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Abstract

In-hospital text data contains valuable clinical
information, yet deploying fine-tuned small lan-
guage models (SLMs) for information extrac-
tion remains challenging due to differences in
formatting and vocabulary across institutions.
Since access to the original in-hospital data
(source domain) is often restricted, annotated
data from the target hospital (target domain) is
crucial for domain adaptation. However, clin-
ical annotation is notoriously expensive and
time-consuming, as it demands clinical and lin-
guistic expertise. To address this issue, we
leverage large language models (LLMs) to an-
notate the target-domain data for the adaptation.
We conduct experiments on four clinical infor-
mation extraction tasks, including eight target-
domain datasets. Experimental results show
that LLM-annotated data consistently enhances
SLM performance and, with a larger number of
annotated data, outperforms manual annotation
in three out of four tasks1.

1 Introduction

In-hospital text data often contains valuable clin-
ical information not captured by structured fields
in electronic health records (Zweigenbaum et al.,
2007; Escudié et al., 2017; Wang et al., 2018).
Fine-tuned small language models (SLMs) of-
fer computationally efficient inference for extract-
ing such information and have been shown to
outperform prompt-based large language models
(LLMs) (Naguib et al., 2024). However, SLMs
fine-tuned on in-hospital data (i.e., the source do-
main) often experience performance degradation
when applied to data from a different hospital (i.e.,
the target domain) due to domain-specific vocabu-
lary and formatting (Wu et al., 2014; Bethard et al.,
2017; Miller et al., 2017). Additionally, patient

1Our code is available at: https://github.com/
seiji-shimizu/LLM-Annotation-Clinical-SFDA

Figure 1: Overview of our SFDA approach. The
goal of SFDA is to adapt the SLM fine-tuned on the
source-domain data to unlabeled target-domain data.
For the adaptation, only the SLM is available from the
source domain due to data-sharing restrictions. The
source SLM struggles with target-specific formats, such
as “<brand name> (<generic name>)” (e.g., “WELL-
BUTRIN (BUPROPION)”). Our approach adapts the
source SLMs by (1) sampling target data based on
SLM’s high uncertainty, (2) annotating them with an
LLM as an alternative to manual annotation, and (3)
fine-tuning the source SLM with the newly annotated
data.

privacy regulations often restrict access to source-
domain data, posing further challenges for domain
adaptation (Laparra et al., 2020). These challenges
are addressed by source-free domain adaptation
(SFDA), where adaptation must be performed us-
ing only a fine-tuned source model without direct
access to the source data (Laparra et al., 2021a).

Su et al. (2022) previously compared various for-
mulations of two major SFDA approaches in clini-
cal NLP. Self-training (Kumar et al., 2010; Li and
Zhang, 2019), which leverages the source SLM’s
own predictions as supervisions, failed to consis-
tently improve model performance, whereas active
learning (Settles, 2009), which relies on minimal
manual annotation, proved to be a reliable alter-
native. Nonetheless, clinical annotation demands
sufficient expertise and time from annotators (Luo
et al., 2020; Su et al., 2021), which can pose a bar-
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rier to its application in real-world scenarios. This
highlights the critical need for robust, human-free
annotation methods in SFDA, particularly within
the clinical domain.

To address this gap, we explore active learn-
ing with LLM annotation in an SFDA setting,
inspired by recent studies (Liang et al., 2024; Xiao
et al., 2023; Zhang et al., 2023; Liu et al., 2024).
Fig. 1 shows an overview of our approach. The
objective of SFDA is to adapt fine-tuned source-
domain SLMs to unlabeled target-domain data. We
formulate SFDA as a three-step process: (1) sam-
pling target-domain data with target-specific for-
mats and vocabularies based on the SLM’s uncer-
tainty, (2) annotating the selected samples using an
LLM as an alternative to manual annotation, and
(3) fine-tuning the SLM with the newly annotated
data.

To evaluate the effectiveness of our approach, we
conduct experiments on four clinical information
extraction tasks encompassing eight source-target
dataset pairs (summarized in Tables 1 and 2). In a
preliminary experiment, we apply LLM zero-shot
annotation in step (2) and observe a performance
decline in clinical named entity recognition (NER).
Upon analyzing the quality of the resulting annota-
tions, we attribute this decline to the performance
gap between the LLM and the fine-tuned source
SLM, aligning with recent findings (Hu et al., 2024;
Naguib et al., 2024).

Motivated by this, we introduce a novel LLM
annotation method termed SLM-Assisted LLM
Annotation (SALA). In this method, we guide
an LLM to correct the SLM’s prediction on the
sampled data in step (1) instead of generating anno-
tation from scratch. By doing so, we aim to main-
tain annotation quality that matches or exceeds the
source SLM performance across various tasks. We
evaluate our approach against unadapted SLMs, as
well as the best-performing formulations of self-
training and active learning derived from Su et al.
(2022). Our results demonstrate that active learning
with LLM annotation consistently enhances SLM
performance across all tasks and, with a larger num-
ber of annotated samples, outperforms active learn-
ing with human annotation in three out of four tasks.
Our contributions are summarized as follows:
• To the best of our knowledge, we are the first

to explore LLM annotation in the SFDA set-
ting, evaluating its effectiveness for adapting the
source SLMs fine-tuned on clinical data.

• We propose a novel LLM annotation method that

leverages SLM’s prediction to maintain improve-
ments across various clinical information extrac-
tion tasks.

• Through experiments on four tasks and eight tar-
get datasets, we demonstrate that active learning
with LLM annotation consistently improves SLM
performance and, with a larger number of anno-
tations, even outperforms active learning with
human annotation in three out of four tasks.

