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Abstract
The remarkable performance of Large language
models (LLMs) relies heavily on the availabil-
ity of abundant high-quality training data. How-
ever, the high cost of acquiring annotated data
often prevents models from obtaining capabil-
ities to tackle downstream tasks. In this pa-
per, we introduce a novel method, EpiCoDe
that boosts model performance in data-scarcity
scenarios without extra training. We first em-
ploy model extrapolation to enhance a fine-
tuned model with its inferior version, and then
adopt contrastive decoding to further reduce
predicted errors, by comparing the logit scores
given by the extrapolated and the vanilla fine-
tuned model. Experiments across three tasks
over four different LLMs show that EpiCoDe
consistently outperforms existing methods with
significant and robust improvement. We also
propose a new theoretical framework to reveal
the mechanism behind contrastive decoding in
data-scarcity scenarios, which further helps us
better understand the effectiveness of EpiCoDe.

1 Introduction

Large language models (LLMs) have demonstrated
superior performance across a wide range of down-
stream tasks, making them an indispensable ap-
plication in natural language processing (Yang
et al., 2024; Team, 2024; DeepSeek-AI et al., 2025).
Their impressive capabilities, however, are primar-
ily dependent on the availability of large-scale,
high-quality training data. The scarcity of such
data, especially in specific domains, has become
a major barrier to further advancing LLMs. This
challenge is particularly pronounced in fields such
as law and health (Huang et al., 2023; Chen et al.,
2024), where access to domain-specific data is of-
ten limited due to privacy concerns, copyright re-
strictions, and the high cost of data collection. Fur-
thermore, the expense of high-quality annotations
may also remain a bottleneck, restricting the con-
sistent development of model abilities.

Therefore, there has been a growing need to de-
velop methods that can make the most use of lim-
ited data without extra training to enhance model
performance in such data-scarcity scenarios. Exist-
ing efforts include two types of methods, model ex-
trapolation (Zheng et al., 2024) and contrastive de-
coding (Li et al., 2023), which are developed from
the perspectives of parameters and inference, re-
spectively. Model extrapolation collects two check-
points from different training stages. It obtains a
stronger model by comparing the parameters of two
checkpoints without extra training. Beyond directly
editing model parameters, there is another thread
of research focusing on improving the probability
to output correct next tokens during inference. Li
et al. (2023) hypothesize the LLMs trained on the
same datasets can have similar patterns to make
mistakes. Meanwhile, models of different sizes
exhibit different capabilities. Thus, by comparing
the logit scores predicted by a small LLM and a
large LLM in the same family, contrastive decoding
can narrow the performance gap and reduce their
shared errors.

Previous work (Karras et al., 2024) also proposes
to improve the quality of generated images by com-
paring the prediction of a model and its bad version
trained with noisy data. These two techniques are
both good practice to enhance LLMs without extra
training. However, they sometimes fail to bring
improvement (O’Brien and Lewis, 2023; Zheng
et al., 2024). Furthermore, existing works have not
explored whether they are effective in the context
of data scarcity.

In this paper, we introduce EpiCoDe, a novel
method that leverages model extrapolationand
contrastive decoding to improve the performance
of a finetuned model without further training in
data-scarcity scenarios. We first obtain an extrap-
olated model of a finetuned LLM by employing
its weakened version at early training stage as the
anchor. The resulting models as well as the vanilla
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finetuned model learn from the same dataset, ex-
hibiting similar capabilities and error patterns. We
then compare their logit scores and employ con-
trastive decoding to further optimize the prediction
of next tokens. This frustratingly easy method can
take the strengths of both methods to further im-
prove model performance.

Previous efforts mainly provide empirical evi-
dence to explain the success of contrastive decod-
ing, without a proper analyzing tool to help us
understand how contrastive decoding contributes
to the improvement.In this work, we further intro-
duce a theoretical framework to explain the mecha-
nisms behind contrastive decoding and investigate
strategies for model selection in EpiCoDe. Our
key insight is that model extrapolation helps main-
tain model locality across finetuned models and
extrapolated models, which can ensure further im-
provement during the contrastive decoding stage.
Specifically, we argue that EpiCoDe brings more
stable improvement when selecting the weak mod-
els that are closer to the extrapolated model in the
parameter space.

We evaluate our method across three distinct
tasks (law, math, and logical reasoning) using
four LLMs from different families and with var-
ious scales. Experimental results show that Epi-
CoDe consistently outperforms baseline models,
which employ either model extrapolation or con-
trastive decoding, with significant performance
gains across all tasks. Furthermore, our experi-
ments also demonstrate the validity of our theo-
retical framework, highlighting the importance of
model locality in the context of EpiCoDe.

Our main contributions are threefold:

• We propose a frustratingly simple yet effec-
tive method, EpiCoDe, that benefits from both
model extrapolation and contrastive decoding,
enhancing model capabilities without addi-
tional training, particularly in data-scarcity
scenarios.

• We present a theoretical framework to ex-
plain the mechanism behind EpiCoDe and the
model selection strategies in contrastive de-
coding, which have been only discussed em-
pirically.

