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Abstract

Multimodal Sentiment Analysis (MSA) inte-
grates diverse modalities to overcome the lim-
itations of unimodal data. However, existing
MSA datasets commonly have significant senti-
ment distribution imbalances and cross-modal
sentiment conflicts, which hinder performance
improvement. This paper shows that distribu-
tional discrepancies and sentiment conflicts can
be incorporated into the model training to learn
stable multimodal invariant sentiment represen-
tation. To this end, we propose a Multimodal
Invariant Sentiment Representation Learning
(MISR) method. Specifically, we first learn a
stable and consistent multimodal joint repre-
sentation in the latent space of Gaussian dis-
tribution based on distributional constraints.
Then. under invariance constraint, we further
learn multimodal invariant sentiment represen-
tations from multiple distributional environ-
ments constructed by the joint representation
and unimodal data, achieving robust and ef-
ficient MSA performance. Extensive experi-
ments demonstrate that MISR significantly en-
hances MSA performance and achieves new
state-of-the-art. The code has been released at
https://github.com/aoqzhu/MISR.

1 Introduction

Multimodal Sentiment Analysis (MSA) under-
stands human emotions by fusing information from
modalities such as vision, audio, and text (Gandhi
et al., 2023). MSA effectively compensates for the
limitations of a unimodal data by exploring the re-
lationships between different modalities (Xu et al.,
2023), and shows significant advantages in improv-
ing the understanding and expression of sentiment.

MSA research has focused on utilizing various
strategies to enhance performance. Early methods
focused on fusion mechanisms for modality inte-
gration (Zadeh et al., 2017; Yang et al., 2022), fol-
lowed by attention-based approaches that enhanced
performance by capturing intra- and inter-modal
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Figure 1: Datasets sample distribution analysis. T, A,
V and M denote the text, audio, visual and multimodal
sentiment labels of the samples.

correlations (Zhu et al., 2024; Yang et al., 2023;
Lv et al., 2021a). Recently, decoupled represen-
tation learning has emerged as a key direction to
minimize interference by separating modality in-
formation(Sun et al., 2023; Li et al., 2023). Despite
achieving impressive improvements, these meth-
ods ignore the significant distribution imbalance
and cross-modal sentiment conflicts present in the
datasets used for model training, limiting the per-
formance of the models.

As shown in Fig. 1(a), it is evident that in the
MOSEI dataset (Bagher Zadeh et al., 2018), sen-
timent values predominantly fall within the range
of [-1,1], accounting for 65.97% of the samples.
The imbalance in the sentiment distribution of the
data causes the model to bias toward predictions
of high-frequency sentiments, while insufficiently
learning low-frequency sentiments (Dixon et al.,
2018; Qian et al., 2021). Due to the intrinsic un-
certainty of the data (Kendall and Gal, 2017), there
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are conflicting sentiment across modalities. SIMS
(Yu et al., 2020) provides sentiment categories for
each modality, and we analyze their inconsistency
across modalities. As shown in Fig. 1(b), signifi-
cant sentiment conflicts exist within unimodal data,
with 48.97% inconsistency across the three modali-
ties. This conflict leads to contradictions between
modalities, interfering with the fusion process.

Data distribution imbalances are difficult to
avoid in real-world training, and countering them
is often costly (Tang et al., 2022; Arjovsky et al.,
2019). Even when addressed, cross-modal senti-
ment conflicts persist. Inspired by the Invariant
Risk Minimization (IRM) (Tang et al., 2022; Zhou
et al., 2023), we observe that while unimodal sen-
timent knowledge is a primary source for gener-
ating multimodal labels, the correlation between
unimodal sentiment categories and multimodal la-
bels is unstable (as shown in Fig. 1(b)). We wish to
train the MSA model to learn invariant features, sta-
bly correlated with multimodal labels (e.g., object
shapes in image classification), rather than spu-
rious features (e.g., environments) with unstable
correlations (Arjovsky et al., 2019). If the uncer-
tain unimodal sentiment distribution is treated as
an unstable spurious feature, how can invariant
features directly related to multimodal labels be
represented? We propose a reasonable assumption:
multimodal sentiment representation is invariant to
unimodal sentiment polarity and data distribution.
For example, the multimodal sentiment polarity of
"positive" remains positive, regardless of changes
in unimodal sentiment or data distribution. Based
on this, we reformulate the MSA task as learning
stable and invariant sentiment representation from
imbalanced multimodal data, using invariant con-
straints to enhance MSA performance.

