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Abstract

The assessment of children’s narrative ability
is crucial for diagnosing language disorders
and planning interventions. Distinct from the
typical automated essay scoring, this task fo-
cuses primarily on evaluating the complete-
ness of narrative content and the coherence
of expression, as well as the interpretability
of assessment results. To address these issues,
we propose a novel computational assessing
framework NarGINA, under which the narra-
tive graph is introduced to provide a concise
and structured summary representation of nar-
rative text, allowing for explicit narrative mea-
surement. To this end, we construct the first
Chinese children’s narrative assessment corpus
based on real children’s narrative samples, and
we then design a narrative graph construction
model and a narrative graph-assisted scoring
model to yield accurate narrative ability assess-
ment. Particularly, to enable the scoring model
to understand narrative graphs, we propose
a multi-view graph contrastive learning strat-
egy to pre-train the graph encoder and apply
instruction-tuned large language models to gen-
erate scores. The extensive experimental results
show that NarGINA can achieve significant
performance improvement over the baselines,
simultaneously possessing good interpretabil-
ity. Our findings reveal that the utilization
of structured narrative graphs beyond flat text
is well suited for narrative ability assessment.
The model and data are publicly available at
https://github.com/JlexZzz/NarGINA.

1 Introduction

A narrative can take several forms: recounting past
experiences, retelling a previously heard or read
story, or creating a composition (McCabe et al.,
2008). Assessing narrative ability not only pro-
vides an objective measure of children’s language
development, but also plays a crucial role in the
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Child’s Narrative Text
<Chinese> 男孩和小狗醒了。然后男孩和小狗发现青蛙不见了。男孩找青蛙。男孩把鞋子倒下来。
小狗也在找青蛙。小狗把身子探出窗台。然后小狗就从窗台掉下去了。小狗也把瓶子摔碎了…
<English> The boy and the puppy woke up. Then the boy and the puppy found that the frog was 
gone. The boy looked for the frog. The boy turned over his shoes. The puppy also looked for the 
frog. The puppy leaned out of the window sill. Then the puppy fell off the window sill. The puppy 
also smashed the bottle…
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Figure 1: An example of narrative graph.

early diagnosis and intervention of language disor-
ders (Pesco and Bird, 2016; Pico et al., 2021).

In the field of clinical linguistics, assessing nar-
rative ability has been a major focus of research.
Studies typically analyze narratives from two per-
spectives: macrostructure (Blom and Boerma,
2016) and microstructure (Justice et al., 2006).
Macrostructure refers to the global organization
of a story, typically defined by story grammar
components or story structure (Xue et al., 2022;
Stein, 1979). In contrast, microstructure focuses
on local linguistic features, including story length,
lexical diversity, syntactic complexity, and cohe-
sion. As microstructural features are relatively easy
to quantify, research has increasingly emphasized
macrostructural coherence (Reese et al., 2011) and
completeness (Kellas and Manusov, 2003). Causal
networks (Trabasso and Sperry, 1985) are an im-
portant tool for assessing these aspects (Torng and
Sah, 2020), providing an intuitive representation
of narrative macrostructure. However, researchers
in this field generally rely purely on manual anal-
yses of children’s narrative samples, which poses
a practical dilemma of being time-consuming and
laborious; therefore, it is difficult to promote and
apply in broader practices.

This paper focuses on automated assessment
of children’s narrative ability by exploring the
forefront natural language processing (NLP) tech-
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niques. Outwardly, this task shares similarities
with the multi-trait automated essay scoring (AES),
which evaluates various essay genres across traits
like content and language use. Some recent stud-
ies have applied autoregressive multi-trait score
generation framework to leverage token generation
probabilities (Do et al., 2024a,b). Nevertheless,
compared to multi-trait AES, the automated assess-
ment of children’s narrative ability presents unique
challenges in the following aspects: (1) the narra-
tive assessment task focuses primarily on evaluat-
ing the completeness of narrative content and the
coherence of expression; (2) the assessment result
of this task requires not only high accuracy, as well
as the intuitiveness and interpretability, which are
essential to provide actionable feedback for subse-
quent interventions. There has also been some spo-
radic research on this task. Hassanali et al. (2013)
employed topic modeling to predict language disor-
ders and coherence. Jones et al. (2019) simply used
machine learning methods to score macrostructure.
Obviously, these works have not presented effec-
tive solutions to the aforementioned challenges.

To address these issues, we propose the
Narrative Graph-based Interpretable Children’s
Narrative Ability Assessment (NarGINA) frame-
work. To this end, we first introduce a narrative
graph as a structured representation of narrative
text, inspired by the causal networks in clinical lin-
guistics (Torng and Sah, 2020). Though the causal
network gives an intuitive representation of the in-
put text, that structure simply considers clauses as
nodes, which makes it difficult to clearly express
the complex narrative content. Contrastively, in
our narrative graph, nodes represent specific events,
and edges capture event relations, such as various
causal and synchronous connections (see an exam-
ple in Figure 1). Compared to flat and unstruc-
tured narrative text, the narrative graph provides
a concise summary representation, thus helping
to explicitly measure and calculate the key nar-
rative indicators such as completeness and coher-
ence; meanwhile, the interpretability can also be
naturally facilitated through the comparative anal-
ysis between the evaluation results and the gold-
standard narrative graph 1.

Further, we design the computational framework
NarGINA, based on the narrative graph, for assess-
ing narrative ability. Unlike most existing AES
systems that rely solely on feature learning from

1See the definition in Section 3.3.
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Figure 2: Overview of NarGINA framework.

raw text, NarGINA evaluates the narrative qual-
ity mainly by examining the narrative graphs con-
structed from the input text, while also consider-
ing the raw text, as illustrated in Figure 2. To
achieve this, we first establish a narrative graph an-
notation specification and then construct a Chinese
narrative ability assessment corpus, incorporating
macrostructure, microstructure, and psychological
states. Next, we propose an automated narrative
graph construction model and a narrative graph-
assisted scoring model to yield accurate and inter-
pretable narrative ability assessment. For narrative
graph construction, we employ the Universal Infor-
mation Extraction (UIE) model to transform flat
texts into structured event representations, which
serve as narrative nodes. Subsequently, we uti-
lize large language models (LLMs) as a GNN en-
hancer to encode these nodes, thereby facilitating
the construction of narrative edges. Particularly,
to enable the scoring model to understand narra-
tive graphs, we introduce a multi-view contrastive
learning strategy to pre-train a graph encoder and
apply instruction-tuned LLMs to generate scores.
Experimental results show that our approach signif-
icantly outperforms baselines in both performance
and interpretability.

