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Abstract

Large language models (LLMs) have revolu-
tionized natural language processing (NLP)
tasks, yet their increasing size poses substan-
tial challenges in terms of computational and
memory resources. Block floating-point (BFP)
arithmetic offers an effective solution by lever-
aging the strengths of both floating-point and
fixed-point representations, leading to reduc-
tions in both storage and computational over-
head. However, current low-bit BFP quanti-
zation approaches often struggle to handle ex-
treme outliers, leading to significant accuracy
degradation. To overcome this limitation, we in-
troduce Extendable Exponent Sharing (EES), a
novel BFP representation that extends the expo-
nent bit width to capture a wider dynamic range.
EES achieves this by embedding extendable ex-
ponent bits into the least significant mantissa
bits, thereby increasing the shared exponent’s
bit width without incurring additional storage
costs. To optimize the trade-off between ac-
curacy and energy efficiency, EES employs a
design space exploration strategy to optimize
the configuration of extendable exponent bit
widths. Experimental results show that EES
outperforms representative baselines in both
accuracy and computational efficiency.

1 Introduction

Large language models (LLMs) have achieved re-
markable success across a variety of natural lan-
guage processing tasks, such as intelligent assis-
tants, machine translation, and sentiment analysis
(Nam et al., 2024; Kim et al., 2024; Zhao et al.,
2024). However, as the size of models continues
to scale, the computational and memory require-
ments grow substantially (Liu et al., 2024). Block
floating point (BFP) representation provides an ef-
fective solution to address these challenges, bal-
ancing precision with efficiency, making it partic-
ularly well-suited to meet the resource-intensive
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demands of LLMs (Zeng et al., 2024; Qin et al.,
2024). By grouping multiple values under a shared
exponent, BFP enables efficient storage and cal-
culation of large model parameters with minimal
overhead (Darvish Rouhani et al., 2023; Zhang
et al., 2024). In comparison to both fixed-point
and floating-point formats, BFP offers distinct ad-
vantages, especially in large-scale computations.
It minimizes memory usage by sharing an expo-
nent across values, making it more storage-efficient
than full-precision floating point, while providing
greater numerical stability than fixed-point repre-
sentation (Noh et al., 2023; Shen et al., 2024).

Recent advancements in low-bit BFP quantiza-
tion have shown great promise in reducing mem-
ory and computational costs for LLM applications
(Song et al., 2018; Lo et al., 2023). BFP effec-
tively balances numerical precision and resource
efficiency (Lo and Liu, 2023), but its limited expo-
nent range in low-bit formats presents significant
challenges. For example, in an 8-bit BFP repre-
sentation using the E3M4 format, a block of num-
bers shares a 3-bit exponent and uses 4-bit mantis-
sas. If the shared exponent is set to 4 (2% = 16),
the largest representable value in the block is 240
(15 x 16 = 240). Any value exceeding this, such
as 300, results in overflow, as the shared exponent
cannot accommodate larger values within the given
bit width. This limitation becomes particularly
problematic for extreme outliers, which are preva-
lent in the parameters and activations of LLMs, as
highlighted in Fig. 1. The inability to accurately
handle these outliers often causes significant ac-
curacy degradation (Zhang et al., 2023; Nie et al.,
2019; Chen et al., 2023). Solving this issue is es-
sential for enabling the broader application of BFP
in high-precision LLM workloads.

To mitigate the challenges posed by extreme
outliers in low-bit BFP quantization, various tech-
niques have been proposed. SuperWeight (Yu
et al., 2024) tackles the issue by identifying and
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Figure 1: Statistical exponent distribution of in-
put activations and weights based on the lay-
ers.l.mlp.down_proj of the Llama-3.1-8B model.

preserving critical outlier weights during quanti-
zation, achieving a balance between compression
efficiency and accuracy. Similarly, SmoothQuant
(Xiao et al., 2023) adopts a per-channel scaling
approach to redistribute value ranges, effectively
shifting the quantization burden of outliers from ac-
tivations to weights while preserving mathematical
equivalence. Building on these strategies, BiE (Zou
et al., 2024) introduces a dual-exponent mechanism
to address outliers, ensuring improved accuracy.
However, this method incurs additional resource
overhead due to the inclusion of flag bits during
computational implementation. Despite these ad-
vancements, existing methods only partially alle-
viate the challenges of low-bit BFP quantization
(Jang et al., 2024). The inherent limitation of a nar-
row exponent width remains a critical bottleneck,
restricting the efficient handling of extreme values
and limiting computational performance.

In this work, we introduce Extendable Expo-
nent Sharing (EES), a post-training quantization
approach based on BFP designed to improve dy-
namic range and computational efficiency. EES
extends the traditional shared exponent method by
increasing the exponent bit width to cover a broader
range of values. However, directly expanding the
exponent width increases the storage requirements.
To address this, we observe that changes in lower-
order bits have a minimal effect on computations
and model accuracy. For example, two 8-bit BFP
numbers—1101.1010 and 1101.1001—differing
only in the least significant bit show a minimal im-
pact on precision, indicating that small changes in
lower-order bits do not significantly affect accu-
racy. Using this insight, EES embeds the extended
exponent bits into the least significant bits of the
partial mantissas. These bits are then combined
with the shared exponent to form an extended ex-
ponent, as shown in Fig. 2. Since this approach

affects the precision of mantissas, we analyze the
quantization error introduced by EES compared to
standard BFP. To achieve an optimal balance be-
tween accuracy and computational efficiency, we
use a design space exploration strategy to obtain the
best configurations for both activations and weights.
Evaluations in LLMs show that EES significantly
improves both accuracy and energy efficiency. Key
contributions of this work include:

* Introduction of EES: We introduce a new nu-
merical representation, Extendable Exponent
Sharing (EES), which uses extendable expo-
nents to better handle outliers, resulting in im-
proved accuracy and computational efficiency.

