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Abstract

Most existing GUI agents typically depend on
non-vision inputs like HTML source code or
accessibility trees, limiting flexibility across
diverse software environments and platforms.
Current multimodal large language models
(MLLMSs), though excel at using vision to
ground real-world objects, often struggle with
accurately localizing GUI elements — a criti-
cal requirement for effective GUI automation
— due to the semantic gap between real-world
objects and GUI elements. In this work, we in-
troduce Ponder & Press, a divide-and-conquer
framework for general computer control that
uses only visual input. Our approach com-
bines a general-purpose MLLM as an ‘inter-
preter’, responsible for translating high-level
user instructions into detailed action descrip-
tions, with a GUI-specific MLLM as a ‘locator’
that precisely locates GUI elements for action
placement. By leveraging a purely visual in-
put, our agent offers a versatile, human-like
interaction paradigm applicable to various ap-
plications. Ponder & Press locator outperforms
existing models by +22.5% on the ScreenSpot
GUI grounding benchmark. More offline and
interactive agent benchmarks across various
GUI environments — including web pages, desk-
top software, and mobile Uls — demonstrate
that the Ponder & Press framework achieves
state-of-the-art performance, highlighting the
potential of visual GUI agents.

1 Introduction

Researchers have long pursued the development of
autonomous agents to assist humans in interacting
with various GUI devices (Shi et al., 2017; Yao
et al., 2022; Li et al., 2020). With recent advances
in Large Language Models (LLMs) (Brown et al.,
2020; Achiam et al., 2023; Touvron et al., 2023; An-
thropic, 2024), agents for Web browsing (Gur et al.,
2024), office automation (Wu et al., 2024; Tan et al.,

*Equal contribution. T Correspondence to Yansong Tang.

2024), and mobile apps (Rawles et al., 2024b) have
been proposed to streamline user interactions and
improve productivity. Major technology companies
have also contributed to this development by cre-
ating agents that facilitate user experiences, such
as Apple Siri, Microsoft 365 Copilot, and Capcut
smart video editor.

Despite these advancements, existing GUI au-
tomation approaches face limitations in general-
izability and adaptability across software environ-
ments. First, software-specific agents from tech
companies often operate beneath the GUI layer, by-
passing user-facing elements, and thus sacrificing
generalization by interacting directly with under-
lying code. Second, most GUI agents (Shi et al.,
2017; Humphreys et al., 2022; Gur et al., 2024; Yao
et al., 2022; Li et al., 2020; Zhou et al., 2023; Deng
et al., 2024) developed by the research commu-
nity rely on additional information such as HTML,
DOM, or accessibility trees, making them specific
to certain platforms and software environments.
Human interaction with GUIs, on the contrary,
relies exclusively on visual input and interaction
through actions such as mouse clicks, keyboard
input, and screen taps. Therefore, a robust GUI
agent designed for broad applicability must ide-
ally be able to operate using only visual input,
similar to human perception, and output actions
in a human-like manner.

Developing vision-only general agents capable
of human-like interactions with GUIs presents sig-
nificant challenges as follows:

» Task Decomposition: Interpreting and break-
ing down high-level task instructions into a
series of executable actions within a software
environment, ensuring that the GUI agent exe-
cutes the correct action.

* Precise GUI Localization: Accurately local-
izing GUI elements to facilitate correct action
placement, such as clicks or text inputs.
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Figure 1: Different types of frameworks for vision-based

GUI agents.

As shown in Figure 1 (a) and (b), previous
efforts have sought to build end-to-end models
that address both challenges simultaneously. High-
level user instructions are directly mapped to action
types, action values, and pixel coordinates in a sin-
gle inference. However, this approach struggles
due to the significant difference between the tex-
tual nature of actions and values, and the numerical
nature of pixel coordinates. As shown in Figure 1
(a), general-purpose end-to-end multimodal models
(MLLMs) (Achiam et al., 2023; Anthropic, 2024;
Wang et al., 2024) often suffer from poor grounding
performance (refer to Table 1 for proof). As shown
in Figure 1 (b), GUI-specific models (Cheng et al.,
2024), though specialized in GUI grounding, strug-
gle to effectively decompose complex user instruc-
tions. As a result, these types of models suffer
from poor accuracy in predicting the action type
(e.g. TYPE or CLICK) and action value (e.g. the
typed content). The claims made above are proved
in the experiment section.

In this paper, we introduce a divide-and-conquer
framework called Ponder & Press. It follows the
design presented in Figure 1 (c), leveraging the
user-instruction interpretation ability of general-
purpose MLLM, as well as the grounding ability
of GUI-specific MLLM.

As further shown in Figure 3, the framework
is composed of two distinct stages that deal with
the two challenges separately: (1) The ‘Ponder’
stage, involves an Instruction Interpreter that
converts high-level user goals into executable steps.
For instance, as shown in Figure 3, when tasked
with finding the stock price of ‘Netflix’ on Google
Finance, the interpreter outputs: “To find the latest
price of Netflix stock, I need to search for Netflix
in the Google Finance platform. The search bar
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Figure 2: Ponder& Press improves vision-based
GUI agents on a broad range of tasks.

is visible at the top of the page, so I'll use that
to enter [Netflix]‘, along with a structured output
"Action: TYPE, Value: ‘Netflix’, Element Descrip-
tion: ‘Search bar with placeholder text [Search for
stocks, ETFs & more]’". This stage leverages the
commonsense knowledge embedded in MLLMs to
bridge the gap between high-level user instructions
and textual, structured action descriptions. (2) The
‘Press’ stage, where we train a Visual Element
Locator to map the ‘Element Description’ to pixel
coordinates, requiring only a small labeled dataset
while achieving state-of-the-art performance.

