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Abstract

Multilingual spoken language understanding
(SLU) involves intent detection (ID) and slot
filling (SF) across multiple languages. The in-
herent linguistic diversity presents significant
challenges in achieving performance compa-
rable to traditional SLU. Recent studies have
attempted to improve multilingual SLU perfor-
mance by sharing multilingual encoders. How-
ever, these approaches have not directly estab-
lished information flow between languages. To
address this, we first demonstrate the feasibil-
ity of such information transfer and pinpoint
the key challenges: prediction error mitigation
and multilingual slot alignment. We then pro-
pose the INformation Transfer network (INT)
to tackle these challenges. The gate unit in
INT controls the information flow between lan-
guages, reducing the adverse impact of predic-
tion errors on both ID and SF. Additionally,
we reformulate SF as a span prediction prob-
lem and introduce a slot-matching attention
mechanism to achieve slot alignment across
languages. Experimental results on the MAS-
SIVE and MASSIVE-UG datasets show that
our model outperforms all baselines in over-
all accuracy across all languages, and demon-
strates robust performance when different lan-
guages are used as the source.

1 Introduction

Multilingual spoken language understanding (SLU)
shares the same two core tasks as traditional SLU
(Tur and De Mori, 2011): intent detection (ID)
(Hashemi et al., 2016) and slot filling (SF) (Adel
et al., 2016). The key difference is that multilingual
SLU must process utterances in multiple languages,
whereas traditional SLU handles utterances in a sin-
gle language. Multilingual SLU better aligns with
real-world scenarios involving various languages
(Gary, 2022), which has led to growing attention.

* This work was completed during the internship.
† Corresponding author.

Traditional SLU, particularly for high-resource
languages like English (Bastianelli et al., 2020) or
Chinese (Liu et al., 2019), performs excellently
with existing models (Chen et al., 2022; Xie et al.,
2023). However, due to the inherent linguistic di-
versity of multilingual SLU tasks, existing studies
often struggle to achieve performance comparable
to that on high-resource languages (Pfeiffer et al.,
2023). One approach to improving multilingual
SLU performance is to enhance the capabilities
of multilingual models themselves (Devlin, 2018;
Feng et al., 2022). These methods, though effective,
often require a large amount of high-quality data,
which is quite challenging. Zheng et al. (2022)
have sought to optimize multilingual representa-
tions for ID and SF through data augmentation
(Shorten et al., 2021), using techniques like regular-
ization (Zheng et al., 2021) and machine translation
(Ranathunga et al., 2023). While these techniques
reduce reliance on the multilingual model’s perfor-
mance, they remain susceptible to the quality of
translation APIs. In contrast, Hueser et al. (2023);
Firdaus et al. (2023) capture the similarity between
languages by sharing hidden states across multiple
languages, without relying on external tools. These
approaches, though promising, represent only an
initial strategy. Could directly establishing infor-
mation transfer between languages further enhance
the performance of multilingual SLU?

We conduct a preliminary experiment by tak-
ing the union of the output from each language
with that of either a lower-performing or higher-
performing language to explore the feasibility of
information transfer. The results demonstrate that
the overall accuracy of multilingual SLU improves
in both cases. This suggests that intent and slot
information from the source language could poten-
tially help to perform ID and SF more accurately,
making the establishment of information transfer
feasible. However, establishing such a transfer may
face the following challenges:
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1. Prediction Error Mitigation: The intent and
slot labels predicted from the source language are
not always accurate. How can we mitigate the
negative impact when errors occur?
2. Multilingual Slot Alignment: The expression
of utterances varies across languages. While the
semantics may remain consistent, the length of
utterances often differs, and the number of words
forming the slots, as well as their positions in the
utterance, can also vary. How should information
transfer be implemented in this scenario?

We propose the INformation Transfer Network
(INT), which addresses the two challenges of estab-
lishing information transfer between languages in
the following ways. For prediction error mitigation,
we introduce a trainable gating unit during intent
and slot information transfer, enabling the model
to learn gate weights that control the flow of source
language information. For multilingual slot align-
ment, we no longer treat SF as a sequence labeling
task (Qin et al., 2021) but as a span prediction task
(Fu et al., 2021), and propose a slot-matching atten-
tion mechanism to facilitate information transfer
between slots with equivalent meanings between
different languages. Experimental results show that
the proposed INT consistently outperforms base-
lines across multiple multilingual pre-trained mod-
els (mPTMs). Notably, when different languages
serve as the guiding source, our model retains a
certain level of effectiveness. The contributions of
this paper are as follows:

• We demonstrate the feasibility of establish-
ing information transfer between languages
in multilingual SLU and clarify the potential
challenges that may arise;

• We propose INT, which mitigates prediction
errors through a gating unit and introduces a
slot-matching attention mechanism to achieve
multilingual slot alignment;

• Experimental results show that even when us-
ing different mPTMs, our model consistently
outperforms the baseline and demonstrates a
certain degree of robustness.

2 Preliminary Experiment

2.1 Dataset

There are several benchmark datasets for multilin-
gual SLU (Upadhyay et al., 2018; Xu et al., 2020;
Saade et al., 2019; Li et al., 2021; Van Der Goot

et al., 2021; Ruder et al., 2023), with MASSIVE
(FitzGerald et al., 2023) offering the largest lan-
guage coverage and the broadest range of domains.
It is originally based on the English SLU dataset
SLURP (Bastianelli et al., 2020) and encompasses
51 languages, 18 domains, 60 intents, and 55
slots. Aimaiti et al. (2024) extended MASSIVE
to Uyghur, resulting in the creation of MASSIVE-
UG. In this paper, we combine them, referred to as
MASSIVE52. To explore the performance of dif-
ferent models in more complex scenarios involving
a larger number of languages, we use MASSIVE52
for preliminary experiments. In the following sec-
tions, we also use it as the benchmark dataset.

2.2 Feasibility analysis

To investigate the feasibility of establishing infor-
mation transfer in multilingual SLU, we fine-tune
XLM-R (Conneau, 2019) using the method pro-
posed by FitzGerald et al. (2023) and conduct a
preliminary experiment on MASSIVE52. The re-
sults of the experiment are presented in Figure 1.

64.10%

73.14%

75.25%

60.00% 65.00% 70.00% 75.00% 80.00%

XLM-R

∪ ja-JP

∪ en-US

Figure 1: The average overall accuracy of XLM-R
across all languages in MASSIVE52, as well as the aver-
age overall accuracy when the dataset is united with ja-
JP (∪ ja-JP) and en-US (∪ en-US). The choice of these
two languages is based on the fact that ja-JP performs
the worst, while en-US has more resources compared
to other languages (Ranathunga et al., 2023). Further
details can be found in Appendix A.

As shown in Figure 1 and Appendix A, whether
using the worst-performing language (ja-JP) or the
slightly better-performing language (en-US) for
the union, the overall accuracy improves. This sug-
gests that XLM-R made errors in its predictions,
while correctly predicting in both ja-JP and en-US.
Therefore, establishing information flow (Shao and
Li, 2025) from one language to multiple languages
could help correct the erroneous labels in multilin-
gual SLU, thereby improving performance.
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Figure 2: An example of information transfer from English to Chinese. (a) shows an example of intent information
transfer, (b) illustrates slot information transfer based on span prediction, and (c) demonstrates slot information
transfer based on sequence labeling. Incorrectly predicted labels are marked in red, green arrows represent the ideal
information flow, and red arrows indicate the flow that should be mitigated.

2.3 Challenge analysis

Although information transfer to improve perfor-
mance in multilingual SLU is feasible, it may face
two challenges:
1. Prediction Error Mitigation: When establish-
ing intent information transfer, the intent labels
predicted from the source language can either be
correct or incorrect. If an error occurs, how can
we mitigate the impact of erroneous information
flow (Shao and Li, 2025)? As shown in Figure 2
(a), the correct intent label for the English lan-
guage “Where did Amal Clooney go to college?” is
“QA_factoid”. However, if it is predicted as “Calen-
dar_set” (or other labels), the incorrect information
may interfere with the accurate prediction of the in-
tent label in the Chinese language “阿迈勒克鲁尼
在哪里上大学?”. This challenge also exists in slot
information transfer. We will discuss the solutions
to this challenge in § 3.2 and § 3.3.
2. Multilingual Slot Alignment: The number
of slot words and their positions in utterances vary
across different languages. Additionally, utterances
with the same meaning often inconsistent in length
across languages. Previous studies (Chen et al.,
2022; Wu et al., 2024) have mostly treated SF as
a sequence labeling task. If we follow this ap-
proach, as shown in Figure 2 (c), the length of
“Person” in the English utterance is 2, while in the
Chinese utterance, it is 6, which complicates the
establishment of information transfer. However, if
we treat “Amal” and “Clooney” as a span “<Amal
Clooney>”, and “阿”, “迈”, “勒”, “克’, ‘鲁”, and
“尼” as another span “<阿迈勒克鲁尼>”, both slots
of length 1, as shown in Figure 2 (b), the issue of
varying numbers of slot words is resolved. We will
explain in detail how we handle differing slot po-

sitions and inconsistent utterance lengths in § 3.3.
ffering positions of slots across languages are han-
dled in § 3.3.