In a nutshell, our contributions are as follows:

• We propose a novel method for automated
children’s narrative ability assessment, under
which the narrative graph is innovatively in-
troduced to explicitly measure the narrative
quality, and then the narrative graph construc-
tion and scoring models are well designed.

• We introduce the first Chinese children’s nar-
rative corpus, by establishing a narrative graph
specification, collecting real children’s narra-
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tive samples and constructing a high-quality
annotated dataset.

• Experimental results show impressive perfor-
mance improvements along with interpretable
scoring results.

2 Related Work

Narrative Ability Assessment Frameworks
The story grammar model (Stein, 1979) and high-
point analysis (Labov and Waletzky, 1967) provide
the theoretical foundation for assessing macrostruc-
ture. The causal network (Trabasso and Sperry,
1985) has been used to assess narrative coherence
by statistical features (Sah and Torng, 2015; Sah,
2013) and has also been applied in interventions
for reading difficulties (McMaster et al., 2014).
MAIN (Gagarina et al., 2019) analyzed the por-
trayal of children’s psychological states by internal
state terms. Research on automated assessment re-
mains relatively underexplored, with most methods
focusing on detecting language disorders (Gabani
et al., 2011) or classifying specific narrative traits,
such as coherence (Hassanali et al., 2013). Re-
cently, some studies have attempted to apply NLP
techniques within manual assessment frameworks.
Baumann et al. (2024) achieved the automated an-
notation of the story grammar structures in MAIN.
However, these earlier studies have not provided
a fully automated approach for comprehensively
assessing narrative completeness and coherence,
nor have they offered quantitative and interpretable
results needed to inform subsequent interventions.

Graph-based Approaches for Text Assessment
Graph-based methods have been applied to various
tasks such as modeling mental states (Lee et al.,
2021), event evolution (Yan and Tang, 2023), ex-
plainable causal reasoning (Du et al., 2021), and
AES. In particular, Somasundaran et al. (2016)
showed that graph properties (e.g., PageRank) de-
rived from content words in essays can effectively
model essay scores related to the quality of develop-
ment. Another line of work constructed sentence-
prompt graphs, where semantic similarity served as
edge weights, to evaluate how well each sentence
addresses the prompt (Bhatt et al., 2020). Yet, the
graph structures in these prior studies were not
designed for children’s narrative assessment and
therefore struggle to model the completeness and
coherence of narratives.

3 Corpus Construction

The Chinese children’s narrative assessment cor-
pus comprises 543 annotated narrative texts, each
paired with a narrative graph and scores for overall
ability and three key traits: macrostructure, mi-
crostructure, and psychological states.

3.1 Data Collection

Instead of using the typical story-retelling task, we
adopted a more challenging narrative generation
task (Pearce et al., 2010) under the guidance of clin-
ical linguistics experts. To collect narrative data,
we used the book Frog, Where Are You? (Mercer,
1969), a wordless picture book widely used for as-
sessing children’s narrative ability (Reilly et al.,
2004; Torng and Sah, 2020). Participants, aged 3
to 13, were independently asked to read the book
and verbally narrate the story’s events without any
scripted guidance, ensuring that the narratives were
based on their own interpretations and recollections
of the visual cues. To establish a gold-standard
narrative graph, we also collected 40 narrative sam-
ples from adults of normal intelligence, bringing
the total corpus size to 543. All oral narratives
were manually transcribed following CHILDES
(MacWhinney, 2000) data procedures, and format-
ted in accordance with the CHAT (MacWhinney,
2017) guidelines (Appendix A.1).

3.2 Annotation Specification Design

Each transcribed narrative text is annotated with a
narrative graph and scores for narrative ability.

Narrative Graph Annotation Figure 1 shows
that a narrative graph consists of event nodes and
event relation edges.

• Event: Unlike the predefined event types in
corpora such as ACE 2005 (Walker et al.,
2006), children’s narrative expressions exhibit
significant variability and diversity. Thus, we
do not impose rigid event type constraints. An
event is defined as a narrative element describ-
ing the story background, actions, or activities
involving characters. We refer to the guide-
lines (LDC, 2005) and design a structured
event representation for narrative text in the
format: Trigger (Subject; Object; Adverbial
of Time; Adverbial of Place). If multiple ar-
guments exist in the same slot, they should
be separated by commas (,). Examples are
provided in Appendix A.2.
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• Event Relation: We adopt the causal rela-
tion classifications (motivation, psychological
causation, physical causation, enablement)
proposed in causal networks (Trabasso and
Sperry, 1985) and further refine the relation
definitions. Since the book Frog, Where Are
You? contains several synchronous events, we
incorporate synchronous relations, as defined
in the Penn Discourse Treebank 3.0 (Webber
et al., 2019). The Appendix A.3 provides de-
tailed definitions and examples.

Narrative Ability Scoring Rubric We primarily
focus on assessing the completeness and coher-
ence of the narrative’s macrostructure. A complete
narrative should be clearly segmented in chronolog-
ical or episodic order, demonstrate causal relations,
develop characters with emotional depth, express
emotions and derive meaning, ensure coherence,
and attribute responsibility to the characters in the
story (Kellas and Manusov, 2003). Coherence is
defined as the temporal and causal structure of a
story (Karmiloff-Smith, 1985). For a more com-
prehensive assessment, the microstructure and psy-
chological states are included in the scoring rubric.
Each expert assigns scores ranging from 0 to 10 to
each trait and the overall narrative ability.