Based on the above analysis, we propose the
Multimodal Invariant Sentiment Representation
Learning (MISR). Specifically, we first map data to
the latent space of Gaussian distributions to learn
stable and consistent joint representation. Then,
we treat unimodal data as unstable features rele-
vant to the task and combine them with joint rep-
resentation to create multiple distribution environ-
ments. Finally, based on invariant risk constraints,
we learn multimodal invariant sentiment represen-
tation across these environments, thereby achiev-
ing effective MSA. In the MISR learning process,
unfavorable factors in the data distribution are in-
corporated into optimization objectives for model
training. Data distribution imbalance provides an

optimization direction for distribution constraints,
while sentiment conflicts combined with joint rep-
resentation construct diverse sentiment distribu-
tion environments for invariant learning. MISR
learns stable and invariant sentiment representation
through joint distribution constraint and invariance
constraint, achieving effective and robust MSA per-
formance. The main contributions are as follows:

• We propose the Multimodal Invariant Sen-
timent Representation Learning (MISR)
method, which is based on data distribution
discrepancies and sentiment conflicts to learn-
ing multimodal invariant sentiment represen-
tation, enabling robust and effective MSA.

• We propose a stable multimodal joint repre-
sentation learning method, which learns stable
and semantically consistent joint representa-
tion based on a Gaussian distribution-based
latent space.

• We propose a multimodal invariant risk mini-
mization theory, extending unimodal invariant
feature learning to multimodal invariant repre-
sentation learning.

2 Related Work

2.1 Multimodal Sentiment Analysis
Multimodal Sentiment Analysis (MSA) aims to
endow machines to understand human emotions
through different modalities (Singh et al., 2024).
Mainstream MSA methods can be categorized into
two types: modality fusion and unified represen-
tation learning. Modality fusion methods focus
on acquiring multimodal features through complex
fusion strategies or mechanisms(Liu et al., 2018;
Rahman et al., 2020; Tsai et al., 2019; Wang et al.,
2024a; Huang et al., 2023). LMF (Liu et al., 2018),
as a typical work, used a low-rank tensor for mul-
timodal fusion and optimized computational effi-
ciency with modality-specific factors. In contrast,
unified representation learning focuses on analyz-
ing intra-modal and inter-modal contextual rela-
tionships to learn unified multimodal representa-
tions (Yu et al., 2023; Zhu et al., 2024; Hazarika
et al., 2020; Qian et al., 2023; Zhang et al., 2023).
For example, ConKI (Yu et al., 2023) optimized
the learning of joint multimodal representations
through contrastive knowledge injection. Despite
achieving impressive improvements, these methods
overlook distribution imbalance and cross-modal
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Figure 2: The framework of the Multimodal Invariant Sentiment Representation Learning (MISR).

sentiment conflicts in the training datasets, limiting
model performance.

2.2 Invariant Risk Minimization
Invariant Risk Minimization (IRM) is a train-
ing method that improves model generalization
by learning domain-invariant features (Rosenfeld
et al., 2021). The key idea is to constrain the learn-
ing process, enabling the model to learn invariant
features across domains (Chen et al., 2023; Wang
et al., 2024b; Lai and Wang, 2024; Wu et al., 2024).
For example, Causal-Debias (Zhou et al., 2023)
leveraged specific downstream tasks to identify fac-
tors related to bias and labels, mitigating bias from
the perspective of causal invariance. Under IRM
constraints, the model focuses on task-relevant fac-
tors, improving generalization across different dis-
tributions. IFL (Tang et al., 2022) learned invariant
features across different image data distributions to
address class and attribute imbalances. Inspired by
this, we propose that invariant feature learning in
unimodal can be further extended to invariant rep-
resentation learning in multimodal settings. There-
fore, we propose the Multimodal Invariant Senti-
ment Representation Learning (MISR) method.

3 Methodology

3.1 Overall Framework
Fig. 2 shows the main modules and workflow of the
proposed MISR. MISR consists of four core mod-
ules: Multimodal Encoding (ME), Invariant Sen-

timent Learning (ISL), Invariant Constraint (IC),
and Distribution Constraint (DC). Specifically, the
ME layer passes the extracted modality features
through two layers of Transformer embedding to
standardize the different feature dimensions. The
ISL module combines Gaussian distribution and In-
variant Risk Minimization to learn stable and invari-
ant sentiment representation. The DC motivates the
stability and consistency of the multimodal joint
sentiment representation learned from the latent
space of the Gaussian distribution. Meanwhile, the
IC learns invariant sentiment representation from
the constructed diverse distribution environments
by combining the joint representation. Finally, the
learned invariant sentiment representation is used
as multimodal features for downstream multimodal
sentiment or emotion analysis tasks.