2 Related Work

Source-free Domain Adaptation: Unlike unsu-
pervised domain adaptation, source-free domain
adaptation (SFDA) adapts a fine-tuned model to
target-domain data without access to the source-
domain data (Laparra et al., 2020). While
SFDA (Liang et al., 2020) has recently gained trac-
tion in computer vision (see survey of Yu et al.,
2023), it remains underexplored in NLP, with only
a few existing studies (Zhang et al., 2021; Yin et al.,
2022; Shimizu et al., 2024; Zhao et al., 2024). In
the clinical domain, Su et al. (2022) compared
various formulations of self-training and active
learning using in-hospital data, finding that self-
training struggled to consistently improve model
performance. This suggests that manual annotation
remains the de facto standard for clinical SFDA.
To achieve reliable human-free adaptation, we ex-
plore SFDA with LLM annotation, conducting an
extensive evaluation across multiple clinical tasks.

LLM as Active Annotator: Recent advancements
have shown that large language models (LLMs)
are effective annotators for active learning (Liang
et al., 2024; Xiao et al., 2023; Zhang et al., 2023;
Liu et al., 2024). These methods typically generate
annotations with an LLM and improve the perfor-
mance of yet-to-be-fine-tuned SLMs. On the other
hand, some research has shown that prompt-based
LLMs often underperform compared to fine-tuned
SLMs on specialized tasks such as clinical named
entity recognition (NER) (Hu et al., 2024; Naguib
et al., 2024). It remains unknown whether LLM an-
notation can enhance SLMs in clinical SFDA, par-
ticularly considering the potential negative impact
on already fine-tuned clinical SLMs. We answer
this by evaluating LLM annotation in the SFDA set-
ting and proposing a novel LLM annotation method
that integrates the source SLM’s prediction.
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Task Description Example

Named Entity Recognition (NER) Given a text, predict spans for clinical
entities and their types.

Input: The patient seemed subdued.
Answer: {subdued: Problem}

Relation Extraction (RE) Given a sentence with two clinical en-
tities marked, classify their relation.

Input: <e>Penicillin</e> causes <e>rash</e>.
Answer: Treatment improves

Negation Detection (ND) Given a text with a clinical entity
marked, classify if it is negated or not.

Input: She did not complain of <e> any fever </e>.
Answer: Negated

Time Expression Recognition (TER) Given a text, predict spans for time
expressions and their types.

Input: The patient underwent surgery on July.
Answer: {July: Month-Of-Year}

Table 1: Overview of the four clinical information extraction tasks.

Task Data Source Source Dataset Size Target Dataset: Denotation Size

NER
i2b2 2010

Beth Clinical Notes 74 documents Partners Clinical Notes: Part 97 documents

Partners Clinical Notes 97 documents Beth Clinical Notes: Beth 74 documents

RE
Beth Clinical Notes 2,037 sentences Partners Clinical Notes: Part 1,264 sentences

Partners Clinical Notes 1,264 sentences Beth Clinical Notes: Beth 2,037 sentences

ND
SemEval 2021 Task 10

Mayo Clinical Notes 10,259 instances
i2b2 2010: i2b2 5,545 instances

MIMIC-III: mimic 9,580 sentences

TER Mayo Clinical Notes 278 documents
Food Security Reports: Food 17 documents

News Reports: News 99 documents

Table 2: Source and target-domain datasets used in this study. The source datasets are used for fine-tuning SLMs,
while the target datasets are used for adaptation and evaluation.

3 Data

We base our experiments on four clinical informa-
tion extraction tasks summarized in Table 1, and
each task is associated with pairs of source and
target datasets summarized in Table 2. Named En-
tity Recognition (NER) and Relation Extraction
(RE) tasks are derived from the i2b2 2010 (Uzuner
et al., 2011), which provides clinical notes from
two hospitals: Beth Israel Deaconess Medical Cen-
ter and Partners Healthcare. We fine-tune SLMs on
data from one hospital and treat the other hospital’s
data as the target-domain data, yielding four tar-
get datasets. Negation Detection (ND) and Time
Expression Recognition (TER) tasks are based
on SemEval 2021 Task 10 (Laparra et al., 2021b),
which provides one source-domain SLM and two
target datasets for each task. Using the provided
source models, we adapt them to the respective
target datasets, adding four more target datasets.
Although the two target datasets for TER are non-
clinical (Laparra et al., 2018), we demonstrate the
performance degradation of the source SLMs on
these datasets in Sect. 4. Thus, we include these
target datasets to evaluate SFDA methods intended
for clinical information extraction. In total, we
adapt the source SLMs to eight target datasets.

Task Source Target ∆ Source Target ∆

NER Part Beth Beth Part
85.3 81.3 -4.0 89.4 80.9 -8.5

RE Part Beth Beth Part
70.2 56.1 -14.1 66.6 57.3 -9.3

ND Mayo i2b2 Mayo mimic
82.0 84.6 +2.6 82.0 63.5 -18.5

TER Mayo News Mayo Food
96.8 78.1 -18.7 96.8 78.4 -18.4

Table 3: The source SLM performance on source and
target-domain data in F1(%) scores and their difference.
Results are averaged over three runs with different seeds.
Scores on the source domain for ND and TER are cited
from Laparra et al. (2021a).

4 Motivation: Performance Degradation

Our motivation is to address the performance degra-
dation of source-domain fine-tuned SLMs when
applied to target-domain data. In this section,
we showcase the performance degradation on the
target-domain datasets summarized in Table 2. For
each source dataset, RoBERTa2 (Liu, 2019) is fine-
tuned on the training set and evaluated on the eval-
uation set. Additionally, we evaluate the fine-tuned
source SLMs on the evaluation sets of the corre-
sponding target datasets.

2https://huggingface.co/FacebookAI/
roberta-base
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Table 3 shows the results in F1(%) scores. To
summarize, there are noticeable performance de-
clines from the source to the target datasets in
nearly all source-target pairs. The degradation
ranges from 4.0% to 18.7%, with 11.1% on average.
This confirms previous findings on the performance
degradation of clinical information extraction mod-
els (Wu et al., 2014; Bethard et al., 2017; Miller
et al., 2017) and underscores the importance of
domain adaptation. To further illustrate the perfor-
mance degradation of the source SLMs, we provide
specific examples of prediction errors arising from
differences in formats and vocabularies.
NER: In NER, target-specific formats often lead to
errors. Consider the following example from Part:

Input: LANTUS (INSULIN GLARGINE) 35 UNITS...

