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Abstract

Large Language Models (LLMs) have demon-
strated notable capabilities across various tasks,
showcasing complex problem-solving abilities.
Understanding and executing complex rules,
along with multi-step planning, are fundamen-
tal to logical reasoning and critical for practi-
cal LLM agents and decision-making systems.
However, evaluating LLMs as effective rule-
based executors and planners remains under-
explored. In this paper, we introduce LOG-
ICGAME, a novel benchmark designed to eval-
uate the comprehensive rule understanding, ex-
ecution, and planning capabilities of LLMs.
Unlike traditional benchmarks, LOGICGAME
provides diverse games that contain a series
of rules with an initial state, requiring models
to comprehend and apply predefined regula-
tions to solve problems. We create simulated
scenarios in which models execute or plan op-
erations to achieve specific outcomes. These
game scenarios are specifically designed to dis-
tinguish logical reasoning from mere knowl-
edge by relying exclusively on predefined rules.
This separation allows for a pure assessment of
rule-based reasoning capabilities. The evalua-
tion considers not only final outcomes but also
intermediate steps, providing a comprehensive
assessment of model performance. Moreover,
these intermediate steps are deterministic and
can be automatically verified. LOGICGAME
defines game scenarios with varying difficulty
levels, from simple rule applications to com-
plex reasoning chains, in order to offer a precise
evaluation of model performance on rule un-
derstanding and multi-step execution. Utilizing
LoOGICGAME, we test various LLMs and iden-
tify notable shortcomings in their rule-based
logical reasoning abilities.
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Figure 1: Evaluation results of LOGICGAME across
various models in execution and planning categories.
The performance is arithmetic mean of LOGICGAME’s
Chinese and English version. Most models struggle
on LOGICGAME getting less than 12% scores in both
categories. Two top-performing models highlighted
with pink stars stand out.

1 Introduction

Large Language Models (LLMs) have shown no-
table abilities in a wide range of tasks and even
complex problem-solving (Brown et al., 2020;
Zeng et al., 2022; Chowdhery et al., 2023; GLM
et al., 2024). Their ability to reason, encompass-
ing the understanding of intricate scenarios, strate-
gic planning, and multi-step execution, is crucial
for developing advanced Al agents and decision-
making systems (Liu et al., 2023; Sumers et al.,
2023; Cheng et al., 2024). These capabilities al-
low LLMs to understand complex user instructions,
make logical decisions, and execute tasks accu-
rately.

As alignment becomes integral to the application
of LLMs (OpenAl, 2022; Anthropic, 2023; Ouyang
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et al., 2022; Cheng et al., 2023) , the primary goal
is to align with human intentions and accurately
execute their instructions. Simultaneously, these
models must possess strong reasoning abilities to
handle complicated scenarios. However, evaluat-
ing LLMs as effective rule-based executors and
planners remains underexplored. Traditional bench-
marks usually focus solely on instruction-following
or logical reasoning, neglecting the combination
of both. Thus, they fail to comprehensively assess
the model’s reasoning capabilities after elaborate
alignment.

In this paper, we introduce LOGICGAME, a
novel benchmark crafted to evaluate the compre-
hensive rule understanding, planning, and execu-
tion capabilities of LLMs. LOGICGAME offers
a set of carefully designed rule-based reasoning
games. Each game contains a series of rules the
model must follow to find the solution involving
single or multiple steps. During the data construc-
tion process, we ensure that all the problems re-
main unavailable on the Internet to prevent data
leakage. LOGICGAME covers two main scenar-
ios: execution and planning, each divided into sev-
eral sub-categories. Execution problems include
tasks related to string data manipulation, where
models handle string data transformations, as well
as arithmetic operations and manipulations, focus-
ing on mathematical computations and sequential
execution. Planning games encompass math puz-
zles, which require solving complex mathematical
problems, and pure logic puzzles, involving ab-
stract reasoning without numerical computation.
Through these varied games, LOGICGAME aims to
comprehensively evaluate the rule-based reasoning
capabilities in LLMs. !

In LOGICGAME, our goal is to evaluate how
well LLMs can reason according to given rules, so
we ensure that no additional knowledge is required.
The final answer and the process in these scenar-
ios rely solely on the given rules, fostering a pure
assessment of the models’ rule-based reasoning
capabilities. Moreover, the evaluation process in
LoGICGAME involves not only the final answers
but also the intermediate steps taken by the models,
in order to offer a holistic view of the models’ per-
formance. Furthermore, process evaluation enables

'We have released the dev set and the whole set
of the LOGICGAME, and created a leaderboard on
https://github.com/Hypatiaalegra/LogicGame-Data. You can
refer to https://www.codabench.org/competitions/4140/ for a
fair and fast evaluation of the LOGICGAME.

us to determine whether the model faithfully rea-
sons based on established rules rather than merely
guessing answers. In addition, these intermediate
steps are deterministic and can be automatically
verified. To thoroughly assess the rule compre-
hension and multi-step execution capabilities of
various LLMs, LOGICGAME presents problems
with multiple difficulty levels. We determine the
complexity of each problem by the number of rea-
soning steps involved. Simple games may require
only single-step reasoning, while more challenging
game scenarios require multiple reasoning steps,
reflecting the need for deeper understanding and
more sophisticated reasoning.