3.2 Multimodal Encoding

We conduct experimental on four multimodal
benchmark datasets: MOSI (Zadeh et al., 2016),
MOSEI (Bagher Zadeh et al., 2018), SIMS (Yu
et al., 2020), and CHERMA (Sun et al., 2023). Fol-
lowing previous works (Yu et al., 2023; Yang et al.,
2023; Zhang et al., 2023), we use BERT (Devlin
et al., 2019) for text, librosa (McFee et al., 2015)
for audio, and OpenFace (Baltrusaitis et al., 2018)
for video feature extraction. To ensure consistent
feature dimensions across modalities, we standard-
ize them by applying an embedding layer with two
Transformer layers to each modality. Given a mul-
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timodal input, we denote the multimodal feature
sequence as Hm ∈ RLm×dm . Here, m ∈ {t, a, v}
denotes the modality type (i.e., text, audio, and
visual), Lm denotes the sequence length of the
modality, and dm denotes the dimensionality of
the modality vector.

3.3 Invariant Sentiment Learning

The imbalance in sentiment distribution of the
MSA dataset causes the model to favor high-
frequency sentiments while insufficiently low-
frequency ones. Meanwhile, cross-modal senti-
ment conflicts further interfere with the fusion pro-
cess, limiting overall model performance. Inspired
by success of IRM in single-modality invariant
feature learning (Tang et al., 2022; Zhou et al.,
2023), we extend IRM to multimodal invariant
sentiment representation learning to address the
impact of data distribution on MSA. Due to the
heterogeneity of multimodal data, it lacks the obvi-
ous invariant features (e.g., object shapes in image
classification) and abundant spurious features (e.g.,
environmental) typically found in single-modality
data. Therefore, we emphasize that MISR learns
the joint invariant sentiment representation of mul-
timodal data. As shown in Fig. 2, we achieve this in
two steps: first, learning stable and consistent joint
representations from multimodal Gaussian distri-
bution; second, under the IRM constraint, learn-
ing sentiment invariance across various distribution
environments created by unimodal data and joint
representations. Each part is detailed below.

As shown in Fig. 2, we adopt the concept of
Variational Inference and design a Gaussian-based
Variational Encoder (VE) and Variational Decoder
(VD) for each modality. The variational encoder
consists of a mapping layer with ReLU, two Trans-
former layers, and two fully-connected layers, and
is designed to learn the parametric mean u(hm)
and variance σ(hm) of the Gaussian distribution.
Given a unimodal sample data hm, the variational
posterior distribution of different modalities in the
Gaussian latent space can be expressed as:

q(zm|hm) ∼ N [zm
∣∣u(hm), σ2(hm)I] , (1)

where zm,m ∈ {t, v, a} represents the latent vari-
able capturing the core features of modality m, and
I is the identity matrix. The mean u(hm) of the
Gaussian distribution represents the stable repre-
sentation in the latent space, while the variance
σ(hm) reflects the uncertainty of the distribution.

The discrepancies in unimodal sentiment contri-
bution reflects modality distribution uncertainty,
which can be quantified through the uncertainty
in the feature space distribution. We quantify the
fusion weights ωm of cross-modal representations
based on the modality uncertainty representation
σ(hm).

ωm =
exp(1/σ(hm))∑

m∈M exp(1/σ(hm))
, (2)

where M = {t, v, a}. Given the stable unimodal
representation u(hm), we apply the quantified un-
certainty fusion weights ωm to the dynamical fu-
sion of the joint multimodal representation.

Hu =
∑

m∈M
ωm · u(hm), (3)

where Hu denotes the stable and consistent joint
multimodal representation. To optimize the distri-
bution and smooth and stabilize the learning pro-
cess of Hu, we introduce the standard normal dis-
tribution N (0, I) as a priori constraint. By min-
imizing the KL divergence to align the posterior
distribution q(zm|hm) with N (0, I), promoting
the stability of the model in learning Hu.

LNA =
∑

m∈M
DKL(q(z

m|hm)|N |(0, I)) , (4)

where LNA is the normalized alignment constraint
loss. To align the distributions across modalities
and promote consistent representations, we intro-
duce a cross-modal KL divergence alignment con-
straint, as follows:

LCMA =
∑

m1 ̸=m2

DKL(q(z
m1 |hm1)|q(zm2 |hm2)), (5)

where m1,m2 ∈ M , LCMA denotes the cross-
modal alignment constraint loss. To make the latent
space sampling process differentiable and enable
effective gradient propagation, we employ the re-
parameterization trick to sample from the Gaussian
distribution in the latent space. Specifically, we
represent the latent variable zm as:

zm = u(hm) + σ(hm) · ε, (6)

where ε ∼ N (0, I) is the noise sampled from the
standard normal distribution. The latent variable
zm serves as the core abstract representation of
the input data hm, reflecting the effectiveness of
the latent space parameterization. Therefore, we

14746



design a Variational Decoder (VD) for each modal-
ity, consisting of a mapping layer with ReLU, two
Transformer layers, and a fully connected layer to
reconstruct the input data hm from zm.