Here, “LANTUS (INSULIN GLARGINE)” is a sin-
gle medication, with the format “<brand name>
(<generic name>).” However, since such format-
ting is barely present in the source domain (Beth),
the source SLM incorrectly identifies “LANTUS”
and “INSULIN GLARGINE” as separate medica-
tions.
RE: Errors in RE are often caused by variations
in the vocabulary used to describe relationships
between concepts. Below is an example from Beth:

Input: <e>diabetic ulcer</e> s/p <e>surgery</e> but

never healed.

In this example, “s/p” stands for “status post”, in-
dicating that the “diabetic ulcer” did not improve
after “surgery”. However, since this abbreviation
is not used in the source domain (Part), the SLM
fails to correctly interpret the relationship between
the concepts and predicts “Treatment Improves”.
ND: In ND, formatting differences between the
source and target-domains often lead to errors. Be-
low is an example from mimic:

Input: Tobacco: no, <e>Alcohol</e>: no ...

The input lists the patient’s social history, indicat-
ing the absence of alcohol use. The source SLM
fails in detecting the negation for “Alcohol” since
the source-domain data rarely includes this type of
formatting.
TER: The target datasets for TER are derived from
non-clinical data, making vocabulary differences a
frequent source of errors.

Input: AP-NY-12-05-98 0942EST ...

Figure 2: Performance of the source SLMs adapted with
zero-shot annotations in F1(%) scores. Results are av-
eraged over three runs with different seeds. “Zero-shot”
refers to the performance of the general-domain LLM,
while “Zero-shot (Med)” refers to the performance of
the medical-domain LLM. The dotted lines represent
the performance of the unadapted source SLMs. While
the performance improves in ND with the increasing
annotations, it declines in NER.

In this example, “AP” and “NY” represent “Aso-
ciate Press” and “New York”, respectively. How-
ever, since such vocabularies are not present in the
Mayo clinical notes, the source SLM fails to prop-
erly recognize the temporal expression “12-05-98”
as a standard Month-Date-Year format. The exam-
ples above highlight the challenges of applying the
source SLMs to target domains.

5 Preliminary: Zero-shot Annotation

To mitigate performance degradation, we leverage
LLMs to annotate target-domain data within our
approach (Fig. 1). As a preliminary experiment, we
evaluate the effectiveness of zero-shot annotation
with the following specifications.
Active Learning with Zero-shot Annotation: In
step (1), we select target samples with the high-
est predictive entropy, following Su et al. (2022).
In step (2), we prompt LLMs with one of the
selected samples and a detailed task description
at a time to generate an annotation. In step
(3), we fine-tune the source SLM with the gen-
erated annotations, mapping them to the SLM’s
label space with a rule-based resolver. Through-
out this study, we use downloaded open-source
LLMs to safeguard clinical data and prevent third-
party sharing in real-world applications. Specifi-
cally, we employ Llama-3.3-70B3 (Dubey et al.,
2024), representing a general-domain LLM, and
Med42-70B4 (Christophe et al., 2024), represent-

3https://huggingface.co/meta-llama/Llama-3.
3-70B-Instruct

4https://huggingface.co/m42-health/med42-70b
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Method # NER ND

Beth Part i2b2 mimic

Source 96 51.5 39.2 85.1 80.9
Zero-Shot 96 52.4 67.5 89.2 82.3
Zero-ShotMed 96 54.6 46.1 89.2 89.7

Source 384 64.1 66.8 88.8 65.2
Zero-Shot 384 49.3 58.5 94.3 90.5
Zero-ShotMed 384 49.9 44.2 94.5 92.8

Table 4: Performance comparison (F1% scores) be-
tween the source SLM and zero-shot LLM annotation
on the annotation targets. The scores are averaged
over three runs. The “#” column indicates the number
of annotations, and “Med” denotes the medical LLM.
Full results for all target datasets are available in Ap-
pendix A.2.

ing a medical-domain LLM. Implementation de-
tails and example prompts are provided in the Ap-
pendix A.1.

Fig. 2 illustrates the performance of the source
SLMs adapted with zero-shot annotation for NER
and ND. For the evaluation, we experimented with
the number of selected samples from 96 to 384 in-
stances. As the number of annotations increases,
performance in NER decreases, whereas it im-
proves in ND. This result suggests that the scalabil-
ity of LLM annotation can not be fully exploited
with zero-shot annotation in tasks like NER.

We hypothesize that the performance decline
stems from a gap between the source SLM’s perfor-
mance and zero-shot annotation. Table 4 shows the
source SLM’s performance and the quality of zero-
shot annotation on the sampled annotation targets.
Since the targets are chosen from samples with
lower uncertainty, the source SLM’s performance
generally improves as the number of annotations
increases. However, the quality of zero-shot anno-
tation fails to meet the source SLM’s performance
in NER. The performance gap between fine-tuned
SLMs and LLMs aligns with previous findings (Hu
et al., 2024; Naguib et al., 2024) and negatively
affects the source SLM, resulting in a decline in
performance after fine-tuning. Notably, the medi-
cal LLM underperforms the general domain LLM
on Part. While the exact reasons for the lower per-
formance remain an open question, our results align
with prior findings (Dorfner et al., 2024), which
suggest that biomedical LLMs do not always out-
perform generalist models on unseen clinical data.
The above results emphasizes the importance of en-
suring that annotation quality matches or exceeds
the source SLM performance for the scalability of

Figure 3: Overview of SALA. Instead of generating
LLM annotation from scratch, we prompt LLM to cor-
rect SLM’s low-confidence prediction, referencing a
detailed task description and high-confidence examples.

LLM annotation.

