
Findings of the Association for Computational Linguistics: ACL 2025, pages 14664–14677
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Lightweight Query Checkpoint: Classifying Faulty User Queries to
Mitigate Hallucinations in Large Language Model Question Answering

Minjoo Son† 1 Jonghak Jang† 1 Misuk Kim∗ 1, 2

1Department of Artificial Intelligence, Hanyang University, Seoul, Republic of Korea
2Department of Data Science, Hanyang University, Seoul, Repulic of Korea

{minjoo77, jonghak17, misukkim}@hanyang.ac.kr

Abstract
Question Answering (QA) with large language
models has shown impressive performance, yet
hallucinations still persist, particularly when
user queries carry incorrect premises, insuf-
ficient context, or linguistic ambiguity. To
address this issue, we propose Lightweight
Query Checkpoint (LQC), a small classifica-
tion model that detects verification-required
queries before the LLM generates a potentially
faulty answer. LQC leverages hidden states ex-
tracted from intermediate layers of a smaller-
scale, non-instruct-tuned LLM to effectively
distinguish queries requiring verification from
clear queries. We first systematically define cat-
egories of queries that need verification, con-
struct a dataset comprising both defective and
clear queries, and train a binary contrastive
learning model. Through extensive experiments
on various QA datasets, we demonstrate that
incorporating LQC into QA pipelines reduces
hallucinations while preserving strong answer
quality.

1 Introduction

Recently, as the performance of large language
models (LLM) has steadily improved, user experi-
ence in QA systems has also been greatly enhanced
(Jin et al., 2024; Ren et al., 2024; Fu et al., 2020).
Through simple interfaces such as web browsers
or chatbots, users can easily input queries and re-
ceive immediate answers, providing a more intu-
itive user experience. However, in real-world us-
age, questions containing incorrect premises, in-
sufficient context, or linguistic ambiguities are of-
ten entered (Tanjim et al., 2025; Kim et al., 2024;
Vadlapati, 2023), which still poses a high risk of
the model producing incorrect answers—so-called
“hallucinations.”

For instance, as shown in Figure 1, a question
asking about the legal age to buy alcohol, such as

†Equal contribution. ∗Corresponding author.

At what age is it legal to buy alcohol?

You can legally purchase alcohol at 18,
and remember to bring valid ID, like an
official ID card or driver’s license,
since you may need to show it.

The user is 19 years old and lives in California,
where alcohol can be purchased starting at age 21.

Verification needed for your query:
your location details are insufficient,
and the legal age for purchasing alcohol
may vary by country or region.

LQC

Figure 1: Comparison of QA behavior with and without
LQC when handling a contextually incomplete query.
Without LQC, the LLM answers immediately, poten-
tially hallucinating based on an assumed location. With
LQC, the system detects missing contextual details and
prompts the user for clarification before answering.

“At what age is it legal to buy alcohol?”, without
providing any national or regional context whatso-
ever, can lead the LLM to assume a specific coun-
try arbitrarily or present a universal figure without
sufficient basis, thereby conveying inaccurate infor-
mation (Thakur et al., 2024). In particular, because
users may not realize their question is ambiguous,
they tend to trust any inaccurate information pro-
vided by the model. If such situations recur, misin-
formation can spread indiscriminately, and this risk
becomes especially serious in sensitive domains
such as medicine or law (Alber et al., 2025; Steven-
son and Guo, 2010).

In order to address this issue, this paper proposes
a lightweight model called Lightweight Query
Checkpoint (LQC), which utilizes internal repre-
sentations within the LLM to preemptively iden-
tify questions “in need of verification”. By detect-
ing queries with potential flaws before generating
answers and explicitly guiding users about those
flaws, LQC reduces hallucinated answers that may
arise from ambiguous questions, while still ensur-

14664

ing fast responses for normal questions.
To achieve this, LQC utilizes a binary classifica-

tion model that takes as input the hidden states ex-
tracted from an intermediate layer of a transformer
(Vaswani et al., 2023) based LLM. In other words,
it pairs a “verification needed query” and performs
contrastive learning, thereby aiming to achieve
high classification performance even in resource-
constrained environments. Here, a “verification
needed query” is defined as one that contains a flaw
making it impossible to provide a single, defini-
tive answer—specifically, it might include incor-
rect premises that render the query unanswerable,
lack concrete details such as time or location, or be
open to multiple interpretations due to grammatical
or linguistic ambiguity.