This modular design allows the agent to accu-
rately understand user intent and execute precise
actions (Liu et al., 2025), maintaining flexibility
for general software control. Furthermore, by rely-
ing solely on visual inputs—without the need for
HTML, accessibility trees, or other supplementary
data—our purely visual GUI agent enhances gen-
eralizability across various platforms, avoiding the
need for software-specific modifications.

Our main contributions are as follows:

* We propose Ponder & Press, a divide-and-
conquer GUI agent framework that only relies
on visual input to mimic human-like interac-
tion with GUISs. It guarantees generalizability
across diverse environments.

* We evaluate Ponder & Press locator on the
GUI grounding benchmark ScreenSpot, out-
performing previous state-of-the-art model by
+22.5%.

* We further conducted extensive evaluations of
our framework on 4 widely used GUI agent
benchmarks, demonstrating the effectiveness
of our agent in offline, online, desktop, web-
page, and mobile settings.
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Figure 3: The framework of Ponder&Press agent.

The framework consists of two core components: an

Instruction Interpreter that translates high-level user instructions into actionable steps, and a Visual Element
Locator that localizes GUI elements for interactions such as clicking or typing. Our method ensures that complex
instructions can be decomposed and precisely executed within diverse GUIs.

2 Related Work

2.1 Autonomous Agents for GUI Devices

System-specific agents developed by technology
companies, such as Apple Siri and Microsoft Copi-
lot, are typically integrated beneath the GUI layer
and lack a mechanism to generalize to arbitrary
software interfaces without internal system access.
In contrast, many GUI agents developed by the
research community (Yao et al., 2022; Kim et al.,
2023; Zhou et al., 2023; Deng et al., 2024) are de-
signed to work with various GUIs but often rely
on HTML, DOM, or accessibility trees as input
sources to locate elements. This reliance on non-
visual data sources limits their ability to generalize
to GUISs that do not expose internal structural data.

Efforts to build human-like vision-only GUI
agents aim to overcome these limitations (Shaw
et al., 2023; Hong et al., 2024; Cheng et al., 2024;
Zheng et al., 2024; Lu et al., 2024). However,
existing vision-only agents often face challenges
with task decomposition and localization precision.
Single-step end-to-end models that predict both ac-
tions and pixel coordinates in a single inference
tend to struggle with the modality gap between ac-
tion description and numerical coordinates, leading
to restricted planning ability (Cheng et al., 2024).
Our work addresses these issues by adopting a
divide-and-conquer approach to separate task plan-
ning from localization, enhancing both the general-
izability and precision of our GUI agent.

2.2 Multimodal Large Language Models

General-purpose commercial MLLMs(Achiam
et al., 2023; Anthropic, 2024) excel in common-
sense reasoning and high-level planning, making
them suitable for interpreting complex instructions
within a GUI context. Open-source MLLMs such
as LLaVA (Liu et al., 2023, 2024b) and Qwen2-
VL (Wang et al., 2024) are designed to solve var-
ious vision-related tasks. These models are par-
ticularly effective when applied to familiar visual
domains that match their training distribution, such
as grounding real-world objects. However, their
performance declines in out-of-distribution (OOD)
scenarios, such as novel GUI layouts, due to limited
training data and a narrow generalization capacity.

In our approach, we leverage the instruction in-
terpretation ability of general-purpose MLLMs for
task decomposition while addressing GUI local-
ization with a dedicated visual grounding model,
leveraging the commonsense GUI knowledge as
well as GUI-specific grounding ability.

2.3 Visual Grounding

Due to the semantic gap between real-world im-
ages and GUI images, general visual grounding
models (Wang et al., 2024) suffer from severe per-
formance drops on GUI data, as further shown in
our experiment section. Screenshot marks (Yang
et al., 2023a; Liu et al., 2024a), chain-of-thought
methods (Wei et al., 2022) , or explicitly extract
GUI elements from screenshot (Lu et al., 2024)
serve as training-free workarounds to help MLLM
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understand the relative position between different
visual elements. Still, they rely on explicitly per-
forming another stage of image segmentation, ob-
ject tracking, or API-based model calling, which is
inconvenient and may involve additional errors.

In order to enhance grounding performance on
GUI data, (Bai et al., 2021; Qian et al., 2024)build
datasets to bridge the gap between natural language,
GUI element, and its location. CogAgent (Hong
et al., 2024) conducted large-scale pretraining on
datasets including 400k webpage screenshots and
further finetuned on human-annotated restricted in-
ternal datasets. SeeClick (Cheng et al., 2024) open-
sourced a GUI visual grounding training set consist-
ing of 1M data. Our approach builds on these ad-
vances by training a GUI-specific grounding model
with a labeled dataset, translating structured action
descriptions into precise pixel coordinates. This
modular design facilitates robust and efficient GUI
localization across diverse environments.