By leveraging LOGICGAME, we have conducted
extensive experiments across a wide range of
LLMs, including api-based models like GPT and
GLM families, as well as open-source models such
as Qwen and Llama families. Our findings indicate
that while LLMs showcase good performance in a
variety of tasks, they still exhibit notable shortcom-
ings in rule-based logical reasoning. As illustrated
in Figure 1, even the top-performing LLMs achieve
around 50% accuracy, with most models scoring
less than 12% in both execution and planning cat-
egories. Additionally, they struggle significantly
with complex reasoning tasks, achieving less than
10% on the most challenging level 3 tasks. Addi-
tionally, while few-shot demonstrations can help
with execution tasks, they may damage the perfor-
mance of planning tasks.

Our contributions can be summarized as follows:

¢ We introduce LOGICGAME, a novel bench-
mark for rule-based reasoning, including exe-
cution and planning tasks, with varying diffi-
culty levels.

* We design an automated assessment process
for LOGICGAME, which not only checks the
final answers but also analyzes the solution
process to comprehensively evaluate LLMs’
reasoning abilities.

* We conduct extensive experiments on LOG-
ICGAME across a wide range of LLMs, effec-
tively exposing their deficiencies in rule-based
reasoning with the best about 25% overall ac-
curacy.

2 Related Work

The capability to reason has long been a crucial
aspect of language models. Research (Wei et al.,
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Evaluation

Benchmark Exemplars Difficulty levels Data Source
Process Verifiable Determinism

CLUTRR (Sinha et al., 2019) X X X X X semi-synthetic

GSMSK (Cobbe et al., 2021) X X X human-annotated
PRONTOQA (Saparov and He, 2022) X X X synthetic

FOLIO (Han et al., 2022) X X X human-annotated
BIG-Bench Hard (Suzgun et al., 2022) X X X X human-annotated
STRATEGYQA (Geva et al., 2021) X X X X X human-annotated

PlanBench (Valmeekam et al., 2024a) X X semi-synthetic

Ours

human-annotated

Table 1: Compare LOGICGAME with other logical reasoning benchmarks. BIG-Bench Hard comparison limited
to algorithmic part for relevance. Process: Benchmark contains process verification or not. Verifiable: Each step
in process verifiable or not. Determinism: Each step in process determined or not. Verifiability and determinism
guarantee automated evaluation of process. Exemplars: Examples provided or not.

2022a) has demonstrated that as the size of models
increases, their ability to reason emerges, making
it a fundamental attribute of LLMs. To elicit this
reasoning ability, techniques like chain-of-thought
prompting (Wei et al., 2022b) and specialized train-
ing (Mukherjee et al., 2023) have become widely
adopted. Multi-step reasoning, in particular, is es-
sential for complex decision-making and planning
tasks, such as those undertaken by LLM agents
(Liu et al., 2023).

Numerous benchmarks have been established
over time to rigorously evaluate the reasoning ca-
pabilities of neural network models. Early research
has concentrated on logical reasoning (Bowman,
2013; Clark et al., 2020; Yu et al., 2020). These
studies cover various forms of logic, including in-
ductive, deductive, and abductive reasoning, and
aim to assess whether models can infer answers
based on given conditions. Mathematical reasoning
represents another critical area (Hendrycks et al.,
2021; Mishra et al., 2022a). Benchmarks in this
domain range in difficulty from grade school prob-
lems (Cobbe et al., 2021) to Olympiad-level chal-
lenges (Huang et al., 2024) and encompass a variety
of formats, from word problems to theory proving
(Li et al., 2021; Lample and Charton, 2019). These
problems often demand not just reasoning but
also robust calculation abilities. Knowledge-based
reasoning, particularly commonsense reasoning
(Mishra et al., 2022b; Onoe et al., 2021), is another
pivotal focus. These benchmarks are designed to
determine whether models possess commonsense
knowledge and can leverage it to reason effectively.
Advancing further, theory-of-mind reasoning (He
et al., 2023) examines whether models can under-

stand and incorporate complex layers of human
cognition, such as thoughts and beliefs. Plan-based
benchmark such as PlanBench(Valmeekam et al.,
2024a,b) specifically addresses the planning capa-
bilities of different models. This specificity pro-
vides a stringent assessment of a model’s planning
abilities, although it may not capture a broader
range of reasoning processes.

LLMs have undergone extensive alignment, with
a key focus on following human instructions. How-
ever, reasoning with the capability of instruction-
following remains underexplored. Thus, we pro-
pose LOGICGAME, a benchmark designed to as-
sess rule-based reasoning, which is a natural in-
tegration of logical reasoning with instruction-
following capabilities. We compare LOGICGAME
with each benchmark in Table 1.

3 LOGICGAME

3.1 Data Construction
3.1.1 Problem Collection and Design

Collection and extraction of rule-based logical
tasks. The integration of rule-following and rea-
soning is a critical aspect of numerous tasks, yet
existing benchmarks often fail to adequately cap-
ture this complexity. To address this gap, we de-
veloped a novel set of problems through extensive
research and crowdsourcing. We observed that
these tasks share similarities with game mechanics,
as they often require adherence to specific rules
and decision-making. This insight led us to adopt a
gamification approach, which facilitates a nuanced
evaluation of models’ rule-following and reasoning
capabilities.

The top part of Figure 2 shows our categories.
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Figure 2: Illustration of taxonomy and evaluation protocol in LOGICGAME. Taxonomy illustration highlights
categories involving mathematics in purple. Json format constrain in evaluation is ommitted due to space limitations

and can be referred to Appendix A.

The dataset is structured into two primary domains:
Execution and Planning.

Execution domain. In the context of our bench-
mark, execution refers to a reasoning process char-
acterized by deterministic, single-step inferences.
Here, models must apply well-defined rules to ma-
nipulate strings or states, with each step yielding a
predictable outcome based on the current state and
the applied rule. These tasks often require models
to execute the correct action from given informa-
tion, simulating practical scenarios where explicit
instructions are given.