3 Method

This section provides a detailed description of the
proposed INT, which facilitates the transfer of in-
tent and slot information from the source language
to multiple languages, thereby enhancing multi-
lingual ID and SF performance. As illustrated in
Figure 3, our model consists of an encoding mod-
ule (§ 3.1), an intent transfer module (§ 3.2), and a
slot transfer module (§ 3.3).

3.1 Encoding module
We use an mPTM to capture representations, Hm

for the multilingual utterance Um, and Hs for the
source language utterance U s.

Hm,Hs = mPTM(Um, U s). (1)

We use two separate max-pooling layers to cap-
ture the intent representation for Hm and Hs. Ad-
ditionally, inspired by Zhou et al. (2023), we utilize
two separate span extraction layers to transform
Hm and Hs. This approach addresses the potential
issue of unequal counts of slot words in sequence
labeling, thus facilitating the subsequent transfer
of slot information.

Hm
I = Maxpoolm(Hm), (2)

Hm
S = SpanExtractLayerm(Hm), (3)

where Hm
I denotes the intent representation of the

multilingual utterance, Hm
S denotes the slot repre-

sentation of the multilingual utterance. The meth-
ods for capturing the source language utterance
intent representation Hs

I and slot representation
Hs

S are similar to those in Equations 2 and 3.

15122



······ ······ P
m

S

～～

······ ······ P
s

SP
s

S

H
s

SH
s

S··· ········· H
s

S··· ·········H
m

SH
m

S··· ········· H
m

S··· ·········

Utterance Encoder

Multilingual Utterance Source Utterance

 

G Intent Logic Capture Intent Logic Capture

Max Pooling Max Pooling

Intent Logic Capture Intent Logic Capture

 
 

  

 

 

(Slot Transfer Module)

Cross Product

Add

Slot LogitIntent Logit

Utterance Representation Slot Representation

Multi-Head Slot Representation

Intent Representation

Span Extract LayerSpan Extract Layer

 

sm m s

H
m

IH
m

I H
s

IH
s

I

··· ········· H
s

H
s

··· ········· H
s

 

··· ········· H
m

H
m

··· ········· H
m

 

P
s

IP
s

IIP
m

I

～～

P
m

I

～

Pm
IPm
I

WQWQ WKWK VSVSQSQS KSKS

GSGS P
s

S

～～

P
s

S

～

P
m

SP
m

S

m s

sm

(Intent Transfer Module)

 

OS

s
OS

s

O I

m
O I

m
O I

s
O I

s

OS

m
OS

m

······ ······ P
m

S

～

······ ······ P
s

S

H
s

S··· ·········H
m

S··· ·········

Utterance Encoder

Multilingual Utterance Source Utterance

 

G Intent Logic Capture Intent Logic Capture

Max Pooling Max Pooling

Intent Logic Capture Intent Logic Capture

 
 

  

 

 

(Slot Transfer Module)

Cross Product

Add

Slot LogitIntent Logit

Utterance Representation Slot Representation

Multi-Head Slot Representation

Intent Representation

Span Extract LayerSpan Extract Layer

 

sm m s

H
m

I H
s

I

··· ········· H
s

 

··· ········· H
m

 

P
s

IIP
m

I

～

Pm
I

WQ WK VSQS KS

GS P
s

S

～

P
m

S

m s

sm

(Intent Transfer Module)

 

OS

s

O I

m
O I

s

OS

m

Figure 3: Illustration of the proposed INT. It establishes two distinct information flows: one connecting intents
(blue) across languages, and the other connecting slots (orange).

3.2 Intent transfer module

The intent transfer module aims to transfer intent
information from the source language to the multi-
lingual intent representations, thereby guiding mul-
tilingual ID. It contains three components:
Intent logic capture Before establishing intent in-
formation transfer, it is necessary to first capture
the logit P̃m

I of the multilingual intent representa-
tion Hm

I and the logit Ps
I of the source language

intent representation Hs
I.

P̃m
I = Wm

I Hm
I , (4)

where Wm
I denotes trainable weight. The method

for obtaining Ps
I is similar to those in Equation 4.

Intent gate We use the source language intent logit,
Ps

I, to guide the multilingual intent logit, P̃m
I . To

mitigate prediction errors, we use a gate, GI, which
controls the transmission of intent information.

Pm
I = P̃m

I +GIP
s
I, (5)

where Pm
I denotes the final multilingual intent log-

its, guided by the source language intent informa-
tion. GI is randomly initialized within the range
[0, 1] and is trainable.
Intent decoder We use Pm

I for multilingual ID
and Ps

I for source language ID.

ym
I = softmax(Pm

I ), (6)

Om
I = argmax(ym

I ), (7)

where ym
I denotes the probability distribution of

multilingual intents, and Om
I is the predicted mul-

tilingual intent label. The methods for calculating
the source language intent probability distribution
ys
I and the source language intent label Os

I follow
the same structure as Equations 6 and 7.

3.3 Slot transfer module

The slot transfer module aims to transfer slot infor-
mation from the source language to the multilingual
slot representation, thereby guiding multilingual SF.
It contains four components:
Slot logic capture Due to the correlation between
ID and SF, we concatenate Hm

S and Pm
I before

capture the span-based slot representations for both
languages, thereby obtaining the slot logits P̃m

S for
the multilingual utterance.

P̃m
S = Wm

S (Hm
S ||Pm

I ), (8)

where || denotes the concatenation operation, Wm
S

denotes trainable weight. The method for obtaining
Ps

S for the source language utterance is similar to
those in Equation 8.
Slot-matching attention mechanism As shown in
Figure 2, the lengths of utterances expressing the
same meaning vary across languages. Additionally,
the positions of slots with identical meanings often
differ between utterances. Addressing these two is-
sues is crucial before establishing slot information
transfer. To this end, we propose a slot-matching
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attention mechanism. Specifically, we apply lin-
ear layers to Hm

S , transforming it into QS, convert
Hs

S into KS, and use Ps
S as VS. Then, we calcu-

late the attention weights aS based on QS and KS.
aS denotes the weight mapping between Hm

S and
Hs

S, where the weight is larger for semantically
similar phrases. For example, the weight between
“<Amal Clooney>” and “<阿迈勒克鲁尼>” in Fig-
ure 2 (b) would be higher. Finally, multiplying
aS with VS yields the slot logits P̃s

S in the source
language, which are associated with multiple lan-
guages. These operations also address the issue
of transferring information between utterances of
different lengths.

QS,KS = WQHm
S ,WKHs

S, (9)

aS = softmax(
QS(KS)

T

√
d

), (10)

VS = Repeat(Ps
S, k), (11)

P̃s
S = aSVS, (12)

where WQ and WK denote trainable weights, and
a multi-head approach is also employed, similar to
Vaswani et al. (2017). Instead of transforming Ps

S

into VS through a linear layer, we simply repeat
Ps

S k times, where k is the number of heads.
Slot gate To mitigate prediction errors in the source
language, similar to the intent transfer module, we
introduce a trainable gate GS to regulate the flow
of slot information.

Pm
S = P̃m

S +GSP̃
s
S. (13)

Slot decoder We use Pm
S for multilingual SF and

Ps
S for source language SF.

ym
S = softmax(Pm

S ), (14)

Om
S = argmax(ym

S ), (15)

where ym
S = (y

(1,m)
s ,y

(2,m)
s , . . . ,y

(l,m)
s ), and

y
(j,m)
s denotes the slot probability distribution for

the j-th span of Um, with l denoting the total num-
ber of spans. Om

S = (o
(1,m)
S , o

(2,m)
S , . . . , o

(l,m)
S ),

and o
(j,s)
j denotes the corresponding predicted slot

label. The methods for obtaining the source lan-
guage intent probability distribution ys

S and the
source language intent label Os

S follow the same
structure as Equations 14 and 15.

3.4 Joint training
Our model performs multilingual ID and SF, as
well as ID and SF in the source language. We adopt

a joint training model to consider these tasks and
update parameters by joint optimizing. Specifically,
the multilingual intent loss function is defined as:

LI ≜ −
nI∑

i=1

ŷI log(yI), (16)

where ŷI represents the gold intent label, and nI

denotes the number of intent labels. The loss func-
tion Ls

I for intent decoding in the source language
is similar to Equation 16. The slot loss function is:

Ls ≜ −
n∑

j=1

ns∑

i=1

ŷ
(j,s)
j log(y

(j,s)
j ), (17)

where ŷ
(j,s)
j is the gold slot label, and ns is the

number of slot labels. The loss function Ls
S for

slot decoding in the source language is similar to
Equation 17. The final joint training objective is:

L = γLp
I + (1− γ)Lp

s + γLI + (1− γ)Ls, (18)

with a hyper-parameter γ to balance ID and SF.