In this study, we constructed a publicly available
dataset of such queries organized by category and
conducted various experiments to verify that using
LQC can reduce hallucinatory answers in real QA
pipelines. Furthermore, we compared how both the
model size (from which hidden states are extracted)
and whether the model had undergone instruct tun-
ing affect classification performance. Through this
comparison, we demonstrated that even smaller-
scale, non-instruct models can yield clearer signals
for defect detection.

• We propose LQC, which determines the pres-
ence of query flaws through internal repre-
sentations of LLM inputs, and confirm that
applying LQC to actual QA environments en-
ables the construction of a more reliable QA
pipeline.

• We systematically define various types of er-
rors inherent in user queries and build a public
QA dataset based on these types, making it
available for research purposes.

• We show that hidden states extracted from
intermediate layers of smaller-scale or non-
instruct LLMs provide even clearer signals for
error detection, confirming their applicability
in resource-limited environments.

2 Related Work

Internal Representations of LLM Recently,
there has been active research on interpreting the
internal representations of large language mod-
els (LLMs) and leveraging them (Zhang et al.,
2024a; Lin et al., 2024b; Muttenthaler et al., 2020).
Transformer-based models such as BERT (Devlin

et al., 2019) have demonstrated excellent perfor-
mance (Oren et al., 2024; Chen et al., 2024), lead-
ing to the development of probing techniques (He
et al., 2024; Li et al., 2025; Chen and Gao, 2022)
and visualization analyses (Katz and Belinkov,
2023) for examining their hidden layers. A rep-
resentative example is the study by (Jawahar et al.,
2019), which analyzed BERT’s layer-wise repre-
sentations. They observed a hierarchical structure
in which lower layers capture superficial lexical
and phrase-level information, intermediate layers
capture syntactic features, and upper layers cap-
ture increasingly deeper semantic features (Ten-
ney et al., 2019). There is also growing interest in
whether these internal representations of LLMs can
detect anomalies in queries (Slobodkin et al., 2023).
In (Ji et al., 2024), it was reported that solely by
looking at the hidden states of an LLM, one can de-
termine whether a question contains content unseen
during training and whether the model is uncertain
about the answer. Another line of research found
that although LLMs tend to produce hallucinatory
answers when facing unanswerable questions, the
hidden representation of merely the first output to-
ken already contains information about whether the
question can be answered (Slobodkin et al., 2023).

Verification Needed Queries Detecting erro-
neous questions or questions without correct an-
swers in the process of utilizing LLMs is a key
task for mitigating hallucinatory responses (Cole
et al., 2023). For example, in the domain of reading
comprehension QA, some methods attach an addi-
tional classification head to a transformer model
(such as BERT). This classification head is then
trained to predict whether a question is unanswer-
able (Schmidt et al., 2020; Guan et al., 2022; Jiang
et al., 2022). Classifying user query intentions and
detecting out-of-domain queries are also impor-
tant issues for improving QA system efficiency.
Recently, contrastive learning approaches have gar-
nered attention for determining question types and
domain suitability (Wang and Mine, 2024; Yue
et al., 2021). In addition, there have been multi-
ple attempts to improve the detection of incorrect
answers by fine-tuning the LLM’s parameters them-
selves (Kim et al., 2024). While these methods are
effective at analyzing queries and identifying er-
rors, they often exhibit limitations, such as being
biased toward certain error types and thus lacking
generality.

14665

(a) Training procedure of LQC (b) Workflow when LQC is integrated into a QA pipeline

Layer 6

...
k

...
k

Layer 8

...
k

...
k

Layer n

...
k

Layer 4

...
k

...
k

...
k

Layer 2

Cross Entropy Loss

Supervised
Contrastive Loss

Verification Needed: When...
All Clear: When...