* Optimized Exponent Configuration: We an-
alyze the distribution of exponents in activa-
tions and weights, and apply a design space
exploration strategy to determine the optimal
bit widths for the extended exponent.

* Enhanced Performance: Experimental results
indicate that EES delivers up to a 1.38x im-
provement in energy efficiency, alongside a
maximum accuracy boost of 0.36% when
compared to cutting-edge BFP techniques.

2 Related Work

Quantization is a key technique used to compress
LLMs by lower-precision data formats, signifi-
cantly reducing memory usage and computational
costs(Rokh et al., 2022). The two dominant data
formats in this space are fixed-point (Lee et al.,
2024) and BFP (Zeng et al., 2024) representations.
Fixed-point representation simplifies operations
like multiplication and accumulation compared to
floating-point formats, but it has limited precision
due to the fixed offset and scaling.(Nair et al., 2021;
Benmaghnia et al., 2022) Differently, BFP com-
bines the computational efficiency of fixed-point
arithmetic with the dynamic range of floating-point
formats, offering an effective balance between pre-
cision and performance(Basumallik et al., 2022).
Recent progress in BFP quantization, including
techniques like DBPS (Lee et al., 2023), Static BFP
(Fan et al., 2021), and MSFP12 (Darvish Rouhani
et al., 2020), has shown its ability to achieve high
accuracy, efficient computation, and reduced stor-
age costs. Additionally, research into low-bit BFP
representations aims to improve these advantages.
For example, FAST (Zhang et al., 2022a) intro-
duces low-bit BFP quantization for activations and

14862



Sn1 Enat My
(a) FP

Sn-1 Mt
(b) BFP

Figure 2: Profile of extended exponent sharing by com-
pared with floating-point (FP) and BFP. The shared
exponent of EES consists of g bits of original shared
exponent and [ g g bits of extendable shared exponent.

weights, supporting efficient matrix multiplications
with reduced precision. Similarly, Bucket (Lo and
Liu, 2023) and FIGNA (Jang et al., 2024) adopt 11-
bit and 8-bit BFP formats, respectively, to enhance
computational performance and energy efficiency.

In the BFP representation, data can be classified
into two categories: ‘“normal values,” which are ac-
curately represented, and “extreme outlier values,”
which fall outside representable range and require
approximation through shifting or scaling. These
outliers are a major challenge in low-bit BFP quan-
tization, as they can significantly degrade model
accuracy. Techniques like AWQ (Lin et al., 2024)
and SuperWeight (Yu et al., 2024) identify and pre-
serve “super weights” — critical parameters with
extreme values — to mitigate the negative effects
of outliers on model quality. BiE (Zou et al., 2024)
introduces dual shared exponents to manage both
normal values and outliers in both activations and
weights, ensuring high accuracy for LLM models.

While these methods address outlier challenges,
the limited bit width of the shared exponent in BFP
remains a key limitation for representing a wider
range of values. We propose a scalable shared ex-
ponent strategy that extends the range of numerical
representation and improves the performance of
low-bit BFP quantization for LLMs.

3 Preliminary

As shown in Fig. 2(a), a set of N floating-point
numbers, denoted as X, can be given by:

X = [(=1)%ome250, ..., (=1)"N-1my_ 2581
()
where s;, m;, and E; are the i-th sign, mantissa,
and exponent (0 < i < N — 1), respectively.
When converting floating-point data into BFP
representation, we obtain the new data set X, as
illustrated in Fig. 2(b), which is given by:

/
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Figure 3: Workflow. (a) Establishing exponent bit
width.(b) Extended exponent sharing. (c) Bit width
space exploration. Acc denotes the model accuracy,
while EE denotes the energy efficiency.

where EY is the shared exponent, calculated as:

Ey=maxFE;|i€0,....N—1. (3

The bit width of shared exponent EY equals to
lg, =1ls )

where [g denotes the length of the shared exponent.

For each mantissa in this BFP representation,
m,, is computed by shifting the original mantissa
m; based on the difference between the maximum
shared exponent (Eg) and the individual exponent
(E;), using the right shift operation:

m; = m; > (Eg — E;) (5)

where > denotes the right shift operation.
Assuming the value of input activations and
weights are known and the rounding-to-nearest
method is used (Kalliojarvi and Astola, 1996; Song
et al., 2018), the mean of « is zero, and the error
variance (ag) can be formulated as
272lm

2 2-E’
=2 .92E; (6)
g 12

where [,,, is the bit width of BFP mantissa.

4 Methodology

This section exhibits the EES framework, detail-
ing the quantization workflow, error analysis, and
hardware architecture.
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4.1 Overview

Fig. 3 depicts the EES quantization workflow,
which comprises three primary components: ex-
ponent bit width establishment, EES numerical rep-
resentation, and bit width space exploration. The
exponent bit width establishment component deter-
mines the bit widths for activations and weights by
analyzing their exponent distributions. The EES
numerical representation component defines the ex-
tendable exponent format during the transformation
from FP to EES format. The bit width space explo-
ration component optimizes the trade-off between
model accuracy and energy efficiency to determine
the optimal EES quantization configuration.