3 Method

3.1 Task Formulation

Consider a GUI environment £ (e.g., an office
software, a web page, a mobile app interface,
etc.) and a task 7 (e.g., ‘Find the latest news
about Netflix stock.”). The agent’s goal is to
produce a sequence of executable actions A =
[, o, . .., auy| to complete the task. At each step
k, the agent p must generate an action oy, based on
the current visual observation o, previous actions
{a1,a9,...,ar_1}, and the task T

ar = plog, T, {a1,a2,...,a5_1})

In this setting, the observation oy, is purely vi-
sual. We have o, = 1 at each step k, with i
representing the screenshot input. No structured
HTML code, DOM tree, accessibility tree, or any
other text-based information is available. All envi-
ronment understanding must be derived from the
current screenshot. The state of the GUI environ-
ment £ updates after each action as follows:

op+1 = E(ay)

Each action « corresponds to an application or
system event within the environment, represented
as a triplet:

a=(nwv)

Here, 7 represents a target location (e.g., ‘[0.50,
0.20]’) as a pixel coordinate on the screen, denoting
the position where the ‘Click’, ‘Type’, or ‘Select’
operation should be executed. w € O specifies
the intended operation type (e.g., “Type’), and v
provides any additional value required for the ac-
tion (e.g., the type content ‘Netflix’). The set O
encompasses all allowable operations in €.

3.2 Framework Design

It is challenging for multimodal language models
(MLLMs) to produce the action triplet (1, w, v) in
a single inference step. Specifically, generating w
and v requires strong planning abilities, contextual
reasoning, and domain-specific knowledge of the
GUI, while determining 1 demands precise and ac-
curate grounding of GUI elements. As shown in the
experiments section, existing end-to-end models
exhibit relatively low performance on this challeng-
ing task. To address this issue, we introduce an
intermediate variable D, a textual description of
the target element that serves as a reliable and in-
terpretable bridge for accurate grounding.

Our approach follows a two-stage process:

1. Instruction Interpretation: The first
model ¢ functions as an instruction interpreter.
Given the current screenshot oy, previous actions
{a1,a9,...,ar_1}, and the task T, it generates
the intermediate output (D, w, v):

(Dawa V) = ¢(0k7 T7 {ala ag, ..., ak—l})u

where ¢ encapsulates task interpretation abilities.

2. GUI Element Localization: The second
model ) functions as a visual GUI element locator.
Given the current screenshot o and the textual de-
scription D, it determines the relative coordinates
1 on the screen:

n= ¢(0kz, D)7

where v represents the grounding function for lo-
cating GUI elements.

The final action triplet (7, w, v), thus obtained,
can be executed within the GUI environment to get
the next observation og 1.

3.3 Instruction Interpreter

The Instruction Interpreter translates high-level
task instructions into structured components for
GUI interaction, producing (D,w,v) in a single
inference. Here, D is a textual description of the
target element, w denotes the intended operation
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(e.g., Click, Type), and v provides additional in-
put required for the action, such as specific text or
dates.

We employ two multimodal models—GPT-
40 and Claude 3.5 Sonnet—that process screen-
shots alongside the task 7 and prior actions
{a1,a9,...,a5_1}. Given these inputs, each
model generates a text output containing (D, w, v):

(D,w,v) = ¢(og, T,{a1,02,...,05-1}),
where ¢ represents the instruction interpreter. Each
output is extracted directly from the model’s single-
text response.

3.4 Visual Element Locator

The Visual Element Locator module is tasked with
accurately identifying and locating GUI elements
within a screenshot, positioning this as a GUI visual
grounding task. The objective is to produce the
normalized coordinates (i, y) of the target element,
with values constrained to 0 < z,y < 1.

For this purpose, we use Qwen2-VL-
Instruct (Wang et al., 2024) as the pretrained
model and further finetune it with LoRA (Hu
et al., 2021) on a GUI-specific data subset sampled
from (Cheng et al., 2024). This finetuning
enhances the model’s capacity to localize GUI
elements effectively across diverse interfaces.

The Locator computes the coordinates n =
(z,y) based on the current screenshot observation
o and the textual description D generated by the
Instruction Interpreter, using the function :

n = Y(ox, D).

To train the model to output these coordinates,
we avoid explicit numerical loss. Instead, we treat
the prediction as a natural language next-token-
prediction task. We prompt the model following
the prompt template presented in (Cheng et al.,
2024) as follows:

"In this UI screenshot, what is the po-
sition of the element corresponding to
the description { DESCRIPTION } (with
point)?"

This setup encourages the model to generate
(z,y) as part of a structured textual response, ef-
fectively supporting GUI-specific localization in a
multimodal environment.
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Figure 4: The learning curve of Ponder& Press locator.
The performance peaked at 400 iters and the best input
screenshot resolution is 896x896. Tests are conducted
on Multimodal-Mind2Web (Deng et al., 2024).

3.5 Training Details

Ponder & Press locator is based on the Qwen2-
VL (Wang et al., 2024) model, leveraging its initial
multimodal grounding capabilities. In order to fit
its output space to GUI data, we apply LoRA (Hu
et al., 2021) to adapt both the visual encoder and
language model layers using the same training set
as SeeClick (Cheng et al., 2024).