Planning domain. The planning domain in our
benchmark represents a higher level of complexity,
involving long-term strategic thinking and multi-
step decision making within rule-governed envi-
ronments. Unlike traditional "planning" tasks, our
planning tasks are atomic and distinct from exe-
cution tasks characterized by deterministic, single-
step inferences. For example, in a problem like Su-
doku, models must consider the interplay of num-
bers across rows, columns, and grids simultane-
ously to determine the next move. This move is not
predetermined and must be logically inferred. A
key feature of tasks in the planning domain is the re-
quirement to use logic and elimination to progress
towards a solution. Our focus in this domain is on
identifying the correct solution path, rather than op-

timizing for efficiency, reflecting scenarios where
finding any valid solution is the primary goal.

Rule-based problem design and quality control.
Following the establishment of our categories, a
team of expert human annotators developed prob-
lems for each category with a focus on novelty and
challenging out-of-domain reasoning, which makes
it harder to overfit. To mitigate potential seman-
tic ambiguities associated with natural language
reasoning (Fedorenko et al., 2024), we minimized
reliance on natural language constructs. Our prob-
lems are designed such that the reasoning process
does not necessitate natural language inference, al-
lowing for a more direct evaluation of reasoning
abilities.

In the execution domain, we ensured that ev-
ery step is deterministic and verifiable, facilitat-
ing precise evaluation and preventing models from
resorting to guesswork. For the inherently less
deterministic planning problems, we introduced in-
termediate checkpoints or state variables where ap-
propriate, allowing for a more granular assessment
of the problem-solving process. Detailed specifica-
tions of these evaluation methods will be provided
in Section 3.2.

3.1.2 Output Constraint Design

To facilitate precise evaluation and streamline the
matching process, we mandated a structured JSON
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Execution Planning
Model Overall
Level 0 Levell Level2 Level3 Level 0 Levell Level2 Level3 | Avg.

ol-preview 71.11 57.78 48.89 51.11 57.22 | 70.97 54.84 41.94 22.58 47.58 | 53.29
ol-mini 73.33 46.67 44.44 46.67 52.78 | 70.97 48.39 38.71 22.58 45.16 | 49.67
claude-3-5-sonnet | 46.67 40.00 33.33 13.33 33.33 | 64.52 16.13 6.45 6.45 23.39 | 29.28
gpt-do 57.78 37.78 31.11 13.33 35.00 | 48.39 19.35 3.23 3.23 18.55 | 28.29
gpt-4-turbo-0409 | 42.22 20.00 17.78 8.89 22.22 | 51.61 12.90 9.68 3.23 19.36 | 21.05
glm-4-plus 31.11 15.56 17.78 6.67 17.78 | 48.39 9.68 9.68 3.23 17.75 | 17.76
qwen2-72b 28.89 4.44 0.00 0.00 833 | 22.58 6.45 6.45 3.23 9.68 | 8.83
glm-4-9b 2222 6.67 222 2.22 8.33 | 22.58 6.45 0.00 0.00 726 | 7.89

internlm2-5-7b 2222 4.44 4.44 0.00
claude-3-haiku 8.89 8.89 0.00 0.00

llama-3-70b 8.89 8.89 8.89 0.00
mistral-7b 22.22 0.00 0.00 0.00
qwen2-7b 4.44 222 0.00 0.00
llama-3-8b 0.00 0.00 0.00 0.00

7.78 | 12.90 3.23 0.00 0.00 403 | 6.25
445 | 22.58 0.00 0.00 0.00 5.65 | 4.93
6.67 | 3.23 3.23 0.00 0.00 1.62 | 4.61
5.56 | 9.68 0.00 0.00 0.00 242 | 4.28
1.67 | 6.45 0.00 0.00 0.00 1.61 1.64
0.00 | 0.00 0.00 0.00 0.00 0.00 | 0.00

Table 2: Performance of 14 models on LOGICGAME of en version. The highest performance is bold.

output format for model responses. Our evalua-
tion criteria are tailored to the complexity of each
problem. For single-step problems categorized as
Level 0, models are only required to output the
final answer, and evaluation is based solely on the
correctness of this answer. However, for problems
involving multiple steps or more complex reason-
ing, which include Levels 1, 2, 3, and certain Level
0 problems, we evaluate both the answer and the
process.

In both cases, the output JSON structure includes
answer’, which is a list of strings representing the
final solution(s), and for second cases the output
also includes "process’, a list of strings detailing
each step of the problem-solving process. The de-
tails of JSON constraints can be found in Appendix
A.

3.1.3 Difficulty Levels and Exemplars

To comprehensively assess models’ reasoning ca-
pabilities, we have structured our benchmark with
four distinct difficulty levels (0, 1, 2, and 3) for
each task. The difficulty gradient is determined
by two key factors: the complexity of the rules in-
volved and the number of reasoning steps required
to arrive at the solution. Each successive level sys-
tematically introduces additional rules and reason-
ing steps. In general, our problems are difficult for
models, and some are also challenging for humans.

Furthermore, to evaluate models’ capacity for
rule acquisition and application, we have developed
two distinct exemplars for each question. These
exemplars consist of a given question, the correct

answer, a step-by-step solution process, and de-
tailed explanations. By providing these examples,
we aim to test not only the models’ baseline perfor-
mance but also their ability to learn from demon-
strations and apply newly acquired rules to similar
problems.