Exponent Bit Width Establishment. Fig. 3(a)
illustrates the process of determining the exponent
bit widths for activations and weights based on
their statistical distribution ranges. The original
shared exponent bit widths, /g 4 for activations and
lsw for weights, restrict the representable ranges to
[—2tsa—1 9lsa—1_1)and [—2lsw—1 olsw—1_1],
respectively. These ranges, however, are insuffi-
cient to fully capture data with large outliers, which
poses challenges for accurate representation.

To address this, the shared exponent bit-width
for activations and weights are augmented by in-
troducing extendable shared exponent bits, thereby
expanding the dynamic range. The total shared
exponent bit width includes two components: the
original shared exponent bit width (Ig4 and lgy)
and the extendable shared exponent bit width (/4
for activations and lyy for weights). This unified
representation is expressed as:

lpg =ls + g, (7

where [, represents the total shared exponent bit
width, comprising the original bit width /g and the
extendable bit width (f,,.

Following this expansion, the range of the shared
exponent Eg is given by:

Eg e [-2lstlep=1 olstlep=1 _ 1] (8)

EES Numerical Representation. Fig. 3 (b) il-
lustrates the EES numerical representation, which
is derived from the conversion of original floating-
point data within a tensor to the extendable expo-
nent sharing format in a block. The EES represen-

tation, denoted as X", is expressed as:
X" =[(=1)%my, .., (=1)*N=1m%,_,]- 255 (9)

where Eg represents the shared exponent.

The incorporation of the extendable exponent
into the partial least significant bits of the pri-
vate mantissas modifies the mantissa representation.
The updated mantissa, m/, is defined as:

m [l —1: 0]; lg, <i<N-1
(10)

, {{m;[lm—l 1], Eglil}; 0<i<lp, —1
mi:

where m/[l,,, — 1 : 1] denotes the bits ranging from
the first to the (,,, — 1)-th position of the original
mantissa m; Here, E'g, the value of the extendable
exponent, is derived from the least significant bits
of the shared exponent E'g and is represented as:

(1D

Vector Multiplication in Blocks. Given two
blocks X7 and X9 with NV elements in EES format,
the dot product is computed as:

Eg = ES[ZEE —1: 0]

N-1
X{/'Xé/ZQEA+EWZ (_1)SA1- D Swi (MAzMWz)
=0

(12)
where F4 and Eyy represent the effective expo-
nents for X" and X/, respectively, defined as:

Ey=(Fsa <<lp)+ Ega
Ew = (Esw << lw)+ Egw

where Eg4 and FEgy denote the original shared
exponent bit width for X" and X/, respectively.
FEr4 and Egw respectively correspond to the ex-
tendable exponent values for X{ and X/ [4 and
Iy indicate the bit widths of extendable exponents.

Bit width Space Exploration. To optimize the
extendable exponent bit width, the design space
exploration process for activations and weights is
illustrated in Fig. 3(c). The objective is to optimize
the function O, formulated as:

(13)

AP(<ZA, lw>, lm;’) + - EE(

O <la,lyw>, lm/_/) AP = Acc
optimal: O = 1 ‘
AP(<lA,lw>,lm{/) ta- EE(
<l,4,lw>,lm;/) AP = Per
(14)

where AP take values of Acc and Per. Acc, Per,
and E'F respectively denote the accuracy, perplex-
ity, and energy efficiency. « is a balancing factor.
l4 and ly, correspond to the bit widths of the ex-
tendable exponents for activations and weights, re-
spectively. lm;' specifies the length of the mantissa.
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4.2 Error Analysis

The transition from FP to EES introduces errors
originating from two primary sources. First, round-
ing errors arise during the quantization of FP val-
ues into the BFP format, governed by the specified
mantissa and exponent lengths. Second, additional
numerical errors occur due to the integration of the
extendable exponent component (E£'g) into the least
significant bits of the BFP mantissas.

For a block containing N elements, the error
for the conversion from FP to EES is given by:

N-1 N-1
o= Y~ < 3 Il — il + fad — il
=0 =0
lpp—1 | N-1
< D mf =il 27y m —my] - 258
=0 =0
S ZEE . 2_lm;/ =+ N . (2_l'/m,+ES _ 2_l7n+ES)
(15)

where x;, 2 and 2!/ are the i-th number of the FP,
quantified by the shared exponent and EES rep-
resentations, respectively, while ,,;, I/ . and I/ .
represent the mantissa width of x;, = and z7. I,
and Eg respectively denote the extendable expo-
nent bit width and extended shared exponent.
Based on Equations (6)-(15), the error variance

(02) for the transition from FP to EES is given by:

—lm(/—l-‘y-ES —lm(/+ES
1 1

3 3

This range arises from replacing the least signif-
icant bit of the original mantissa in EES. Specifi-
cally, when the mantissa bit-width is I/, the error
variance o2 is at least as large as the error vari-
ance introduced during the FP-to-BFP conversion.
However, when accounting for the bit replacement,
the error variance remains no greater than the vari-
ance observed in the FP-to-BFP conversion with a

reduced mantissa bit-width of I/, — 1.

4 4

<on< (16)

4.3 Hardware Architecture

Fig. 4 depicts a hardware architecture designed
to support EES-based computations, consisting of
three primary components: the on-chip memory
(AB, OB, and WB), the processing element (PE),
the decoder (Dc) and encoder (Ec). The memory
units (AB, OB, WB) temporarily store input activa-
tions, output activations and weights, respectively.
The PE performs EES-based multiplication and ac-
cumulation. Dc converts EES-format data into BFP

Figure 4: EES-based hardware architecture. ps denotes
the partial sum propagated from the preceding PE.

format for computation, while Ec encodes output
data from FP format back into EES representation.