• Experiments on three diverse tasks across four
different base models show that our method
can bring consistent improvement, signifi-
cantly outperforming baseline methods.

2 Related Works

The scarcity of high-quality annotated training
data often prevents us from effectively finetun-
ing LLMs, necessitating the development of ap-
proaches that go beyond conventional training
paradigms. Among others, model extrapolation
and contrastive decoding are two representative
threads of research falling to this type.

Model Extrapolation An intuitive idea to im-
prove model performance is to extrapolate a model
to a better position in the parameter space. How-
ever, we are unable to precisely locate the optimal
point without training. A simple approximate so-
lution is to regard model extrapolation as the re-
verse process of linear merging (Zheng et al., 2024).
They first enhance a finetuned LLM with Rein-
forcement Learning with Human Feedback (RLHF,
Ouyang et al., 2022). To obtain a better RLHF
model, they hypothesize the RLHF model is con-
structed by merging the finetuned model and an
unknown ultra-powerful model. As shown in the
left part of Figure 1, they argue that extrapolation
can alleviate the limitation of insufficient training
data, resulting a stronger RLHF model.

Here, we believe model extrapolation might be a
possible choice to make the most of limited training
data by exploring across different checkpoints. In
this paper, we extract an intermediate checkpoint
during finetuning as the weak model. We then
regard the model trained with more epochs as the
strong model, and extrapolate it to obtain a stronger
one.

Contrastive Decoding Different from model ex-
trapolation which edits the parameters to get a new
model, contrastive decoding (Li et al., 2023) com-
bines two distinct LLMs’ predictions during infer-
ence. The fundamental hypothesis is that, on one
hand, models trained on the same data may have
similar patterns to make mistakes; while on the
other hand, the capabilities of models differ due
to model size. Li et al. (2023) proposes to collect
the two probability distributions of next token pre-
dicted by a strong and a weak model in the same
family, respectively. Their difference may repre-
sent the capability gap between two models without
co-occurrence errors. As shown in the right part of
Figure 1, contrastive decoding improves the quality
of model outputs by modifying the predicted logit
scores with the computed differences.

In our work, we are interested in whether con-
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trastive decoding can further enhance the extrapo-
lated models. Different from previous works (Li
et al., 2023; O’Brien and Lewis, 2023) that use
LLMs in the same family but with different sizes,
we here adopt the finetuned model and the extrap-
olated model for exploration. The effectiveness
of contrastive decoding in data-scarcity scenarios,
e.g., enhancing a finetuned model with its early
version, is still an unexplored research question.

3 Methodology

In this paper, we propose EpiCoDe, which lever-
ages model extrapolation and contrastive decoding
in data-scarcity scenarios, to boost model perfor-
mance without additional training.

3.1 Preliminary
In data scarcity scenarios, the training data avail-
able for finetuning is insufficient. We can only
obtain under-trained LLMs with limited capabili-
ties. And, model checkpoints collected from the
earlier stage of such training conditions can per-
form unsurprisingly worse.

Model Extrapolation. Following previous
work (Zheng et al., 2024), we regard a strong
model θstrong as the linearly merged model (Worts-
man et al., 2022; Choshen et al., 2022) of its
weakened version θweak and an ultra-strong model.
Thus, we can obtain the unknown model by linear
extrapolation:

θep = θstrong + µ(θstrong − θweak),

where µ > 0 is a hyper-parameter.

Contrastive Decoding For the input sequence
x<i : ⟨x1, · · · , xi−1⟩, our aim is to predict the
next token xi within the vocabulary V . Given the
distribution ps(xi|x<i) predicted by a strong model
and pw(xi|x<i) predicted by a weak model, previ-
ous work (Li et al., 2023) defines the contrastive
difference as:

c(xi|x<i) = log (ps(xi|x<i))− log (pw(xi|x<i)) ,

which excludes the co-occurrence errors of the two
models.

Let Ls(x<i) and Lw(x<i) ∈ RV denote the
unnormalized distributions (i.e., logit scores) pre-
dicted by the strong and the weak model. We can
reformulate the contrastive difference as:

c(x<i) = Ls(x<i)− Lw(x<i).

Logits
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Figure 1: The process of EpiCoDe, which first employs
model extrapolation to obtain a stronger LLM θep, and
then uses contrastive decoding to get better logit scores.

Following previous work (O’Brien and Lewis,
2023), we further define the logit score for next
token as:

LCD(x<i) = Ls(x<i) + λc(x<i),

where λ > 0 is a hyper-parameter controlling the
strength of contrastive decoding.

3.2 Our Method: EpiCoDe
Formally, we denote the initial LLM as θinit and
finetune it on the training dataset. We can collect
the model from two training stages: (1) the model
θearly at an early stage, which may be finetuned
with part of the training data or trained with fewer
epochs; (2) the model θft finetuned on all data with
more epochs.