4 Experiment

4.1 Experimental settings

The number of heads in the slot-matching atten-
tion mechanism is set to 8, with other experimen-
tal parameters following the recommendations of
FitzGerald et al. (2023). F1-score is used to eval-
uate the performance of SF, accuracy to evaluate
ID performance, and overall accuracy to evaluate
sentence-level semantic frame parsing performance.
All experiments are performed on an RTX A6000.

4.2 Baseline

Following FitzGerald et al. (2023), we use XLM-R
and mT5 Encoder-Only (Xue, 2020) as baselines.
Additionally, we evaluate three other mPTMs:
mDistilBERT (Sanh, 2019), mBERT (Wu and
Dredze, 2020), and CINO (Yang et al., 2022). For
these mPTMs, we employ the pre-trained encoders
with two separate classification heads for ID and
SF, both trained from scratch. We also report the
performance of four large language models (LLM)
(Wang et al., 2024; He et al., 2024), GPT-4 (Achiam
et al., 2023), BLOOMz (Muennighoff et al., 2023)
1, LLaMa3.1 (Grattafiori et al., 2024) 2 and GLM-4

1https://huggingface.co/bigscience/bloomz-7b1
2https://huggingface.co/meta-llama/Llama-3.

1-8B-Instruct
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(GLM et al., 2024) 3, on MASSIVE52. The GPT-4
version used is 2023-05-15, with a temperature set-
ting of 0.7, and we employ a simple prompt-based
approach. For BLOOMz, LLaMa3.1 and GLM-
4, we adopt the LoRA-based method (Hu et al.,
2021; Zheng et al., 2024). The prompt templates
for LLMs, as well as the training parameters for
BLOOMz and GLM-4 are provided in Appendix D.

4.3 Results and analysis

Given the relative abundance and accessibility of
English corpora, we use en-US from MASSIVE52
as the source language for our experiments. Table
1 presents the experimental results of the proposed
INT and all baselines on MASSIVE52.

Model Intent Slot Overall
GPT-4 70.72 41.90 29.20

BLOOMz 75.60 61.54 50.95
LLaMa3.1 84.43 71.02 61.82

GLM-4 84.24 71.90 62.03
mBERT 77.42 64.77 53.64

mBERT+INT(Ours) 83.34* 71.60* 59.37*
mDistilBERT 77.08 64.11 52.95

mDistilBERT+INT(Ours) 82.97* 72.14* 59.38*
mT5 85.26 74.36 64.19

mT5+INT(Ours) 87.65* 79.17* 68.73*
CINO 85.69 73.31 64.29

CINO+INT(Ours) 87.76* 80.21* 69.51*
XLM-R 85.29 73.66 64.10

XLM-R+INT(Ours) 88.21* 80.75* 70.65*

Table 1: Main experimental results (/%). All values are
averages across 52 languages. More details can be found
in Appendix B. The numbers marked with “*” indicate
that the improvement of our model over baselines is
statistically significant with p < 0.05 under t-test.

1. When using the same mPTM, the proposed
INT consistently outperforms the baseline in terms
of intent accuracy, slot F1-score, and overall ac-
curacy, demonstrating its effectiveness. Moreover,
our model exhibits a notable degree of robustness
and adaptability across different mPTMs.

2. LLMs show slightly lower performance com-
pared to mT5, CINO, and XLM-R. This suggests
that LLMs exhibit limited performance in multilin-
gual SLU and that LLM-based methods still require
further refinement. Additionally, the decoding time

3https://huggingface.co/THUDM/glm-4-9b

required by LoRA-based GLM-4 is significantly
higher than that of our model (see Appendix E).

4.4 Ablation study

To validate the effectiveness of different compo-
nents in our model, we conduct ablation experi-
ments based on XLM-R. The experimental results
are shown in Table 2. Without the slot-matching
attention mechanism, the differing matrix dimen-
sions prevent the computation of Equation 13,
which is why we do not conduct this experiment.

Model Intent Slot Overall
INT(Ours) 88.21 80.75 70.65
w/o ITM 85.68 80.14 68.39
w/o STM 88.05 78.97 68.04

w/o ITM & STM 85.43 74.01 64.63
w/o IG 87.84 80.16 70.03
w/o SG 88.34 80.15 70.17

w/o IG & SG 88.09 79.76 69.17
w/o Intent to Slot 88.36 79.16 69.13

Table 2: Ablation experiments results (/%).

Effectiveness of intent transfer module The in-
tent transfer module aims to provide guidance from
the source language intent representation to mul-
tilingual intent representations. To validate its ef-
fectiveness, we remove this module (w/o ITM) and
retain only the slot transfer module in our model.
Experimental results show a significant decline in
intent accuracy, slot F1-score, and overall accuracy,
confirming the importance of this module.
Effectiveness of slot transfer module The slot
transfer module establishes guidance from the
source language slot representation to multilingual
slot representations. To assess its effectiveness, we
remove this module (w/o STM) and retain only the
intent transfer module. Experimental results show
a decline in performance, but the drop in overall
accuracy is less significant. The proposed INT
facilitates the guidance of ID to SF. The source
language intent representation is transferred via the
intent transfer module to multilingual intent rep-
resentations, which allows multilingual slot repre-
sentations to indirectly absorb knowledge from the
source language. As a result, the overall accuracy
does not decrease significantly.
Complementarity between intent transfer mod-
ule slot transfer module In both cases (w/o ITM
and w/o STM), the performance of our model de-
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clines, demonstrating that both modules are essen-
tial for the proposed INT. The information flows
established by these two modules are orthogonal,
highlighting their complementary nature. Further-
more, when both the intent transfer and slot transfer
modules are removed (w/o ITM & STM), the overall
accuracy of our model shows a significant decline,
underscoring the importance of their collaboration
in maintaining both information flows.
Effectiveness of intent gate The intent gate con-
trols the information flow from the source language
intent representation to the multilingual intent rep-
resentation. When the source language intent label
prediction is incorrect, it helps mitigate the neg-
ative impact of this error on multilingual ID. To
validate its effectiveness, we remove this unit (w/o
IG). Experimental results show a slight decline in
model performance, confirming its importance.
Effectiveness of slot gate The function of the slot
gate is similar to that of the intent gate, with the
difference being that it controls the information
flow from the source language slot representation
to the multilingual slot representation. To verify
its effectiveness, we remove it (w/o SG), and the
model’s performance also declines. However, the
drop is less significant than in w/o IG, which can
be attributed to the guidance provided by the pro-
posed INT, directing ID to SF and allowing effec-
tive source language intent representations to indi-
rectly influence multilingual slot representations.
Complementarity between intent gate Both the
intent gate and the slot gate control the information
flow within their respective modules. Removing
either gate leads to a degradation in model per-
formance, demonstrating their complementarity.
When both gates are removed (w/o IG & SG), the
overall accuracy of the model decreases more than
when either gate is removed individually, further
validating their importance.
Effectiveness of intent-to-slot guidance Since ID
and SF are closely related, we establish guidance
from intent to slot. To verify the effectiveness of
this guidance, we remove the intent to slot guidance
(w/o Intent to Slot). Experimental results show that
after removing this guidance, the performance of
our model decline in all three metrics, demonstrat-
ing that the intent to slot guidance established by
the proposed INT is effective.

4.5 Sequence labeling vs. span prediction
In § 2.3, we discuss the necessity of using spans
to establish slot information transfer. To further

evaluate its effectiveness, we conduct the following
experiment: we remove the two span extraction lay-
ers from INT and instead apply sequence labeling.
The experimental results are shown in Figure 4.
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Figure 4: Comparing sequence labeling and span predic-
tion results, the experiment is conducted using XLM-R.

As can be seen, replacing span prediction with
sequence labeling does not lead to a significant de-
crease in intent accuracy; however, the F1-score
for slot filling drops by 2.42%, which is quite no-
ticeable. This drop can be attributed to the fact
that the number of slot words often varies across
languages. Establishing information transfer based
on a single word rather than the entire slot span
is incomplete. As illustrated in Figure 2, neither
“Amal” nor “Clooney” fully expresses the mean-
ing, but when “Amal” and “Clooney” are treated
as a span “Amal Clooney”, the meaning becomes
complete, making the established slot information
transfer more effective.

4.6 Impact of the source language

Given the abundance of language resources in En-
glish, we use it as the source language in the main
experiment. To assess the impact of the source lan-
guage on our model performance, we select ja-JP
(the worst-performing language with XLM-R) and
th-TH (the best-performing) as source languages.
The experimental results are shown in Figure 5.

It can be observed that the performance of the
proposed INT is influenced by the source lan-
guage’s performance. The better the source lan-
guage performs, the better the INT performs, and
vice versa. However, even with ja-JP, the worst-
performing source language, our model still outper-
forms XLM-R in overall accuracy, demonstrating
its robustness across different source languages.
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Figure 5: Impact of source language on our model.