3.1.4 Building Bilingual Benchmark

We developed a comprehensive bilingual bench-
mark containing both zA (Chinese) and en (English)
versions, with questions in both languages corre-
sponding directly to each other. This approach en-
sures fairness and broad applicability, allowing our
benchmark to more accurately reflect the capabili-
ties of language models across different linguistic
backgrounds. The benchmark comprises 304 total
items for each language version equally distributed
across four difficulty levels (0-3). Each language
version containing exactly 76 items per difficulty
levels, ensuring balanced representation across all
complexity categories.

3.2 Evaluation Protocol

Each model is prompted with a set of rules specific
to the given problem, along with a corresponding
question and a JSON format constraint for the out-
put, encompassing both the answer and the process,
as illustrated in Figure 2. For few-shot trials, ex-
ample(s) are inserted between the rules and the
question to assess the model’s in-context learning
capabilities. The model responses are then col-
lected and subjected to automated evaluation. As
previously mentioned, the evaluation protocol is de-
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signed to assess not only the correctness of the an-
swer but also the correctness of the process that led
to the answer. Scoring for each problem’s answer
is determined by comparing the model’s response
to the reference answer. Similarly, scoring for each
problem’s process, as defined by the JSON format
constraint, is achieved by assessing the degree of
alignment between the model’s process and the
reference process. Specifically, the LOGICGAME
defines three metrics related to each problem for
scoring:

¢ Answer Accuracy(A-Acc): This metric eval-
uates the correctness of the answers for all
given questions. It provides an exact match
for each answer to indicate whether it is cor-
rect. An answer receives a score of 1 if it
completely matches the reference answer; oth-
erwise, it scores 0.

e Process Accuracy(P-Acc): This metric as-
sesses the correctness of the process, measur-
ing the percentage match based on character-
level similarity between the provided process
and the expected process. We employ a left-to-
right matching approach, given the sequential
nature of the reasoning chain that progresses
uni-directionally from premise to conclusion.
This ensures that each step in the process is
evaluated in its correct order. In rare cases
where no process is provided in level O ques-
tions (single-step reasoning), process accu-
racy is equated to answer accuracy. This ap-
proach ensures that all problems have process
scores, facilitating fair and consistent calcula-
tion across all problems.

* Answer Process Accuracy(AP-Acc): This
composite metric evaluates the overall accu-
racy of both the answer and the process. It
involves an aggregate score derived by com-
bining Answer Accuracy and Process Ac-
curacy using a logical AND operation. The
AP-Acc receives a score of 1 only when both
the answer and the process are exactly correct;
otherwise, it scores 0. This reflects that a ques-
tion is considered correctly solved only when
both the reasoning and the resulting answer
are accurate.

4 Experiments

4.1 Experimental Setup

We evaluate 14 popular LLMs. Closed-source
models included versions from Claude (Anthropic,
2023) and GPT (OpenAl, 2023) series. Open-
source models encompassed LL.aMA 3 (Touvron
et al., 2023), Qwen (Bai et al., 2023), GLM (GLM
et al., 2024), Mistral (Jiang et al., 2023), and In-
ternLM (Team, 2023) variants. In the inference
stage, we set temperature to 0, ensuring determin-
istic outputs. The maximum token number is set
to 2048. Other parameters are set as their default
values.

4.2 Main Results and Analysis

Table 2 presents the performance of 14 LLMs on
the English version of LOGICGAME, measured by
AP-Acc. The ol-preview model leads with 53.29%
overall accuracy for, closely followed by o1-mini.
These results underscore the persistent challenge of
reasoning for LLMs, as even top performers barely
exceed 50% accuracy. The substantial performance
gap, ranging from over 50% to below 5%, not only
highlights the varying capabilities of current LLMs
in complex reasoning tasks, but also emphasizes
that despite recent advancements, logical reasoning
remains a significant hurdle for most language mod-
els. The performance on the Chinese version of the
dataset, as shown in Appendix C, demonstrates a
relatively similar trend.

The performance drop from Level O to Level 3
is not uniform across models. Some models (e.g.
ol-mini) show a more gradual decline, while others
drop off sharply after Level 1. This may suggest
that some models have better consistency across
task complexities.

Interestingly, the performance of models in Ex-
ecution and Planning tasks varies. Some top-
performing models, such as ol-preview, demon-
strates superior performance in Execution com-
pared to Planning. Conversely, llama-3-70b-chat
excels in Planning over Execution. Even within
model families, the relative performance differ-
ences are evident. In the GPT family, gpt-4-turbo-
0409 outperforms gpt-4o in Planning tasks, while
gpt-40 shows better performance in Execution
tasks.

During the evaluation, it was observed that some
models occasionally failed to adhere to the require-
ment of producing JSON format output. Detailed
results and analysis are provided in Appendix B.
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Figure 4: Few-shot differences on difficulty levels of LOGICGAME’s en version with shot difference settings similar
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levelwhile negative values indicate a decrease.

Despite this, the overall error rates are low across
most models, resulting in minimal differences in
rankings among those with similar performance.

4.3 Few-shot Results

We conducted experiments to analyze the change
of model’s performance on 0-shot, 1-shot and 2-
shot settings. And models of gpt-40, qwen2-72b-
instruct and qwen2-7b-instruct, llama-3-70b-chat
and llama-3-8b-chat, glm-4-9b, mistral-7b-instruct
and internlm-2.5-7b-chat are chosen for this trial.
The analysis demonstrated in Figure 3 and Figure 4
reveals mixed results of LOGICGAME’s en version
in the "Planning" and "Execution" categories, dif-
ficulty levels across the various shot settings. Ap-
pendix E shows the results of LOGICGAME’s zh
version.