LDR = Eq(zm|hm)[
∣∣∣∣hm − VD(zm)

∣∣∣∣2] (7)

Thus, the overall distribution constraint LDR of
the Gaussian distribution can be expressed as:

LDC = LNA + LCMA + LDR (8)

The distributional discrepancies in the data pro-
vide optimization objective for the LDC , promot-
ing the consistency and stability of the multimodal
joint representation Hu. Inspired by IRM (Tang
et al., 2022; Zhou et al., 2023), we argue that a con-
sistent and stable multimodal joint representation
Hu can further learn invariant sentiment represen-
tation under the IRM constraint. In Section 3.4, we
detail the construction and learning process of the
multimodal invariant risk minimization.

3.4 Invariant Constraint
In Section 3.3, we obtain a consistent and stable
multimodal joint representation Hu. Based on pre-
vious analysis, Hu serves as a direct cause of mul-
timodal sentiment label Y . We regard Hu as an
invariant representation of multimodal. Further-
more, cross-modal sentiment conflicts in data pro-
vide diverse distributional environments for invari-
ant learning. Thus, we combine Hu and unimodal
representation Hm,m ∈ M to construct multiple
distributional environments .

ε = {e1, e2, ..., eE} ∈
∑

Hfi(u,m1,...,mi), (9)

where i ∈ {0, 1, 2, 3}, fi is fusion function. For
example, Hf2(u,m1,m2) denotes the joint represen-
tation of Hu with Hm1 and Hm2 , m1,m2 ∈
{t, v, a} and m1 ̸= m2. The special f0 = u. In
the MSA task, we wish to learn a multimodal senti-
ment distribution Φ(H) that depends only on Hu.
If Φ(H) is solely dependent on Hu, meaning its
representation does not rely on the environment
and is a task-relevant joint-invariant representation
HI , then for any distributional environment e, we
have:

P e(Y |Φ(H)) = P (Y |Φ(H)) , (10)

where H ∈ Hfi(u,m1,...,mi). Since Φ(H) is learned
as a joint representation solely dependent on Hu,
i.e., the invariant representation HI . Therefore

P (Y |Φ(H)) denotes the optimal prediction for
the task label Y , while P e(Y |Φ(H)) denotes
the prediction for Y in the environment e. As
Φ(H) is still learned as a joint representation
only relying on Hu in environment e, it holds
that P e(Y |Φ(H)) = P (Y |Φ(H)) for any environ-
ment e.

Under the core idea of IRM, we constrain the
model to learn invariant representations across envi-
ronments with the aim of achieving optimal results
in all environments (Lai and Wang, 2024; Wu et al.,
2024). According to the IRM optimization algo-
rithm in REx (Krueger et al., 2021), if Φ(H) rep-
resents the invariant representation learned by the
model across different environments e, the predic-
tion loss for the sample label Y remains the same
across environments. Therefore, the model can be
optimized by minimizing the loss variance (Var)
across environments. As a result, the multimodal
invariant constraint LIC optimization loss function
is expressed as:

LIC = Var(Re(θ,Φ(
∑

Hfi(u,m1,...,mi)))), (11)

where Re(θ,Φ) denotes the risk under environment
e, which in this paper refers to the absolute error
loss of the model prediction, and θ denotes the
model parameters. In the IRM framework, cross-
modal sentiment conflicts are used to construct
multiple distributional environments for invariant
learning, optimizing the model through invariance
constraints and enhancing its robustness.

3.5 Overall Learning Objectives
The learned multimodal invariant sentiment repre-
sentation HI is fed into a Multi-Layer Perceptron
(MLP) consisting of two fully connected layers
with ReLU, which outputs the sentiment prediction.
The model is optimized using L1 loss to minimize
sentiment prediction error.

LSP =
1

N

N∑

i=1

|ŷi − yi|, (12)

where LSP denotes the sentiment prediction loss,
ŷi = MLP(HI

i ) denotes the predicted value of sam-
ple i, and yi denotes the sample label. In particular,
the cross-entropy loss is used for classifying seven
emotions in the CHERMA (Sun et al., 2023).

In summary, the total optimization objectives of
MISR can be expressed as:

L = λ1LSP + λ2LDC + λ3LIC , (13)

where λ1, λ1, and λ1 are weight hyperparameters.
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Model
MOSI MOSEI