3.3 Annotation Process

The annotation process consists of two stages: (1)
in the narrative graph annotation stage, 14 trained
annotators, divided into 7 pairs, independently an-
notated identical transcribed texts. The annotations
were then compared and refined through consis-
tency checks. (2) the narrative ability scoring stage
requires expertise in children’s language develop-
ment and narrative ability. Hence, two experts with
clinical or educational experience independently
scored each sample. This dual annotation process
helped to reduce subjective bias and improve relia-
bility.

A gold-standard narrative graph was estab-
lished through discussions among linguistic ex-
perts, based on adult narrative samples, and served
as the benchmark for assessing children’s narrative
abilities. To improve efficiency, an annotation tool
was developed (Appendix A.6).

3.4 Statistical Analysis

As shown in Table 1, we compare our corpus
with existing relevant corpora, including ACE
2005, Causal-TB (Mirza et al., 2014), Event Sto-

Dataset #Documents #Events #Event Relations
ACE 2005 599 4090 -
Causal-TB 183 6811 5436
Event StoryLine 258 4732 12695
MAVEN-ERE 4480 103193 1290050
our corpus 546 20244 16390

Table 1: Comparison between our corpus and relevant
corpora that contain events and event relations.

Statistics
event node 17815

event relation edge

Synchronous 653
Motivation 3356
Psychological causation 1213
Physical causation 384
Enablement 10518

maximum graph
node 138
edge 164

minimum graph
node 3
edge 0

Table 2: Statistics of narrative graph features.

ryLine (Caselli and Vossen, 2017), and MAVEN-
ERE (Wang et al., 2022). In contrast, our corpus
provides more comprehensive annotations, cover-
ing event triggers, arguments, and relations. Addi-
tionally, Table 2 presents our narrative graph statis-
tics. The variation in edge counts across different
types is due to the limited occurrences of phys-
ical causality and synchronous relations in Frog,
Where Are You?. Differences in graph size reflect
age-related differences in narrative completeness
or potential language disorders.

4 NarGINA

4.1 Overview

In the domain of automated narrative ability assess-
ment, one of the main challenges is capturing both
the structure and semantics of narrative texts, while
also providing interpretability of the assessment
results. For this reason, we introduce NarGINA.
As illustrated in Figure 3, it consists of two stages:
narrative graph construction and narrative ability
scoring. First, NarGINA transforms narrative text
into a structured graph, offering a concise summary
representation that tackles key challenges in nar-
rative modeling. Next, NarGINA integrates the
narrative graph and the original text into the LLM,
enabling scoring across multiple traits and provid-
ing interpretability analysis.
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Figure 3: Illustration of the entire process for the proposed framework NarGINA.

4.2 Narrative Graph Construction Model
In this section, we present the details of narrative
graph construction, which consists of node and
edge construction. The task mainly faces the fol-
lowing challenges: (1) children’s oral narratives
exhibit irregularities (e.g., missing grammatical
components, repeated sentences, and scrambled
word order) during node construction, requiring
richer information supplementation; (2) data spar-
sity, due to the structural characteristics of narra-
tive graphs, and missing information (e.g., missing
nodes, missing triggers or arguments) caused by
the irregularities, require fine-grained data and data
augmentation during edge construction.

Narrative Nodes Construction To address these
irregularities, we use the UIE model to construct
nodes and exploit its generalization ability (Lu
et al., 2022) 2. to extract richer information. Fur-
thermore, we propose a retrieval-augmented strat-
egy based on the gold-standard narrative graph
Ggold and apply it to the our model to augment
the data, illustrated as:

R = f(text,Ggold) (1)

where R is the retrieved information, text denotes
the text of an event and f(·) denotes the text sim-
ilarity matching function, which retrieves the text
for the most relevant event in Ggold using a thresh-
old of 0.9. Specifically, based on rexUIE (Liu
et al., 2023a) 2, we concatenate R with the input of
rexUIE Q to generate an augmented input. Next,

2Detailed descriptions of the UIE, rexUIE, and OFA can
be found in Appendix C

the augmented input is encoded by DeBERTa (He
et al., 2021), generating the augmented embedding
ha:

ha = DeBERTa(Q;R) (2)

The final set of narrative nodes is denoted as
Vnarrative={event1, . . . , events}, where event is
a structured representation consisting of a trigger
and its arguments, s denotes the node count.

Narrative Edges Construction To address the
issues of missing information and data sparsity, we
encode narrative nodes using LLMs as GNN en-
hancers, extend the internal knowledge of LLMs
to events, and construct superior graphs to enhance
the input data. Besides, we construct subgraphs
to supplement fine-grained dependency informa-
tion. Specifically, based on OFA (Liu et al., 2024)
2, we use the Llama2_13b (Touvron et al., 2023),
without fine-tuning, to encode the superior graph,
denoted as Gsup = (Vsup, Esup), where the node
set is denoted as Vsup ⊆ {(eventi; eventj)|i, j ∈
Z+, i ̸= j}. Similarly, the edge set is denoted
as Esup ⊆ {(vi, vj)|vi, vj ∈ Vsup,∃eventk ∈
(vi ∩ vj), i, j, k ∈ Z+}. Due to the complexity
of Gsup, we retain only the 10 nearest neighbor
edges for each node. Furthermore, we use the multi-
modal model G2P2 (Wen and Fang, 2024) to en-
code the subgraph, denoted as Gsub= (Vsub, Esub),
where the node set Vsub consists of all event trig-
gers and arguments, and the edge set Esub consists
of edges between the trigger and arguments in each
event. The embeddings from the superior graph and
the subgraph are then concatenated and ultimately
fed into R-GCN (Schlichtkrull et al., 2018) for nar-
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rative edge classification. The set of narrative edges
is denoted as Enarrative ⊆ {(eventi, re, eventj)
|eventi, eventj ∈ Vnarrative, re ∈ Re, i, j ∈ Z+},
where Re includes all edge types (Section 3.2).

Eventually, we get the narrative graph
Gnarrative = (Vnarrative, Enarrative, Re).

4.3 Narrative Graph-Assisted Scoring Model

There exist two main challenges: (1) narrative
ability encompasses multiple traits, requiring the
model to possess strong reasoning capabilities to
capture cross-event logic; and (2) due to modality
gaps, narrative graphs cannot be directly utilized in
existing language model-based scoring methods.