In the "Execution" category, models demonstrate
notable improvements in accuracy with increased
shot contexts demonstrated in Figure 3. Specifi-

n the models’ average performance at a certain difficulty

cally, stronger models (as indicated in Table 4 and
Table 2) like gpt-40, llama3-70b-instruct shows a
greater increase in the AP-Acc score when transi-
tioning from 0-shot to 1-shot and 2-shot settings
than weaker ones, indicating enhanced execution
accuracy with more contextual information. How-
ever, the effects of 1-shot and 2-shot settings vary
across models. Performance variations by diffi-
culty levels, as shown in Figure 4, indicate that
models benefit most from 1-shot and 2-shot con-
texts at Level 0. And in general, the influence of
shot contexts diminishes as the difficulty level
increases. This consistency suggests that simpler
tasks (Level 0) allow models to leverage additional
context more effectively, enhancing their execution
capabilities across the board.

Conversely, the "Planning" category presents
more heterogeneous results. Models often show
declines in performance when moving from 0-
shot to 1-shot or 2-shot settings demonstrated in
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. Grid: n x n grid (where # is an even number)

Case Study of Reversi Game

________________________________________________________________________________________________________________

. Gameplay: Two players take turns(Black:0, White:1); Place one piece on an empty cell (*); If a line (horizontal/vertical/diagonal) encloses opponent’s

4 .

! Question: * ok ok

! 1. n=4; You are Black(0) * 10 *

! 2. Initial Board: Demonstration is shown on the right L

! 3. Current Move: You placed 0 at (3,4) in first move; Opponent placed 1 at (4,2) at second move. Determine the board state after the current move. * * * *
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Figure 5: An example of a Reversi game with model outputs, including the answer and process, is shown. The
board states for initial, reference, and model outputs are visualized with errors highlighted in red. JSON constraints

are omitted due to space, referenced in Figure 6.

Figure 3. These results suggest that while addi-
tional context can enhance performance for some
models, it can introduce noise for others, poten-
tially obfuscating key elements necessary for plan-
ning tasks. Furthermore, Figure 4 illustrates that
the negative impact of both 1-shot and 2-shot
contexts are most pronounced at Level 1. This
phenomenon might be because Level 2 and 3 tasks
are inherently more challenging, making the per-
formance variability less noticeable, whereas Level
0 tasks are simpler, allowing models to better com-
prehend the shots, thus resulting in minimal impact.
Level 1, however, is most susceptible to disturbance
due to its moderate difficulty.

5 Discussion

Case study on Revesi game. From Appendix F,
it is evident that all models perform poorly in the
Reversi game. Consequently, we conducted a case
study on this particular game scenario. The re-
sponses from various models tasked with determin-
ing the outcome of a Reversi game are analyzed as
shown in Figure 5. Despite all models except llama-
3-8b-chat adhering to the instruction format and
correctly interpreting the initial setup, all models
failed to provide the correct answer, demonstrating
various types of inaccuracies. The key reasons for
failure include:

* Mismanagement of Details: For instance,
claude-3.5-sonnet misplaced markers or incor-
rectly transformed pieces, showing that while
the general rules were understood, the model
failed to apply specific game rules correctly.

* Inadequate Execution/Planning Under-
standing: Models like qwen2-72b-instruct
produced incorrect board states following
what should have been straightforward cap-
tures, revealing a fundamental misunderstand-
ing of the game’s piece-flipping mechanisms
as well as the initial conditions outlined in the
problem.

* Excessive Alterations: The llama-3-8b-chat
model drastically altered the board state in an
unrealistic manner, adding rows and altering
more positions than the rules allow, suggest-
ing a misinterpretation of the core principles
of the game, particularly with regards to ma-
trix operations and the understanding and exe-
cution of piece-flipping mechanisms.

6 Conclusion

In this paper, we introduce LOGICGAME, a novel
benchmark designed to evaluate the rule-based rea-
soning capabilities of LLMs. LOGICGAME encom-
passes multiple difficulty levels, focusing on as-
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sessing models’ understanding of rules, execution
based on these rules, and planning abilities. More-
over, we have developed methods to evaluate both
outcomes and reasoning processes, ensuring that
models follow the given rules faithfully rather than
merely guessing answers. Extensive experiments
indicate that current large models still exhibit sig-
nificant deficiencies in rule-based reasoning tasks.
More effort needs to be devoted to further enhanc-
ing models’ abilities to handle complex reasoning
scenarios.

Limitations

Our evaluation is partially influenced by the mod-
els’ ability to follow the provided instructions.
While most models, as shown in Appendix D, per-
formed effectively, a few models, like Llama-3-
8b-chat and Mistral-7b-instruct, demonstrated less
consistent instruction-following behavior. While
these discrepancies did not substantially affect the
overall accuracy metrics, they introduce some vari-
ability that could influence the evaluation accuracy.
Future work could explore the development of auto-
mated evaluation methods that reduce dependence
on instruction-following capabilities, ensuring a
more precise assessment across different models.
Additionally, our study evaluated a total of 14 rep-
resentative models; however, due to resource con-
straints, some popular models such as Llama-3.1-
405B could not be included.

Ethics Considerations

Our benchmark, LOGICGAME, is designed exclu-
sively for research purposes. The Al assistants
employed in this study were used solely for lan-
guage polishing of the paper. When collecting data,
annotators were informed of the purpose of the data
collection and paid according to the regional stan-
dards in place. Since our data primarily focuses on
reasoning tasks based on rules, there is no security
risks.
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A JSON prompt

The evaluation JSON constrain prompt template
we used to evaluate the performance of different
models is shown in Figure 6.