6 Proposed: SALA

To improve the LLM annotation in target domains,
we introduce SALA, SLM-assisted LLM annota-
tion. Inspired by recent studies (Yang et al., 2024;
Xu et al., 2023), we incorporate the source SLM
prediction into the LLM’s in-context learning. As
depicted in Fig. 3, we guide the LLM to generate
annotations based on three inputs:

• Task Description: A detailed explanation based
on the annotation guidelines, providing the LLM
with a clear reference for annotation.

• High-confidence Examples: Examples retrieved
from a demonstration pool of high-confidence
SLM predictions and LLM annotations.

• Low-confidence Prediction: The source SLM
prediction on the low-confidence annotation tar-
get.

For the annotation, we prompt LLMs to correct
errors in the low-confidence prediction while ref-
erencing the task description and high-confidence
examples. This correction-based approach helps
maintain annotation quality that matches or ex-
ceeds the source SLM’s performance across various
tasks by constraining LLM annotation to improve
upon the SLM prediction. In this section, we elabo-
rate on how high-confidence examples are retrieved
(Sect. 6.1) and how low-confidence predictions are
corrected (Sect. 6.2). Finally, we present the over-
all algorithm of SALA to iteratively improve the
annotation quality (Sect. 6.3).
Notations: We denote the source SLM as S, the
LLM as P , a target-domain sample as xi ∈ D, and
an annotation target as x̄i ∈ D̄.

14682



6.1 Retrieving High-confidence Examples
To retrieve high-confidence examples, we initial-
ize a class-wise demonstration pool with high-
confidence SLM predictions. To do so, we first
construct a class-wise target data Dc for each class
c ∈ C by pseudo-labeling the target-domain data
D with the source SLM. Then, a class-wise demon-
stration pool Dc

demo is initialized via:

Dc
demo = {(xi, c)) | rank(hi) ≤ R%} (1)

where hi is the SLM’s predictive entropy for a sam-
ple xi. Following Su et al. (2022), we calculated
the entropy based on the model’s output softmax
probability distribution. rank(hi) ≤ R% selects
the bottom R% of the class-wise target-domain
data Dc with the lowest entropy. From each of this
class-wise demonstration pool, we retrieve a single
high-confidence example ec ∈ Dc

demo based on the
highest embedding similarity with the annotation
target x̄i. The full set of high-confidence examples
for x̄i is denoted as E = {ec | c ∈ C}.

6.2 Correcting Low-confidence Prediction
To maintain annotation quality across various tasks,
we adopt a correction-based approach rather than
generating annotations from scratch. Specifically,
we query the LLM with a prompt t to correct the
SLM prediction S(x̄i), using a task description d
and high-confidence examples E as references:

t = T (d,E, x̄i,S(x̄i)) (2)

where T is a manually-designed template that
guides the baseline correction process. The LLM-
annotated data D̃llm are then generated as follows:

D̃llm = {(x̄i, ỹllm
i ) | x̄i ∈ D̄, ỹllm = R(P(t))}, (3)

where P(t) represents the LLM’s response to the
prompt t, and R is a rule-based resolver that maps
the LLM-generated output to the source SLM’s
label space. Specifically, LLM-corrected predic-
tions are converted into PyTorch5 tensors with R
and then used as labels for fine-tuning the source
SLMs.

6.3 Overall Algorithm
The overall pipeline of SALA is detailed in Alg. 1.
The algorithm builds upon the work of Xiao et al.
(2023), with the key distinction being the incorpo-
ration of task-specific knowledge from the source

5https://pytorch.org/

Algorithm 1:
Input :D: The unlabeled target dataset

P: The LLM
S: The source SLM
R: The resolver
K: The number of annotations
Niter: The maximum iteration number
τ : The filtering threshold

Output :D̃llm: The LLM-annotated data
1 # Select uncertain samples
2 D̄ = [xi for xi ∈ top K entropy in D]
3 # Initialize the class-balanced demonstration pool
4 Ddemo = ∪c∈CD

c
demo

5 for iter ← 0 to Niter do
6 # LLM annotation
7 Construct a prompt t as Eq.(2)
8 D̃llm = {(x̄i, ỹ

llm
i ) | x̄i ∈ D̄, ỹllm = R(P(t))}

9 # Fine-tune SLM
10 Fine tune S with D̃llm
11 # Annotation filtering with cross entropy loss li
12 D̃llm = {(x̄i, ỹ

llm
i ) | li < τ }

13 Ddemo = D̃llm

14 # Update D̄

15 D̄ = D̄ \{x̄i | (x̄i, ỹ
llm
i ) ∈D̃llm}

16 end

SLM. As described in Sect. 2, we first select the top
K samples with the highest entropy as the annota-
tion targets D̄ (line 2). These annotation targets are
then annotated to obtain LLM-annotated data D̃llm
(line 8). We iteratively apply LLM annotation, fine-
tuning, and annotation filtering to progressively
enhance the quality of the final LLM-annotated
data D̃llm.

Fine-tuning: Once D̃llm is generated, the source
SLM S is fine-tuned on D̃llm at each iteration
(line 10). The fine-tuning serves two purposes: (1)
to improve the low-confidence predictions by up-
dating S, and (2) to distill recurring patterns from
D̃llm. While (1) directly improves the annotations,
(2) is used to filter outliers in D̃llm.

Annotation Filtering: We filter D̃llm based on a
cross-entropy loss li between output logits of S and
the LLM annotation ỹllm

i for each (x̄i, ỹ
llm
i ) ∈D̃llm.