However, in data scarcity cases, the model θft

may be still undertrained, due to limited training
data available. To address this challenge, we de-
velop a novel method EpiCoDe, which integrates
model extrapolation and contrastive decoding, with-
out the need of any additional training. Figure 1
illustrates the process of EpiCoDe.

We first employ model extrapolation, where
θearly serves as the weak model and θft as the
strong model, to obtain the extrapolated model
θep = θft + µ(θft − θearly). By selecting an ap-
propriate µ, we can derive an extrapolated model
θep with better capabilities compared to θft.

During inference, we use contrastive decoding
for better performance. As shown in the left
part of Figure 1, we have several models in hand,
whose performance should have following ranking:
θinit < θearly < θft < θep. We intuitively choose
θep as the strong model in contrastive decoding,
while one of the other three models can serve as
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the weak model. An important research question
is which model should be employed to achieve the
best performance. We argue that the similar error
patterns between the weak and the strong model
play an important role in the effectiveness of con-
trastive decoding. Thus, we employ θft, which
locates the nearest to θep in the parameter space,
as the weak model. The contrastive difference can
be refined as c(x<i) = Lep(x<i)−Lft(x<i), with
Lep(x<i) and Lft(x<i) denoting the logit scores
yield by θep and θft, respectively. Similarly, we
represent the logit scores in contrastive decoding
as LCD = Lep(x<i) + λc(x<i).

Our pilot experiments show that using θft as the
weak model in contrastive decoding can result in
good performance (See details in Section 7.2). We
keep this setting for main experiments.

4 Why can EpiCoDe Work?

Previous analysis (Chang et al., 2024) explains that
contrastive decoding may play a role similar to
reduce the loss. However, a theoretical framework
for understanding the underlying mechanisms still
remains absent.

Different from previous work (Li et al., 2023;
O’Brien and Lewis, 2023), in the contrastive de-
coding of EpiCoDe, we use models from different
stages based on the same LLM, rather than models
of different sizes. Our models vary in capabilities
due to the quantity of finetuning data or whether
they are obtained through model extrapolation.

In the context of EpiCoDe, we are uncertain
whether using the extrapolated model θep and its
inferior version for contrastive decoding can be
effective. With θep serving as the strong model,
we also aim to study which other model should be
employed as the weak model. Thus, we develop a
theoretical toolkit to explain the role of contrastive
decoding in EpiCoDe and how to select the weak
model yielding optimal performance.

4.1 Error Analysis of Contrastive Decoding
In this paper, we propose the theory from the per-
spective of logit scores. Let θ∗ denote the hypothet-
ical optimal model which may learn from a very
large amount data, while θ denotes a model trained
on insufficient data (e.g., our models θinit, θearly,
θft, and θep). Given the input sequence x<i of any
test example, we formulate the error in logit score
predicted by θ as:

δ(x<i, θ) = L(x<i|θ)− L(x<i|θ∗).

In contrastive decoding, we employ a strong θs

and a weak model θw to yield logit scores, respec-
tively. We suppose that δ(∗, θs) follows a normal
distribution N (0, ϵ2). Similarly, the error of weak
model’s logit scores has δ(∗, θw) ∼ N

(
0, (kϵ)2

)
,

with k > 1.
We can then re-formulate logit score of con-

trastive decoding in Section 3.1 as:

LCD(x<i) = L(x<i|θ∗)+
(1 + λ)δ(x<i, θ

s)− λδ(x<i, θ
w).

The variance of the new logit score under con-
trastive decoding depends on the correlation be-
tween δ(∗, θs) and δ(∗, θw). We primarily study
two typical scenarios: (1) The strong and the
weak have learned similar capabilities; (2) The two
model are not trained on the same data.

4.2 Locality in EpiCoDe
The variance of logit error can approach its
lower bound (1− λ(k − 1)) ϵ, when δ(∗, θs) and
δ(∗, θw) exhibit perfect positive correlation1This
is an ideal scenario when the strong and the weak
model have consistent patterns to make mistakes.

We argue that θep and θft naturally have local-
ity, ensuring their similar error patterns. Given
the evaluating loss on downstream tasks L, the
improvement of model extrapolation is ∆L =
L (θep) − L

(
θft

)
. To ensure model extrapola-

tion can bring positive effects, we have to limit
µ ≪ 1 and estimate the improvement by ∆L =
µ(θep − θft) · ∇L(θft). Since LLMs suffer from
insufficient training, this inner product can usually
keep less than zero.

Note that θep lies within the neighborhood of
θft. The locality in model extrapolation ensures
them with similar capabilities and patterns to make
mistakes. Therefore, we believe that employing
θft as the weak model can align closely with this
idealized scenario. Contrastive decoding can help
to decrease the variance of errors in the predicted
logit scores (by up to λ(k − 1)ϵ).