4.7 Qualitative Analysis
We present the results of different examples in Fig-
ure 6, obtained after establishing information trans-
fer with the proposed INT, for qualitative analysis.
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Figure 6: Examples of ID and SF results across different
languages after establishing information transfer. Red
indicates incorrect predictions, while green indicates
correct ones. In (a), (1) represents the en-US prediction
results using XLM-R as the encoder, (2) represents the
bn-BD prediction results, and (3) shows the bn-BD re-
sults after applying INT. (b) follows the same format.

As shown in Figure 6(a), the model’s predic-
tion for en-US is not always accurate—it incor-
rectly identifies the intent of the utterance as
“play_music”. Although the original prediction
for bn-BD correctly identifies the intent as “mu-
sic_settings”, the information transfer from en-

US negatively affects it, leading to an incorrect
intent prediction. Furthermore, while some slot
labels are correctly predicted in en-US, the trans-
ferred information to bn-BD is insufficient to cor-
rect the incorrect slot filling results in bn-BD.
In Figure 6(b), the correct intent prediction for
en-US (“general_greet”) helps rectify the origi-
nal incorrect prediction for sl-SL (“recommenda-
tion_events”) after information transfer. These two
examples demonstrate that mitigating the negative
impact of incorrect predictions in en-US, while
effectively leveraging accurate information, may
offer a promising direction for further improving
the performance of INT.

4.8 Quantitative analysis

To further explore the effect of the proposed INT,
we compare its results with XLM-R for each lan-
guage, intent, and slot label, as shown in Figure 7.

As shown in Figure 7 (a), the proposed INT out-
performs XLM-R in overall accuracy across all
languages in MASSIVE52, demonstrating that our
model is better equipped to handle complex mul-
tilingual scenarios. Additionally, as depicted in
Figure 7 (b) and (c), our model outperforms the
baseline in most intent and slot categories. This
indicates that the performance improvement of our
model is not limited to specific categories; it ef-
fectively transfers intent and slot information from
various categories in the source language to mul-
tilingual utterances, thereby enhancing the perfor-
mance of multilingual SLU tasks across a broad
range of categories.

5 Related Work

Multilingual spoken language understanding
The inherent multilingual nature of multilingual
SLU prevents it from achieving performance com-
parable to that of traditional monolingual SLU.
While powerful models (Feng et al., 2022; Brown
et al., 2020) can enhance performance, they often
require large amounts of high-quality data. Ma-
chine translation (De Bruyn et al., 2022) and code-
switching (Krishnan et al., 2021) have been used
in multilingual SLU, partially addressing this is-
sue; however, their performance is limited by re-
liance on external tools. Sharing encoders (Hueser
et al., 2023; Firdaus et al., 2023) across languages
is another approach to improving multilingual SLU
performance, but it lacks directness. This distin-
guishes the proposed INT model from previous
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Figure 7: Details of performance improvement with the proposed INT: (a) overall accuracy comparison between our
model and XLM-R across languages, (b) intent accuracy comparison, and (c) slot F1-score comparison. For clarity,
we omit the language and category labels. More details are provided in Appendices B and C.

research: our model directly establishes informa-
tion transfer between languages.
Span prediction Span prediction is commonly
used in the named entity recognition task (Shen
et al., 2023; Ding et al., 2024), while sequence
labeling is another major decoding approach for
this task. Both methods have their advantages and
limitations (Fu et al., 2021). The main reason for
considering span prediction in this study is its abil-
ity to fix the length of the slots, which facilitates
the transfer of slot information between languages.

6 Conclusion

In this study, we investigate the feasibility of utiliz-
ing a source language to guide multiple languages
in multilingual SLU and identify the key challenges
in establishing information transfer: prediction er-
ror mitigation and multilingual slot alignment. We
propose INT for transferring intent and slot infor-
mation, where the gating unit effectively reduces
the negative impact of source language prediction
errors on multilingual SLU performance. For mul-
tilingual slot alignment, we tackle the issue of in-
consistent slot word counts through span predic-
tion. We also introduce a slot-matching attention
mechanism to address the issues of varying slot
positions and sentence lengths across languages.
Experimental results on MASSIVE52 validate the
effectiveness and robustness of our model.

Limitations

In this study, we propose INT, a model that facil-
itates information transfer between languages to
enhance multilingual SLU performance. While
it improves overall accuracy across all languages
in MASSIVE52, our model does not achieve im-
provements in every category. For a small subset of

intent and slot metrics, performance decreases. In
these categories, the source language information
appears to have a counterproductive effect. Analyz-
ing the causes of these performance drops could be
crucial for further advancing multilingual SLU per-
formance. In the future, we will conduct more
in-depth investigations and hope that this work
will stimulate interest and innovation among re-
searchers in the field.
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A Details of Preliminary Experiment
Result

The details of the results in Figure 1 can be found
in Table 3.

B Details of Main Experiment Result

The experimental details for GPT-4 and GLM-4
are provided in Table 4, for mBERT in Table 6, for
mDistilBERT in Table 7, for mT5 in Table 8, for
CINO in Table 9, and for XLM-R in Table 10.

Taking Table 10 as an example, when using en-
US as the source language for information transfer,
the closely related nl-NL exhibits an overall ac-
curacy improvement of 4.95%, whereas the more
distant zh-CN achieves an improvement of 10.93%.
This discrepancy is attributable to XLM-R’s base-
line performance differences, as nl-NL’s original
accuracy was already 5.68% higher than that of zh-
CN, resulting in more pronounced gains for zh-CN.
Two primary factors influence INT’s performance
across languages. First, the language’s pre-transfer
performance: languages with lower initial accuracy
tend to exhibit greater improvement. Second, the
performance of the source language, which shows
a direct positive correlation with INT’s results.

From the outset, our objective was to develop a
solution that establishes information transfer purely

Language XLM-R ∪ ja-JP ∪ en-US
af-ZA 64.86 73.30 74.21
am-ET 61.30 72.76 76.03
ar-SA 61.77 72.76 76.13
az-AZ 65.30 73.07 75.25
bn-BD 63.69 73.07 74.65
cy-GB 63.18 73.20 74.28
da-DK 67.92 74.55 74.61
de-DE 66.04 74.55 74.58
el-GR 64.49 73.27 74.92
en-US 69.57 75.35 69.57
es-ES 62.81 72.36 73.87
fa-IR 67.01 74.41 75.66
fi-FI 66.71 74.41 75.69
fr-FR 62.68 72.90 73.84
he-IL 63.35 73.03 75.49
hi-IN 63.15 72.53 75.12

hu-HU 66.01 74.58 75.79
hy-AM 63.99 73.07 75.08
id-ID 65.27 73.37 74.65
is-IS 65.10 73.57 75.32
it-IT 63.42 73.03 75.05
ja-JP 57.60 57.60 75.35
jv-ID 64.06 73.71 75.96
ka-GE 62.58 73.40 76.06
km-KH 62.68 75.82 78.28
kn-IN 60.86 72.56 74.45
ko-KR 67.08 74.51 76.70
lv-LV 65.40 73.74 75.35
ml-IN 65.00 73.97 75.76

mn-MN 64.56 73.13 75.89
ms-MY 65.57 73.81 75.18
my-MM 68.12 75.82 78.01
nb-NO 66.91 74.41 74.95
nl-NL 65.80 73.54 74.24
pl-PL 62.14 72.70 75.12
pt-PT 64.63 72.70 74.45
ro-RO 65.13 73.34 75.22
ru-RU 65.23 73.60 75.82
sl-SL 63.79 73.10 74.85
sq-AL 63.08 73.03 75.18
sv-SE 68.76 75.39 75.82
sw-KE 59.65 71.55 74.55
ta-IN 61.63 72.73 75.45
te-IN 62.10 72.33 74.68
th-TH 71.22 78.31 79.93
tl-PH 62.84 73.30 73.94
tr-TR 65.00 73.64 75.52

ug-UG 61.10 71.96 75.89
ur-PK 60.86 70.95 74.71
vi-VN 63.32 73.10 75.02
zh-CN 60.12 70.95 74.95
zh-TW 58.81 71.55 75.96

Table 3: The overall accuracy of XLM-R for each lan-
guage in MASSIVE52, as well as the overall accuracy
for each language when taken as the union with ja-JP or
en-US (/%).
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on the basis of semantics. In doing so, we sought
to minimize the impact of language families, lin-
guistic distances, and encoding differences while
maximizing the extraction of abstract semantic in-
formation. To some extent, our model has achieved
this objective and has successfully reduced the in-
fluence of language-specific characteristics.

C Details of Experimental Results for
Different Intent and Slot Categories

The results of XLM-R and our model for intent and
slot categories are shown in Tables 11 and 12.

D Details of the Large Language Model
Experiment

The training parameters for BLOOMz, LLaMa3.1
and GLM-4 are as follows: batch size is 2, number
of epochs is 3, lora_rank is 8, lora_drop is 0.1,
and learning rate is 5 × 10−5. The LLM prompt
template is shown in Figure 8.

E Decoding Time Comparison

We report the decoding time for XLM-R, the pro-
posed INT, and GLM-4 in Table 13.