Acc-2 F1 Acc-7 MAE Corr Acc-2 F1 Acc-7 MAE Corr

LFN* -/80.8 -/80.7 34.9 0.901 0.698 -/82.5 -/82.1 50.2 0.593 0.700
LMF* -/82.5 -/82.4 33.2 0.917 0.695 -/82.0 -/82.1 48.0 0.677 0.623
MISA* 80.79/82.10 80.77/82.03 - 0.804 0.764 82.59/84.23 82.67/83.97 - 0.548 0.724
CMHFM 79.45/81.10 79.30/81.02 42.13 0.822 0.723 84.31/84.37 84.18/84.01 52.61 0.548 0.747
TMBL 81.78/83.84 82.41/84.29 36.3 0.867 0.762 84.23/85.84 84.87/85.9 52.4 0.545 0.766
MAG-BERT* 82.37/84.43 82.50/84.61 43.62 0.781 0.727 82.51/84.82 82.77/84.71 52.67 0.543 0.755
Self-MM* 82.54/84.77 82.68/84.9 45.79 0.712 0.795 82.68/84.96 82.95/84.93 53.46 0.529 0.767
HyCon* -/85.2 -/85.1 46.6 0.713 0.790 -/85.4 -/85.6 52.8 0.601 0.776
MMIM* 84.14/86.06 84.00/85.98 46.65 0.700 0.800 82.24/85.97 82.66/85.94 54.24 0.526 0.772
ConKI* 84.37/86.13 84.33/86.13 48.43 0.681 0.816 82.73/86.25 83.08/86.15 54.25 0.529 0.782
ALMT 84.55/86.43 84.57/86.47 49.42 0.683 0.805 84.78/86.79 85.19/86.86 54.28 0.526 0.779

MISR 86.01/88.11 86.10/88.15 49.85 0.671 0.819 85.28/87.51 85.57/87.55 55.05 0.513 0.789

Table 1: Performance of models on MOSI and MOSE. "*" indicates the results are from ConKI (Yu et al., 2023).
The best results are marked in bold.

4 Experiments

4.1 Datasets

We evaluate the MISR model on two tasks: Multi-
modal Sentiment Analysis (MSA) and Multimodal
Emotion Recognition (MER).

MSA: MSA aims to analyze the sentiments ex-
pressed by people in a video. We evaluate on the
MOSI (Zadeh et al., 2016), MOSEI (Bagher Zadeh
et al., 2018), and SIMS (Yu et al., 2020) datasets.

MER: MER focuses on classifying verbal emo-
tions in videos into multiple emotion categories.
We evaluate on the CHERMA (Sun et al., 2023)
dataset. The details of the datasets are shown in
Appendix A.

4.2 Implementation Details

Evaluation Metrics: For MOSI and MOSEI, we
report binary classification accuracy (Acc-2), F1
score, seven-class accuracy (Acc-7), mean abso-
lute error (MAE), and correlation (Corr). Acc-2
and F1 are reported in two forms: the first for
negative/non-negative (including 0), and the sec-
ond for negative/positive. Acc 7 shows the per-
centage of correct predictions made by the model
in seven sentiment intervals from -3 to +3. For
the SIMS dataset, we report Acc-2, F1, MAE, and
Corr. On the CHERMA dataset, F1 score evalu-
ates the model’s performance on seven emotion
categories. Except for MAE, higher values for all
metrics indicate better performance.

Experimental Setup: All models are trained us-
ing PyTorch on an NVIDIA RTX A40 with a fixed
random seed (1111), and the results are averaged
over three experiments. For the MOSI, MOSEI,

and SIMS datasets, Adam is used as the optimizer,
BERT serves as the backbone, with a learning rate
of 5e-6, a batch size of 32, and 100 epochs. The
experimental setup for MISR on the CHERMA
dataset remains the same as LFMIM (Sun et al.,
2023). Appendix B provides detailed of Experi-
mental Setup.

4.3 Baselines
We compare MISR with mainstream and state-of-
the-art methods, as follows: TFN (Zadeh et al.,
2017), LMF (Liu et al., 2018), MISA (Hazarika
et al., 2020), MAG-BERT (Rahman et al., 2020),
TMBL (Huang et al., 2024), CMHFM (Wang et al.,
2024a), HyCon (Mai et al., 2022), MMIM (Han
et al., 2021), ConKI (Yu et al., 2023), Self-MM (Yu
et al., 2021), MulT (Tsai et al., 2019), EFT (Sun
et al., 2022), LFT (Sun et al., 2022), MulT (Tsai
et al., 2019), PMR (Lv et al., 2021b), LFMIM (Sun
et al., 2023), and ALMT (Zhang et al., 2023).

4.4 Comparative Analysis of Experimental.
We analyze the experimental results of MISR and
baseline on four datasets in detail. As shown in Ta-
bles 1, 2, and 3, MISR outperforms all comparison
models on every dataset.