With batch size = 64, training converged after
400 steps on 8 NVIDIA A100 GPUs as shown
in Figure 4, consuming approximately 2 hours.
This utilizes merely 25,600 data samples, which
is a 2.5% subset of the original SeeClick training
set, revealing the high data-efficiency of parameter-
efficient fine-tuning. We use the AdamW optimizer
with a learning rate of 3 x 1075 and apply a co-
sine annealing scheduler to manage learning rate
decay. Best input resolution are 896 x 896, further
increasing the resolution bring no performance gain
as shown in Figure 4. Dynamic Resolusion (De-
hghani et al., 2023) is employed to deal with ex-
tended input resolution, enabling resolution scal-
ing without additional retraining, which is advanta-
geous for GUI tasks requiring high visual detail.

4 Experiments

4.1 GUI Grounding Benchmark

ScreenSpot. To assess the grounding capabili-
ties of Ponder & Press’s Visual Element Locator,
we evaluate it on the ScreenSpot dataset (Cheng
et al., 2024), a benchmark specifically designed
for GUI element localization. ScreenSpot encom-
passes over 600 diverse screenshots from mobile
@i0S, Android), desktop (macOS, Windows), and
web platforms, along with more than 1,200 instruc-
tions tied to actionable elements.

As shown in Table 1, Non-GUI-specific models
(such as Qwen2-VL and GPT-40) struggle with lo-

1465



Table 1: Comparisons with pure-vision methods on GUI grounding benchmark ScreenSpot (Cheng et al.,
2024). I/W denotes Icon/Widget. Results with * are from (Cheng et al., 2024). Ponder & Press’s locator exhibits
state-of-the-art performance in precisely locating GUI elements while maintaining a smaller model size.

Methods Model Commercial GUI Mobile Desktop Web Ave.
Size Model Specific ~ Text w Text /w Text Vw

GPT-40 (Achiam et al., 2023) N/A w. X 23.4% 25.8% 17.5% 21.4% 10.9% 9.7% 18.1%
Claude 3.5 Sonnet (Anthropic, 2024) N/A w. X 37.6% 26.1% 29.0% 26.3% 17.4% 84% 24.1%
OmniParser (GPT-4V + GD) (Lu et al., 2024)  N/A w. v 94.8% 53.7% 89.3% 44.9% 83.0% 45.1% 68.7%
Qwen2-VL (Wang et al., 2024) 7B w.0. X 41.4% 16.2% 253% 5.7% 122% 6.3% 17.8%
Fuyu* (Bavishi et al., 2023) 8B w.0. v 40.6% 1.6% 33.6% 6.7% 484% 2.9% 22.3%
CogAgent* (Hong et al., 2024) 18B W.0. v 66.5% 26.7% 73.7% 19.3% 18.0% 21.4% 47.6%
SeeClick* (Cheng et al., 2024) 9.6 B Ww.0. v 78.0% 52.0% T722% 30.0% 55.7% 32.5% 53.4%
Ponder &Press locator 7B W.0. v 88.6% 73.4% 80.4% 59.3% 82.6% 65.1% 74.9%

Table 2: Comparisons with pure-vision methods on web agent benchmark Multimodal-Mind2Web (Deng et al.,
2024), in a zero-shot manner. Claude denote Claude 3.5 Sonnet (Anthropic, 2024), Naive Guess denotes always
ground on the center point of the screen, Ele.Acc denotes element accuracy, Step SR denotes step success rate.

Results with * are from their original paper.

Visual Instruction GUI Cross-Task Cross-Website Cross-Domain Avg.
Locator Interpreter Specific Ele.Acc Step SR Ele.Acc Step SR Ele.Acc Step SR Step SR
Naive Guess Claude X 0.6% 0.5% 1.6% 1.4% 1.2% 0.9% 0.9%
Qwen2-VL Claude X 9.1% 8.4% 11.2% 9.7% 8.7% 7.8% 8.6%
OmniParser(GPT4V + GD)* GPT v 42.3%  38.7%  41.5%  36.1%  44.9%  36.8%  37.2%
SeeClick* wlo v 26.3%  23.7%  21.9% 188%  221%  202%  20.9%
SeeClick Claude v 34.9%  30.2%  32.9%  265%  36.1%  31.4%  29.4%
Ponder &Press Claude v 46.7% 41.0% 44.1% 36.2% 47.0% 40.4% 39.2%
calization due to their lack of targeted knowledge =~ Table 3: Comparisons with pure-vision meth-

about GUI structures and common interface pat-
terns. GUI-specific fine-tuning equips the model
with essential prior knowledge, enhancing its abil-
ity to navigate and precisely localize elements in
varied and complex GUIs. The Ponder&Press
locator model achieves state-of-the-art perfor-
mance across all GUI categories—mobile, desk-
top, and web—outperforming previous methods
by a substantial margin. In particular, Ponder
& Press-7B locator surpasses the previous SoTA
SeeClick (Cheng et al., 2024) with an average ac-
curacy increase of over 20%, and even outperforms
the commercial GUI locator model OmniParser (Lu
et al., 2024) that utilizes GPT-4V and Grounding
DINO. Our model demonstrates particular strength
in locating icon and widget elements, underscoring
the model’s robust learning of such GUI-specific
visual features.

4.2 Offline GUI Agent Benchmark

Multimodal Mind2Web (Deng et al., 2024). The
benchmark includes three test splits: (1) Cross-
Domain, (2) Cross-Website, and (3) Cross-Task.
We only focus on two core evaluation metrics:
element accuracy (Ele.Acc) and step success rate
(Step SR), omitting operation F1. While opera-
tion F1 measures action type correctness, simply

ods on desktop and web agent benchmark Omni-
ACT (Kapoor et al., 2024). Seq. denote sequence, Act.
denote action, Claude denote Claude 3.5 Sonnet (An-
thropic, 2024), Naive Guess denote always ground on
the center point of the screen.