By combining Tables 1 and 13, it is clear that
GLM-4 has significantly lower intent accuracy, slot
F1-score, and overall accuracy than the proposed
INT, while also taking longer to decode. Compared
to XLM-R, establishing information transfer be-
tween utterances has increased the decoding time
of our model.
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GPT-4 BLOOMz
Language Intent Acc Slot F1 Overall Acc Intent Acc Slot F1 Overall Acc

af-ZA 72.77 42.61 29.29 76.00 65.08 52.45
am-ET 55.60 32.13 21.37 56.84 40.51 30.64
ar-SA 68.79 43.62 29.65 81.34 71.49 60.10
az-AZ 71.31 30.40 23.38 69.14 51.12 40.45
bn-BD 71.14 37.10 26.19 85.21 72.03 62.73
cy-GB 64.21 36.65 22.75 62.53 48.94 35.97
da-DK 74.27 43.53 30.67 80.37 67.80 57.32
de-DE 75.45 43.03 30.65 82.63 70.65 60.21
el-GR 75.18 49.76 34.54 72.63 57.86 47.84
en-US 77.45 49.12 35.08 89.58 79.40 70.84
es-ES 75.10 41.01 29.30 86.99 72.42 63.83
fa-IR 73.74 48.65 35.31 74.94 58.28 47.65
fi-FI 73.91 41.58 28.74 64.21 48.75 38.09
fr-FR 73.88 43.63 29.33 88.07 72.95 65.03
he-IL 73.32 31.68 27.39 69.11 50.50 41.65
hi-IN 73.15 48.60 33.22 87.02 71.29 62.60

hu-HU 74.14 36.82 27.66 64.93 47.31 37.86
hy-AM 65.56 29.06 22.51 61.92 43.79 35.08
id-ID 74.44 46.13 33.08 87.55 73.20 65.41
is-IS 70.90 39.35 27.44 66.22 53.29 40.89
it-IT 76.84 44.74 31.79 84.55 69.04 59.60
ja-JP 74.58 45.56 33.40 79.47 62.57 51.94
jv-ID 58.41 36.23 22.23 74.46 62.83 50.22
ka-GE 58.44 33.13 21.76 56.37 46.20 33.28
km-KH 55.07 48.48 29.28 58.76 57.47 39.73
kn-IN 68.96 36.63 27.01 82.53 64.11 55.19
ko-KR 73.96 46.57 34.32 77.61 62.43 50.81
lv-LV 71.41 43.64 28.49 68.89 50.54 40.19
ml-IN 71.03 33.34 26.14 84.75 70.35 60.95

mn-MN 66.56 28.08 22.20 60.64 43.86 34.16
ms-MY 70.52 44.15 30.94 84.92 72.01 62.11
my-MM 65.30 47.84 32.30 57.55 51.96 36.34
nb-NO 74.34 43.54 30.98 77.82 66.18 54.71
nl-NL 74.86 45.22 31.94 81.44 69.04 58.74
pl-PL 75.6 41.77 31.16 75.60 58.00 48.38
pt-PT 75.45 47.23 33.15 87.54 73.94 65.32
ro-RO 73.87 43.46 29.66 75.88 58.73 48.79
ru-RU 75.53 46.21 32.47 82.12 65.37 57.48
sl-SL 72.33 40.17 28.08 69.43 54.66 44.25
sq-AL 65.96 40.44 25.37 68.74 53.22 40.77
sv-SE 76.59 45.97 32.49 79.18 67.78 56.09
sw-KE 64.94 41.53 25.16 78.40 63.25 53.38
ta-IN 67.42 35.76 25.75 83.06 69.52 59.47
te-IN 72.81 43.89 30.90 83.52 68.32 59.01
th-TH 69.22 59.18 38.54 68.97 63.87 49.45
tl-PH 71.59 46.54 31.08 70.84 58.75 45.67
tr-TR 73.89 36.25 28.21 70.05 52.85 41.43

ug-UG 60.66 22.22 20.15 59.49 48.13 33.76
ur-PK 71.99 44.46 32.44 84.20 66.56 58.77
vi-VN 73.31 45.14 31.78 87.43 71.74 63.93
zh-CN 73.09 45.63 31.22 85.67 69.36 60.13
zh-TW 68.00 45.43 30.49 83.18 68.24 58.12

All 70.72 41.90 29.20 75.60 61.54 50.95

Table 4: Details of the GPT-4 and BLOOMz experimental results (/%).
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LLaMa3.1 GLM-4
Language Intent Acc Slot F1 Overall Acc Intent Acc Slot F1 Overall Acc

af-ZA 85.66 71.31 63.14 86.00 74.08 64.85
am-ET 79.27 64.79 54.24 62.81 49.63 37.77
ar-SA 80.69 69.90 59.05 81.41 72.13 61.07
az-AZ 85.00 70.63 61.60 84.72 70.17 61.10
bn-BD 84.20 70.97 61.80 84.80 72.39 62.77
cy-GB 83.64 70.37 61.03 79.93 68.57 57.44
da-DK 86.70 74.43 66.08 88.12 76.65 67.90
de-DE 86.40 74.90 65.99 88.36 77.31 67.84
el-GR 85.73 71.70 63.57 87.49 74.78 65.96
en-US 87.55 75.66 67.69 90.12 80.81 72.36
es-ES 86.28 69.28 61.17 88.49 74.27 65.95
fa-IR 85.42 72.53 63.51 87.56 75.35 65.99
fi-FI 85.15 73.65 61.67 86.74 76.86 67.18
fr-FR 86.00 69.72 61.45 88.17 73.93 65.34
he-IL 84.86 71.48 62.87 87.14 72.03 64.77
hi-IN 85.91 69.30 61.94 86.65 71.02 63.01

hu-HU 86.01 73.13 63.95 86.74 74.67 65.20
hy-AM 84.72 70.90 62.43 85.22 69.73 61.75
id-ID 86.11 71.04 62.96 86.99 73.49 64.50
is-IS 83.50 71.27 61.48 80.22 68.26 57.00
it-IT 86.23 70.18 62.38 88.02 72.99 64.35
ja-JP 84.12 66.92 58.16 84.41 68.44 58.74
jv-ID 82.53 70.82 59.81 78.03 68.65 54.86
ka-GE 80.32 71.32 58.89 78.05 70.46 56.89
km-KH 76.78 73.61 58.02 73.64 71.33 55.52
kn-IN 83.48 67.21 58.98 83.41 68.42 59.23
ko-KR 86.04 74.14 64.81 86.70 76.98 66.68
lv-LV 84.40 71.71 62.52 83.71 71.07 62.22
ml-IN 84.35 71.08 62.33 85.36 71.46 62.82

mn-MN 82.52 68.60 58.67 78.03 60.36 50.94
ms-MY 85.99 72.71 64.20 86.13 74.35 64.70
my-MM 81.62 76.53 63.45 78.22 71.18 58.19
nb-NO 86.17 73.97 64.74 87.76 77.69 67.71
nl-NL 86.71 71.08 64.84 88.07 76.17 67.52
pl-PL 86.23 68.17 61.06 87.72 71.45 63.63
pt-PT 86.22 71.25 62.63 88.09 76.38 67.00
ro-RO 85.80 71.40 63.28 86.71 74.63 65.60
ru-RU 86.14 72.14 64.15 88.52 75.56 67.31
sl-SL 84.76 69.90 61.09 85.19 71.69 62.52
sq-AL 84.31 69.32 60.75 81.79 68.04 57.34
sv-SE 86.68 75.50 66.65 88.44 78.86 69.61
sw-KE 82.68 68.21 58.40 75.84 64.27 51.23
ta-IN 82.92 68.56 59.77 82.69 69.58 59.50
te-IN 84.01 69.25 60.30 85.52 69.76 60.84
th-TH 84.29 80.17 67.07 83.61 82.79 68.49
tl-PH 85.33 71.32 62.60 85.52 73.44 63.22
tr-TR 85.43 71.25 62.47 87.26 73.54 64.82

ug-UG 79.23 66.25 54.81 74.55 61.47 48.61
ur-PK 83.73 66.72 58.32 83.35 66.20 58.46
vi-VN 85.88 69.52 61.38 87.16 73.47 64.55
zh-CN 84.29 68.45 59.80 86.32 71.98 63.65
zh-TW 82.12 67.34 56.81 84.54 69.28 59.02