As shown in Table 1, MISR outperforms the
comparison models on all metrics for MOSI and
MOSEI. Specifically, compared to the SOTA model
ALMT (Zhang et al., 2023), MISR achieves an
average performance improvement of 1.69% and
1.12%. The performance improvement of MISR
is mainly due to its effective use of data distribu-
tion discrepancies and sentiment conflicts to opti-
mize the model for learning stable and invariant
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Model Acc-2 F1 MAE Corr

TFN* 75.27 75.56 0.488 0.496
LMF* 75.36 75.78 0.487 0.502
MulT* 75.62 75.84 0.485 0.504
MISA* 75.49 75.85 0.472 0.542
MAG-BERT* 71.43 63.68 0.553 0.242
Self-MM* 77.37 77.54 0.458 0.535
MMIM* 69.37 58.00 0.607 -
ConKI* 77.94 78.17 0.454 0.542

MISR 81.53 81.91 0.425 0.597

Table 2: Performance of models on SIMS. "*" indicates
the results are from ConKI (Yu et al., 2023).
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Figure 3: Sample distribution and F1 performance im-
provement across emotion categories on CHERMA
(Compared to LFMIM).

sentiment representation. In contrast, existing base-
lines mainly focus on multimodal fusion or contex-
tual representations, ignoring the impact of dataset
distribution imbalance and cross-modal sentiment
conflicts on model performance. However, MISR
incorporates these unfavorable factors as optimiza-
tion objectives during training through distribution
constraint and invariance constraint, resulting in
more robust and effective MSA performance.

As shown in Table 2, we compare the perfor-
mance of MISR with the baseline model on the
SIMS dataset. The results show that MISR out-
performs the suboptimal model, ConKI (Yu et al.,
2023), with an overall performance improvement
of 6.48% across four metrics.

Table 3 presents the performance of different
models on the multimodal emotion recognition
(MEA) task, including overall accuracy (i.e., over-
all F1 score) and F1 scores for each emotion cat-
egory. The results show that MISR outperforms
competing models in both overall accuracy and F1
scores for individual categories. Compared to the
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Figure 4: Confusion matrix of emotion categories on
CHERMA. Ang, Dis, Fea, Hap, Neu, Sad, and Sur
represent Anger, Disgust, Fear, Happiness, Neutrality,
Sadness, and Surprise.

current SOTA model LFMIM (Sun et al., 2023),
MISR achieves a 4.51% improvement in the aver-
age F1 score across seven emotion categories.

Fig. 3 shows the distribution of emotion cate-
gories in the CHERMA dataset and the F1 perfor-
mance improvement of MISR over LFMIM. MISR
achieves significant performance improvements in
recognizing various emotion categories, with no-
table increases of 7.21% and 14.24% in "Sadness"
and "Fear". It is worth noting that the "Fear" cat-
egory has the fewest samples among the seven
emotion categories, yet MISR achieves the highest
performance improvement in this category. This
further demonstrates that MISR better maintains
performance stability across categories when deal-
ing with imbalanced data.

4.5 Visualizing the Impact of Data Imbalance

As shown in Fig. 3, the distribution of the seven
emotion categories in the CHERMA dataset is sig-
nificantly imbalanced. Fig. 4 further presents the
confusion matrices for LFMIM and MISR in the
seven-category emotion recognition task, facilitat-
ing a better analysis of model performance.

As shown in Fig. 4, the predictive recall for the
low-frequency emotion category "Fear" is approxi-
mately 61% for LFMIM and 76% for MISR. Fur-
ther analysis reveals that around 15% of the "Fear"
samples are misclassified as the high-frequency
category "Neutrality" by LFMIM, while the mis-
classifications of MISR are mainly concentrated in
the low-frequency category "Surprise". This indi-
cates a model bias in LFMIM, which tends to mis-
classify low-frequency samples as high-frequency
categories in imbalanced data. In contrast, MISR
does not show significant prediction bias in low-
frequency categories. However, the recall rate for
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Model Happiness Sadness Fear Anger Surprise Disgust Neutrality Overall

TFN* 74.91 75.56 66.15 74.41 66.29 43.34 65.60 68.37
LMF* 74.52 75.83 66.73 74.55 65.08 45.70 65.64 68.23
EFT* 74.98 76.88 67.32 74.85 66.73 47.48 64.60 68.72
LFT* 75.07 76.29 66.80 74.88 66.67 47.74 65.97 69.05
MULT* 76.18 76.88 67.36 74.85 68.18 46.96 65.26 69.24
PMR* 75.68 76.46 67.97 75.43 67.37 48.93 66.59 69.53
LFMIM* 76.60 77.83 69.44 75.32 69.83 50.20 68.24 70.54

MISR 79.83 83.44 79.33 77.58 70.39 50.38 69.43 73.75

Table 3: The comparison with baselines on CHERMA. “*” indicates the results are from LFMIM (Sun et al., 2023).

Method Acc-2 F1 Acc-7 MAE Corr Avg.