Piper and Bagga (2024) demonstrated that fine-
tuning LLMs can match the performance of GPT-4
on narrative understanding tasks, motivating us to
integrate LLMs for narrative ability assessment and
enhance their macrostructural modeling ability us-
ing narrative graphs. Although researchers have ex-
plored translating graph structures into natural lan-
guage (Fatemi et al., 2024), such inputs tend to be
verbose, potentially reducing LLMs’ performance
on downstream tasks (Chen et al., 2023). Graph-
level tokenization (Chai et al., 2023) and node-level
tokenization (Chen et al., 2024) address this issue
but struggle to capture the complex logic of chil-
dren’s narratives and remain incompatible with the
heterogeneity of narrative graphs. Hence, we in-
tegrate narrative graphs into LLMs using GNN, a
graph projector, and instruction-tuning.

Multi-View Graph Contrastive Learning Un-
like knowledge graphs, which represent entity re-
lations, narrative graphs capture key storylines,
causal dependencies, and shifts in psychological
states. Moreover, the limited availability of la-
beled data hampers the generalization of supervised
methods. Thus, we propose a multi-view graph
contrastive learning strategy to learn unsupervised
node representations.

As shown in Figure 2, we generate multi-view
graphs using strategies such as Node Drop and
Edge Add, simulating issues like missing events
and redundant causal relations. For graph encod-
ing, we use the Graph Attention Network (GAT)
(Veličković et al., 2017). By applying contrastive
learning across these views, GAT enhances ro-
bustness against incompleteness, incoherence, and
noise in graphs, while also improving its ability to
capture event causality. To derive textual embed-
dings from the event and relation text, we apply

Sentence Transformers (Reimers, 2019).
Given a narrative graph Gnarrative, transformed

from original text t, we apply random augmenta-
tion strategies to generate two augmented graphs
G1 and G2, which are then encoded to generate
node features hv, h(1)v and h

(2)
v . By optimizing the

InfoNCE loss (Oord et al., 2018), we ensure that
features of the same node in h

(1)
v and h

(2)
v are simi-

lar, while those of different nodes are distinct. After
training, the final node features are represented as:

hv = GAT(Gnarrative) (3)

Graph-Text Alignment To align data from text
and graphs, we use MLP as the graph projector that
maps node features hv to the LLM’s input dimen-
sions, generating event tokens ev = MLP (hv).
Similar alignment methods are widely used in mul-
timodal models (Liu et al., 2023b; Chen et al.,
2024). The event tokens ev are reordered based
on the sequence of event occurrences.

Instruction Turning We fine-tune LLMs with
specific instructions to effectively integrate narra-
tive graph features for multi-trait scoring. Autore-
gressive score generation has been successfully ap-
plied to T5 (Raffel et al., 2020) for efficient multi-
trait AES (Do et al., 2024a,b). Nevertheless, T5
adopts short prefix-tuning, which may pose chal-
lenges for directly integrating narrative graphs into
the input. In contrast, LLMs support longer in-
put sequences. Therefore, we define the scoring
task as a question-answering (QA) task (Figure 3).
Details of the QA instructions can be found in Ap-
pendix B.1. During preprocessing, the <Graph>
tag in the prompt is replaced with ev as input. The
model then generates the scores as:

scores = LLM(prompt(ev, t)) (4)

For training, we fine-tune Vicuna_v1.5_7B (Chi-
ang et al., 2023), keeping the graph projector train-
able while freezing the graph encoder, which en-
sures robust graph features.

5 Experiments

5.1 Experimental Settings

We base our experiments on the Chinese children’s
narrative assessment corpus. The dataset is strati-
fied across different total scores and divided into
training (70%), validation (10%), and test (20%)
sets. The detailed dataset split and key statistics are
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Model Overall Macro Micro Psych Avg
Content words-based graph 0.537 0.494 0.605 0.439 0.519
Sentence similarity-based graph 0.651 0.600 0.670 0.522 0.611
BERT 0.680 0.635 0.664 0.539 0.629
DeepSeek-R1 0.403 0.528 0.329 0.264 0.381
GPT-4 0.645 0.684 0.553 0.475 0.589
ArTS-Vicuna_7B 0.745 0.734 0.707 0.550 0.684
NarGINA 0.787 0.767 0.717 0.636 0.727
NarGINA -w/o FT 0.688 0.685 0.673 0.488 0.634

Table 3: The QWK evaluation scores on our corpus. Macro: Macrostructure, Micro: Microstructure, Psych:
Psychological States, Avg: Average, FT: Fine-turning.

presented in Appendix A.7. For the narrative ability
scoring task, we adopt Quadratic Weighted Kappa
(QWK) (Cohen, 1968) to measure agreement be-
tween human annotations and model predictions.
We train on four NVIDIA A40 GPUs. The narrative
graph construction model employs full-parameter
fine-tuning, while the scoring model uses LoRA
(Hu et al., 2021) for parameter-efficient fine-tuning
of Vicuna_v1.5_7B. These models are trained sep-
arately in a pipeline approach. Further implemen-
tation details are provided in Appendix B.2. All
results are reported as averages.

5.2 Baselines

In the domain of automated assessment of chil-
dren’s narrative ability, to the best of our knowl-
edge, there are almost no graph-based methods
available for direct comparison. Therefore, we
evaluate the following baseline models:

BERT Jones et al. (2019) applied BERT (Devlin,
2018) to score narrative macrostructure, focusing
on story grammar components.

Content words-based graph Somasundaran
et al. (2016) constructed graphs where content
words serve as nodes and sentence adjacency forms
the edges, then extracted features to evaluate essays
across multiple traits.

Sentence similarity-based graph Bhatt et al.
(2020) constructed sentence-prompt graphs with
semantic similarity as edge weights to derive fea-
tures for overall essay scoring. We train separate
models for each trait and discard features that were
not applicable to Chinese.

GPT-4 A robust LLM by OpenAI, demonstrates
strong linguistic understanding capabilities. We
assess its narrative ability directly via few-shot

methodology using a structured prompt, to evalu-
ate the applicability of general-purpose large-scale
models in this task.

