06)  43.75(3.06)  35.76 (2. 95) 62.83(5.34)  24.75(4.71) 19.57 (3.84) +3.73 +3.51 +3.87

Table 8: Performance of the BERT model in predicting both the AVERAGE READING TIMES and SPECIFIC READER
TIMES. The last three columns report the difference (A) in performance for each selection strategy compared to the
‘All’ strategy in the SPECIFIC READER TIMES setting. Percentage score are complemented by standard deviation
values. The best value in each column is highlighted in bold.
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Sel. Strat AVERAGE READING TIMES SPECIFIC READER TIMES A SPECIFIC READER TIMES
) ) accL (o) accT (o) accS (o) ‘ accL (o) accT (o) accS (o) ‘ accL accT accS

All 89.62(0.08) 83.65(0.48) 73.45(0.37) | 67.02(4.94) 31.29(6.82) 26.51(5.73) - -

Top K 89.28(0.60) 74.74(2.16)  64.79(2.71) | 72.72(3.92) 33.08(6.38) 28.12(5.80) | +8.50 +5.72  +6.07
FFD-NF | 88.34(1.01) 75.75(6.08) 64.18(7.02) | 69.75(5.23) 31.97(7.16)  26.34(7.27) | +4.07 +2.17  —0.64
Above T. | 89.59(0.72)  80.80(7.87)  70.69(7.31) | 69.06(4.81) 31.99(6.52) 27.31(5.55) | +3.04 +2.24  +3.02

Table 9: Performance of the BERT-FT model in predicting both the AVERAGE READING TIMES and SPECIFIC
READER TIMES. The last three columns report the difference (A) in performance for each selection strategy
compared to the ‘All’ strategy in the SPECIFIC READER TIMES setting. Percentage score are complemented by
standard deviation values. The best value in each column is highlighted in bold.

TRT NF
Sel. Strat. accL (o) accL (o)
All 82.53 (3.13) | 81.47 (2.71)
Top K 85.80 (2.10) | 84.54 (2.06)

Table 10: Performance and standard deviation of the LSTM model in predicting total reading time (TRT) and
number of fixations (NF) using the ‘All’ and ‘Top K’ selection strategies in the SPECIFIC READER TIMES setting.
Results show a 3.96% improvement in TRT and a 3.77% improvement in NF when using the “Top K’ strategy over
‘All’; both differences are statistically significant for p < 0.05.
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