4.3 Negative Effect of Inconsistent Errors
We further introduce another idealized scenario
where the strong and the weak model learn from
different data. The two models make mistakes
inconsistently, and we can suppose that δ(∗, θs)

1Denote the probability density of δ(∗, θs) and δ(∗, θw)
as fs(u) and fw(u), respectively, where u ∈ RV . Here, we
should have fw(u) = kfs(u) for any u.
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and δ(∗, θw) are independent of each other. In
this case, the error of the logit scores in con-
trastive decoding follows a normal distribution
N

(
0, (1 + λ)2ϵ2 + λ2k2ϵ2

)
. This means the logit

scores given by contrastive decoding even deviate
more from the hypothetical optimal model θ∗. The
initial model θinit may hardly learn the same capa-
bilities of θep. Thus, we argue that using θinit as
the weak model may result in worse performance.

4.4 Weak Model Selection

Building on the two scenarios discussed above, we
now analyze the effect of using θearly as the weak
model, which hinges on two key factors: (1) the
performance gap between θearly and θep, which
affects k; and (2) the correlation between the er-
rors in the logit scores predicted by θearly and θep,
determining whether contrastive decoding can suc-
cessfully bring improvement.

Previous works (O’Brien and Lewis, 2023;
Chang et al., 2024) propose to use smaller LLMs as
the weak model. Our theory supports such findings,
since a larger k helps to degrade the lower bound
of error variance (1 − λ(k − 1))ϵ. Note that the
LLMs with different sizes are trained on sufficient
data, resulting in their similar capabilities and error
patterns. We argue that, however, in data-scarcity
scenarios, several updating steps can significantly
separate θft from θearly in the parameter space,
which violates the locality between θearly and θep.

We argue that using θearly as the weak model
will make the logit error higher than lower bound,
and may even result in negative effects like the
second idealized scenario. Thus, in EpiCoDe, we
consistently choose θft as the weak model in our
main experiments. We provide more experimental
results in Section 7.2 to examine our theory.

5 Experimental Settings

Datasets We evaluate our proposed method in
three different tasks that usually lack finetuning
data: law, mathematics, and logical reasoning. In
the legal domain, we employ JEC-QA (Zhong
et al., 2019) as the training set and DISC-Law-
Eval (Yue et al., 2023) as the test set. Following
previous work (Huang et al., 2023), we convert
these multiple-choice legal questions into true-or-
false questions. For mathematics and logical rea-
soning, we use GSM8K_zh (Yu et al., 2024) and
LogiQA (Liu et al., 2020) for finetuning and evalu-
ation, respectively.

Task Number of Examples Avg. Len.
Train Dev Test

Law 17,664 5,126 5,126 265.3
Math 7,471 660 659 117.2
Logic 12,672 1,000 1,000 480.4

Table 1: Statistics of the finetuning and evaluation
datasets for each task. Avg. Len. shows average output
length of training examples, counted by character.

For the legal question answering (QA) and
logical reasoning tasks, which require multiple
reasoning steps to handle, we collect chain-of-
thought (CoT, Wei et al., 2022) data to finetune
LLMs. For the mathematical task, we utilize the
intermediate solution steps from GSM8K_zh for
training, despite their brevity. Table 1 summarizes
overall statistics of the datasets. We search the op-
timal hyper-parameters on hold-out validation sets
before testing. See more details in Appendix A.

Metrics Given that our models have undergone
finetuning, we evaluate their performance in a zero-
shot setting. We adopt accuracy for legal QA and
logical reasoning tasks, while exact match for the
mathematical task.

Models We explore the effectiveness of Epi-
CoDe on the LLMs from three families with dif-
ferent scales, including Deepseek-7B-Chat (Bi
et al., 2024), Qwen2-1.5B-Instruct, Qwen2-7B-
Instruct (Yang et al., 2024), and Llama-3.2-3B-
Instruct (Team, 2024). We continually finetune the
instruct models with our data for two epochs. We
regard the checkpoint after one epoch as θearly,
while the checkpoint after two epochs as θft. Here
we use AdamW (Loshchilov and Hutter, 2019) as
the optimizer, with β1 and β2 are set to 0.9 and
0.95 respectively. The maximum learning rate is
set to 3e-5, and the batch size is set to 128.

Decoding Constraints Contrastive decoding has
potential flaws in computing the logit scores of
incorrect tokens. Specifically, if the weak model
assigns an extremely low logit score to a wrong
token e ∈ V , the contrastive difference of this token
c(xi = e|x<i) becomes excessively large. The
model enhanced with contrastive decoding can be
more prone to generating this incorrect token.

To address this issue, following previous
work (Li et al., 2023), we introduce a threshold
α, which restricts the model must select the next
token from those with high logit scores predicted
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Method Accuracy(∆Acc) Avg.
Law Math Logic

Deepseek-7B-Chat
Finetune 64.78(+0.00) 27.28(+0.00) 57.22(+0.00) 49.76
ME 65.42(+0.64) 27.12( -0.17) 58.89(+1.67) 50.48
CD 65.29(+0.51) 26.88( -0.41) 58.46(+1.24) 50.21
EpiCoDe 65.51(+0.73) 27.81(+0.53) 59.05(+1.83) 50.79