Linguistic Ambiguity
Verification Needed: Who...
All Clear: Who...

Unanswerable
Verification Needed: Tell...
All Clear: Tell...

Contextual Incompleteness

Large Language Model

Query: who was the ruler in 1830?

LQC

Verification
Needed

All Clear

Response Generation
Large Language Model

Response: Verification needed for this
query. Further context is needed to
determine which country or region the
user is asking about.

The following user query
requires verification....
Query: {query}
Response:

Respond to the following
query in one sentence:
Query: {query}
Response:

Figure 2: Training procdure of the proposed LQC model and its integration into an LLM-based QA system. (a) During
training, both verification needed queries and all clear queries are provided to an LLM, from which hidden states
are extracted at an intermediate layer. These representations used to train a binary classifier via contrastive learning.
(b) At inference time, LQC determines whether a user query requires verification. Based on the classification result,
an appropriate QA prompt template—either requesting clarification or directly eliciting an answer—is composed
and forwarded to the response generation large language model.

3 Methodology

The primary goal of this study is to enable an open-
domain, LLM-based question-answering system to
recognize the “verification needed” when a user
query contains flaws, explaining this need to the
user, while still delivering high-quality answers for
queries that do not contain any flaws. To achieve
this, we propose an LLM-based classifier called
Lightweight Query Checkpoint (LQC), which
determines in advance whether the user query re-
quires verification before the LLM generates an
answer. The overall pipeline of the LLM-based
QA system incorporating LQC is shown in Figure 2.
Specifically, Figure 2(a) illustrates the training pro-
cess for LQC, and Figure 2(b) describes the stage
in which different answer templates are generated
according to LQC’s classification results (whether
verification is needed). In this chapter, we examine
each of these steps in detail.

3.1 Classification with Contrastive Learning

Training Dataset Collection In order to build
a contrastive learning-based classifier, we first di-
vided the “verification needed queries” into three
main types. Specifically, these types are: Contex-
tual Incompleteness, which lacks the necessary in-
formation; Linguistic Ambiguity, which involves
linguistic ambiguity; and Unanswerable, which is
difficult to answer because it contains incorrect as-

sumptions or requests information that does not
exist. We then collected data from publicly avail-
able datasets in which each of these three types
includes both defective and non-defective queries.
Detailed information on dataset construction can
be found in Appendix A.

Hidden States Extraction To obtain a represen-
tation of a user query based on a pretrained LLM,
we first structure the user query in a chat template
format, convert it into a token sequence, and then
feed it into the LLM. The input token sequence
passes through internal transformer layers, gener-
ating a hidden state for each token. In this study,
we use the hidden states extracted from one of the
intermediate layers as the query embeddings. We
then apply a Hybrid Pooling strategy that com-
bines mean pooling and last token pooling on the
extracted hidden states: mean pooling vector re-
flects the overall context, while the last token vec-
tor supplements key information of the sentence.
We implement a weighted sum of the mean pooling
vector of all tokens in the sequence (hmean) and
the last token vector (hlast) as follows:

hhybrid = αhlast + (1− α)hmean, (1)

α is a hyperparameter that adjusts the weight
between the two vectors. By using it to balance both
the overall query distribution and the key token

14666

information, it can achieve higher classification
performance compared to simple pooling.

Binary Classifier Training Based on Con-
trastive Learning We feed the embedding
hhybrid obtained through hybrid pooling into an
multi-layer perceptron (MLP) based classifier. At
this point, we apply Contrastive Learning (CL)
(Gao et al., 2021) to enhance the model’s ability to
distinguish among queries. Specifically, we project
pairs of queries—those requiring verification ver-
sus all clear queries—into the latent space in such
a way that embeddings of the same class remain
close to each other, whereas embeddings of differ-
ent classes are spaced far apart. In the latent space,
for a vector h, let H+ be the set of embeddings
belonging to the same class, and let H− be the set
of embeddings belonging to a different class. The
model is trained so that h stays close to H+ and
far from H−. The following equation represents
the training objective of this contrastive learning
approach.