Visual Instruction  Seq.  Act. Click
Locator Interpreter Score Score Penalty
Naive Guess GPT-4o 309 558 36.7
Claude 39.3 5838 32.8
GPT-40 30.9 70.4 22.1
QWen2-VL  Clude 303 700 215
. GPT-4o 30.9 73.0 19.5
SeeClick Claude 393 731 184
GPT-40 309 84.8 7.7
Ponder&Press - ide 303 829 86

setting every operation as ‘CLICK’ yields high
F1 scores across all splits (over 80%), but fails to
capture the nuance required for varied interaction
types, resulting in poor step success rates. Thus,
the operation F1 metric is included only in the ap-
pendix to avoid misleading conclusions about the
agent’s effectiveness.

Table 2 illustrates that Ponder & Press
achieves state-of-the-art performance on both
element accuracy and step success rate across
all three splits. With the same interpreter, the lo-
cator of Ponder & Press demonstrates a substantial
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Table 4: Comparisons with visual methods on online GUI agent benchmark OSWorld (Xie et al., 2024). Results
with * are from OSWorld (Xie et al., 2024). Ponder & Press exhibit a unified performance boost across all subsets

compared to the GPT-40 baseline.

Methods Office OS Daily Workflow Professional | All
arn @24 (78 (101) (49) (369)
Human* 71.8 75.0 70.5 73.3 73.5 ] 72.4
Single-stage method
CogAgent* 0.9 4.2 2.7 0.0 0.0 1.1
GPT-40* 3.6 8.3 6.1 5.6 4.1 5.0
Agent Locator Interpreter Two-stage method
Ponder&Press Naive Guess GPT-40 0.0 0.0 0.0 0.0 0.0 0.0
Ponder&Press SeeClick GPT-40 5.1 16.7 7.7 5.0 6.1 6.5
Ponder&Press Ponder&Press GPT-40 6.8 16.7 12.8 5.0 10.2 8.7
Table 5: Comparisons with methods on interactive  potential of the instruction interpreter.
mobile GUI agent benchmark AndroidWorld (Rawles OmniACT(Kapoor et al., 2024). OmniACT

et al., 2024a). P&P denote Ponder&Press. Re-
sults with * are from AndroidWorld (Rawles et al.,
2024a). With only visual input, the Ponder & Press
agent, equipped with the visual locator, exhibits state-
of-the-art performance on Success Rates.

Acent Visual Instruction ~ Success
£ Locator Interpreter Rates
Human* - - 80%
Input: Ally tree
M3A*  GPT-4 Turbo GPT-4 Turbo  30.6%
Input: Screenshot + Ally tree
M3A*  GPT-4 Turbo GPT-4 Turbo 25.4%
Input: Screenshot
P&P Naive Guess GPT-40 0.0%
P&P SeeClick GPT-40 23.3%
P&P P&P GPT-40 34.5%

improvement (+9.8%) compared to the previous
SoTA SeeClick(Cheng et al., 2024). Moreover,
when we equip SeeClick’s original model with our
Claude interpreter, the model also demonstrates a
significant boost in performance (+8.5%). This
underscores the generalizability of our interpreta-
tion stage, which enhances GUI-specific ground-
ing accuracy and task success across diverse and
dynamic web contexts. Intuitively, our locator
model outperforms non-GUI-specific models (such
as Qwen2-VL) by a significant margin (+30.6%)
and even outperforms the commercial GUI locator
model OmniParser (+2.0%) that utilizes GPT-4V
and Grounding DINO for locating, confirming the
effectiveness of its grounding capabilities honed
on GUI-specific data. This also clearly proves that
a strong locator is necessary to fully unleash the

benchmark (Kapoor et al., 2024) consists of over
9.8K pairs of images and instructions from vari-
ous OS and the web. It employs two evaluation
metrics: sequence score and action score. The
sequence score measures whether the predicted ac-
tion sequence matches the ground truth, while the
action score evaluates how well the generated code
snippet performs the task. Note that the sequence
score is only impacted by the accuracy of the ac-
tion sequence produced, making it an independent
metric from the action score that measures action
placement precision.

As shown in Table 3, our results demonstrate
that Ponder & Press achieves state-of-the-art
performance in terms of the action placement.
The superiority in action scores is primarily driven
by a significant reduction in click penalties. When
equipped with GPT-40 as the interpreter, Ponder
& Press demonstrates a 11.8% increase in Ac-
tion Score while simultaneously decreasing exactly
11.8% in Click Penalty, compared to the previous
SoTA SeeClick. This confirms that our model ex-
cels at precisely locating the specific GUI element
that needs to be clicked—an essential component of
effective grounding. Furthermore, the Claude 3.5
Sonnet interpreter consistently outperforms GPT-
40 in both action prediction and element descrip-
tion, which underscores the importance of a strong
interpreter for effective task execution.

It is worth noting that the evaluation script
open-sourced by OmniACT does not align with
the formula provided in Section 4 of their pa-
per(Kapoor et al., 2024), where the action score
should only be calculated for those action se-
quences that match. Instead, their script calculates
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the action score across all samples, including those
where the sequence is mismatched. To avoid con-
fusion and ensure a fair comparison, we do not
directly compare our results with those reported
in the OmniACT paper as those results are much
lower than ours due to the mis-implementation of
the formula. Our independent evaluation, follow-
ing the correct action score formula, highlights
the superior grounding and planning abilities
of Ponder & Press. Please refer to the appendix
for detailed discussion.