The PE is structured into three key components:
SP, MP, and EP. SP handles the XOR operations for
the sign bits, MP performs the mantissa multipli-
cations, and EP processes the combined exponent,
including both the original and the extended shared
exponent. The intermediate results from these com-
putations are stored in the Out registers, where
they are accumulated to generate the final outputs.

Fig. 5 depicts the Dc and Ec components. The
Dc component (Fig. 5(a)) decodes both activations
and weights by converting EES-format data into
BFP format for calculations. It uses a selector to
extract the last bit of mantissas and employs two
adders and shifters to concatenate the extended
exponent. Ec (Fig. 5(b)) encodes the output acti-
vations back into the EES format. It first uses a
selector and a shifter to convert the original data
into BFP format. After that, two selectors sepa-
rately choose the mantissa and shared exponent
bits. Finally, an adder and a shifter concatenate the
data into the final EES representation.

5 Evaluation

5.1 Experimental setup

Baselines. We evaluate the EES framework across
three key aspects. First, we compare EES against
three representative post-training low-bit quantiza-
tion baselines: Tender (Lee et al., 2024), FINGA
(Jang et al., 2024), and BiE (Zou et al., 2024). Ten-
der employs INT4 quantization with tensor decom-
position and implicit re-quantization to achieve effi-
cient low-precision acceleration of LLMs. FINGA
adopts a BFP format with optimized multiplica-
tion operations to reduce storage overhead and en-
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Tender W4A4 1G 28 0.266 488.28
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Figure 5: Dc (a) and Ec (b) components for decoding
and encoding, respectively.

mantissa bit width (I22,;)

{2,3.4,5,6}

Extendable exponent bit width (Ig,,)
Activation (1 4) Weight (lw)
{1,2,3,4,5,6} | {1,2,3,4,5,6}

Table 1: Quantization space exploration under different
extendable exponents (14, ly) and mantissas (I//..).

hance computational efficiency. BiE incorporates
a double-exponential mechanism to handle out-
liers while preserving model accuracy. Second, we
assess hardware performance, memory efficiency,
and energy and area efficiency, benchmarking EES
against these baselines. Finally, we perform a quan-
tization space exploration for extendable shared
exponents for activations and weights under vari-
ous bit-width configurations (Table 1) for optimal
accuracy performance and energy efficiency.

Models and Datasets. EES is evaluated on
two major LLM families: the OPT suite (6.7B
and 13B variants) (Zhang et al., 2022b) and
Llama (Llama2-7B, Llama2-13B, and Llama3.1-
8B) (Touvron et al., 2023). Benchmarks include
Hellaswag (Zellers et al., 2019), ARC_challenge
(Min, 2023), LAMBADA _OpenAl (Nguyen et al.,
2024), and LAMBADA _standard (Paperno et al.,
2016). All accuracy results are conducted in a
high-performance computing environment with an
NVIDIA RTX 4090 GPU, leveraging the PyTorch
2.1.0 framework.

Implementations. To simulate EES, activations
and weights are quantized using PyTorch. Baseline
configurations include Tender with 4-bit integer,
FINGA with 4-bit private mantissa and 3-bit shared
exponent, and BiE with a 4-bit private mantissa,
two 5-bit shared exponents and a flag bit. EES
uses a W4 A4 configuration with 4-bit mantissas
for both weights and activations. All BFP baselines

Table 2: Power and area consumption of one PE. The
results of baselines come from their literature. The
configuration labeled as “W4A4" indicates that both the
weights and activations utilize 4-bit mantissas.

Power  Power Area Area

Component Number = " potio(%) [mm?] Ratio(%)

Ec 16  0.00339 0.0078 0.00255 0.0164
Dc 32 0.00489 0.0112 0.00359 0.0343
EES-PE 256 0.428 0.9810 0.0984 0.9413

Table 3: Power and area breakdown of EES.

and EES are evaluated in a block size of 16.

To evaluate hardware behavior, the EES archi-
tecture was implemented in Verilog RTL and ver-
ified through simulations. Power analysis was
conducted using Synopsys Design Compiler with
45nm TSMC technology library. Table 2 lists pa-
rameter settings for comparisons. The power of
baselines for each PE comes from their literature.
Table 3 breaks down area and power consumption
of EES, showing that encoding and decoding com-
ponents contribute minimally (0.02%-0.03%). Per-
formance and energy efficiency were assessed us-
ing the MAESTRO (Kwon et al., 2020) simulator,
with LLM models as inputs. MAESTRO provides
a framework for analyzing LLLM deployments on
hardware architectures, delivering detailed insights
into performance and energy efficiency.

5.2 Simulation Results

Accuracy and Perplexity Comparison. Table 4
compares accuracy and perplexity across methods.
While EES shows a slight accuracy decline com-
pared to the original FP16 baseline, this is primarily
due to the extendable shared exponent strategy in-
troduced during quantization. Despite this small
trade-off, EES significantly enhances energy ef-
ficiency via low-bit extendable shared exponent
quantization. Compared to the INT4-based Tender
method, EES achieves higher accuracy, thanks to
the broader dynamic range of its data format.