All 84.43 71.02 61.82 84.24 71.90 62.03

Table 5: Details of the LLaMa3.1 and GLM-4 experimental results (/%).
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mBERT mBERT+INT(Ours)
Language Intent Acc Slot F1 Overall Acc Intent Acc Slot F1 Overall Acc

af-ZA 81.88 68.57 58.68 83.32 73.91 60.89
am-ET 10.15 4.06 2.66 83.29 17.83 32.18
ar-SA 74.61 63.36 51.04 83.32 73.19 60.89
az-AZ 81.57 67.85 57.63 83.29 72.42 59.41
bn-BD 78.75 66.30 55.31 83.42 71.69 59.15
cy-GB 80.90 65.91 55.92 83.32 72.90 60.52
da-DK 82.99 72.31 62.34 83.25 75.72 62.24
de-DE 81.00 70.55 59.31 83.19 74.78 61.40
el-GR 80.03 66.16 55.95 83.29 73.79 60.76
en-US 84.06 71.99 62.68 83.25 76.25 63.28
es-ES 81.34 63.13 53.83 83.32 72.09 59.85
fa-IR 82.78 68.37 57.73 83.42 73.77 60.69
fi-FI 79.72 68.20 56.42 83.36 73.41 60.36
fr-FR 82.72 64.90 56.79 83.32 72.25 59.58
he-IL 80.63 65.88 55.21 83.42 71.38 59.58
hi-IN 81.00 65.12 55.92 83.46 71.65 60.19

hu-HU 80.33 65.82 55.58 83.36 72.24 59.72
hy-AM 78.82 63.76 53.70 83.36 71.39 58.98
id-ID 83.22 67.30 59.65 83.29 72.45 60.19
is-IS 80.83 68.83 57.33 83.36 73.49 60.39
it-IT 83.09 66.12 57.06 83.29 72.25 59.45
ja-JP 81.20 58.73 52.49 83.29 75.68 66.21
jv-ID 80.30 68.03 56.96 83.39 73.75 60.73
ka-GE 73.77 64.85 50.30 83.25 72.95 60.05
km-KH 12.81 4.52 5.85 83.32 45.47 43.64
kn-IN 77.81 62.09 51.41 83.32 68.82 57.30
ko-KR 82.31 71.54 60.36 83.39 76.03 62.44
lv-LV 80.20 68.06 56.83 83.25 73.86 60.56
ml-IN 77.40 63.96 53.03 83.29 71.12 59.11

mn-MN 80.80 65.17 56.39 83.42 70.68 58.91
ms-MY 82.62 68.86 59.92 83.36 74.67 61.80
my-MM 75.66 71.29 55.38 83.32 78.91 64.93
nb-NO 81.94 70.89 59.31 83.39 74.55 61.70
nl-NL 82.08 69.69 59.35 83.39 73.08 60.93
pl-PL 80.70 62.80 53.67 83.32 68.64 57.77
pt-PT 82.52 66.33 56.52 83.32 72.99 60.49
ro-RO 81.34 65.87 56.05 83.46 72.94 59.99
ru-RU 82.78 68.32 58.37 83.29 73.72 60.46
sl-SL 80.43 64.00 54.07 83.39 72.40 60.19
sq-AL 81.34 66.47 55.92 83.36 71.67 59.25
sv-SE 82.68 71.51 60.93 83.36 75.81 62.17
sw-KE 78.95 62.50 52.62 83.36 70.65 58.91
ta-IN 77.51 63.58 52.49 83.42 69.83 57.73
te-IN 77.51 62.25 51.18 83.25 69.66 56.96
th-TH 77.14 77.13 60.42 83.29 79.80 64.96
tl-PH 81.07 66.38 56.09 83.36 74.91 61.60
tr-TR 80.97 66.04 56.25 83.36 70.30 58.04

ug-UG 56.56 37.26 27.27 83.42 57.18 50.07
ur-PK 79.42 61.70 52.66 83.39 69.81 58.44
vi-VN 83.22 63.98 55.41 83.39 71.38 59.52
zh-CN 82.48 64.53 56.39 83.36 75.05 62.61
zh-TW 80.36 63.98 54.57 83.39 72.47 60.69

All 77.43 64.78 53.64 83.34 71.60 59.37

Table 6: Details of the mBERT experimental results (/%).
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mDistilBERT mDistilBERT+INT(Ours)
Language Intent Acc Slot F1 Overall Acc Intent Acc Slot F1 Overall Acc

af-ZA 80.97 67.25 56.89 83.05 74.41 61.03
am-ET 9.35 4.32 2.42 82.85 17.07 31.34
ar-SA 74.92 63.72 50.71 82.99 73.50 60.15
az-AZ 81.30 66.70 57.06 83.05 73.72 59.89
bn-BD 77.20 64.45 52.96 83.12 72.82 59.41
cy-GB 81.04 64.93 55.48 82.85 73.96 60.59
da-DK 82.35 71.46 61.03 82.95 76.32 62.54
de-DE 80.09 69.41 57.67 82.89 75.74 61.84
el-GR 79.59 66.63 54.91 83.09 74.02 60.63
en-US 82.65 71.20 60.76 82.92 76.61 62.78
es-ES 80.97 62.26 54.47 82.99 73.04 59.89
fa-IR 81.71 67.24 56.62 82.92 74.75 60.76
fi-FI 79.62 67.78 55.88 82.89 74.27 60.86
fr-FR 82.01 63.81 54.94 82.92 72.95 59.68
he-IL 80.16 63.52 53.87 83.12 72.24 59.68
hi-IN 80.33 64.97 54.94 82.92 71.34 58.94

hu-HU 79.93 65.74 55.21 82.95 72.84 59.38
hy-AM 79.32 63.03 52.49 82.82 71.52 58.84
id-ID 82.85 66.69 58.78 82.92 71.54 59.78
is-IS 80.53 68.44 56.72 82.99 75.04 61.87
it-IT 81.71 65.59 56.39 82.82 73.65 59.62
ja-JP 81.27 56.74 51.21 82.82 76.91 66.64
jv-ID 79.89 67.17 57.03 83.05 74.02 60.36
ka-GE 73.20 64.49 49.97 83.02 73.33 59.65
km-KH 13.45 4.66 5.14 82.82 43.19 42.37
kn-IN 78.14 62.73 51.71 82.99 68.93 56.79
ko-KR 81.74 71.89 59.65 83.22 75.69 62.44
lv-LV 79.62 66.20 54.61 83.12 74.64 60.76
ml-IN 78.24 63.55 52.45 82.95 71.70 58.51

mn-MN 82.04 64.85 56.15 82.92 70.77 57.94
ms-MY 81.91 67.43 57.97 83.02 74.90 61.77
my-MM 77.00 73.37 57.06 83.09 79.17 64.73
nb-NO 82.08 71.02 58.91 82.92 75.82 62.21
nl-NL 82.04 68.40 58.94 83.05 73.34 61.06
pl-PL 80.87 62.77 54.17 82.89 69.63 57.90
pt-PT 82.55 65.06 56.46 82.99 73.64 60.79
ro-RO 81.27 63.77 54.84 82.99 73.12 59.55
ru-RU 81.78 66.97 56.66 82.85 74.44 60.96
sl-SL 79.66 64.09 54.00 82.99 73.13 59.62
sq-AL 81.27 65.66 55.44 82.92 73.62 60.73
sv-SE 81.44 71.44 60.02 83.09 76.44 62.74
sw-KE 78.04 61.99 51.68 83.05 71.02 58.84
ta-IN 77.40 62.92 51.68 82.95 70.56 57.57
te-IN 76.77 61.69 50.40 83.02 70.02 57.33
th-TH 77.34 76.88 60.86 83.02 79.82 65.70
tl-PH 80.16 65.89 55.82 82.95 75.44 61.33
tr-TR 79.59 64.88 54.00 82.99 70.60 58.07

ug-UG 56.36 38.98 28.91 82.92 58.65 50.34
ur-PK 78.78 62.35 52.92 83.09 70.96 59.11
vi-VN 82.21 63.47 55.31 82.92 71.66 59.38
zh-CN 82.58 63.19 55.41 83.02 75.22 62.54
zh-TW 81.10 61.32 54.10 82.95 72.51 60.59

All 77.09 64.11 52.96 82.97 72.14 59.38

Table 7: Details of the mDistilBERT experimental results(/%).
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mT5 mT5+INT(Ours)
Language Intent Acc Slot F1 Overall Acc Intent Acc Slot F1 Overall Acc

af-ZA 86.31 75.75 66.15 87.69 79.85 69.00
am-ET 82.95 71.04 60.19 87.66 77.49 66.54
ar-SA 82.01 73.53 62.10 87.66 78.34 68.49
az-AZ 86.58 74.64 66.11 87.66 79.09 68.53
bn-BD 84.67 74.46 65.33 87.63 78.61 68.46
cy-GB 84.90 73.97 64.02 87.66 77.16 66.91
da-DK 87.09 78.35 69.20 87.73 81.60 70.88
de-DE 85.64 78.18 68.29 87.63 80.60 69.44
el-GR 85.84 74.72 65.14 87.56 79.54 69.30
en-US 88.23 80.60 71.19 87.53 82.22 71.25
es-ES 86.31 72.27 63.12 87.59 77.44 66.98
fa-IR 86.89 74.92 66.01 87.66 80.07 69.13
fi-FI 85.37 77.26 66.64 87.66 80.93 70.58
fr-FR 86.95 72.62 64.26 87.53 76.95 66.17
he-IL 84.60 73.06 63.08 87.76 78.48 68.33
hi-IN 85.34 71.90 63.38 87.66 77.48 67.22