MISR 86.01 / 88.11 86.10 / 88.15 49.85 0.671 0.819 -
w/o LNA 85.28 / 87.65 85.31 / 87.68 48.10 0.663 0.817 0.77% ↓
w/o LCMA 85.71 / 87.76 85.76 / 87.81 48.83 0.674 0.811 0.71% ↓
w/o LDR 84.84 / 87.50 85.02 / 87.59 48.54 0.685 0.806 1.46% ↓
w/o LIC 85.13 / 87.35 85.23 / 87.39 47.86 0.682 0.814 1.42% ↓

Table 4: Ablation experiments on MOSI.

the "Surprise" category is slightly lower for MISR
compared to LFMIM. Further analysis showed that
although MISR has a lower recall rate in the "Sur-
prise" category than LFMIM, LFMIM misclassifies
more samples from other categories as "Surprise",
leading to a lower accuracy. As a result, the overall
F1 score for the "Surprise" category is still lower
than the MISR.

4.6 Ablation Study

The performance of the MISR model is influenced
by four key optimization objectives: normalized
alignment LNA, cross-modal alignment LCMA,
data reconstruction LDR, and invariance constraint
LIC . We evaluate the impact of removing these
objectives on MISR using the MOSI dataset.

As shown in Table 4, removing different mod-
ules of MISR leads to a performance degradation,
indicating that each optimization objective is ef-
fective for the task. Further analysis reveals that
removing LDR results in an overall performance
degradation of 1.46%, with the largest impact on
Acc-7, which decreased by 2.63%. The main rea-
son may be that latent variables zm serve as the
core abstract representation of input data hm, re-
flecting the effectiveness and rationality of latent
space parameterization. The data reconstruction
LDR constraint ensures that the original data can
be recovered as much as possible from the latent

space, optimizing the model while preserving ef-
fective features. Removin LIC results in a 1.43%
overall performance degradation in MISR, indi-
cating that although the sentiment distribution in
the MOSI is relatively balanced, cross-modal senti-
ment conflicts still exist. Incorporating sentiment
conflicts as an optimization objective through in-
variance learning helps mitigate their adverse im-
pact on the model.

5 Conclusion

This paper proposes the Multimodal Invariant Sen-
timent Representation Learning (MISR) method,
which learns multimodal invariant sentiment repre-
sentation based on data distribution discrepancies
and sentiment conflicts to achieve effective and ro-
bust MSA. This paper shows that the imbalance in
data distribution provides an optimization direction
for distribution constraints, while sentiment con-
flicts combined with joint representation construct
diverse sentiment distribution environments for in-
variant learning. MISR incorporates unfavorable
factors in the data distribution into optimization
objectives for model training. Comprehensive ex-
periments across multiple datasets demonstrate that
MISR significantly outperforms existing models,
providing a new research direction for achieving
effective and robust MSA.
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Limitations

Although MISR performs well across multiple
datasets, it still has some limitations that need to
be addressed in future work. First, the tuning of
hyperparameters, especially the part related to the
loss function, makes it difficult to optimize all eval-
uation metrics simultaneously. This suggests that
more refined optimization strategies are needed to
balance different performance demands and further
improve the overall performance. Second, although
MISR performs well in most emotion categories,
there is still room for improvement in classifying
the "Disgust" emotion. As a more complex emo-
tional expression, "Disgust" is prone to confusion
with other negative emotions (e.g., Anger and Sad-
ness), which affects the classification accuracy and
stability of the model. Future research can try to
introduce finer-grained emotion feature extraction
methods to enhance the model’s performance in
analyzing complex emotions (e.g., Disgust). Addi-
tionally, exploring more diverse datasets and emo-
tional features would help improve the model’s ro-
bustness and accuracy, further advancing the field
of multimodal sentiment analysis.
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A Datasets

We evaluate the performance of the MISR model
through two tasks: Multimodal Sentiment Analy-
sis (MSA) and Multimodal Emotion Recognition
(MER).

MSA: MSA aims to analyze the sentiments
expressed by people in a video. For the MSA
task, we evaluate the performance of MISR us-
ing three widely recognized benchmark datasets:
MOSI (Zadeh et al., 2016), MOSEI (Bagher Zadeh
et al., 2018), and SIMS (Yu et al., 2020). The
MOSI dataset contains 2,199 annotated video clips,
in which speaker express opinions on topics such
as movies, drawn from 93 YouTube videos. MO-
SEI, an extended version of MOSI, contains 22,856
annotated video clips covering 250 different topics.
Each clip in both datasets is labeled with sentiment
intensity, ranging from -3 (strongly negative) to +3
(strongly positive). SIMS is a MSA dataset contain-
ing 2,281 video clips. Every sample is annotated
with one multimodal label and three unimodal la-
bels, with sentiment scores ranging from -1 to +1.

MER: MER focuses on classifying verbal emo-
tions in videos into multiple emotion categories.
We conducted experimental analyses using the
emotion recognition dataset CHERMA (Sun et al.,
2023). CHERMA contains 28,717 video clips from
different media, categorized according to Ekman’s
six basic emotions (Ekman, 1992) (i.e., happiness,
sadness, fear, anger, surprise, and disgust), as well
as neutrality. Each video clip was labeled with
three unimodal labels and one multimodal label.
The dataset was divided into training, validation,
and test sets in the ratio of 6:2:2.