4.3 Interactive Online GUI Agent Benchmark

OSWorld (Xie et al., 2024). OSWorld is a com-
puter environment designed to evaluate multimodal
GUI agents in an execution-based manner. OS-
World proposed a benchmark of 369 computer
tasks, involving OS-related tasks, office-related
tasks, as well as desktop application operating tasks.
As shown in Table 4, Ponder&Press outperforms
the GPT-40 baseline in all task categories, with
notable performance gains in office-related, OS-
related, and daily tasks. This unified improvement
across the benchmark solidifies the effectiveness of
our agent in handling a wide range of GUI-related
tasks. Furthermore, the agent equipped with the
Ponder&Press locator surpasses the one with the
SeeClick locator, which proves the precise local-
ization capabilities of Ponder&Press and aligns the
results on the visual grounding benchmark. When
equipping our agent with the SeeClick locator, it
still surpasses the GPT-40 baseline, further prov-
ing the generalizability and effectiveness of our
divide-and-conquer framework.

AndroidWorld (Rawles et al., 2024a). Android-
World is a dynamic Android environment that eval-
uates interactive mobile GUI agents across 116
tasks from 20 real-world apps. It generates tasks
expressed in natural language, offering a flexible
and realistic testing suite. As shown in Table 5,
the Ponder& Press agent equipped with the Pon-
der&Press visual locator achieves a success rate of
34.5%, a notable improvement over the SeeClick
locator variant (23.3%). This result validates the
effectiveness of our locator model. Even when com-
pared to the strong baseline M3A which utilizes
additional A1ly trees input, our agent demonstrates
a superior performance, proving the effectiveness
of our vision-only framework.

Finetuned
GUI-specific

MLLM
O Feature
O Text / Image

2 Nice Result

{9 Poor Result

Text & Image -> Feature Mapper -> Action Features -> GUI-Spec. MLLM -> Action Triplets

Figure 5: A possible end-to-end visual GUI agent
framework.

4.4 Generalization on OOD data

Locator generalization in Out-of-Distribution
(OOD) scenario is important for consistent user
experience. To address this concern, we construct a
fully OOD benchmark set for GUI grounding based
on ScreenSpot called ScreenSpot-P&P-OOD, by
applying Automatic Icon Removal with CLIP Sim-
ilarity Filtering. Specifically, we apply our Pon-
der&Press locator to detect and extract all distinct
icons from each screenshot. Then we compute
the CLIP embedding of each detected icon and
compare it against the icon set from the Ponder &
Press training data. If the cosine similarity between
a detected icon and any training icon exceeds a
pre-defined threshold=0.85, it is removed from the
benchmark.

From Table 6 we conclude that Ponder & Press
locator performance slightly drops under OOD sce-
nario but still remain competitive comparing to
method without GUI-specific finetuning, proving
its generalizing ability.

4.5 Inference latency

Inference latency is important for a smooth user
experience. We test Ponder&Press on two bench-
marks and list the latency in Table 7. The inter-
preter (Claude 3.5 Sonnet API) has a relatively
stable inference time of 1.2s per step. The loca-
tor (Qwen2-VL-7B on a single NVIDIA RTX4090
with vLLM) has an inference time of 0.8s per
step. Note that Multimodal-Mind2Web is an eas-
ier benchmark, requiring around 8 steps per task,
while Android-world is harder, requiring around 15
steps per task.

5 Limitations

Just like other agents that involve API-based
model (Rawles et al., 2024a; Tan et al., 2024; Lu
et al., 2024), our agent inevitably involves infer-
ence latency and API cost. Previous single-stage
methods suffer from either poorly mapping high-
level user instruction into action description (Cheng
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Table 6: Performance comparisons between original ScreenSpot (Cheng et al., 2024) and ScreenSpot-P& P-
OOD. I/W denotes Icon/Widget. Ponder & Press’s locator performance slightly drops under OOD scenario but still

remain competitive.

Mobile Desktop Web
Methods Benchmark Text W Text W Text W Avg.
Claude 3.5 Sonnet ScreenSpot 37.6% 26.1% 29.0% 26.3% 17.4% 84% 24.1%
Claude 3.5 Sonnet  ScreenSpot-P&P-OOD  36.8% 27.3% 28.5% 24.9% 16.9% 9.2% 23.9%
Ponder&Press locator ScreenSpot 88.6% 73.4% 80.4% 59.3% 82.6% 65.1% 74.9%
Ponder&Press locator ~ ScreenSpot-P&P-OOD  84.8% 69.7% 76.5% 55.6% 78.4% 61.3% 71.1%

Table 7: Inference latency of Ponder&Press.

Interpreter Locator Avg Steps

Benchmark Avg Step Time  Avg Step Time  per Task
MM-Mind2Web 1.231s 0.820s 7.8
Android-world 1.193s 0.804s 15.2

et al., 2024; Hong et al., 2024), or poorly predicting
the coordinates for action placement (Achiam et al.,
2023; Anthropic, 2024). To resolve these problems
while not involving an API-based model, we further
propose a possible end-to-end visual GUI agent
framework as future work as shown in Figure 5.
We could align the features between (high-level
instruction + screenshot) and (detailed action de-
scription) in the first training stage, and train the
GUlI-specific MLLM to enhance grounding ability
in the second training stage. This framework could
possibly encompass a strong GUI locating capabil-
ity while retaining the task decomposition ability.
The main challenge may lie in the collection of
large-scale, high-quality training data.