DeepSeek-R1 A reasoning model, excels in logi-
cal reasoning benchmarks. We also employ a few-
shot approach to evaluate it, testing the adaptability
of specialized reasoning models to this task.

ArTS-Vicuna_7B We extend the autoregressive
score generation model ArTS (Do et al., 2024a)
to Vicuna_v1.5_7B. We show the effectiveness of
narrative graphs through comparative analysis.

5.3 Overall Performance
Table 3 reports the average QWK scores for
NarGINA and the baseline approaches. We observe
that our method outperforms the strongest base-
line, ArTS-Vicuna_7B, by 4.3% in average QWK.
It also exceeds all the other baselines on every
trait, demonstrating the superiority of the proposed
framework. Focusing on macrostructure, NarGINA
achieves a 3.3% gain over ArTS-Vicuna_7B, sug-
gesting that explicitly modeling key events and
their relations via a narrative graph offers a richer
representation of story structure and logic. For psy-
chological states, the margin increases to 8.6%,
showing the model’s ability to capture more nu-
anced character portrayals. The improvement in
overall further demonstrates NarGINA’s ability to
weigh all traits, providing a holistic assessment.

Notably, even without fine-tuning the LLM, nar-
rative graph features generated by the pre-trained
graph encoder and the lightweight graph projector
can still effectively enhance narrative ability assess-
ment, allowing the framework to perform well even
in resource-constrained environments.

Comparative analyses with large-scale LLMs’
few-shot capabilities reveal that, although mod-
els like GPT-4 excel in open-domain tasks, the as-
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Model
ETE EAE

P R F1 P R F1
Instruct-UIE 50.0 31.6 38.7 50.0 28.1 35.7
T5-UIE 61.9 68.0 64.8 62.7 69.0 65.7
rexUIE-Ggold 72.4 73.3 72.8 76.5 76.4 76.4

Table 4: Performances of narrative node construction.
ETE denotes the event trigger extraction, EAE denotes
the event argument extraction, and rexUIE-Ggold is our
method to construct the narrative nodes.

Model P R F1
RoBERTa-large 24.1 80.3 36.2
Vicuna_7B-FT 28.9 69.2 32.7
OFA-Gsub-Gsup 73.3 79.2 75.3

Table 5: Performances of narrative edge construction.
OFA-Gsub-Gsup is our method for edge construction.

sessment of children’s narratives requires granular
event correlation analysis and structured evaluation.
This underscores the inherent limitations of purely
text-driven evaluations in capturing deep narrative
logic. Furthermore, models like DeepSeek-R1,
optimized for reasoning, demonstrate significant
shortcomings in tasks demanding detailed event
analysis. In contrast, our base LLM, with only
7B parameters, significantly outperforms such API
LLMs in the specialized assessment task.

5.4 Narrative Graph Construction Analysis

In this section, we assess the quality of the narrative
graphs generated by our framework, using Preci-
sion (P), Recall (R), and F1-score (F1) as evalua-
tion metrics. We use T5-UIE (Lu et al., 2022) and
Instruct-UIE (Wang et al., 2023) as baselines for
narrative node construction, while using RoBERTa
(Liu et al., 2019) and Vicuna_7B as baselines for
narrative edge construction. Table 4 shows that
our model rexUIE-Ggold outperforms the baselines
across all metrics. Table 5 further demonstrates that
our model OFA-Gsub-Gsup yields notable gains in
precision and F1, while maintaining a recall compa-
rable to the best result. Thus, the narrative graphs
constructed by our framework capture events and
their relations more accurately.

5.5 Ablation Study

Effect of LLM To evaluate NarGINA’s effective-
ness on different LLMs , we use Llama2_7b as the
foundation model. As shown in Table 6, NarGINA-
Llama2_7B, augmented by the narrative graphs,
outperforms ArTS-Llama2_7B by 1.5% in average

Model Overall Macro Micro Psych Avg
ArTS-Llama2_7B 0.736 0.725 0.708 0.527 0.674
NarGINA-Llama2_7B 0.750 0.759 0.690 0.555 0.689
NarGINA 0.787 0.767 0.717 0.636 0.727
-w/o graph encoder 0.709 0.724 0.689 0.556 0.669
-NG_TV 0.738 0.734 0.700 0.550 0.681

Table 6: Ablation study on key components for QWK
performance.

QWK. It remains below the Vicuna-based model,
presumably because Vicuna benefits from addi-
tional fine-tuning on Llama2, leading to stronger
language modeling capacity. Overall, our frame-
work improves performance across different LLMs
and holds the potential for even greater improve-
ments in larger models with more parameters.

Effect of Narrative Graph Construction Model
To investigate our narrative graph construction
model’s contribution to scoring, we replace it with
T5-UIE for node construction and Vicuna_7B-FT
for edge construction, then feed the resulting graph
into the scoring model (referred to as NG_TV). Ta-
ble 6 shows that this approach results in a 4.6%
decrease in average QWK scores, indicating that
our approach can capture narrative events and re-
lations, thus enhancing scoring performance more
effectively.

Effect of Graph Encoder To verify the effec-
tiveness of the graph encoder trained with multi-
view graph contrastive learning, we adopt Sentence
Transformers to derive node features directly from
raw text, bypassing the structural modeling. As
shown in Table 6, removal of the graph encoder
leads to an average decrease of 5.8% in QWK
scores across all traits. This is because the graph en-
coder effectively captures semantic and structural
information in narrative graphs, thereby generating
higher-quality node features.

5.6 Interpretability Analysis
Figure 4 illustrates a case study about an inter-
pretable result, which helps intuitively identify de-
ficiencies in the test sample’s macrostructural com-
pleteness and coherence.

Missing Key Event The absence of events like
“woke up (boy,puppy;;;)” and “leaned out (puppy;;;
window sill)” makes the narrative less complete
and also weakens the logical setup for subsequent
events, reducing overall coherence.