CL(h,H+,H−) =

− log

∑
h′∈H+ exp{sim(h,h′)/τ}∑

h′∈(H+∪H−) exp{sim(h,h′)/τ}
(2)

where sim refers to the cosine similarity and τ is
the temperature value. Let Hc be the set of all clear
queries and Hv be the set of verification needed
queries. We define the contrastive loss as follows:

Lcont = CL(hc,Hc,Hv) + CL(hv,Hv,Hc) (3)

Finally, the total loss of LQC is obtained by com-
bining the cross-entropy loss Lce for classification
as follows.

L = Lce + Lcont (4)

3.2 Response Generation

Depending on the classification model’s prediction
regarding whether the query requires verification,
we provide one of two types of input to the LLM
for answer generation. If the classification model
predicts that a query needs verification, we supply
an additional verification template (for example,
“This query requires additional verification, please
provide the reason why verification is necessary.”)
together with the query. This encourages the LLM
to first explain any errors or ambiguities to the
user and then ask for additional information. Con-
versely, if the model determines that the query is
clear, we use a simple template similar to existing

open-domain QA methods as the LLM input. Fig-
ure 2 provides an overview of the entire system’s
scenario, where QA proceeds in the order of verifi-
cation classification → template branching → final
answer generation.

4 Experiments

In this chapter, we evaluate the proposed LQC
framework, which classifies queries and then gener-
ates responses, using various datasets and baseline
methods.

4.1 Datasets
We collected both all clear queries and verifica-
tion needed queries from four different datasets.
This setup is well-suited for evaluating how
the proposed classification model performs un-
der diverse conditions. SituatedQA-Geo and
SituatedQA-Temp (Zhang and Choi, 2021) are
datasets where queries are highly dependent on
a specific location (Geo) or a specific time (Temp),
and models must leverage contextual understand-
ing to answer accurately. CLAMBER-Linguistic
Ambiguity (Zhang et al., 2024b) presents
queries with polysemy or syntactic ambiguity,
and CoCoNot-False-Presuppositions (Brah-
man et al., 2024) includes queries containing false
premises that the model must identify and address
appropriately.

4.2 Baselines
To compare the performance of our proposed
model, we generate answers using two different ap-
proaches. First, the INSTANT approach immediately
feeds the user query to the LLM without any addi-
tional steps, to see if the LLM can inherently recog-
nize queries requiring verification without the help
of a classification model. The second approach,
REFLECT, uses a prompt that instructs the model
itself to determine whether the query “needs veri-
fication.” This also relies entirely on the model’s
own reasoning capabilities, without a classification
model.

4.3 Evaluation Metrics
In this study, we categorize the model’s responses
into five categories, as shown in Figure 3. Based
on these categories, we compute the Accuracy, F1,
F1c, and F1v metrics (Kim et al., 2024) for evalua-
tion.

By comprehensively evaluating these five cate-
gories, we can ascertain whether the model appro-

14667

Figure 3: Illustration of five-way response categoriza-
tion used in evaluation. For Verification Needed Queries,
if the model generates a Verification Alarm, its predic-
tion is considered correct (A). Otherwise, all responses
are classified as incorrect (B). For All Clear Queries, the
model’s predictions are categorized as follows: Correct
Prediction (C), Incorrect Prediction (D), or Verification
Alarm (E).

priately identifies queries that require verification
(comparing A vs. B) and still provides accurate
answers for queries that are clear (comparing C
vs. D, E). We conducted an automated evaluation
using a GPT-4o model to classify the generated
responses into categories A through E.

Accuracy & F1 Among all responses, Accu-
racy measures the proportion of cases where the
model correctly requests verification for queries
that need it (A) and provides correct answers
for clear queries (C). It is calculated as follows:
Accuracy = A+C

A+B+C+D+E . F1 focuses on how
well the model correctly verifies queries that re-
quire verification (A), using the harmonic mean of
Precision and Recall: Precision = A

A+B , Recall =
A

A+C . This indicates how accurately the model iden-
tifies situations in which verification is needed.