hu-HU 85.34 75.65 65.64 87.73 79.98 69.20
hy-AM 85.04 73.56 64.19 87.73 78.11 67.85
id-ID 87.12 73.65 65.70 87.63 78.76 68.56
is-IS 85.17 75.27 65.57 87.66 80.34 69.54
it-IT 86.05 73.20 64.22 87.76 77.86 66.85
ja-JP 84.70 65.02 58.98 87.59 78.48 71.42
jv-ID 85.14 75.54 64.73 87.66 78.57 68.22
ka-GE 80.23 76.06 61.94 87.59 80.51 70.28
km-KH 78.38 81.74 63.89 87.69 85.46 73.64
kn-IN 84.40 71.23 61.84 87.66 75.16 65.23
ko-KR 86.01 77.84 67.35 87.63 80.75 69.67
lv-LV 85.14 75.92 65.30 87.66 79.64 69.07
ml-IN 86.11 75.19 65.77 87.63 78.73 68.16

mn-MN 85.71 72.16 64.22 87.63 79.10 68.43
ms-MY 85.68 76.32 66.48 87.69 80.64 70.11
my-MM 84.36 81.68 68.86 87.63 85.72 73.94
nb-NO 87.36 77.37 67.79 87.69 81.79 70.58
nl-NL 86.79 75.73 67.05 87.73 79.25 69.20
pl-PL 86.01 70.11 61.90 87.59 75.44 65.87
pt-PT 87.05 73.68 66.04 87.63 78.55 68.22
ro-RO 86.38 73.94 64.83 87.63 77.84 67.89
ru-RU 86.99 75.91 67.42 87.63 79.62 68.96
sl-SL 86.38 73.18 65.23 87.59 78.27 67.82
sq-AL 86.11 73.71 65.37 87.66 77.83 67.92
sv-SE 87.22 79.31 69.24 87.69 81.84 71.05
sw-KE 84.50 70.15 61.23 87.69 76.28 66.71
ta-IN 84.70 72.92 63.45 87.59 77.39 66.68
te-IN 84.67 73.03 63.48 87.63 77.45 67.28
th-TH 84.80 85.11 71.49 87.66 87.05 75.42
tl-PH 85.44 73.28 63.42 87.76 79.80 68.90
tr-TR 86.35 75.47 66.14 87.69 78.94 68.76

ug-UG 80.23 70.31 58.64 87.63 76.98 66.64
ur-PK 83.29 69.47 60.36 87.66 76.13 66.41
vi-VN 86.08 71.32 63.45 87.66 76.34 66.91
zh-CN 85.17 69.58 61.13 87.69 78.34 68.83
zh-TW 83.46 67.52 58.14 87.63 76.44 66.61

All 85.26 74.36 64.19 87.65 79.17 68.73

Table 8: Details of the mT5 experimental results (/%).
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CINO CINO+INT(Ours)
Language Intent Acc Slot F1 Overall Acc Intent Acc Slot F1 Overall Acc

af-ZA 86.85 75.08 66.54 87.73 80.76 69.70
am-ET 84.06 71.20 61.70 87.79 78.63 67.79
ar-SA 81.74 73.23 61.63 87.76 80.10 69.67
az-AZ 86.48 74.56 65.50 87.73 80.31 68.93
bn-BD 85.64 73.65 64.19 87.79 79.82 69.13
cy-GB 85.24 72.62 63.52 87.76 80.23 69.64
da-DK 87.12 76.90 67.52 87.76 81.36 70.11
de-DE 85.84 74.73 65.70 87.76 81.16 70.38
el-GR 86.42 72.25 64.32 87.79 80.11 69.57
en-US 88.26 77.91 69.17 87.73 81.89 71.08
es-ES 86.79 69.69 62.24 87.73 77.92 67.35
fa-IR 87.19 74.78 66.27 87.79 80.24 69.23
fi-FI 85.81 76.55 67.05 87.76 81.32 70.51
fr-FR 87.46 70.90 63.52 87.73 78.75 68.22
he-IL 85.21 73.16 62.98 87.76 79.76 68.93
hi-IN 86.11 70.45 62.37 87.73 78.93 68.43

hu-HU 86.25 75.27 65.57 87.76 79.96 69.60
hy-AM 85.74 73.22 64.26 87.73 80.04 68.93
id-ID 87.29 72.86 65.77 87.73 78.83 68.83
is-IS 86.18 74.50 64.49 87.76 80.97 69.74
it-IT 86.68 71.59 63.42 87.79 79.33 68.73
ja-JP 84.87 65.68 58.41 87.79 81.61 73.47
jv-ID 85.61 74.28 64.32 87.76 80.41 69.44
ka-GE 82.21 74.83 63.21 87.76 82.39 71.28
km-KH 79.59 80.97 64.93 87.79 84.63 72.73
kn-IN 85.34 69.18 60.89 87.76 76.48 66.24
ko-KR 87.02 77.01 67.15 87.73 82.02 70.61
lv-LV 86.38 75.10 65.50 87.76 81.32 70.01
ml-IN 86.25 74.32 65.53 87.73 80.41 69.37

mn-MN 86.11 72.82 64.83 87.73 79.08 68.29
ms-MY 86.08 74.70 66.04 87.73 81.53 70.38
my-MM 85.07 80.64 68.26 87.79 85.16 72.97
nb-NO 87.39 75.34 65.90 87.76 81.81 70.71
nl-NL 87.49 73.41 65.06 87.79 79.31 69.10
pl-PL 87.36 68.82 62.10 87.76 75.76 66.11
pt-PT 87.19 72.48 64.83 87.76 79.80 69.44
ro-RO 87.59 73.17 64.83 87.76 79.62 69.57
ru-RU 87.19 74.58 65.77 87.76 80.51 69.70
sl-SL 86.42 72.37 64.49 87.76 80.35 69.50
sq-AL 87.16 72.07 64.43 87.83 79.22 68.70
sv-SE 87.63 77.56 68.49 87.76 82.20 71.22
sw-KE 85.04 70.47 61.26 87.76 78.63 68.76
ta-IN 84.80 70.15 61.33 87.76 78.19 67.72
te-IN 85.91 71.43 62.74 87.76 77.86 67.11
th-TH 84.97 84.46 71.32 87.73 86.53 74.58
tl-PH 85.41 72.13 62.91 87.76 80.88 69.97
tr-TR 86.62 73.88 65.30 87.76 79.48 68.86

ug-UG 83.56 71.73 62.41 87.79 79.58 68.80
ur-PK 85.44 69.20 61.57 87.79 78.04 67.92
vi-VN 87.02 70.46 63.21 87.79 78.15 68.53
zh-CN 84.94 68.53 60.49 87.76 80.77 70.65
zh-TW 83.12 67.26 57.63 87.79 78.61 68.36

All 85.87 73.31 64.29 87.76 80.21 69.51

Table 9: Details of the CINO experimental results (/%).
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XLM-R XLM-R+INT(Ours)
Language Intent Acc Slot F1 Overall Acc Intent Acc Slot F1 Overall Acc

af-ZA 86.45 73.89 64.86 88.23 80.93 70.61
am-ET 82.55 72.18 61.30 88.13 79.42 69.36
ar-SA 81.14 73.38 61.77 88.26 81.30 71.02
az-AZ 86.42 74.39 65.30 88.26 81.14 70.65
bn-BD 85.21 73.49 63.69 88.13 80.49 70.68
cy-GB 84.80 72.76 63.18 88.23 80.55 70.34
da-DK 87.12 76.89 67.92 88.20 81.78 71.52
de-DE 85.61 75.38 66.04 88.19 81.88 71.75
el-GR 85.98 73.11 64.49 88.33 80.09 70.34
en-US 87.96 77.96 69.57 88.13 82.58 72.29
es-ES 86.15 71.16 62.81 88.13 79.21 69.03
fa-IR 86.65 76.49 67.01 88.23 81.96 71.18
fi-FI 86.21 76.66 66.71 88.06 82.54 71.92
fr-FR 86.15 71.65 62.68 88.23 78.60 68.66
he-IL 85.27 72.69 63.35 88.06 80.88 70.67
hi-IN 85.98 71.96 63.15 88.13 78.22 68.66

hu-HU 86.01 76.17 66.01 88.06 81.52 71.22
hy-AM 84.94 73.43 63.99 88.10 79.41 69.70
id-ID 86.89 73.29 65.27 88.19 80.28 70.37
is-IS 85.34 75.72 65.10 88.10 81.75 71.25
it-IT 86.08 72.08 63.42 88.16 79.93 69.37
ja-JP 84.36 65.40 57.60 88.30 81.38 73.57
jv-ID 84.20 74.82 64.06 88.19 80.61 70.38
ka-GE 81.30 75.86 62.58 88.30 82.23 71.92
km-KH 78.11 80.06 62.68 88.23 85.87 74.21
kn-IN 84.57 69.61 60.86 88.16 76.06 66.64
ko-KR 86.45 76.87 67.08 88.13 82.52 71.99
lv-LV 85.61 75.37 65.40 88.30 81.91 71.49
ml-IN 85.94 73.80 65.00 88.26 80.89 70.78