Qwen2-1.5B-Instruct
Finetune 64.34(+0.00) 39.48(+0.00) 52.68(+0.00) 52.17
ME 64.94(+0.60) 40.80(+1.32) 53.63(+0.95) 53.12
CD 65.22(+0.88) 39.23( -0.26) 53.42(+0.74) 52.62
EpiCoDe 65.38(+1.04) 41.20(+1.71) 53.87(+1.19) 53.48

Qwen2-7B-Instruct
Finetune 69.03(+0.00) 57.12(+0.00) 66.67(+0.00) 64.27
ME 69.46(+0.43) 57.79(+0.67) 67.60(+0.93) 64.95
CD 69.91(+0.88) 58.62(+1.50) 67.43(+0.76) 65.32
EpiCoDe 70.25(+1.22) 58.71(+1.59) 68.07(+1.40) 65.68

Llama-3.2-3B-Instruct
Finetune 62.13(+0.00) 48.45(+0.00) 53.45(+0.00) 54.68
ME 62.73(+0.60) 49.74(+1.29) 55.11(+1.66) 55.77
CD 63.38(+1.25) 53.13(+4.68) 56.62(+3.17) 57.71
EpiCoDe 63.79(+1.66) 54.31(+5.86) 57.48(+4.03) 58.53

Table 2: Accuracy of distinct LLMs at each stage on the
three tasks. We abbreviate contrastive decoding as CD
and model extrapolation as EP.

by the strong model.
For all experiments, we empirically set α to 0.1.

6 Main Results

We adopt the models finetuned for two epochs as
baseline. As comparative experiments, we also
study the improvements when using only model
extrapolation (Zheng et al., 2024) or contrastive
decoding (O’Brien and Lewis, 2023). For model
extrapolation, we directly evaluate the performance
of θep. And for contrastive decoding, we employ
θearly and θft as the weak and the strong model,
respectively. We repeat to train the LLMs on each
dataset for 10 times with different random seeds
and report the average accuracy.

As shown in Table 2, model extrapolation and
contrastive decoding are both effective methods to
enhance LLMs without training. In general, using
only model extrapolation results in an average im-
provement of 0.68%~1.09% across the three tasks,
while contrastive decoding yields improvement of
0.45%~3.03%. However, our proposed EpiCoDe
outperforms these two baselines, enhancing the
finetuned models with the most improvement of
1.03%~3.85%.

We find that the effects of model extrapolation
and contrastive decoding vary on different LLMs.
For instance, contrastive decoding can bring signif-

H0 Model Significance Level α

Law Math Logic

EpiCoDe>ME

DS-7B 0.0899 0.0198 0.0821
QW-1.5B 0.0026 0.0938 0.0711
QW-7B 0.0000 0.0067 0.0783
LM-3B 0.0000 0.0000 0.0001

EpiCoDe>CD

DS-7B 0.0190 0.0341 0.0267
QW-1.5B 0.0342 0.0001 0.0116
QW-7B 0.0279 0.3344 0.0130
LM-3B 0.0113 0.0007 0.0006

Table 3: Significance level of mistakenly rejecting the
null hypothesis H0 in one-tailed tests. The dark red
scores mean that the confidence to believe H0 being
true is lower than 95%. DS-7B, QW-1.5B, QW-7B,
and LM-3B represent to employ Deepseek-7B-Chat,
Qwen2-1.5B-Instruct, Qwen2-7B- Instruct, and Llama-
3.2-3B-Instruct as the initial LLM, respectively.

icant improvement (1.25%~4.68%) to Llama-3.2-
3B-Instruct, which is trained on fewer Chinese data,
while model extrapolation enhance the accuracy
by merely 0.60%~1.66%. However, for the other
LLMs which have learned from sufficient Chinese
texts, model extrapolation is usually more effective
than contrastive decoding. Differently, EpiCoDe
can always leverage the strengths of both meth-
ods, consistently yielding superior improvements
across all LLMs.

Significance of EpiCoDe’s Improvement We
further study whether EpiCoDe can bring signifi-
cantly more improvement than the baseline meth-
ods. For each task and each random seed, we evalu-
ate the performance of three settings: (1)using only
model extrapolation, (2) using only contrastive de-
coding, and (3) our proposed EpiCoDe method.
Then, we compare the performance of the EpiCoDe
method with the two baseline methods under the
same random seed, conducting a paired t-test. The
null hypothesis is that EpiCoDe performs better
than each of the two baseline methods.

Table 3 illustrates the magnitudes of the signifi-
cance level α, which means the probability of mis-
takenly rejecting the null hypothesis. Except for
Qwen2-7B-Instruct on Math, we can conclude with
more than 90% confidence level to believe that Epi-
CoDe outperforms the two baseline methods, using
only model extrapolation or only contrastive decod-
ing. Furthermore, across the 4 LLMs on 3 tasks,
we have over 95% confidence to believe that Epi-
CoDe surpasses model extrapolation in 7 (/12) ex-
periments and outperforms contrastive decoding in
11 (/12) experiments. Thus, we believe EpiCoDe is
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Method Num. of Successful Runs Total
(*/30)

Law Math Logic

Deepseek-7B-Chat
ME 8 6 10 24
CD 8 4 8 20
EpiCoDe 10 8 10 28

Qwen2-1.5B-Instruct
ME 8 9 7 24
CD 9 4 7 20
EpiCoDe 10 10 9 29

Qwen2-7B-Instruct
ME 8 8 8 24
CD 10 8 7 25
EpiCoDe 10 10 10 30

Llama-3.2-3B-Instruct
ME 10 10 10 30
CD 10 10 10 30
EpiCoDe 10 10 10 30

Table 4: The number of times that each method brings
improvement to the finetuned models across 10 runs.

significantly better than the two baselines, which
achieves optimal performance.