LLM-annotated data with a loss li below a thresh-
old τ are considered clean annotations and used
in the demonstration pool for the next iteration
(lines 12 and 13), while the rest are re-annotated
(line 15). By using the updated SLM, annota-
tion targets that are inconsistent with other LLM-
annotated data and incompatible with the SLM’s
knowledge are filtered out.
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Method Human-free
NER RE ND TER Avg

Beth Part Beth Part i2b2 mimic Food News

Full-supervision (skyline) × 88.7 86.7 75.4 65.7 89.8 88.7 85.8 83.0 83.0

Source ✓ 81.3 80.9 56.1 57.3 84.6 63.5 78.1 78.4 72.5
Self-training ✓ 81.9⋆ 72.7 39.5 49.0 86.1⋆ 70.7⋆ 78.7⋆ 78.0 69.6
Active learning × 84.1⋆ 82.9⋆ 66.2⋆ 57.1 86.5⋆ 76.9⋆ 84.0⋆ 82.4⋆ 77.5⋆

Active + SALAMed ✓ 83.2⋆ 81.3⋆ 72.2⋆ 57.6⋆ 88.3⋆ 79.6⋆ 79.6⋆ 78.7⋆ 77.6⋆

Active + SALA ✓ 84.2⋆ 83.2⋆ 72.3⋆ 66.2⋆ 88.0 ⋆ 78.6⋆ 79.9⋆ 75.1 78.4⋆

Table 5: F1(%) scores for the SLM performance on the evaluation sets of target datasets. Results are averaged
over three runs with different seeds. The last column shows the average score across all datasets. “Source” refers
to the performance of unadapted source SLMs, while “Full-supervision (skyline)” represents the performance of
fully fine-tuned models using all labeled target data. “Med” indicates the medical-domain LLM. The “Human-free”
column indicates whether human annotations are used. ⋆ indicates improvement from the source SLMs. “Active +
SALAMed” outperforms the source SLM in all tasks, while “Active + SALA” outperforms active learning with
human annotation in three out of four tasks.

7 Experiment

We conduct an experiment comparing our approach
against existing SFDA baselines. With SALA used
for the LLM annotation, the proposed method is
denoted as “Active + SALA”. Our focus is on the
performance of the SLMs, as computationally effi-
cient inference is crucial for processing in-hospital
text data. A comparison with LLM zero-shot and
few-shot inferences is provided in Appendix A.3.

7.1 Setup

Baselines: We consider the most robust SFDA
formulations from Su et al. (2022), both with and
without human annotation, alongside the unadapted
source SLM. For the human-free approach, we in-
clude self-training, which uses an iterative training
and dataset construction strategy. For the approach
with human annotation, we include active learn-
ing, which also follows an iterative training and
dataset construction strategy. As an upper-bound
reference (skyline), we include a fully supervised
setting, where the source models are fine-tuned on
the labeled development set of target domain data.
Datasets: Experiments are conducted on all source-
target pairs listed in Table 2. For each pair, the
source SLMs are adapted using the unlabeled de-
velopment set of the target datasets and evaluated
on the evaluation sets.
Implementation Details: For self-training and ac-
tive learning, we adopt the implementation from Su
et al. (2022), setting the annotation budget to 12
per iteration over eight iterations for active learning.
The LLMs used are the same as those in Sect. 5. As
for the hyper-parameters of SALA, the maximum
iteration number Niter and filtering threshold τ in

Alg. 1 are set to 5 and 5e-3, respectively. The num-
ber of annotations K is set to 384, which accounts
for nearly all instances in the development sets of
the TER target domain. Additional implementa-
tion details and example prompts are provided in
Appendix A.1.

7.2 Results

Table 5 show results in F1(%) scores across dif-
ferent target datasets. Self-training fails to consis-
tently improve the performance of the source SLM,
confirming previous findings (Su et al., 2022). In
contrast, active learning provides a strong baseline,
improving the source SLMs across nearly all tar-
get datasets with a limited annotation budget. Our
approach consistently improves the source SLMs,
with “Active + SALAmed” outperforming the un-
adapted source SLMs across all target datasets. No-
tably, “Active + SALA” outperforms even active
learning with human annotation in three out of four
tasks. In summary, LLM annotation offers a re-
liable alternative to human annotation in SFDA
settings by consistently enhancing the performance
of source SLMs.

8 Discussion

In this work, we introduced active learning with
LLM annotation in an SFDA setting, and demon-
strated that the proposed LLM annotation method
(SALA) can enhance the performance of source
SLMs across various tasks. In this section, we ad-
dress remaining questions regarding the effective-
ness of our approach, particularly in the utilization
of SLM assistance for LLM annotation (Sect. 8.1)
and the sampling method for annotation targets
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Method Iteration
NER RE ND TER Avg

Beth Part Beth Part i2b2 mimic Food News

Zero-Shot - 49.3 58.5 56.2 67.8 94.3 90.5 55.1 37.4 63.6
LLM-active First 51.5 57.4 52.6 62.7 93.7 93.3 46.7 36.8 61.8

Last 53.0 59.0 56.3 64.8 94.8 89.9 49.4 45.0 64.0
SALA First 63.1 74.3 53.0 67.0 92.4 85.6 78.4 68.0 72.7

Last 65.8 74.6 56.9 66.3 93.7 86.7 78.6 70.2 74.1

Table 6: Annotation quality of different LLM annotation methods in F1(%) scores. Results are averaged over three
runs with different seeds. The “Iteration” column indicates the results from either the first or last iteration. SALA
achieves high-quality annotation across various tasks and the highest score on average.

NER RE ND TER Avg

Random 82.9 69.1 81.6 76.9 77.6
Entropy 83.7 69.3 83.3 77.5 78.4

Table 7: Performance comparison between random and
entropy-based sampling used in “Active + SALA”. The
results are averaged over three runs with different seeds.

(Sect. 8.2). We also demonstrate that SALA effec-
tively mitigates the performance decline observed
in the zero-shot annotation (Sect. 8.3).