mn-MN 85.27 73.86 64.56 88.20 79.73 69.27
ms-MY 86.48 74.41 65.57 88.26 81.56 71.22
my-MM 84.90 80.70 68.12 88.30 86.36 74.65
nb-NO 86.79 76.92 66.91 88.23 81.97 71.72
nl-NL 87.32 74.44 65.80 88.18 79.90 70.75
pl-PL 86.58 69.59 62.14 88.16 76.32 67.55
pt-PT 86.72 73.47 64.63 88.23 80.46 70.48
ro-RO 86.95 72.83 65.13 88.23 80.56 70.68
ru-RU 86.28 74.81 65.23 88.26 80.93 70.68
sl-SL 85.84 71.61 63.79 88.20 79.85 70.10
sq-AL 85.98 71.68 63.08 88.30 79.96 70.37
sv-SE 87.53 77.93 68.76 88.16 82.92 72.19
sw-KE 82.65 70.10 59.65 88.37 79.55 69.80
ta-IN 83.73 71.23 61.63 88.26 78.58 68.52
te-IN 84.70 70.87 62.10 88.26 78.54 68.83
th-TH 85.00 84.22 71.22 88.13 87.63 75.89
tl-PH 85.10 72.32 62.84 88.23 81.12 71.01
tr-TR 86.42 74.52 65.00 88.26 80.40 70.58

ug-UG 82.35 71.25 61.10 88.23 80.48 70.47
ur-PK 84.33 69.10 60.86 88.33 77.96 68.59
vi-VN 86.89 71.27 63.32 88.26 79.27 69.50
zh-CN 84.70 69.64 60.12 88.26 80.88 71.05
zh-TW 82.99 68.57 58.81 88.26 78.90 68.76

All 85.29 73.66 64.10 88.21 80.75 70.65

Table 10: Details of the XLM-R experimental results (/%).
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[

  {

    "role": "system",

    "content": "You are an expert in multilingual spoken language understanding. Please predict the intent and slots of the 

utterance. Possible intent labels are: {'lists_query', 'social_post', 'calendar_remove', 'qa_definition', 'play_podcasts', 

'iot_hue_lighton', 'qa_factoid', 'play_audiobook', 'takeaway_order', 'news_query', 'play_music', 'iot_wemo_off', 

'takeaway_query', 'music_settings', 'calendar_query', 'play_radio', 'audio_volume_down', 'play_game', 'iot_hue_lightoff', 

'lists_createoradd', 'weather_query', 'datetime_convert', 'social_query', 'music_query', 'audio_volume_up', 'general_joke', 

'music_dislikeness', 'recommendation_events', 'alarm_remove', 'transport_ticket', 'email_query', 'qa_maths', 'iot_hue_lightdim', 

'lists_remove', 'transport_query', 'general_quirky', 'calendar_set', 'transport_taxi', 'iot_coffee', 'audio_volume_mute', 

'iot_hue_lightchange', 'qa_currency', 'cooking_recipe', 'cooking_query', 'recommendation_locations', 'email_addcontact', 

'email_sendemail', 'qa_stock', 'general_greet', 'email_querycontact', 'recommendation_movies', 'datetime_query', 

'transport_traffic', 'music_likeness', 'iot_hue_lightup', 'iot_cleaning', 'audio_volume_other', 'alarm_query', 'iot_wemo_on', 

'alarm_set'}, and possible slot labels are: {'timeofday', 'meal_type', 'general_frequency', 'music_album', 'app_name', 

'news_topic', 'game_name', 'game_type', 'order_type', 'podcast_descriptor', 'email_address', 'playlist_name', 'currency_name', 

'time', 'list_name', 'artist_name', 'relation', 'business_type', 'movie_name', 'house_place', 'email_folder', 'time_zone', 

'sport_type', 'podcast_name', 'music_descriptor', 'food_type', 'player_setting', 'device_type', 'O', 'date', 'coffee_type', 

'alarm_type', 'transport_type', 'song_name', 'movie_type', 'personal_info', 'radio_name', 'ingredient', 'business_name', 

'joke_type', 'person', 'color_type', 'event_name', 'music_genre', 'cooking_type', 'definition_word', 'audiobook_author', 

'transport_name', 'transport_descriptor', 'weather_descriptor', 'place_name', 'change_amount', 'transport_agency', 

'media_type', 'audiobook_name', 'drink_type'}. Both the intent and slots should be selected from the candidate set."

  },

  {

    "role": "user",

    "content": "Please tell me what is the time in San Francisco."

  },

  {

    "role": "user",

    "content": "The intent and slots are separated by a '；', and the slots are in the format {slot: entity}, with slots separated by 

'，'."

  }

]

Figure 8: Prompt template.
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Slot F1
Label XLM-R INT(Ours)

alarm_type 57.26 60.71
app_name 42.86 50.60

artist_name 73.47 81.66
audiobook_author 46.12 28.96
audiobook_name 62.05 63.95
business_name 74.06 82.15
business_type 58.89 73.17

change_amount 64.41 68.25
coffee_type 64.90 79.49
color_type 77.92 82.96

cooking_type 60.41 72.62
currency_name 88.36 90.34

date 84.74 89.57
definition_word 81.23 89.60

device_type 79.18 80.94
drink_type 03.85 0.00

email_address 89.09 67.23
email_folder 74.69 93.75
event_name 66.90 79.16
food_type 68.37 78.21

game_name 74.16 77.03
general_frequency 71.29 78.70

house_place 82.68 83.01
ingredient 07.11 14.33
joke_type 87.90 87.83
list_name 72.69 77.53
meal_type 68.81 81.38

media_type 77.35 83.65
movie_name 25.10 48.59
movie_type 35.76 60.00

music_descriptor 22.61 21.78
music_genre 69.48 74.54
news_topic 54.80 65.01
order_type 59.39 67.12

person 82.37 87.79
personal_info 61.52 59.23
place_name 78.66 85.13

player_setting 47.71 53.64
playlist_name 27.69 32.28

podcast_descriptor 43.85 57.40
podcast_name 54.07 54.88

radio_name 51.87 63.18
relation 78.40 83.06

song_name 63.78 70.15
time 64.63 73.13

time_zone 67.25 79.40
timeofday 73.78 86.55

transport_agency 79.66 89.56
transport_descriptor 46.88 40.83

transport_name 61.20 67.31
transport_type 89.52 91.51

weather_descriptor 72.34 75.97

Table 11: Comparison of F1-score for different slot
labels by category (/%).

Intent Acc
Label XLM-R INT(Ours)

alarm_query 91.12 91.18
alarm_remove 96.79 100.00

alarm_set 91.42 97.56
audio_volume_down 94.06 100.00
audio_volume_mute 88.94 93.75
audio_volume_other 46.15 49.99

audio_volume_up 82.84 92.31
calendar_query 81.03 87.30

calendar_remove 92.80 98.51
calendar_set 89.02 93.03

cooking_recipe 86.49 88.81
datetime_convert 72.31 66.67
datetime_query 94.54 97.73

email_addcontact 85.46 83.33
email_query 92.79 94.86

email_querycontact 80.70 92.01
email_sendemail 93.27 94.85

general_greet 59.62 100.00
general_joke 91.60 89.47

general_quirky 47.60 51.10
iot_cleaning 93.34 88.46
iot_coffee 96.31 100.00

iot_hue_lightchange 89.53 91.72
iot_hue_lightdim 91.03 100.00
iot_hue_lightoff 90.79 90.88
iot_hue_lighton 55.13 66.66
iot_hue_lightup 86.11 88.53
iot_wemo_off 87.39 89.74
iot_wemo_on 81.53 89.62

lists_createoradd 84.37 87.82
lists_query 86.27 86.27

lists_remove 85.17 90.79
music_dislikeness 69.23 75.00

music_likeness 79.97 86.11
music_query 80.99 85.49

music_settings 34.94 16.66
news_query 85.19 89.61

play_audiobook 80.53 80.49
play_game 84.18 87.53
play_music 86.42 87.51

play_podcasts 90.93 89.96
play_radio 90.25 93.06

qa_currency 97.49 100.00
qa_definition 84.89 84.24

qa_factoid 81.42 78.72
qa_maths 95.69 88.00
qa_stock 94.53 93.34

recommendation_events 73.97 80.64
recommendation_locations 93.80 100.00
recommendation_movies 79.42 84.81

social_post 89.17 93.68
social_query 80.23 80.00

takeaway_order 83.39 95.45
takeaway_query 86.65 85.71
transport_query 74.89 84.31
transport_taxi 94.06 100.00

transport_ticket 90.55 97.14
transport_traffic 96.15 100.00
weather_query 93.00 96.79

Table 12: Comparison of accuracy for different intent
labels by category (/%).
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Model Time
XLM-R × 1.00

XLM-R+INT(Ours) × 1.82
GLM-4 × 55.49

Table 13: Comparison of decoding time results. We
record the average decoding time per test utterance for
each model on MASSIVE52. To ensure fairness, the
experiments are conducted on a single A6000 GPU with
a batch size set to 1.
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