F1c (Clear Prediction F1) evaluates the accuracy
(C) for clear queries while minimizing unnecessary
verification (E). It is the harmonic mean of Preci-
sion and Recall defined as: Precision = C

B+C+D ,
Recall = C

C+D+E .
F1v (Verification Needed Detection F1) mea-

sures how well the model requests verification (A)
in queries that actually require it. It is calculated as
the harmonic mean of Precision and Recall defined
as: Precision = A

A+E , Recall = A
A+B .

4.4 Implementation Details

Hidden States Extraction & Classifier To ex-
tract the hidden states of queries in LQC, we con-
ducted three experiments each on the Llama family
and the Qwen(Yang et al., 2024) family of LLMs,

then selected the model with the highest average
performance within each family. As a result, the
Llama-3.2-1B and Qwen2.5-0.5B models were
chosen. For the Llama model, we extracted the hid-
den state from the 12th layer and set α = 0.5 for
hybrid pooling, whereas for the Qwen model, we
extracted the hidden state from the 18th layer and
set α = 0.25.

Response Generation Models For
the model generating answers based
on LQC’s classification results, we used
Llama-8B-Instruct, Qwen2.5-7B-Instruct,
and Qwen2.5-14B-Instruct. Each model was
tested using two random seeds, and we computed
the average results. This setup allows us to com-
prehensively evaluate both classification accuracy
and final answer quality, thereby confirming the
model’s superior ability to handle ambiguity
and provide accurate answers compared to the
baselines (INSTANT, REFLECT).

4.5 Experimental Results
Overall Performance (Accuracy, F1) Table 1 rep-
resents the main results. In each of the four datasets,
we measured the four metrics of Accuracy, F1, F1c,
and F1v. Out of the 16 experimental conditions,
LQCllama and LQCqwen achieved the highest scores
in 14 cases compared to the baselines (INSTANT,
REFLECT), showing superiority in most scenarios
except for F1c and F1v under the false presup-
positions setting. This demonstrates the effective-
ness of our approach, which first classifies whether
verification is required and then routes the query
through an appropriate template before answer gen-
eration. Notably, this added logic incurs minimal
overhead—less than 0.02 seconds of additional in-
ference time—indicating that the gains in accuracy
come with negligible impact on latency in practical
scenarios.

Performance in Identifying Verification-
Required Queries (F1v) Because the LQC
models are designed to prevent missing queries
requiring verification (suppressing the transition
from category A to B), they show a significant
improvement in F1v compared to INSTANT and
REFLECT. Instead of passing queries directly to the
LLM, queries classified as “requiring verification”
are handled using a verification-focused template.
This explicit approach to ambiguity or flaws helps
prevent missed verifications and is viewed as a
major structural advantage.

14668

SituatedQA-

Geo

SituatedQA-

Temp

CLAMBER-

Linguistic Ambiguity

CoCoNot-

False PresuppositionsMethods

Acc. F1 F1c F1v Acc. F1 F1c F1v Acc. F1 F1c F1v Acc. F1 F1c F1v

LLaMA-3.1-8B-Instruct

INSTANT 52.56 37.19 51.25 55.04 38.68 35.96 33.96 49.10 43.33 29.46 43.41 43.08 84.25 81.83 62.84 96.33

REFLECT 62.74 51.67 56.32 72.24 41.32 45.21 32.39 58.81 48.33 41.44 43.52 56.87 86.46 81.01 69.26 95.93

LQCllama 80.98 72.33 67.28 94.67 52.17 57.16 39.20 72.53 68.75 79.30 46.87 87.60 86.46 84.28 65.01 97.49

LQCqwen 79.65 73.07 66.05 92.68 53.03 60.77 38.29 74.61 63.75 78.39 40.73 84.26 83.70 84.35 59.92 96.02