B Data overview of different categories

Table 3 provides a detailed classification of cate-
gories along with the corresponding sample sizes
as shown below. It should be noted that the quan-
tities presented in Table 3 pertain to only one lan-
guage version; hence, the actual total quantity is
doubled, reflecting the corresponding one-to-one
relationship between the en and zh versions. We
have enumerated the descriptions of all categories
as follows:

* Character Search: Tasks involving decrypt-
ing or restoring original strings from en-
crypted versions, typically with simple trans-
formations.
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* String Insertion: Tasks involving operation
T on strings, where specific patterns trigger
character insertions following defined rules.

* String Synthesis: Problems involving creat-
ing blocks or combinations from given sets of
characters (like [A], [B], [C]) under specific
rules.

* String Deletion and Modification: Tasks in-
volving transforming strings through charac-
ter deletion or modification based on pattern
recognition.

* String Rearrangement: Problems involving
reversing or rearranging numbers, including
special formats like decimals, fractions, and
complex numbers.

* String Processing: Complex string manipula-
tion involving multiple sequential instructions,
often with numbered operations and specific
rule sets.

* Statistical Counting: Tasks involving pattern
recognition and counting in strings of repeated
characters, often calculating final scores.

* New Operator Calculation: Mathematical
calculations involving custom operators with
specific computational rules.

* Element Operation: Matrix operations based

on comparing and manipulating adjacent ele-
ments, often involving pattern-based rules for
element modification.

 Pattern Recognition: Tasks involving finding

squares of specific sizes in character matrices,
typically searching for unique patterns with
minimum side length requirements.

* Matrix Transformation: Tasks involving ma-

trix operations on letter-based grids, focusing
on pattern recognition and transformation.

* Path Movement: Problems tracking position

changes based on directional instructions (like
i,j,k,1) in a grid system.

* Single-choice Self-reasoning: Multi-question

problems where answers depend on other
questions’ answers, requiring logical deduc-
tion.
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JSON Prompt Template

Please generate a JSON object that follows standard JSON formatting and indentation, containing a
field named ’answer’. The ’answer’ field should be a list of strings, where each string represents ...
The *process’ field should be a list of strings, where each string ...

Example: String Synthesis

Input: Now there are four different types of blocks: [A], [B], [C], and A, which satisfy the following
rules:

1. One [A], one [B], and one [C] can be synthesized into one {A}
2. One [A] and one [B] can be synthesized into one [C]

Rule 1, Rule 2, Rule 1, Rule 2... continue cycling through these rules to synthesize until no further
synthesis is possible using either rule.

Question: If we currently have four [A], four [B], and three [C], what will be the result after synthesis?
Json Constraints: Please generate a JSON object that follows standard JSON formatting and
indentation, containing a field named ’answer’. The *answer’ field should be a list of strings, where
each element represents the number of different types of blocks, in the order of [A], [B], [C], A.
For example, if there is 1 block of type [A], O blocks of type [B], 3 blocks of type [C], it should be
represented as ["1", "0", "3", "0"]. The ’process’ field should be a list of strings, where each string
records the instructions for each step from the initial state to the final state. First output the blocks
that need to be synthesized, followed by the "->" symbol, then output the synthesized block, without
adding any extra explanations. For example: ["[A] [B] [C] -> {A}", "[A] [B] -> [C]"].

Output:

{
"answer”: ["0", "3", "6", "1"],
"process”: [
"[A] [B] [C] -> {A}",
"[A] [B] -> [C]",
"[A] [BI [C] -> {A}",
"[Al [B] -> [C]"
]
}

Figure 6: JSON prompt and an example.

* Constrained Linear Arrangement: Prob-
lems arranging books, students, or class sched-
ules under multiple specific placement con-
straints.

* Mutual Generation and Restriction: Game-
like scenarios involving win/lose/draw out-
comes with implicit relationship rules.

* Logical Equations: Problems assigning num-
bers to letters under mathematical constraints
and relationships.

* Combinatorial Calculation: Problems in-
volving numerical inputs requiring analysis
of possible combinations.
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* Eight Queens Puzzle: Problems based on the
classic Eight Queens puzzle, involving plac-
ing queens on a chess board (marked with 0,
1, or X) without threatening each other.

* Logic Puzzle: Matrix-based puzzles requiring
number selection following specific logical
rules.

* Minesweeper: Grid-based problems using nu-
merical hints to locate mines, similar to classic
Minesweeper.

» Standard Sudoku: Classic Sudoku puzzles
requiring number placement in grids while
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Figure 7: Few-shot differences on execution and planning category of LOGICGAME’s zh version. "shot_diff_1_0"
represents the difference in the P-Acc score between the 1-shot and 0-shot settings, calculated as the result of 1-shot
minus the result of 0-shot, "shot_diff_2_0" representing the P-Acc score between the 2-shot and 0-shot settings
similarly. Positive values represent an improvement in the P-Acc metric when examples(1 or 2) are added to the
context, while negative values indicate a decrease in the P-Acc metric under the same conditions. The amplitude of
these values signifies the magnitude of improvement or decline.
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Figure 8: Few-shot differences on difficulty levels of LOGICGAME’s zh version with shot difference settings similar
with Figure 7. Positive values denote an improvement in the models’ average performance at a certain difficulty
level in the P-Acc metric when examples(1 or 2) are added to the context, whereas negative values indicate a decline
in performance. The amplitude reflects the degree of improvement or deterioration.

following standard Sudoku rules, without ad-
ditional arithmetic constraints.