8.1 LLM Annotation Quality

To ensure consistent annotation quality across di-
verse tasks, we incorporate source SLM predictions
into the LLM annotation process. To assess the
effectiveness of this SLM-assisted approach, we
compare SALA with LLM annotation performed
without SLM assistance.
Baselines: For LLM annotation without SLM as-
sistance, we consider zero-shot annotation (Zero-
shot) from Sect. 5. Additionally, we include an
LLM-only active annotation setting (LLM-active),
adjusting the method proposed by Xiao et al. (2023)
to our experimental settings. Specifically, we em-
ploy Algorithm 1 with two modifications. First,
following Xiao et al. (2023), the demonstration
pool (line 4) is initialized with LLM-generated ex-
amples and annotations based on randomly selected
unlabeled target samples. Second, the prompting
process uses the same template as SALA (Eq. 2),
but source SLM predictions are omitted. Further
implementation details for this baseline are pro-
vided in the Appendix A.1.

Table 6 presents the comparison of annotation
quality in F1(%) scores on the target develop-
ment sets. Full results, including the medical-
domain LLM annotation, are presented in the Ap-
pendix A.5. While all three LLM annotation meth-

ods perform similarly in RE and ND, both Zero-
shot and LLM-active suffer from lower annotation
quality in NER and TER. SALA successfully miti-
gates this issue, maintaining relatively high-quality
annotations in both NER and TER, indicating the
effectiveness of the SLM assistance. Additionally,
annotation quality at the final iteration generally
surpasses that of the initial iteration, indicating
that the iterative approach in Alg. 1 contributes to
performance improvement. In summary, SALA
achieves high-quality annotations across various
tasks, demonstrating the effectiveness of SLM as-
sistance for LLM annotation in the SFDA setting.

8.2 Entropy-based vs. Random Sampling
To select annotation targets where the SLM is likely
to produce prediction errors, we use the source
SLM’s predictive entropy as a selection criterion.
To evaluate the effectiveness of this sampling strat-
egy, we compare the performance of “Active +
SALA” using both random and entropy-based sam-
pling methods.

Table 7 presents the performance of adapted
SLMs in F1% scores for each sampling method.
The results are averaged for each task. In all tasks,
entropy-based sampling outperforms random sam-
pling. This result indicates that the source SLM’s
predictive entropy is effective in selecting anno-
tation targets that benefit from LLM correction,
confirming the existing comparison of sampling
methods (Zhang et al., 2023).

8.3 Performance with Increasing Annotations
Using zero-shot annotation, we observed a perfor-
mance decline of the source SLMs in NER (see
Sect. 2). Fig. 4 shows the performance of “Active +
SALA” with the number of annotations increasing
from 96 to 384. In contrast to Fig. 2, the SLM
performance consistently improves with increasing
annotations in NER task, showing the scalability
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Figure 4: Performance of “Active + SALA” on NER
and ND in F1(%) scores. Results are averaged over
three runs with different seeds. The dotted horizontal
line is the performance of the unadapted source SLM.
The performance improves with increasing annotations
for both tasks.

of SALA in various clinical information extraction
tasks.

9 Conclusion

In this paper, we explore active learning with
LLM annotation, adapting SLMs fine-tuned on the
source domain to the target domain’s specific for-
mats and vocabularies. To improve annotation qual-
ity, we introduce a novel LLM annotation method,
SALA, which incorporates the source SLM predic-
tion into the LLM annotation through in-context
learning. Through experiments across four clini-
cal information extraction tasks and eight target
datasets, we demonstrate that the proposed ap-
proach consistently enhances the performance of
source SLMs and outperforms active learning with
human annotation in three out of four tasks with a
larger annotation number. Furthermore, we show
that SLM assistance improves the quality of LLM-
generated annotations in challenging tasks such as
clinical NER. These results highlight the potential
of LLM annotation as a scalable and effective al-
ternative to human annotation in clinical SFDA,
where clinical and linguistic expertise is typically
required.

10 Limitations

Due to the limited availability of publicly accessi-
ble clinical corpora, our study utilizes data from
three clinical institutions. Our qualitative error ana-
lysis of the source SLMs (see Sect. 4) suggests that
the primary differences among these institutions
are limited to variations in formatting and vocabu-
lary. While our experimental results demonstrate
performance improvements, residual performance

degradation persists when adapting across differ-
ent clinical specialties and languages. Future work
should explore more extensive evaluations across
diverse institutions and language settings to better
facilitate the deployment of clinical information
extraction models in real-world scenarios.

Another limitation of this study is the use of
fixed hyperparameters in LLM annotation, which
may result in suboptimal annotation quality. For in-
stance, on the mimic dataset in the ND task, SALA
shows lower annotation quality compared to other
methods, potentially due to biases introduced by
SLM predictions. This issue could be mitigated
by searching the optimal number of annotations.
Notably, the performance of the SLM continues
to improve even at an annotation number of 384
(see Fig. 4), indicating that further exploration of
the number of annotations could yield better re-
sults. Another example is the filtering threshold τ .
Although annotation quality improved in the last
iteration of Alg. 1 compared to the first iteration
(see Table 6), identifying the optimal number of
iterations could further enhance annotation quality.
We leave the search for such hyperparameters for
future work.

Lastly, the performance gains from “Active +
SALA” are limited in the TER task. TER is partic-
ularly challenging as it involves token classification
across 56 classes. This limitation could potentially
be addressed through more robust fine-tuning (Xiao
et al., 2023; Zhang et al., 2023) or by leveraging
a more capable LLMs (Bi et al., 2024) to enhance
annotation quality.

11 Ethics Statement

While SALA offers a scalable and effective ap-
proach to annotation in clinical SFDA, the use of
large language models (LLMs) for annotation may
inherit biases present in the LLMs and the fine-
tuned source SLMs. These biases could potentially
affect annotations and predictions related to sensi-
tive characteristics such as race, gender, disabili-
ties, and other protected attributes. Moreover, the
clinical context amplifies the importance of ethical
considerations, as inaccurate or biased annotations
could adversely impact downstream applications
in healthcare. To mitigate these risks, we recom-
mend that users apply rigorous bias evaluation and
mitigation strategies, including techniques for bias
reduction in LLM outputs and thorough post-hoc
analysis of model predictions.
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A Appendix

A.1 Implementation Details

A.1.1 Source SLMs Training

For NER and RE tasks, we fine-tune the source
SLMs on the respective source datasets. Specifi-
cally, we fine-tune the RoBERTa-base model using
Huggingface Trainer6. The key hyperparameters
are listed in Table 8, while default values are used
for the remaining hyperparameters.