Qwen2.5-7B-Instruct

INSTANT 56.91 36.06 57.76 55.31 44.87 25.31 47.36 38.94 47.92 26.40 51.85 39.74 88.67 78.79 76.05 95.88

REFLECT 56.08 34.79 57.38 53.60 43.36 23.99 46.03 36.90 50.83 27.24 55.63 41.21 90.33 79.72 78.32 96.99

LQCllama 73.28 55.18 68.72 79.34 56.69 40.20 54.91 60.06 68.07 55.71 61.54 76.85 91.71 79.37 81.71 97.22

LQCqwen 69.23 55.56 62.87 77.82 54.64 36.28 54.64 54.65 59.58 49.43 53.98 68.06 85.28 81.97 70.50 93.68

Qwen2.5-14B-Instruct

INSTANT 63.32 41.77 63.05 63.77 43.55 25.10 45.75 38.28 53.75 28.88 58.86 43.81 86.74 77.26 74.63 93.86

REFLECT 68.32 52.03 64.08 74.32 48.36 36.31 47.37 50.24 54.17 40.00 54.98 52.90 89.50 80.49 75.79 97.00

LQCllama 87.47 70.30 79.51 95.19 69.01 60.56 59.60 81.53 77.50 71.90 66.09 88.00 90.61 80.28 80.00 96.20

LQCqwen 85.77 71.42 78.60 92.25 68.49 62.32 58.32 81.40 70.83 68.98 59.59 81.63 90.33 81.13 80.20 95.43

Table 1: Experimental results comparing QA performance with and without LQC integration across four datasets.
Shaded rows indicate QA systems enhanced with the proposed LQC model. The LQC-based systems (LQCllama,
LQCqwen) consistently outperform the baselines (INSTANT, REFLECT) across most configurations. The best results
for each setting are shown in bold. These results demonstrate the effectiveness of LQC in mitigating hallucinations
while maintaining answer quality.

Performance in Handling Clear Queries (F1c)
As for clear queries, the improvement in F1c in-
dicates that the approach effectively avoids un-
necessary verification and yields correct answers
promptly (suppressing the transitions from cate-
gory C to D or E). When LQC classifies a query
as clear, it immediately generates an answer us-
ing a simple QA template, thereby reducing in-
correct answers (D) and unnecessary verification
(E), which leads to better overall performance.
Moreover, there was no significant increase in
excessive refusal to answer. Unlike INSTANT or
REFLECT—where the model itself must fully decide
about ambiguity—LQC pre-classifies a question as
“clear,” making it possible to respond without un-
necessary warnings or refusals. Consequently, the
system more consistently and efficiently handles
clear queries compared to INSTANT and REFLECT.

5 Analysis

In this section, we conduct an in-depth analysis of
LQC, a classifier that learns from the hidden states
of an LLM in order to determine whether a user’s
query requires verification. Unless otherwise speci-
fied, the settings are the same as in the main exper-

Model
w/ CL w/o CL

Acc. F1 Acc. F1
LLaMA-3.2-1B 91.3 91.3 89.1 89.7
Qwen2.5-0.5B 88.7 89.1 85.5 87.2

Table 2: Performance comparison of LQC models trained
with and without Contrastive Learning (CL). Incorporat-
ing contrastive learning leads to improved classification
accuracy.

iment.

5.1 Ablation Studies

Contrastive Learning Table 2 compares perfor-
mance when the query hidden states extracted from
the LLM are fed into an MLP classifier, with and
without the application of contrastive learning. Ac-
cording to the experimental results, the model that
applies contrastive learning consistently achieves
higher accuracy and F1 scores than the control
group. This is because verification needed query
and all clear query may exhibit superficially simi-
lar word distributions or sentence structures, but it
is necessary to correctly understand actual mean-
ing in order to classify them accurately. Through

14669

(a) Llama-3.2-1B (b) Qwen2.5-0.5B

Figure 4: Comparison of LQC performance by layer. Fea-
ture vectors extracted from intermediate layers yield
better performance than those from initial or final lay-
ers. The red line indicates the setting used in the main
experiment.