6 Conclusion

We introduced Ponder&Press, a novel divide-and-
conquer framework that enables general computer
control using only visual input. The ‘Ponder’
stage interprets high-level instructions into action-
able steps, and the ‘Press’ stage localizes GUI
elements for precise action placement. By re-
lying solely on visual input, Ponder&Press en-
sures generalizability across diverse software en-
vironments, eliminating the need for additional in-
puts such as HTML or accessibility trees. Pon-
der&Press achieved SoTA performance through
extensive evaluations conducted across desktop,
web, and mobile environments, demonstrating both
precise localization capabilities and effective task
decomposition. Our work highlights the poten-
tial of vision-based GUI agents for robust general-
purpose automation, paving the way for human-like
interactions with a wide range of software systems.
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A Evaluation Details

A.1 ScreenSpot

Deal with redundant output. ScreenSpot (Cheng

et al., 2024) evaluates a model’s visual grounding
performance based on its predicted relative coor-
dinates (z,y), where 0 < z,y < 1. For models
not fine-tuned on GUI-specific data (Achiam et al.,
2023; Anthropic, 2024; Wang et al., 2024), their
grounding outputs often include redundant descrip-
tive text alongside the (x, y) coordinates. To eval-
uate these models on ScreenSpot and accurately
report their GUI grounding performance, we use
Regular Expression (Regex) to extract the coordi-
nates while discarding any extraneous information.
The following Python function performs this coor-
dinate extraction:

def extract_two_float_tuple(s):

pattern = r'[\N(\[\sI*([-+1?2\d*\.\d
+I\Nd+)\s*,\sx([-+]?2\d*x\.\d+|\d+)
Ns* [\)\NI\sIx| -\s*[XxJ:\s*x([-+]1?\
d*\ . \d+[\d+)\s*(?:\([*\)I*\))?\s
*=\s*[YyJ:\sx([-+]?2\dx\.\d+|\d+)
\s*x(?2:\([*"\)I*\))?|-\sx[Ttlop:\s
*([-+1?2\d*\.\d+|\d+)\sx-\sx[L1]
eft:\sx([-+1?2\d*\.\d+) |\ (\s*x[Xx
J:\s*x([-+1?2\d*\ . \d+|[\d+)\s* \s*[
YyJ:\s*x([-+1?2\d*\.\d+|[\d+)\s*\)"'

match = re.search(pattern, s, re.
VERBOSE)

if match:
if match.group(1) and match.

group(2):
return float(match.group(1))
, float(match.group(2))
elif match.group(3) and match.
group (4):
return float(match.group(3))
, float(match.group(4))
elif match.group(5) and match.
group (6):
return float(match.group(6))
, float(match.group(5))
else:
return float(match.group(8))
, float(match.group(9))
else:
raise ValueError("String does
not contain a valid '(float,
float)', '[float, float]',
'- X: float - Y: float', '-
X: float (xxxxxx) - Y: float
(xxxxxx)', '-= Top: float -
Left: float', or '(X: float,
Y: float)' pattern”)

In cases where the function raises an error due
to no match, we fall back to the default result of
(0.5,0.5), representing the center point. As tested,
over 95% of cases match successfully. Conse-
quently, the ScreenSpot results we report for non
GUI specific models (Achiam et al., 2023; An-

1471




thropic, 2024; Wang et al., 2024) in main paper
Table.1 reliably reflect their GUI grounding perfor-
mance.

A.2 Multimodal-Mind2Web

Discussion on metrics. Mind2Web adopt 3 met-
rics: (1) Element Accuracy measures whether the
selected GUI element is one of the acceptable ele-
ments, reflecting the grounding accuracy. (2) Op-
eration F1 calculates token-level F1 score for the
predicted action. For those action type without
value (such as ‘CLICK”’), this is the same as action
type accuracy. For those action type with value
(such as ‘TYPE’ needs a content), this is calculated
between the predicted value and GT value. (3) Step
Success Rate is measured among all steps, a step
is regarded as successful only if both the selected
element and the predicted operation are correct.

In our agent setting, action type is fully deter-
mined by the instruction interpreter. As shown in
the first, the third, the forth, and the sixth line of
appendix Table 8. However, due to the highly bi-
ased action type distribution in Mind2Web, simply
setting every operation as ‘CLICK’ yields a high
F1 scores across all splits (over 80%) as shown in
the second and fifth line of appendix Table 8. This
brute force manner results in failure of all ‘non-
CLICK steps, harming the step success rate. This
reflects that simply comparing the Op.F1 metric is
not enough to determine the action predicting abil-
ity. We claim that the gold metric should always be
the Step Accuracy, which relies on the correctness
of both element selection and action prediction.

A3 OmniACT

Calculation details of Action Score. According
to the formula presented in OmniACT (Kapoor
et al., 2024) and shown below, when SeqScore; =
0, the i-th case does not contribute to the final result
of the Action Score. In other words, the Action
Score should only be calculated based on matched
sequences. Moreover, the sum of (Action Score +
Click Penalty + Key Penalty + Write Penalty) is
always expected to equal 100%, and mismatched
sequences should not introduce penalties.