Relation Errors and Redundancies Misrepre-
senting looked for (boy; frog;;) → turned over (boy;
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looked for(puppy; frog;;)
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Motivation
Synchronous

Figure 4: Example of Interpretability. We select a key
segment due to the narrative graph’s large scale.

shoes;;) as psychological causation rather than mo-
tivation reveals the child’s difficulties in establish-
ing accurate causal relations during oral narrative.
Missing events may lead to redundant causal re-
lations, such as incorrectly associating looked for
(puppy; frog;;) with fell off (puppy;;; window sill).
These issues suggest that the child, when narrating
complex events, struggles to effectively structure
causal relations, further impairing coherence.

Furthermore, the cosine similarity between the
test sample and the gold-standard narrative graph,
computed via global average pooling, serves as a
quantitative indicator of the child’s narrative ability.

6 Conclusion

In this paper, we focus on the automated as-
sessment of children’s narrative ability. We pro-
pose a novel computational assessing framework
NarGINA that introduces the narrative graph to ex-
plicitly measure and calculate the key narrative
indicators such as completeness and coherence.
We construct the first Chinese children’s narra-
tive assessment corpus, and then propose the nar-
rative graph construction model and a narrative
graph-assisted scoring model. Experimental results
demonstrate that NarGINA substantially outper-
forms the baselines, along with good interpretabil-
ity. In particular, our findings reveal that the utiliza-
tion of structured narrative graphs beyond flat text
is well suited for narrative ability assessment. In fu-
ture work, we will explore more effective narrative
graph construction and scoring models to achieve
better performance.

7 Limitations

Limited Materials and Forms Our data collec-
tion relies solely on the wordless picture book Frog,
Where Are You?. While this material has been
widely used in children’s narrative research, the
generalizability of our study to other forms (e.g.,
written stories, audiovisual content) remains un-
examined. Future studies will expand to multiple
materials and diverse genres to enhance the model’s
applicability across different narrative contexts.

Applicability in Resource-Constrained Environ-
ments Experimental results show that NarGINA
performs well even without fine-tuning LLMs.
Nevertheless, for clinicians and educators who lack
stable access or sufficient computational resources,
deploying and maintaining the framework may still
pose significant challenges. Future research could
explore models with fewer parameters or adaptive
frameworks to reduce reliance on LLMs.

Need for Broader Real-World Validation De-
spite quantitative analyses and interpretable assess-
ments, broader empirical research (e.g., large-scale
user testing) is lacking.

8 Ethics Statement

Our work strictly follows the the ACL Code of
Ethics. For data collection (Section 3.1), we sam-
pled data from children aged 3 to 13 and some
undergraduate students. All child participants ob-
tained parental consent, and all adult participants
provided their own consent. Our corpus does not
contain any protected information, and any poten-
tially identifiable personal information has been
anonymized. The anonymization method involves
replacing personal names with identifiers in the
format “Narrative-{index}”.

For human annotation (Section 3.3), we recruited
our annotators from the linguistics and computer
science departments of our university to annotate
graphs and invited two front-line teachers to anno-
tate scores. Annotators were also paid above the
minimum wage. The annotation does not involve
any personally sensitive information. Additionally,
we include comprehensive details about human an-
notation in Section 3.3. We present the instructions
and screenshots of the interface for the human an-
notation in Appendix A.6. We inform the human
annotators what the task is about and tell them that
their responses will be used to assess the narrative
ability using AI models.
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We use the models and datasets when following
their intended usage. We try our best to follow the
ethical guidelines of ACL.
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A Additional Details of Corpus

A.1 CHAT Format
The CHAT format document includes the basic
transcription of the subject’s speech, the header,
and ancillary lines. The header records background
information, such as the subject’s and transcriber’s
personal details, testing date, transcription date,
and other relevant data. The ancillary records docu-
ment coding, evaluation, events, and other auxiliary
information of interest to researchers. The main
section marks phenomena such as word omissions,
speech repetitions, and sentence corrections with
special symbols. Hence, before starting the anno-
tation process, the transcribed narrative text in the
main section should be preserved, the header con-
tent in the CHAT format should be removed, and
special marks for speech repetitions, sentence cor-
rections, and other phenomena should be restored
and processed.

A.2 Event Annotation
In children’s narrative texts, children may describe
the process in which the protagonist (such as a little
boy or a puppy) searches for a frog, or the events
involving other animals (like an owl, a bee, or a
deer) that the protagonists encounter in the story.
These descriptions are all considered event descrip-
tions in the text during the annotation process. The
components of an event include: the event trigger
and the event arguments. The trigger is the predi-
cate in the sentence, while the arguments are words
such as the subject, object, and adverbial phrases.

As an example, consider the following sentence
from the corpus: “And my dog actually shook a
nearby small tree.” Ideally, the annotator should
label the event in this sentence as follows:

shook(dog;small tree;;)
In the case of the “shook” event, the “dog”

serves as the agent, acting as the subject of the
event, while the “small tree” functions as the pa-
tient, representing the object of the event.

A.3 Event Relation Annotation
The definitions of event relations are presented in
Table 7.

Motivation In Event1 and Event2, Event1
provides a goal-oriented direction for Event2,
thereby prompting the occurrence of the Event2
action. This type of causality is referred to as mo-
tivation. Typically, Event1 typically contains the
goal information.

Example:
(1) The little boy is looking for the frog. The little

boy turns the boots over. [Reference narrative]
Event1: looking for (the little boy; the frog; ; )

M−→ Event2: turns over (the little boy; boots; ; )
Explanation:
Event1 expresses the little boy’s goal of finding

the frog, which motivates Event2, "turning the
boots over." The little boy turns the boots over
because he wants to look inside for the frog.

Psychological causation In Event1 and
Event2, the action in Event1 triggers an internal
reaction in Event2. This type of causality is
referred to as psychological causality. The internal
reaction is understood as an internal state or
psychological state, including various information
related to desires, beliefs, thoughts, intentions, and
emotions.

Example:
(2) The next morning, when the boy and the dog

woke up, they found the jar was empty. The little
boy looked for the frog everywhere. [Reference
narrative]
Event1: found (they; the jar was empty; the

next morning; )
Psy−−→ Event2: looked for (the little

boy; the frog; ; )
Explanation:
Event1, “found (they; the jar was empty; the

next morning; )”, triggers Event2, “looked for (the
little boy; the frog; ; )”. Here, the desire " looked
for the frog " is the boy’s internal psychological
state, which motivates his action in Event2.