EES demonstrates superior performance over
BFP-based FINGA in both accuracy and perplex-
ity. For example, in the OPT-6.7B model, using
the Hellaswag dataset, EES improves accuracy by
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Method Tender FINGA BiE EES

Hellaswag (1) 48.06% 45.58% 46.50% 47.33% 47.88%

OPT-6.7B ARC_challenge(?) 30.63% 29.82% 2921% 29.73%  29.89%
: LAMBADA_OpenAl(]) 4.25 5.30 6.12 493 5.11
LAMBADA _Standard(]) 5.38 6.55 6.72 6.59 5.68

Hellaswag (1) 48.40% 45.58% 46.89% 47.37% 47.88%

OPT-13B ARC_challenge(?) 3331% 31.99% 31.90% 33.06% 32.78%
LAMBADA_OpenAlI(]) 4.08 6.62 5.67 5.69 5.01
LAMBADA _Standard(]) 5.67 9.19 7.13 6.49 6.48

Hellaswag (1) 49.88% 48.50% 49.24% 4891% 49.34%

Llama2-7B ARC_challenge(?) 44.99% 40.69% 44.42% 43.01% 44.45%
LAMBADA_OpenAl(]) 3.34 5.42 5.10 3.97 4.44
LAMBADA_Standard(|) | 4.27 7.13 6.10 5.84 5.60

Hellaswag (1) 50.11% 48.03% 48.40% 49.64% 49.49%

Llama2-13B ARC_challenge(?) 49.00% 4530% 47.80% 48.75%  48.31%
LAMBADA_OpenAl(]) 2.94 4.36 3.08 3.66 3.08
LAMBADA _Standard(]) 3.77 6.10 3.94 4.76 3.83

Hellaswag (1) 5220% 50.11% 50.80% 51.18% 51.73%

Llama3. 1.8B ARC_challenge(?) 51.19% 50.31% 50.14% 50.19%  50.67%
LAMBADA_OpenAl(]) 3.05 4.95 3.22 3.62 3.06
LAMBADA_Standard(}) | 4.01 6.50 4.34 5.47 4.16

Table 4: Accuracy/perplexity comparison between EES and baselines. (|) indicates that lower perplexity is better
for the datasets, while (1) indicates that higher accuracy is better.

Benchmark OPT OPT Llama2 Llama2 Llama3.1
enchmar 678 -13B 7B -I13B -8B
Config W4A4 W4A4 W4A4 W3A3 W4A4

Bgar lEgyw> <b,4> <b,4> <5,5> <b,4> <6,5>
Accuracy (%)  47.88 47.67 4945 4876 51.86
Energy Efficiency 13.60x 13.60x 13.59x 17.75x 13.58%

Table 5: The optimal accuracy and energy efficiency
(normalized with FP16) are based on a bit-width space
exploration conducted under different mantissa and
extendable exponent bit-width setting on benchmarks
and Hellaswag dataset. <lgg,, (g, > denotes the
combination of activation and weight of extended
shared exponent bit-width. The exploration results
on ARC_challenge, LAMBADA_OpenAl and LAM-
BADA_Standard datasets are shown in Appendix A.3.

1.38%, while on the LAMBADA _Standard dataset,
it reduces perplexity by 1.11. This is attributed to
the extendable shared exponent strategy, which en-
sures accurate representation of outliers, preventing
errors from their misrepresentation. When com-
pared to BiE, which also addresses outlier han-
dling, EES achieves comparable accuracy while
offering notable advantages in energy efficiency.
Specifically, in the Llama3.1-8B model, using the
Hellaswag dataset, EES boosts accuracy by up to
0.55% and reduces perplexity by 0.56% on the
LAMBADA _Standard dataset. These results high-

light the effectiveness of EES in maintaining high
accuracy and energy efficiency, even with slight
accuracy losses on certain benchmarks.

Bit-width Space Exploration. Table 5 sum-
marizes results from exploring the bit-width space
with different EES parameter configurations. The
optimal configuration includes a mantissa bit-width
of 4 and extendable shared exponent widths of 5
for activations and 4 for weights. During this explo-
ration, accuracy loss between adjacent configura-
tions was constrained to be no greater than 1.00%.
On average, EES improves energy efficiency by
13.6x compared to FP16. The bit-width exploration
is conducted offline, allowing the optimal config-
uration to be selected for online inference with-
out adding hardware overhead. For the activation
values generated online, we can obtain estimates
through statistical data analysis and used them as
the prior information for the guideline of the of-
fline exploration. Details of the exploration process
across benchmarks are provided in Appendix A.3.

The optimal configuration is derived using Equa-
tion (14), which balances precision and hardware
overhead. The balance factor a plays a key role
in determining the trade-off between accuracy and
energy efficiency. In this study, « = 0.2 is used as
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Benchmark OPT-6.7B OPT-13B Llama2-7B
Config W2A2 W3A3 WS5A5 WO6A6 W2A2 W3A3 WS5A5 W6A6 W2A2 W3A3 WS5A5 W6A6
<dpgaslEgy > <5,5> <6,4> <5,4> <6,5> <5,5> <5,4> <5,4> <6,5> <5,5> <6,4> <5,4> <5,5>
Accuracy (%) 43.84 46778 4792 4796 4489 4652 48.01 48.11 4327 4847 49.74 49.87
Energy Efficiency 25.33x 17.74x 11.03x 8.02x 2533x 17.75x 11.03x 8.02x 2533x 17.74x 11.02x 8.03x
Benchmark Llama2-13B Llama3.1-8B
Config W2A2 W3A3 WS5A5 WO6A6 W2A2 W3A3 WS5A5 WO6A6
<pgaslEgw > <5,5> <5,5> <5,4> <6,5> <5,5> <b,4> <5,4> <6,5>
Accuracy (%) 43778 48776 49.57 49.76 45.11  50.55 52.10 5222
Energy Efficiency 25.33x 17.74x 11.03x 8.02x 25.33x 17.75x 11.03x 8.02x

Table 6: Optimal accuracy and energy efficiency (normalized with FP16) results are based on a bit-width space
exploration conducted under the optimal extended shared exponent bit width setting with different mantissa bit
width on benchmarks and Hellaswag dataset. The optimal results of bit-width space exploration with different
mantissa on ARC_challenge, LAMBADA_OpenAl and LAMBADA_Standard datasets are shown in Appendix A.3.