Action Score — > max(Sechoreifzj (M} +K]+W7),0)

>, SeqScore;

However, in the evaluation script provided by
OmniACT, mismatched sequences still incur penal-
ties. Specifically, the condition SeqScore;, > 1
is not properly enforced in the code. As a result,

(Action Score + Click Penalty + Key Penalty +
Write Penalty) equals SeqScore instead of 100%,
as reflected in the experimental results table of Om-
niACT (Kapoor et al., 2024). This implementation
error leads to a misreported Action Score that fails
to accurately represent "how well a code snippet
performs the correct action." The reported values
are directly influenced by the SeqScore due to this
mistake.

To address this issue, we report all results based
on the correct formula, ensuring consistency with
the intended evaluation framework.

A4 OSWorld

When building Ponder& Press agent on OS-
World (Xie et al., 2024) benchmark, we firstly
prompt the interpreter model to explicitly generate
1.action type, 2.action value, and 3.GUI element
description. Then we utilize the locator model to
convert GUI element description into pixel-level
coordinates. With the action triplet (action type,
action value, coordinates), we finally format the
‘pyautogui’ code required by OSWorld in a rule-
based manner.

A.5 AndroidWorld

When building Ponder& Press agent on Android-
World benchmark, we refer to the prompts of M3A
agent proposed in the AndroidWorld paper (Rawles
et al., 2024a). The main difference lies in we solely
utilize raw screenshot as input, neither utilizing
set-of-mark labels (Yang et al., 2023b) nor utiliz-
ing additional ally tree input. We use the output
coordinate of our grounding model to decide action
placement location on the screen.

A.6 Model Endpoints

We utilize api-based MLLM as the instruction in-
terpreter. To better ensure consistent behaviors, we
listed the model endpoint names as follows:

* GPT-4o: ‘gpt-40-2024-08-06’
e Claude: ‘aws_claude35_sdk_sonnet’

B More examples

To better showcase the pipeline of Ponder&Press,
we provide more examples at appendix Figure 6,
Figure 7, Figure 8, and Figure 9.
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Table 8: Comparisons with pure-vision methods on web agent benchmark Multimodal-Mind2Web (Deng
et al., 2024). Claude denote Claude 3.5 Sonnet (Anthropic, 2024), Ele.Acc denote element accuracy, Op.F1 denote
operation F1, Step SR denote step success rate. Always conducting ‘CLICK’ action may result in higher
operation F1, but harms step success rate.

Visual Ele. Desc. Action Cross-Task Cross-Website Cross-Domain
Locator Interpreter Interpreter Ele.Acc  Op.F1 StepSR Ele.Acc Op.F1 StepSR Ele.Acc Op.F1 Step SR
SeeClick GPT-40 GPT-40 31.7%  72.6%  28.3% 33.0% 72.3%  27.2% 34.3%  71.6%  30.6%
Ponder&Press GPT-40  Always CLICK | 42.8% 83.5% 32.7% 43.8% 80.8% 32.2% 45.3% 83.8% 35.5%
Ponder&Press  GPT-40 GPT-40 42.8% 72.6% 37.0% 43.8% 723% 36.8% 453% 71.6% 39.4%
SeeClick Claude Claude 34.9%  792%  30.2% 32.9% 76.2%  26.5% 36.1%  79.0%  31.4%
Ponder&Press Claude Always CLICK | 46.7% 83.5% 35.7% 44.1% 80.8% 30.7% 47.0% 83.8% 35.1%
Ponder&Press  Claude Claude 46.7% 792% 41.0% 441% 762% 36.2% 47.0% 79.0% 40.4%
User: Set the reminder time .
to "5 minutes before." Operation: CLICK —
€ NewEvent v Value: None
9 Element description:  {— iy ko
The“10 minutes before” I O oooooooad
Interp- area is a dropdown Uooooogood I
reter menu located below the | o o o o Oooooooad
date and time fields. | o o E_>7‘ 00000000
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User: Create a table with 4 columns and 5 rows in a Microsoft Word document.
Location:
(0.25,0.58) v

N\ Interpreter  /
Element description:

The cell is located in the 4th column, 5th
row of the 4x5 table grid. It is currently

Operation: CLICK

User: Set the reminder time . unselected and appears in gray,and when Value:iNone
to "5 minutes before.” Operation: CLICK selected, it appears in blue.

Value: None
© Newven P l
Sachibey Element description: Tocation:
ocaten 9 The “5 minutes before” Locator (0.15, 0.26)
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1 Figure 8: Example of office GUI task.
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{9 SRR E—

@t ™Y

Location:
(0.16,0.48)

Operation: CLICK
Value: None

User: Run the stopwatch.

Figure 6: Example of mobile GUI task.

Element description:
The Start icon is blue
circular button located
at the bottom center of
the screen

Location:
(0.50,0.82 )
Location:
(0.13,0.55)

I Figure 9: Example of mobile GUI task.

Interp-
reter

User: Convert 100 USD to EUR using the Xe Currency

Converter. Operation: TYPE

Value: 100

Element description:
The Amount input box is a
rectangular text field

Interp- located on the left side of

reter the Xe Currency Converter
interface with a dollar sign
“$” placeholder.

Live exchange rates

$100. £ usp . us potar =

Figure 7: Example of webpage GUI task.

1473