Physical Causation Physical causation refers to
the mechanical causal relation between objects
and/or people in the real world. It indicates that
Event1 is sufficient to cause the occurrence of
Event2, without needing any background context.

Example:
(3) The little dog accidentally fell from the win-

dowsill. The jar broke. [Reference narrative]

Event1: fell (The dog; ; ; the windowsill)
Phy−−→

Event2: broke (The jar; ; ; )
Explanation:
When the dog falls, the jar inevitably breaks.

This is consistent with our understanding of the real
world, where the fall of the dog directly leads to
the jar breaking. This represents physical causality.

Enablement A causality that satisfies the neces-
sity criterion is called enablement. The necessity
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relation definition
synchronous Event1 and Event2 have a certain degree of temporal overlap.
motivation Event1 provides a goal or motivation for Event2, prompting the occur-

rence of the action in Event2.
psychological causation The action in Event1 triggers an internal reaction in Event2.
physical causation Under the condition that all background story influences are excluded,

Event1 leads to Event2 in a way that satisfies the condition of suffi-
ciency, often governed by physical or natural laws.

enablement A relation is classified as enablement if, through counterfactual inference,
it does not meet the criteria for the other three types of causal relations

Table 7: Definitions of Event Relations. Detailed explanations of internal reactions and counterfactual inference can
be found in A.4.

criterion means that if Event1 does not occur, then
Event2 will not happen, which is a counterfactual
reasoning argument (Appendix A.4). In enable-
ment, the cause is necessary but not sufficient to
trigger the result; it is a condition, not a causal
reason in the strict sense.

Example:
(4) The owl chased the little boy all the way.

The little boy climbed onto the rock. [Reference
narrative]
Event1:chased (The owl; the little boy; ; all the

way) E−→ Event2 :climbed (The little boy; the rock;
; )

Explanation:
If the owl had not chased the little boy, the boy

would not have climbed the rock.

Synchronous When Event1 and Event2 de-
scribe sentences that indicate a certain level of
temporal overlap between the events, expressed by
terms like “at the same time” or “meanwhile”, their
relation is annotated as a synchronous relation.

Example:
(5) While the little dog barked at the bees in the

beehive, the little boy shouted at the hole in the
ground. [Reference narrative]

Event1 : barked (The dog; the bees; ; )
Syn−−→

Event2 : shouted (The little boy; ; ; the hole)
Explanation:
The two events are connected by the temporal

indicator “while. . . ,” indicating that the events hap-
pen at the same time.

A.4 Internal Reaction and Counterfactual
Inference

Internal Reaction The “internal reaction” refers
to the internal state or psychological states of a
character, such as when “discovering the frog is

missing” triggers the event of “the boy searching
for the frog.” This involves the character’s internal
psychological states of “wanting to find the missing
frog.”

Counterfactual Inference The counterfactual
inference method refers to a reasoning approach
where if Event1 and Event2 pass the test of “if
Event1 does not occur, Event2 will not occur,”
then it is concluded that a causal relation exists
between Event1 and Event2.

A.5 Scoring Rubric for Microstructure and
Psychological States

Microstructure:

• Is the vocabulary rich and diverse? (Evaluate
based on total word count and lexical variety.)

• Is the sentence structure complex? (Consider
average sentence length and syntactical com-
plexity.)

• Are rhetorical devices effectively used?

Narrative Psychological Expression:

• Are the characters’ emotional expressions con-
sistent with the development of the plot?

• Is there any portrayal of the characters’ psy-
chological states? (For children, basic emo-
tional reactions are sufficient.)

A.6 The Annotation Tool

The annotation tool is custom-developed and iter-
atively implemented using the standard graphical
user interface (GUI) library Tkinter, which is built
into the Python environment. As a module natively
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Figure 5: Corpus annotation tool interface.

supported by Python, the Tkinter library offers a
high degree of compatibility and stability.

The user interface of the annotation tool is shown
in Figure 5. When using the tool, annotators can
mark the event triggers and arguments using short-
cut keys. Additionally, the tool supports annotating
the relations between events by selecting options
from a dropdown menu. To avoid the special marks
affecting the annotators’ reading efficiency, the font
size of these marks is reduced, and the background
color of the arguments is differentiated for clarity.
Annotators can also toggle the visibility of these
marks by checking or unchecking the “show tags”
checkbox.

The format for the event annotation information
is as follows:
{

"sentence_id_in_doc ": 17,
"sentence_text ": "And they found the frog.",
"event_mention ": [

{
"trigger ": {" mention ": " found ", "role

": "trigger", "start": 3, "end":
3},

"arguments ": [
{" mention ": " they ", "role": "

subject ", "start ": 2, "end":
2},

{" mention ": " the frog ", "role": "
object ", start": 4, "end": 5}

]
}

]
}

The format for the relation annotation informa-
tion is as follows:

{
"relation_type ": "Motivation",
"first_event ": {

"sentence_id_in_doc ": 4,
"sentence_text ": "The frog was missing.",
"event_mention ": [

{
"trigger ": {" mention ": " was missing

", "role": "trigger", "start":
3, "end": 4},

"arguments ": ["..."]
}

]
},
"second_event ": {

"sentence_id_in_doc ": 5,
"sentence_text ": "They were looking for the

frog.",
"event_mention ": [

{
"trigger ": {" mention ": " were

looking for ", "role": "trigeer
", "start ": 2, "end": 4},

"arguments ": ["..."]
}

]
}

}

A.7 Corpus Partition Statistics

The detailed dataset split and key statistics are pre-
sented in Table 8.

B Additional Details of Experiment Setup

B.1 Prompt Template

Table 9 presents the prompt templates used for
instruction-tuning of LLMs.
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#Documents #Sentences #Events #Arguments #Event Relations
Train 380 12673 14232 23710 11542
Validation 55 1894 2113 3469 1565
Test 108 3248 3571 5819 3017
Total 543 17815 19916 32998 16124

Table 8: Corpus Partition Statistics.