Memory  Energy Area

Method  Config - Throughput Efficiency Efficiency Efficiency
FP16 - 1.00x 1.00x 1.00x 1.00x
Tender W4A4 3.84x 4.00x 15.36x  14.21x
FIGNA W4A4 3.58x 3.82x 13.68x  17.61x
BiIE  W4A4 3.51x 2.80x 9.83x 11.85x
EES  W4A4 3.56 % 3.82x 13.60x  16.73x

Table 7: Hardware efficiency of the size PE array with
different numerical representations compared with FP16.
We highlight the hardware efficiency of EES.

the equilibrium value, with sensitivity analysis on
a provided in Appendix A.4.

Table 6 further presents the optimal extended
shared exponent bit-widths and corresponding re-
sults across benchmarks under various mantissa
bit-widths. For a fixed mantissa bit-width, changes
in extendable shared exponent widths have mini-
mal impact on energy efficiency. For instance, in
the W3A3 configuration, shifting from an extended
exponent combination of <6,4> to <5,4> re-
duces energy efficiency by only 0.01%. Thus, with
a fixed mantissa bit-width, selecting the optimal
extended exponent width is driven mainly by accu-
racy considerations. By systematically identifying
the best configuration for both mantissa and ex-
tended shared exponents, EES ensures a balanced
trade-off between precision and energy efficiency.

Hardware Efficiency. Table 7 highlights the
normalized hardware performance of EES com-
pared to baseline. EES achieves remarkable im-
provements across key metrics: throughput is in-
creased by 3.6 x, memory efficiency by 3.8 ¥, en-
ergy efficiency by 13.6x, and area efficiency by
16.7x. These gains stem from the adoption of low-
bit-width representations and innovative extendable
exponent strategy. When compared to Tender, EES
shows a slight decrease in energy efficiency (0.9x),
primarily due to the added complexity of EES com-
putations compared to simpler integer multiplica-

Method  Config Hellaswag  arc_challenge
FP - 52.16% 51.19%
BFP W4A4 50.80% 50.14%

EES-EEE ~ W4A4 51.71% 50.82%
EES W4A4 51.56% 50.74%

Table 8: Effect of shared exponent extending and em-
bedding operations. “EES-EEE" denotes EES under the
situation of removing the embedding.

tion. Against FINGA, EES delivers comparable
throughput and efficiency but outperforms in accu-
racy. Relative to BiE, EES improves both energy
and area efficiency by 1.4x, as BiE’s use of an
additional flag bit and dual-exponent mechanism
incurs higher storage and computational costs.
Impact of Extendable Exponent Embedding.
As shown in Table 8, removing the embedding op-
eration for the extendable exponent leads to an av-
erage accuracy drop of only 0.12%. This indicates
that embedding the extendable exponent into the
last bit of partial mantissas minimally impacts accu-
racy while significantly reducing storage overhead.
This result underscores the effectiveness of EES in
balancing precision and hardware efficiency.

6 Conclusion

In this paper, we propose an Extendable Exponent
Sharing (EES) method to overcome the limitations
of existing low-bit quantization techniques. EES
enhances dynamic range capture by embedding
extendable exponent bits into lower-order bits of
mantissa, without introducing additional overhead.
To further optimize performance, we design a spa-
tial exploration strategy to determine optimal bit-
width configuration for both extendable exponent
and mantissa. Comprehensive evaluation show that
EES outperforms representative baseline methods
in terms of both accuracy and energy efficiency.
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7 Limitations

While EES offers an extended dynamic range, its
accuracy can be affected by replacement errors
when part of the mantissa is embedded within the
extendable exponent bits. Furthermore, the optimal
configuration of the extendable exponent and man-
tissa during the EES bit-width exploration can vary
depending on the specific benchmarks or datasets
considered. Currently, the exploration process in-
volves searching the entire model, rather than tailor-
ing it to individual layers, which both increases the
exploration complexity and slows down the overall
process. Future work will explore more efficient
search strategies to accelerate this process.

On the hardware front, EES has shown improve-
ments in both computational and energy efficiency.
However, it may necessitate custom-designed com-
puting units, encoders, and decoders, potentially
adding extra overhead and complexity compared to
conventional hardware designs. Future efforts will
aim to refine the EES approach and address these
challenges.
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A Appendix
A.1 Hardware Overhead

Table 9 presents a comparison of the encoding
overhead for converting original FP format data
to INTS, INT4, and BFPS, as well as the decoding
overhead for restoring data to its original format.
Taking the FP16-INT8 type as an example, it rep-
resents the overhead of encoding FP16 into INTS.
From Table 9, it can be observed that, compared
to conversion to other simpler data formats, the
overhead of the encoder and decoder in the EES ac-
celerator in terms of power consumption and area
is relatively low, and can be considered negligible
compared to the overall overhead of the accelerator.

A.2 Results of Accuracy and Perplexity

Table 10 demonstrates the experimental results of
all baselines and our method on the more advanced
LLM models DeepSeek_R1_Disstill_Qwen_1.5B
and DeepSeek_R1_Distill_Llama8B. Consistent
with the results observed in other LLM models,
EES has improved in both accuracy and perplexity
compared to baseline, while maintaining perfor-
mance close to the original accuracy.