Parameter Value

Learning rate 2e-5
Number of training epochs 10
Weight Decay 0.01
Max length (RE) 340
Max length (NER) 500
Training batch size 4

Table 8: Training hyperparameters for the source SLMs.

A.1.2 Entropy-based Sampling

We calculate per-sample entropy using Scipy7 (Vir-
tanen et al., 2020) based on the softmax proba-
bilities of target samples. For text classification
tasks (ND and RE), entropy is computed directly
from the softmax probabilities of each instance.
For token classification tasks, per-token entropy is
first calculated using the softmax probabilities of
individual tokens, and the average entropy across
tokens is used as the instance-level entropy.

A.1.3 LLM Annotation

For annotation with LLMs, we used the Hugging-
face Transformers pipeline8 with default genera-
tion hyperparameters and set the temperature to
0.1. LLMs were queried using templates exempli-
fied in the Fig 5, 6, 7 and 8. We present templates
for NER and RE as examples of token and text clas-
sification tasks, respectively. For NER and TER
tasks, we generated annotations in JSON format,
inspired by (Kim et al., 2024). In the LLM-active
method, we first generated example texts and their
annotations using prompts in the figures. Specifi-
cally, 100 texts were randomly sampled from the

6https://huggingface.co/docs/transformers/en/
main_classes/trainer

7https://scipy.org/
8https://huggingface.co/docs/transformers/en/

main_classes/text_generation

development set of the target datasets for the exam-
ple texts. Example prompts are presented in Fig. 9
and 10.

A.1.4 Fine-tuning of Source SLMs

The implementation of fine-tuning with LLM-
annotated data follows the same procedure as the
source SLM training for NER and RE tasks. For
ND and TER tasks, we adopted the hyperparame-
ters from Su et al. (2022).

A.2 Full Comparison of Zero-shot Annotation
Quality and Source SLM performance

Table 9 presents the full comparison of zero-shot
annotation quality and source SLM performance,
as discussed in Sect 2. Zero-shot annotation sur-
passes the source SLM performance in text classifi-
cation tasks (RE and ND) at an annotation budget
of 384 but falls short in token classification tasks
(NER and TER). This observation motivated us to
improve LLM annotation with SLM assistance.

A.3 LLM Inference on Evaluation Sets

Table 10 compares “Active + SALA” with LLM in-
ference on the evaluation sets of the target datasets.
For few-shot inference, we retrieve class-wise ex-
amples from a manually annotated development set
using the same retrieval method as SALA. While
LLM inference achieves high F1 scores in sim-
pler tasks like ND, it struggles with more complex
tasks such as NER and TER, even with few-shot
examples. This highlights the advantage of using
fine-tuned SLMs for clinical information extraction,
particularly given their computationally efficient
inference when processing large-scale clinical data.

A.4 Additional Evaluation of SLM
Performance

Table 11 presents the additional results of SLM
performance for active learning using various LLM
annotation methods. With the number of annota-
tions set to 96, SALA has no clear advantage over
other LLM annotation methods. However, with an
increased number of annotations, SALA demon-
strates an overall advantage, as all methods per-
form comparably in text classification tasks, while
SALA exhibits a prominently better performance
in token classification tasks.
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A.5 Additional Evaluation of Annotation
Quality

Table 12 presents the additional results of annota-
tion quality for various LLM annotation methods
on annotation targets, with the number of anno-
tations set to 384 instances. The results include
comparisons between medical domain and general
domain LLMs for each annotation method. A sim-
ilar trend is observed as in the SLM performance,
providing additional evidence of the effectiveness
of SALA.

14690



Method NER RE ND TER Avg
# Beth Part Beth Part i2b2 mimic Food News

Source 96 51.5 39.2 23.2 39.2 85.1 80.9 75.1 70.1 58.0
Zero-Shot 96 52.4 67.5 50.0 72.3 89.2 82.3 44.5 31.7 61.2
Zero-ShotMed 96 54.6 46.1 56.4 66.1 89.2 89.7 31.9 20.4 56.8

Source 384 64.1 66.8 32.8 51.8 88.8 65.2 79.3 74.5 65.4
Zero-Shot 384 49.3 58.5 56.2 67.8 94.3 90.5 55.1 37.4 63.6
Zero-ShotMed 384 49.9 44.2 60.9 68.6 94.5 92.8 39.1 24.4 59.3

Table 9: Performance comparison of zero-shot annotation and the source SLMs.

Method Human-free
NER RE ND TER Avg

Beth Part Beth Part i2b2 mimic Food News

Full-supervision (skyline) × 88.7 86.7 75.4 65.7 89.8 88.7 85.8 83.0 83.0

Source ✓ 81.3 80.9 56.1 57.3 84.6 63.5 78.1 78.4 72.5
Zero-shot ✓ 57.8 50.6 59.3 71.5 91.1 81.2 53.4 52.0 64.6
Few-shot × 61.2 55.6 62.2 66.7 92.9 80.3 62.5 69.9 68.9
Active + SALAMed ✓ 83.2 81.3 72.2 57.6 88.3 79.6 79.6 78.7 77.6
Active + SALA ✓ 84.2 83.2 72.3 66.2 88.0 78.6 79.9 75.1 78.4

Table 10: LLM inference performance on the evaluation set of the target datasets.