B.2 Implementation Details

Narrative Ability Scoring Model We adopt
Vicuna_v1.5_7B as our base model and fine-
tune it using the transformers.Trainer.
The evaluation strategy is set to epoch-based,
with per_device_train_batch_size of 8,
per_device_eval_batch_size of 4, and a total
of 20 training epochs.

We utilize LoRA, a parameter-efficient fine-
tuning method that significantly reduces both GPU
memory usage and trainable parameters. In our ex-
periments, we set the LoRA rank to 8, LoRA alpha
to 16, dropout to 0.05, and use bfloat16 precision.
The learning rate is fixed at 3e-4, the weight decay
at 0.01, and the warmup ratio at 0.05.

For text generation, we configure both
Vicuna_v1.5_7B and Llama2_7B with the
following settings: max_new_tokens=1024,
temperature=0.2, top_p=1.0, num_beams=1,
use_cache=True, do_sample=True.

All fine-tuning and inference are conducted on
four NVIDIA A40 GPUs, each equipped with
46 GB of memory.

Narrative Graph Construction Model For
node construction, we adopt DeBERTa_v2 as
our encoding model, which is fine-tuned us-
ing the lightning.pytorch.Trainer. The
evaluation strategy is set to epoch-based, with
per_device_batch_size of 16, and a total of 10
training epochs.

For edge construction, we adopt Llama2_13B
as our encoding model, while R-GCN is
the edge classification model, fine-tuned using
the lightning.pytorch.Trainer. The evalu-
ation strategy is also set to epoch-based, with
per_device_batch_size of 16, and a total of 3
training epochs.

All fine-tuning and inference are conducted on
four NVIDIA A40 GPUs, each equipped with
46 GB of memory.

C Narrative Graph Construction Related
Work

UIE Lu et al. (2022) proposed a unified text-to-
structure generation framework named UIE (Uni-
versal Information Extraction) to address key chal-
lenges in information extraction (IE), such as di-
verse objectives, heterogeneous output structures,
and task-specific requirements. UIE significantly
improves the efficiency and performance of IE by
unifying the modeling of various tasks, adaptively
generating target structures, and jointly learning
general IE capabilities from multiple knowledge
sources. To tackle the structural heterogeneity
across traditional IE tasks—such as named entity
recognition, relation extraction, and event extrac-
tion—the authors designed a Structured Extraction
Language (SEL) that represents different IE outputs
through two atomic operations: spotting (i.e., lo-
cating relevant spans) and associating (i.e., linking
related elements). Furthermore, they introduced
a Structural Schema Instructor (SSI) mechanism,
which guides the model to generate target structures
by using pattern-based prompts (e.g., [spot] person
[asso] work_for). This allows dynamic control over
the output based on task-specific formats. They
validated UIE on four types of IE tasks—entity ex-
traction, relation extraction, event extraction, and
sentiment analysis—across 13 datasets.

rexUIE Liu et al. (2023a) redefined the Universal
Information Extraction (UIE) task as a recursive
generation problem, enabling the model to han-
dle pattern sequences of arbitrary length. They
introduced an Explicit Schema Instructor (ESI) to
explicitly constrain type associations, thereby pre-
venting illegal generations and addressing limita-
tions of traditional UIE models in handling com-
plex structures such as quadruples and quintuples,
as well as the error-prone nature of implicit schema
guidance.The ESI is composed of a prefix (i.e.,
previously extracted results) and the current target
type, separated by special markers (e.g., [P], [T]) to
explicitly indicate parent-child type relationships,
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enhancing semantic understanding. It also incor-
porates position ID resetting and attention mask
isolation to separate different pattern groups and
reduce interference. Through recursive generation,
the model constructs queries step-by-step based on
historical results. For example, after extracting the
entity “Leonard Parker,” it generates a new query
conditioned on its type “Person” to extract related
information.

OFA Liu et al. (2024) proposed the One-for-All
(OFA) framework, which addresses feature hetero-
geneity in cross-domain information extraction by
leveraging Text-attributed Graphs (TAGs). In this
framework, nodes and edges are described in natu-
ral language and encoded into a unified embedding
space using a pretrained language model. The en-
coded nodes are then processed by a downstream
GNN to perform various levels of graph-based
tasks. To unify task representations and pooling
processes while avoiding task-specific model de-
signs, OFA introduces Nodes of Interest (NOIs)
and prompt nodes to extract task-relevant sub-
graphs and connect them as needed for different
types of tasks.
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Prompt
Description Your task is to assess a child’s narrative ability on the book Frog, Where Are You?.
Scoring Criteria Consider the following three traits, scoring each on a scale of 0-10 (integers):

1. Macrostructure
- Does the story have a clear beginning, development, climax, and conclusion?
- Is the overall structure coherent, with no abrupt jumps or unreasonable plot points?
- Are the character actions logically connected by cause-and-effect relations?
2. Microstructure
- Is the vocabulary used rich and diverse? (Refer to total word count and diversity of
vocabulary)
- Is the sentence structure complex? (Consider average sentence length and syntactical
complexity)
- Are rhetorical devices used?
3. Narrative Psychological States Expression
- Are the character’s emotional expressions consistent with the development of the plot?
- Is there any psychological portrayal of the character? (For children, basic emotional
reactions are sufficient)
4. Total Score
- Finally, please weigh each trait’s score and provide an overall score in the range of 0-10.

Task Data 1. This is a story told by a child:
<essay text>
2. Narrative Graph
- A narrative graph has been extracted from the essay, showing key events in the story
and their causal relations,which can help you assess the organization and coherence
of the macrostructure.
- Each node represents an event, formatted as: verb (subject; object; adverbial of time;
adverbial of place).
- Edges represent relations between events, including synchronous, motivation,
physical causality,psychological causality, and enablement.
- Event token sequence: <Graph>

Output Format Please provide your assessment in the following format:
Macrostructure Score: <macroscore>, Microstructure Score:<microscore>, Psychological
state Score: <psych score>, Total Score: <total score>

Question Please assess the child’s story in terms of the macrostructure,microstructure, and
narrative psychological states.

Table 9: Prompt template.
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