Robustness of EpiCoDe Table 2 also shows
that EpiCoDe can consistently enhance all the
four LLMs across three tasks. But in the math-
ematical task, using only contrastive decoding
or only model extrapolation sometimes fails to
bring improvement (e.g., for Deepseek-7B-Chat
and Qwen2-1.5B-Instruct). Thus, we further exam-
ine the number of times that each method success-
fully enhances the finetuned model across 10 re-
peated experiments. As shown in Table 4, our Epi-
CoDe can provide very robust improvement for
the finetuned LLMs, with merely three failures in
a total of 120 experiments. As a comparison, model
extrapolation yields improvement in 80% of the ex-
periments on Deepseek-7B-Chat and the Qwen2
family. Even worse, contrastive decoding exhibits
a higher frequency to fail in Deepseek-7B-Chat
and Qwen2-1.5B-Instruct, especially on the mathe-
matical task, where it has positive effects to each
model merely 4 times. But for Qwen2-7B-Instruct,
the two baselines have comparable rates to achieve
better accuracy than finetuned models (24 vs. 25
out of 30 runs). Note that as a very strong LLM,
Qwen2-7B-Instruct may have learned from various
datasets, including those similar to our tasks. We
guess that its parameters change less during the
training process, which ensures locality between
θearly and θft, an essential premise for contrastive
learning to work. See more discussion about local-

ity in Section 7.2.
For 10 runs across all three tasks, EpiCoDe and

the two baselines can consistently improve Llama-
3.2-3B-Instruct, which suffers extremely from the
lack of Chinese training data. Since model ex-
trapolation and contrastive decoding are both ef-
fective, we believe that the combination of two
techniques plays a vital role to boost model per-
formance in scenarios with restricted training
resources.

7 Discussions

7.1 Where does the improvement come from?

Table 2 shows that the effectiveness of each method
varies across tasks. For instance, in logical reason-
ing, all three methods can improve the performance
of each finetuned LLM, while in legal QA, the im-
provement becomes relatively less. However, in
the mathematical task, only EpiCoDE yields im-
provement for all LLMs, while using only model
extrapolation or only contrastive decoding even
degrades performance for models such as Qwen2-
1.5B-Instruct and Llama-3.2-3B-Instruct.

We guess that the difficulty of a task may influ-
ence the effectiveness of these methods. Specifi-
cally, GSM8K_zh is a simple task, primarily con-
sisting of grade school math problems. In contrast,
legal QA and logical reasoning, as more difficult
tasks, require LLMs to possess enough domain-
specific knowledge and commonsense, to distin-
guish similar concepts, and to apply multi-step rea-
soning. The average length of training examples
in Table 1 can represent the difficulties of each
task (longer outputs for the more complex task).

To dive deeper into where EpiCoDe brings the
improvement, we take legal QA as an example.
For each run, we collect the token sequences out-
putted by the finetuned model (θft), and count their
lengths. We partition the test set of legal QA into
three equal parts according to the length order. We
then evaluate the improvement of the three methods
on each subset.

Table 5 shows the performance of vanilla fine-
tuned LLMs and the models enhanced by each
method. By comparing the results of finetuned
models and extrapolated models, we find that
model extrapolation can significantly benefits
the hard subsets (needing the longest CoT), re-
sulting in improvement of +1.02%~+1.67% on
Qwen family and Deepseek-7B-Chat. But for the
easy part, model extrapolation improves the perfor-
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Figure 2: The improvement of using θinit, θearly , or θft as the weak model, compared to the performance of vanilla
finetuned model θinit.

Method Easy Medium Hard

Acc. ∆Acc. Acc. ∆Acc. Acc. ∆Acc.

Deepseek-7B-Chat
Finetune 68.81 – 65.08 – 60.65 –
ME 68.86 +0.05 65.26 +0.18 62.31 +1.67
EpiCoDe 68.93 +0.13 65.28 +0.19 62.49 +1.84
CD only 68.62 -0.18 65.16 +0.08 62.25 +1.60

Qwen2-1.5B-Instruct
Finetune 69.05 – 64.37 – 59.68 –
ME 69.31 +0.26 64.89 +0.52 60.70 +1.02
EpiCoDe 69.38 +0.33 65.88 +1.52 60.96 +1.28
CD only 69.25 +0.20 65.40 +1.03 61.07 +1.39