Table 11 presents a comparison of the best per-
formance data of basic BFP and our method EES
across five models. It can be observed that, com-
pared to the best-performing configuration of basic
BFP, EES shows significant improvements in both
accuracy and perplexity, while demonstrating simi-
lar performance in terms of energy efficiency.

A.3 Bit-width Space Exploration Results

Table 12 presents the optical accuracy and en-
ergy efficiency results obtained through the EES
bit-width search across different benchmarks and
datasets. Consistent with the findings on the Hel-
laswag dataset, The optimal configuration includes
a mantissa bit-width of 4 and extendable shared ex-
ponent widths of 5 for activations and 4 for weights.
Table 13 further describes the optimal accuracy
and energy efficiency results for each benchmark
and dataset under different mantissa bit-width set-
tings obtained through the bit-width space search.
As observed in the Hellaswag dataset, increasing
the mantissa bit-width improves accuracy but also
leads to a decrease in energy efficiency.

Type Component Power [w] area [mm?]
FP16-INT8 Encoder 0.0025 0.00362
INTS8-FP16 Decoder 0.0069 0.00484
FP16-INT4 Encoder 0.0015 0.00289
INT4-FP16 Decoder 0.0039 0.00281
FP16-BFP8 Encoder 0.0036 0.00301
BFP8-FP16 Decoder 0.0035 0.00272
FP16-EES Encoder 0.0034 0.00255
EES-FP16 Decoder 0.0049 0.00359

Table 9: Comparison of Encoding and Decoding Costs
with INTS, INT4, and BFPS.

Fig. 6 presents the accuracy and normalized
energy efficiency results (compared to FP) for dif-
ferent mantissa bit width Lm using the Hellaswag
dataset. It can be observed that for most bench-
marks, when L'm > 4, EES can maintain relatively
high accuracy, but the energy efficiency signifi-
cantly decreases. For example, on the Llama3.1-8B
benchmark, increasing Lm from 4 to 6 only im-
proves accuracy by 0.32%, while energy efficiency
drops by 1.7x. When Lm > 4, energy efficiency
improves, but this comes with a significant loss in
accuracy. Therefore, the performance across dif-
ferent benchmarks provides valuable guidance for
selecting the optimal mantissa bit width that bal-
ances accuracy and energy efficiency effectively.

Fig. 7 shows the changes in perplexity and nor-
malized energy efficiency for different values of
Lm on the LAMBADA_OpenAl dataset. Consis-
tent with the findings on the Hellaswag dataset,
increasing Lm in EES leads to a decrease in per-
plexity, but energy efficiency also declines. This is
primarily due to the use of different mantissa bit
width in the EES implementation.

Fig. 8 illustrates the results of the extendable ex-
ponent bit-width search under a fixed mantissa bit-
width using the Hellaswag dataset on the Llama3.1-
8B model. As shown in Fig. 8 (a), when the man-
tissa bit-width is 6, the optimal extendable expo-
nent configuration is <4, 3>. Fig. 8 (b) shows that
when the mantissa bit-width is 4, the optimal ex-
tendable exponent configuration is <2, 1>. Since
the impact of the extendable exponent on energy
consumption is negligible when the mantissa bit-
width is the same, we primarily determine the op-
timal extendable exponent bit-width configuration
based on accuracy.

A.4 Determination of Balance Factor o

Fig. 9 shows the impact of different balance factors
« on accuracy and energy efficiency across multi-
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Tasks FP Tender FIGNA BiE EES
Hellaswag(?) 41.78%  39.01% 40.31% 41.09% 41.57%
DeepSeek_R1_ ARC_challenge(1) 2438%  23.00% 24.01% 24.12% 24.23%
Disstill_Qwen_1.5B lambada_openai(|) 6.95 20.92 8.18 8.04 7.76
lambada_standard(|) 10.65 42.17 12.54 12.31 11.98
Tasks FP Tender FIGNA BiE EES
Hellaswag(1) 48.99%  4631% 48.14%  48.46%  48.61%
DeepSeek_R1_ ARC_challenge(1) 40.61%  3935% 39.67% 4030%  39.94%
Distill_Llama8B lambada_openai(|.) 5.51 9.08 6.29 6.94 5.87
lambada_standard(|) 9.18 12.79 11.06 10.37 9.94

Table 10: Accuracy/perplexity comparison between EES and baselines. () indicates that lower perplexity is better
for the datasets, while (1) indicates that higher accuracy is better.

Model method Hellaswag(1) ARC_challenge(f) lambada_openai(]) lambada_standard(]) energy efficiency
OPT-6.7B BFP 46.61% 29.41% 5.83 6.90 13.62x
EES 47.88% 29.89% 5.11 5.68 13.60x
BFP 47.40% 31.72% 5.63 7.08 13.62x
OPTI3B  ppg  47.88% 32.58% 5.01 6.48 13.60%
ILama2-7B BFP 48.80% 43.71% 5.61 6.67 13.62x
EES 49.34% 44.45% 4.44 5.60 13.60x
LLama2-13B BFP 49.11% 47.83% 391 4.42 13.62x
EES 49.49% 48.31% 3.08 3.83 13.60x
LLama3.1-8B BFP 50.87% 49.50% 3.98 5.31 13.62x
EES 51.73% 50.67% 3.06 4.16 13.60x

Table 11: The comparison between the best performance results of the basic BFP and EES, across five models is as
follows, while the energy efficiency is expressed as a multiple relative to FP16.