* Cryptanalysis: Problems involving deduc-
ing combinations or values through multiple
guesses and feedback.

C Main results of zh version

Table 4 presents the performance of 14 LLMs on
Chinese version of LOGICGAME, showcasing both
their execution and planning capabilities across dif-
ferent levels of complexity. When comparing the
results of the Chinese version to the English ver-
sion (as shown in Table 5), the ol-preview model
consistently performs the best, achieving an overall
accuracy of 54.93%, which aligns closely with its

leading performance on the English dataset with
53.29% accuracy.

The trend observed in the Chinese version is
consistent with the English version, where the per-
formance of models diminishes significantly as the
task complexity increases from Level O to Level 3.
For instance, ol-preview scores 82.22% at Level 0
but drops to 42.22% at Level 3 in terms of execu-
tion. Similarly, on the planning aspect, it plunges
from 64.52% at Level 0 to 32.26% at Level 3. This
pattern highlights the ongoing challenge LLMs
face in sustaining high performance across progres-
sively difficult tasks. Overall, while models like
ol-preview and ol-mini show competitive perfor-
mance, most LLMs exhibit a steep decline in accu-
racy as the task complexity intensifies. The perfor-
mance disparity between various models remains
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substantial, ranging from above 50% to below 5%,
thereby underscoring the differing levels of reason-
ing abilities among current LLMs. Despite certain
models demonstrating notable capabilities, logical
reasoning continues to be a formidable challenge
across both English and Chinese versions.

D Additional evaluation metrics and
error analysis

During the evaluation process, it is observed that
some models occasionally fail to adhere to instruc-
tions regarding the constraint of JSON format out-
put. In this context, we have defined two error
metrics and one correctness metric for thorough
analysis:

¢ JSON Error (JSError): This metric tracks
instances where there is an error in parsing
the JSON format, usually due to incomplete
or improperly formatted JSON outputs.

Instruction Following Error (IFError):
This metric measures the number of instances
in which a JSON format could not be success-
fully extracted.

¢ Answer Process Accuracy based on non-
IFError and non-JSError (NIJ-Acc): This
is the correctness metric, which evaluates the
Answer Process Accuracy (AP-Acc) concern-

ing non-IFError and non-JSError. The for-
mula is provided in Equation 1.

SAP—ACC
1-— SIFError - SJSError

SNLI—Acc = (1

The metrics presented in Table 5 and Table 6 pro-
vide a comprehensive assessment of the model’s er-
ror frequency in en and zh version respectively. The
NIJ-Acc metric evaluates the model’s overall accu-
racy. In this study, the llama-3-8b-chat and llama-3-
70b-chat model shows consistent poor instruction-
following capabilities in both versions, while the
mistral-7b-instruct model performs poorly in the
metric of json format. Conversely, stronger models
tend to perform more stably as observed in these
metrics. Overall error probabilities (IFError, JSEr-
ror) are low across most models, resulting in mini-
mal variations in NI1J-Acc scores compared to the
average scores in Table 2 and Table 4, with only mi-
nor rank adjustments among similarly performing
models.

E Few shot results of z/ version

Figure 7 and Figure 8 shows few-shot results of
LoGICGAME’s zh version. For the "Execution" cat-
egory, the observed trend aligns with the en version,
where models exhibit significant improvements in
accuracy as the number of shot contexts increases.
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However, the impact of 1-shot and 2-shot settings
varies among different models. At Level 0 demon-
strated in Figure 8, models generally show the most
substantial benefit from 1-shot and 2-shot contexts.

For "Planning" category, seen in Figure7, the
results are more varied but still consistent with the
en version. Notably, Figure 8 indicates that the neg-
ative impact of 1-shot contexts is most pronounced
at Level 0. As the difficulty level rises, the influ-
ence of 1-shot contexts diminishes, resulting in
smaller performance variations. Conversely, 2-shot
contexts show more instability, and no clear pattern
emerges from their impact.

F Problems all models fail

Figure 9 categorizes the five areas where all mod-
els exhibit the poorest performance, presenting the
average AP-ACC scores for each category in a heat
map. The horizontal axis corresponds to the model
capabilities as outlined in Table 2 and Table 4. This
figure highlights that models generally struggle
most in two sub-categories within the execution
scenario, particularly with ’Reversi’, where many
models score close to zero except for ol-mini and
ol-preview models. Conversely, in planning sce-
narios such as ’Constrained Linear Arrangement’,
there is a slight variation in performance across
different models.
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Categories | Basic Tasks Application #Samples
Character search 12
String insertion 8
String synthesis Synthesis and decomposition 24
String deletion and modification 8
String rearrangement
String splitting

Execution | String processing Mahjong-type 16
Statistical counting™ 8
New operator calculation™ 12
Element operations Lights out 20
Pattern recognition Reversi 16
Matrix transformation 2048* 24
Path movement Pooling* 16
Single-choice self-reasoning 8
Constrained Linear Arrangement 16
Mutual generation and restriction 16
Logical equations™ 8

. Combinatorial calculation™ 8

Planning Eight Queens puzzle Letter logic diagram 16
Logic puzzle* 12
Minesweeper™ 8
Standard Sudoku® Sudoku with arithmetic rules® | 16
Cryptanalysis™ 16

Total 304

Table 3: An overview of LOGICGAME, encompassing both execution and planning for a single version (either en or
zh). Light red rows indicate sequential-based tasks, light blue rows indicate matrix-based tasks. Tasks involving
math are denoted with the superscript?.
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Execution Planning
Model Overall
Level 0 Levell Level2 Level3 | Avg. | Level 0 Levell Level2 Level3 | Avg.