Qwen2-7B-Instruct
Finetune 75.77 – 69.19 – 62.36 –
ME 75.68 -0.10 69.52 +0.33 63.40 +1.04
EpiCoDe 75.70 -0.07 70.48 +1.28 64.80 +2.44
CD only 75.65 -0.13 69.95 +0.76 64.34 +1.98

Llama-3.2-3B-Instruct
Finetune 64.74 – 62.36 – 59.37 –
ME 65.15 +0.41 63.07 +0.71 60.04 +0.67
EpiCoDe 65.27 +0.52 63.84 +1.48 62.33 +2.96
CD only 65.23 +0.48 63.58 +1.21 61.39 +2.03

Table 5: Each method’s accuracy on the three subsets
of legal QA. For each experiment, we compare the im-
provement brought by corresponding method on the
three subsets. The highest improvement among three
subsets is made bold, while the second highest is made
italic.

mance much less, sometimes even degrading the ac-
curacy. However, for Llama-3.2-3B-Instruct which
has limited Chinese capabilities, model extrapola-
tion brings comparable improvement to three sub-
sets.

We then examine the performance of Epi-
CoDe. EpiCoDe surpasses model extrapolation by
+0.17%~+1.40% on the hard subset, while merely
+0.01~+1.00% on the medium subset. Thus, our
EpiCoDe, which is further enhanced by contrastive
decoding, also gains improvement primarily from

the hard part.
We also study the effect of using only con-

trastive decoding, where θft and θearly serve as
the strong and the weak model, respectively. It also
results in the most improvement (+1.39%~+2.03%)
on the hard subsets, but relatively less improve-
ment (+0.08%~+1.21%) on the medium ones and
even nearly no improvement on the easy ones.

We believe that model extrapolation and con-
trastive decoding play similar roles in improv-
ing LLMs’ capabilities, especially when generat-
ing longer CoT to tackle challenging problems.
We also argue that EpiCoDe can integrate the
strengths of both techniques to achieve optimal
performance.

7.2 Examination of Locality

After model extrapolation, we can obtain four mod-
els, θinit, θearly, θft, and θep. We intuitively em-
ploy θep as the strong model in contrastive decod-
ing, due to its strongest capabilities. We aim to
study the effect of selecting each of the other mod-
els as the weak model.

Figure 2 illustrates the improvement of employ-
ing each model as the weak model during con-
trastive decoding. We find that when using the
initial model θinit as the weak model, the perfor-
mance of EpiCoDe often lags behind the vanilla
finetuned model θft, especially in mathematical
tasks. This demonstrates that the weak model
must learn from the same datasets to the extrap-
olated model; otherwise, contrastive decoding
will have a negative effect, even neutralizing the
improvements brought by model extrapolation.

Previous works (O’Brien and Lewis, 2023;
Chang et al., 2024) argue that a larger capability
gap between the weak and the strong model can
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bring more improvement, which indicates θearly

may be a better choice than θft. However, Figure 2
shows that, if we employ θearly as the weak model
in contrastive decoding, EpiCoDe often achieves
comparable accuracy to the extrapolated model
θep, for instance, Deepseek-7B-Chat and Qwen2-
1.5B on legal QA and logical reasoning. In the
mathematical task, using θearly also makes the im-
provement of EpiCoDe down to around zero. As
shown in Section 4, we empirically demonstrate
that in data-scarcity scenarios, several update
steps may break the locality of models, resulting
in inconsistent error patterns.

Comparing the results in Figure 2, we find that
employing θft as the weak model can consistently
achieve the optimal performance for each LLM
across all tasks. We are confident that when se-
lecting models from different training stages for
contrastive decoding, similar error patterns be-
tween the strong and the weak model is more
crucial than a large capability gap. Therefore,
different from previous works (O’Brien and Lewis,
2023; Chang et al., 2024), the best strategy here is
to choose models from adjacent stages.

8 Conclusion

In this paper, we propose an easy yet effective
method, EpiCoDe, to enhance finetuned LLMs in
data scarcity scenarios. Benefiting from both model
extrapolation and contrastive decoding, EpiCoDe
can operate without additional training. Extensive
experiments across different tasks show that Epi-
CoDe can bring consistent improvement, signif-
icantly outperforming baseline models. We also
propose a theoretical framework from the perspec-
tive of logit errors to analyze the mechanisms of
how EpiCoDe can work better. We find that model
extrapolation naturally ensures the locality between
the finetuned LLM and the extrapolated LLM. Dur-
ing inference, their locality further fulfills the pre-
requisite that enables contrastive decoding to be
effective.

Limitations

Investigated Tasks Due to the limitation of copy-
rights, there are still no publicly accessible legal
QA or logical testing datasets in English. Thus, we
employ the legal QA datasets adapted from the judi-
cial examination of China and the logical reasoning
dataset from National Public Service Examination
in China.

Such tasks are challenging enough, since they
require LLMs to possess domain-specific knowl-
edge and commonsense and to obtain final answers
through complex multi-step reasoning. Existing
LLMs still can not perform well on such tasks (Yue
et al., 2023; Liu et al., 2023), which aligns the need
of developing training-free methods to enhance
model capabilities.