OPT-6.7B OPT-13B Llama2-7B Llama2-13B Llama3.1-8B
Benchmark ARC_ch LAMBAD LAMBAD |ARC_ch LAMBAD LAMBAD [ARC_ch LAMBAD LAMBAD |[ARC_ch LAMBAD LAMBAD [ARC_ch LAMBAD LAMBAD
allenge A_OpenAl A_Standard| allenge A_OpenAl A_Standard| allenge A_OpenAl A_Standard| allenge A_OpenAl A_Standard| allenge A_OpenAl A_Standard
Config W4A4  W4A4 W4A4 | WaA4  W4A4 W4A4 | WAA4  W4A4 W4A4 | W3A3  W3A3 W3A3 | W4A4  W4A4 W4A4
<ggalEgy > | <5,4>  <5,4> <5,4> | <5,4> <5,4> <5,4> |<5,5> <5,5> <5,5> | <5, 4> <5,4> <5,4> |<6,5> <6,5> <6,5>
AC;;?&E@) " 2989 511 568 | 3278 501 648 | 4453 441 556 | 47.54 335 387 | 5072 3.02 407
Energy Efficiency| 13.60x  13.60x 13.60x | 13.60x  13.60x 13.60x | 13.59x 13.59x  13.59x [13.60x 13.60x  13.60x |13.58x  13.58x 13.58x

Table 12: The optimal accuracy, perplexity and energy efficiency (normalized with FP16) results are based on a
quantization space exploration conducted under different mantissa and extendable exponent bit width setting on
benchmarks evaluated using the ARC_challenge, LAMBADA_OpenAl and LAMBADA_Standard datasets. <lg, ,,
lE ¢, > denotes the combination of activation and weight of the extended shared exponent bit width.

Benchmark OPT-6.7B

OPT-13B

Llama2-7B

Llama2-13B

Llama3.1-8B

Config

W2A2 W3A3 WS5A5 WO6A6

W2A2 W3A3 WS5A5 W6A6

W2A2 W3A3 WS5A5 WO6A6

W2A2 W3A3 WS5A5 WO6A6

W2A2 W3A3 WS5A5 WO6A6

<psa:lBsw>
arc_challenge(T)

<5,5> <6,4> <5,4> <5,
25.11% 29.23% 30.12% 30.43%

4>|<5,5> <5,4> <5,4> <6,5>

30.19% 32.47% 32.83% 32.99%

LAMBADA

TS\ e'};AAIé‘IK) 576 547 466 432 | 571 534 4.8 4.66

_Standard (}) 6.77 621 599 537 | 698 6.67 690 587
Energy Efficiency|25.33x 17.74x 11.03x 8.02x |25.33x 17.75x 11.03x 8.02x

<5,5> <6,4> <5,4> <5,5>
33.68% 42.96% 44.52% 44.59%

583 506 3.69 3.05
736 533 456 5.29
25.33x 17.74x 11.02x 8.03x

<5,5> <5,5> <5,4> <6,5>
42.23% 47.54% 48.65% 48.79%
362 321 303 30l
405 387 383 374
25.33x 17.74x 11.03x 8.02x

<5,5> <5,4> <5,4> <6,5>
38.11% 48.77% 52.88% 52.01%
673 475 311 3.02
861 498 422 416
25.33x 17.75x 11.03x 8.02x

Table 13: The optimal accuracy and energy efficiency (normalized with FP16) results are based on a bit-width
space exploration conducted under the optimal extended shared exponent bit width setting with different mantissa
bit width on benchmarks evaluated using the ARC_challenge, LAMBADA _OpenAl and LAMBADA _Standard
datasets. <lgg,, lEg,, > denotes the combination of activation and weight of the extended shared exponent bit

width.

ple benchmarks. We selected six representative val-
ues (a € {0.015, 0.05, 0.2, 0.5, 1, 2}, ranging from
0 to 2) for sensitivity analysis at different levels
of a.. The results indicate that when « is between
0.015 and 0.2, the objective function tends to favor
accuracy, whereas when « is between 0.5 and 2, it
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favors energy efficiency. Only when « is between
0.2 and 0.5, the objective function can achieve a
better balance between accuracy and energy effi-
ciency. Based on the results across all benchmarks,
we ultimately chose a=0.2 as the equilibrium value
between accuracy and energy efficiency.
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Figure 6: Bit-width space exploration results under different mantissa bit-width (Lm) on benchmarks evaluated
using the Hellaswag dataset, with the optimal extended exponent bit-width settings. The red dashed box represents
the optimal (Lm) configuration for benchmarks.
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Figure 7: Bit-width space exploration results under different mantissa bit-width (Lm) on benchmarks evaluated
using the LAMBADA_OpenAl dataset, with the optimal extended exponent bit-width settings. The red dashed box
represents the optimal (Lm) configuration for benchmarks.
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Figure 8: Bit-width space exploration results under different extendable exponent bit-width (LA, LW) on Llama3.1-
8B evaluated using the Hellaswag dataset, with the same mantissa bit-width settings. (a) The original data format
consists of a 6-bit mantissa and a 1-bit shared exponent. (b) The original data format consists of a 4-bit mantissa
and a 3-bit shared exponent. LA and LW represent the extendable exponent bit width of activation and weight,
respectively. The red dashed box represents the optimal extendable exponent bit-width configuration for benchmark.
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Figure 9: Comprehensive sensitivity analysis of different o values for accuracy and energy efficiency under different
mantissa width on the benchmarks evaluated using the Hellaswag dataset. The red dashed box represents the optimal
balance factor (o« = 0.2) for benchmarks.
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