Table 5 shows the statistical information of all
datasets.
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Dataset Speaker Video clip Train Valid Test Language
MOSI 93 2199 1284 229 686 English

MOSEI 1000 22856 16326 1871 4659 English
SIMS 474 2281 1368 456 457 Chinese

CHERMA - 28717 17230 5743 5744 Chinese

Table 5: Dataset statistics.

Hyper-parameter MOSI MOSEI SIMS CHERMA
dt 768&1024 768&1024 768&1024 1024
da 5 74 33 1024
dv 20 35 709 2048

λ1, λ2, λ3 1,0.4,1 1,0.4,1 1,0.5,1 1,0.5,1
Batch size 32 32 32 24

Epoch 100 100 100 50
Optimizer Adam Adam Adam SGD

Vector Length T 50 50 39 80
Learning rate of BERT 5e-6 5e-6 5e-6 5e-4
Learning rate of others 1e-4 1e-4 1e-4 5e-4
Fully connected layer 128 128 128 1024

Table 6: Hyper-parameters setting.

Backbone Parameters Time / Epoch

BERT-base 115 M 8 s
BERT-large 341 M 17 s

Table 7: Computational overhead.

B Hyper-parameters setting

Table 6 provides a detailed of hyper-parameters
setting.

C Computational Overhead

Table 7 presents the computational overhead analy-
sis of the MISR model on the MOSI (Zadeh et al.,
2016) dataset. As shown, the use of BERT-base,
which has fewer parameters, results in faster run-
time, but with a potential trade-off in performance.
On the other hand, BAER-large, with more param-
eters, takes longer to run but may achieve better
performance due to its increased model capacity.
This highlights the balance between computational
efficiency and model performance when selecting
model configurations.

D Rationale for Multimodal IRM

In single-modal tasks, IRM improves the model’s
generalization ability across different data distribu-
tions by learning invariant features that are stably

related to the target labels. "Invariance" does not
mean that the data itself or the feature distribution
remains completely unchanged; rather, it refers to
the model learning features that consistently main-
tain a stable association with the label across differ-
ent environments. For example, in image classifica-
tion, IRM encourages the model to focus on object
shapes rather than unstable spurious features like
background.

When extending to multimodal sentiment anal-
ysis (MSA), the imbalance in single-modal data
distribution and cross-modal sentiment conflicts
make direct modeling more challenging. However,
multimodal fusion can often compensate for the
instability of individual modalities, making multi-
modal sentiment representations invariant to uni-
modal sentiment polarity and data distribution. For
instance, a single modality may be affected by
noise or biases (e.g., text sentiment classification
may be skewed due to sarcasm), but multimodal
fusion enhances robustness and mitigates such ef-
fects. Moreover, from the IRM perspective, modal-
ity conflicts and sentiment distribution imbalance
in MSA naturally form different data distribution
environments, providing a reasonable optimization
scenario for invariant risk minimization.

Based on this, we propose I Multimodal Invari-
ant Sentiment Representation Learning (MISR),
which draws inspiration from IRM to optimize in-
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No. IR IC Text Audio Visual Acc-2 F1 Acc-7 MAE Corr

N1 Hu ✓ × × × 86.01 / 88.11 86.10 / 88.15 49.85 0.671 0.819
N2 Hu ✓ ✓ × × 85.88 / 87.95 85.91 / 87.91 49.55 0.678 0.804
N3 Hu × ✓ × × 85.77 / 87.66 85.74 / 87.62 48.73 0.684 0.799
N4 Hu ✓ × ✓ × 85.83 / 87.88 85.92 / 87.76 48.70 0.681 0.806
N5 Hu × × ✓ × 85.40 / 87.33 85.56 / 87.40 48.21 0.690 0.801

Table 8: Ablation analysis under different environments. Partial examples, where IR and IC represent invariant
representations and invariant constraints, respectively.

variant sentiment representations in a multimodal
setting. MISR first learns stable cross-modal joint
sentiment representations, then, under IRM con-
straints, further refines invariant features from dif-
ferent modality combinations and distribution envi-
ronments, thereby improving the model’s general-
ization ability in MSA tasks.

E Experimental Validation of Extending
IRM to Multimodal

In the ablation study, we provide multiple distribu-
tion environments built in Section 3.4 and compare
the model performance with and without the invari-
ance constraint. As shown in Table 8.

A comparison between N2 and N3 shows bet-
ter performance under the learned joint invariant
representation IR with invariant constraints in the
text environment. Similarly, N2 and N4 outper-
form N3 and N5, where invariant constraints are
removed. This suggests that invariant constraints
are effective, supporting the hypothesis. Additional
environment tests are in the supplement.
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