ol-preview 82.22 66.67 48.89 42.22 60.00 | 64.52 58.06 35.48 32.26 47.58 | 54.93
ol-mini 77.78 57.78 48.89 42.22 56.67 | 74.19 58.06 35.48 12.90 45.16 | 51.97
claude-3-5-sonnet | 68.89 40.00 22.22 15.56 36.67 | 48.39 25.81 6.45 3.23 20.97 | 30.26
gpt-4o 62.22 31.11 13.33 13.33 30.00 | 51.61 22.58 9.68 6.45 22.58 | 26.97
gpt-4-turbo-0409 | 60.00 15.56 15.56 11.11 25.56 | 67.74 22.58 9.68 3.23 25.81 | 25.66
glm-4-plus 42.22 26.67 17.78 6.67 23.33 | 48.39 19.35 6.45 3.23 19.36 | 21.71
qwen2-72b 53.33 20.00 15.56 222 2278 | 45.16 16.13 3.23 3.23 16.94 | 20.39
llama-3-70b 42.22 11.11 6.67 222 15.56 | 25.81 6.45 0.00 0.00 8.07 | 12.50
claude-3-haiku 31.11 4.44 222 0.00 9.44 | 32.26 6.45 0.00 0.00 9.68 | 9.54
glm-4-9b 24.44 8.89 222 0.00 8.89 | 19.35 3.23 0.00 0.00 5.65 | 7.57
internlm2-5-7b 13.33 4.44 0.00 0.00 444 | 16.13 3.23 0.00 0.00 4.84 | 4.61
llama-3-8b 11.11 222 0.00 0.00 3.33 | 9.68 6.45 0.00 0.00 4.03 | 3.62
mistral-7b 4.44 0.00 0.00 0.00 1.11 19.35 3.23 0.00 0.00 5.65 | 2.96
qwen2-7b 4.44 0.00 0.00 0.00 1.11 16.13 3.23 0.00 0.00 4.84 | 2.63

Table 4: Performance of 14 models on zA version. The highest performance is bold.

IFError(%./) JSError(%./) NILJ-Acc(% 1)

Model Execution Planning Execution Planning Execution Planning Avg.
ol-preview 0.56 0.00 0.00 0.00 57.54 47.58 53.47
ol-mini 0.56 0.81 0.56 0.00 53.37 45.53 50.17
claude-3.5-sonnet 0.56 0.00 0.00 0.00 33.52 23.39  29.37
gpt-4o 1.11 0.00 0.00 1.61 35.39 18.85 28.67
gpt-4-turbo-0409 1.11 0.00 0.00 12.42 22.47 19.83 21.40
glm-4-plus 5.00 9.68 1.11 0.00 19.64 18.93 19.22
qwen2-72b-instruct 30.00 16.94 0.56 0.81 12.00 11.76  11.89
llama-3-70b-chat 152.22 160.48 0.56 0.00 14.12 4.08 10.45
glm-4-9b 21.67 10.48 2.22 0.81 10.95 8.18 9.72
internlm-2.5-7b-chat 15.56 9.68 2.22 0.00 9.46 446 731
mistral-7b-instruct 19.44 14.52 $13.33 12.42 8.26 291 5.80
claude-3-haiku 0.00 0.00 1.11 12.42 4.49 549 5.02
qwen2-7b-instruct 222 0.81 111.67 13.23 1.94 1.68 1.82
llama-3-8b-chat 175.00 158.87 0.00 0.81 0.00 0.00  0.00

Table 5: Model performance on JSError, ResNError, IFError and NIJ-Acc metrics of en version, with the Avg.
calculated as the arithmetic mean NIJ-Acc value of both execution and planning. fand fshows the worst and second
worst performance in error metrics respectively. Underline shows the best performance in NIJ-Acc metric.
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IFError(%.) JSError(%/) NILJ-Acc(%7)

Model Execution Planning Execution Planning Execution Planning Avg.
ol-preview 0.00 0.00 0.00 0.00 60.00 47.58 54.93
ol-mini 0.56 0.81 0.56 0.00 56.67 4516 51.97
claude-3.5-sonnet 0.00 0.00 0.00 0.00 36.67 20.97 30.26
gpt-4o 0.56 0.00 0.00 0.00 30.17 22.58 27.06
gpt-4-turbo-0409 0.56 1.61 0.00 1.61 25.70 26.67 26.09
glm-4-plus 10.00 8.06 0.56 0.00 26.09 21.05 24.00
qwen2-72b-instruct 3.33 1.61 0.56 1.61 23.70 17.50 21.16
llama-3-70b-chat 12.78 113.71 0.00 0.81 17.83 943 1445
claude-3-haiku 3.89 0.81 0.00 0.81 9.83 9.84 9.83
glm-4-9b 25.00 113.71 1.11 0.81 12.03 6.60 9.62
llama-3-8b-chat 140.56 128.23 0.00 0.00 5.61 562  5.61
internlm-2.5-7b-chat 17.78 1.61 1.67 15.65 5.52 522  5.38
mistral-7b-instruct 136.67 11.29 17.22 74.84 1.98 6.73  4.39
qwen2-7b-instruct 3.89 242 12.22 4.03 1.18 5.17 2.8l

Table 6: Model performance on JSError, ResNError, IFError and NIJ-Acc metrics of zk version, with the Avg.
calculated as the arithmetic mean NIJ-Acc value of both execution and planning. fand fshows the worst and second
worst performance in error metrics respectively. Underline shows the best performance in NIJ-Acc metric.
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