Investigated Models Due to the restrictions of
computational resources, we mainly study the
LLMs with scales from 1.5B to 7B. The results
of LLMs from difference families across all three
tasks show that our proposed EpiCoDe can consis-
tently outperform the baselines. We believe that
EpiCoDe can be effective for larger LLMs, which
suffer more from data scarcity.
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A Hyper-Parameter Selection

For model extrapolation, we empirically choose
the hyper-parameter µ from 1e-4 to 0.8 by
logarithmic interval, within {1, 2, 4, 6, 8} ×
{10−4, 10−3, 10−2, 10−1}. And for contrastive

Magnitude of µ DS-7B QW-1.5B QW-7B LM-3B

0 (vanilla finetuned) 57.22 52.68 66.67 53.45
1e-4∼8e-4 57.58 52.87 67.19 54.00
1e-3∼8e-3 58.39 53.43 66.90 55.11
1e-2∼8e-2 57.29 52.99 66.82 55.10
1e-1∼8e-1 57.06 51.38 66.53 54.20

Table 6: Performance of extrapolated LLMs on Logic
under different µ. The highest results are made bold,
with the second underlined. DS-7B, QW-1.5B, QW-7B,
and LM-3B share the same mearnings with those in
Table 3.

Magnitude of λ DS-7B QW-1.5B QW-7B LM-3B

0 (only using ME) 58.89 53.63 67.60 55.11
0.1 58.86 53.64 67.59 56.27
0.2 58.97 53.57 68.06 56.68
0.4 58.77 53.79 68.03 56.80
0.6 58.46 53.74 67.97 57.16
0.8 58.55 53.48 67.81 57.33
1.0 58.34 52.98 67.49 57.06

Table 7: Performance of contrastive decoding on Logic
under different λ. The highest results are made bold,
with the second underlined. DS-7B, QW-1.5B, QW-7B,
and LM-3B share the same mearnings with those in
Table 3.

decoding, we choose the hyper-parameter λ within
{0.1, 0.2, 0.4, 0.6, 0.8, 1.0}.

For all experiments, we search the optimal hyper-
parameters on development sets, and then employ
the same hyper-parameters to evaluate models on
hold-out test sets.

Since EpiCoDe can be regarded as a two-stage
method, we do NOT use grid search to concurrently
optimize µ and λ. Instead, we first select the op-
timal µ in model extrapolation. We then search
λ with µ frozen, ensuring all experiments are fair
between EpiCoDe and only using model extrapola-
tion.

We find that these hyper-parameters have similar
effects across distinct LLMs and runs. As µ or
λ increases from small to large, the improvement
brought by model extrapolation or contrastive de-
coding exhibits convexity. For example, Table 6
shows the effect of µ with different magnitudes
in model extrapolation on the Logic task (average
over 10 runs). We also use Figure 7 to illustrate
the effect of different λ in contrastive decoding on
Logical Reasoning (average over 10 runs). Simi-
lar to previous works (O’Brien and Lewis, 2023;
Zheng et al., 2024), when µ or λ is small, both
model extrapolation and contrastive decoding can
bring more improvement as the µ or λ grows larger.
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Weak Model Law Math Logic

θft of Qwen2-1.5B 69.60(+0.57) 49.39( - 7.73) 67.91(+1.24)

θinit of Qwen2-7B 68.70( - 0.33) 55.96( - 1.16) 66.78(+0.11)

θearly of Qwen2-7B 69.63(+0.60) 58.27(+1.15) 66.75(+0.08)

θft of Qwen2-7B 70.25(+1.22) 58.71(+1.59) 68.07(+1.40)

Table 8: The results of different weak models in Epi-
CoDe. For all experiments, we employ θep of Qwen2-
7B-Instruct as the strong model.

But if we use very large µ or λ, the two methods
will fail to improve model performance.

B LLMs with Different Sizes in CD

Inspired by previous work (Li et al., 2023; O’Brien
and Lewis, 2023) which employs a small and a
large model in contrastive decoding, we also won-
der during inference, whether EpiCoDe is still ef-
fective if using two models with different numbers
of parameters. Thus, we employ the extrapolated
Qwen2-7B-Instruct as the strong model and the
finetuned Qwen2-1.5B-Instruct as the weak model.

Table 8 shows that contrastive decoding can
sometimes be effective when we employ a smaller
LLM, which is finetuned on the same data, as the
weak model. However, such setting brings less
improvement than EpiCoDe where we employ the
same-size finetuned LLM as weak model.

Using LLMs of different sizes is also not ro-
bust enough to enhance model performance. For
example, in two runs on Math, if we employ θep

of Qwen2-1.5B as the weak model, the accuracy
scores decrease from around 57% to around 16%,
resulting in catastrophic deterioration.

From these additional results, we find that the ef-
fectiveness of contrastive decoding may be highly
dependent on the locality. Beyond existing meth-
ods which employ a large LLM as the strong model
and a small LLM as the weak model, our proposed
EpiCoDe can achieve the optimal performance.
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