Method #
NER RE ND TER Avg

Beth Part Beth Part i2b2 mimic Food News

Full-supervision (skyline) Full 88.7 86.7 75.4 65.7 89.8 88.7 85.8 83.0 83.0
Source - 81.3 80.9 56.1 57.3 84.6 63.5 78.1 78.4 72.5
Active + Zero-shotMed 96 82.6 81.2 63.9 61.5 87.9 75.7 75.0 72.5 75.0
Active + Zero-shot 96 83.4 80.0 61.0 59.3 87.9 75.6 76.9 59.0 72.9
Active + LLM-activeMed 96 83.6 79.1 63.1 61.6 87.9 75.7 75.2 67.2 74.2
Active + LLM-active 96 83.1 82.2 61.4 59.5 88.2 76.0 74.6 74.6 75.0
Active + SALAMed 96 82.5 80.1 63.9 59.0 87.8 68.1 80.3 77.5 74.6
Active + SALA 96 81.9 81.5 60.2 61.3 85.0 71.1 79.3 76.8 74.6

Active + Zero-shotMed 384 71.6 63.0 63.3 67.2 88.5 81.4 74.7 64.1 71.7
Active + Zero-shot 384 69.5 68.7 69.5 66.5 88.0 82.8 75.2 55.8 72.0
Active + LLM-activeMed 384 66.9 62.6 64.2 58.8 88.3 80.2 70.0 37.5 66.1
Active + LLM-active 384 70.7 62.8 66.4 56.5 88.1 80.6 71.9 63.0 70.0
Active + SALAMed 384 83.2 81.3 72.2 57.6 88.3 79.6 79.6 78.7 77.6
Active + SALA 384 84.2 83.2 72.3 66.2 88.0 78.6 79.9 75.1 78.4

Table 11: Performance comparison of the adapted SLMs with varous LLM annotation methods.
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Method NER RE ND TER Avg
Beth Part Beth Part i2b2 mimic Food News

Few-shot 56.3 61.7 57.6 65.0 93.7 92.3 52.4 47.4 65.8
Zero-shot 49.3 58.5 56.2 67.8 94.3 90.5 55.1 37.4 63.6
Zero-shotMed 49.9 44.2 60.9 68.6 94.5 92.8 39.1 24.4 59.3
LLM-active 53.0 59.0 56.3 64.8 94.8 89.9 49.4 45.0 64.0
LLM-activeMed 50.9 47.5 57.6 68.3 94.8 90.6 48.0 22.9 60.1
SALA 65.8 74.6 56.9 66.3 93.7 86.7 78.6 70.2 74.1
SALAMed 65.2 69.5 56.8 70.4 93.7 90.6 81.6 73.8 75.2

Table 12: Annotation quality comparison of various LLM annotation methods.

Instructions: You are an intelligent clinical language model.
Given the entity label set: [<label set>], please recognize the named entities in the given clinical text.
<task description>
Here are examples of the annotation.
<high-confidence examples>
Provide the answer in the following lines of JSON format:
{entity name1: entity type1}
{entity name2: entity type2}
Extract the entity name from the text exactly.
Be sure to choose the entity type from [<label set>].
Be sure to keep the order of the entities as they appear in the text.
If there are no entities in the entire text, return the empty JSON: {}.
Now, please recognize the named entities in the following clinical text
Text: "<input>"
Here is the base answer
Answer:
<SLM prediction>
If the base answer needs modification, please return the modified answer based on the annotation task
description and the examples.
If the base answer is correct, please return the answer as it is.
Answer:

Figure 5: The template of SALA prompt for NER.
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Instructions: You are an intelligent clinical language model.
Given the entity label set: [<label set>], please recognize the named entities in the given clinical text.
<task description>
Provide the answer in the following lines of JSON format:
{entity name1: entity type1}
{entity name2: entity type2}
Extract the entity name from the text exactly.
Be sure to choose the entity type from [<label set>].
Be sure to keep the order of the entities as they appear in the text.
If there are no entities in the entire text, return the empty JSON: {}.
Now, please recognize the named entities in the following clinical text
Text: "<input>"
Answer:

Figure 6: The template of zero-shot prompt for NER.

Instructions: You are an intelligent clinical language model.
<task description>
Here are examples of the annotation.
<high-confidence examples>
Classify the relation of the two concepts marked with <e1> </e1> and <e2> </e2>.
Provide the answer by choosing one word from the following categories: [<label set>]
Do not include anything other than the category in the answer.
Now, please classify the following text
Text: "<input>"
Here is the base answer
Answer:
<SLM prediction>
If the base answer needs modification, please return the modified answer based on the annotation task
description and the examples.
If the base answer is correct, please return the answer as it is.
Answer:

Figure 7: The template of SALA prompt for RE.

Instructions: You are an intelligent clinical language model.
<task description>
Classify the relation of the two concepts marked with <e1> </e1> and <e2> </e2>.
Provide the answer by choosing one word from the following categories: [<label set>]
Do not include anything other than the category in the answer.
Now, please classify the following text
Text: "<input>"
Answer:

Figure 8: The template of zero-shot prompt for RE.
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Instructions: You are an intelligent clinical language model.
Given an annotation guideline and example texts below, please generate an example text with annotations.
<task description>
Here are the example texts.
<examples>
Provide the answer in the following lines of JSON format:
{entity name1: entity type1}
{entity name2: entity type2}
Extract the entity name from the text exactly.
Be sure to choose the entity type from [<label set>].
Be sure to keep the order of the entities as they appear in the text.
If there are no entities in the entire text, return the empty JSON: {}.
The generated text and answer should be in the format:
Text: "Example text here"
Answer:
{entity name1: entity type1}
{entity name2: entity type2}
Now, please generate an example text with annotations.
Text:"

Figure 9: The template of prompt for generating example texts and their annotations in NER.

Instructions: You are an intelligent clinical language model.
Given an annotation guideline and example texts below, please generate an example text with an annotation.
<task description>
Here are the example texts.
<examples>
Classify the relation of the two concepts marked with <e1> </e1> and <e2> </e2>.
Provide the answer by choosing one word from the following categories: [<label set>]
Do not include anything other than the category in the answer.
The generated text and answer should be in the format:
Text: "Example text here"
Answer: <answer>
Now, please generate an example text with an annotation.
Text:"

Figure 10: The template of prompt for generating example texts and their annotations in RE.
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