(a) Llama-3.2-1B (b) Qwen2.5-0.5B

Figure 5: Effect of pooling strategies with varying α val-
ues on LQC performance. The red line indicates the con-
figuration used in the main experiment. Hybrid pooling,
which combines mean pooling (α = 0) and last-token
vector (α = 1), yields better performance than using
either alone.

contrastive learning, once the boundaries between
classes become distinctly delineated in the embed-
ding space, we confirmed in this experiment that
the model can easily distinguish each class during
the classifier stage.

Effectiveness of Using intermediate Layers In
this section, we explore which layer should be used
when extracting the query feature vector in LQC to
maximize the performance of the verification query
classifier, LQC. According to the results presented in
Figure 4, the F1 score starts low in the early layers,
rises toward the intermediate layers, and then de-
clines again in the final layer. The LLaMA-3.2-1B
model achieves its highest score at the 12th layer,
while the Qwen2.5-0.5B model attains its peak at
the 18th layer. This is because the early layers pri-
marily process the lexical and grammatical infor-
mation of the input sentence, whereas the inter-
mediate layers more effectively capture contextual
and logical relationships. Therefore, the features
needed to detect errors such as premise conflicts or
linguistic ambiguity inherent in the query appear
to be most effectively extracted in the intermediate

Figure 6: Comparison of LQC performance depending on
whether instruction tuning is applied. A vanilla model
shows better performance than an instruction-tuned
model.

layers. On the other hand, since the final layer is
specialized for language modeling that focuses on
generating natural responses, it can be interpreted
that the features necessary for response generation
overshadow those required for verification. This re-
sult is in line with previous research(Tenney et al.,
2019) that classifies the stability of LLMs by lever-
aging their internal representations.

Effectiveness of Hybrid Pooling In this section,
we compare various pooling methods used to ex-
tract input sequences for LQC training. We measure
the performance of mean pooling vector (α = 0.0),
last token vector (α = 1.0), and the hybrid pooling
vector proposed in this study. As shown in Figure 5,
both models exhibit superior performance when
hybrid pooling is applied. This is because hybrid
pooling simultaneously captures the benefits of a
global summary effect and the emphasis on key to-
kens, thus producing richer and more fine-grained
embeddings.

Vanilla Model vs. Instruct Tuned Model We
analyze how the type of LLM used to extract hid-
den states affects LQC’s performance. As shown
in Figure 6, using hidden states from a vanilla
model yields higher performance in capturing
query defects (e.g., errors, ambiguities) than using
an instruct-tuned model. This can be interpreted
as part of the alignment tax (Lin et al., 2024a;
Thakkar et al., 2024; Lou et al., 2024), where
greater “helpfulness” training diminishes a model’s
ability to extract defect-related information. Con-
sequently, for identifying query flaws, an untuned
model may be more suitable.

Furthermore, as shown in Figure 7, the embed-
ding space of the vanilla model more distinctly

14670

Type Responses
Verification Needed Query Who served the longest term as president?

INSTANT Franklin D. Roosevelt served the longest term as President of the United States...

REFLECT Franklin D. Roosevelt served the longest term as President of the United States...

LQCllama Verification required for this query. The user’s question does not specify a country...

LQCqwen Verification required for this query. The user’s request does not specify a particular country...

All Clear Query Who became the king of england in 1830?

INSTANT In 1830, King William IV became the King of England.

REFLECT Victoria became the Queen of England in 1837, not 1830. Verification is necessary because...

LQCllama King William IV became the King of England in 1830...

LQCqwen King William IV became the King of England in 1830...

Table 3: Example responses from INSTANT, REFLECT, LQCllama, and LQCqwen to a verification needed query and an all
clear query. These examples demonstrate that LQC selectively triggers verification only when necessary, effectively
preventing hallucinated answers. For clear queries, it preserves answer quality by allowing direct and accurate
responses without unnecessary intervention.

(a) LLaMA-3.2-1B (b) LLaMA-3.2-1B-Instruct

Figure 7: PCA visualization of hidden states from
verification needed and all clear queries. The vanilla
model (LLaMA-3.2-1B) shows clearer separation be-
tween the two types compared to the instruct-tuned
model (LLaMA-3.2-1B-Instruct).

separates verification needed queries from all clear
queries, whereas the instruct model’s embeddings
do not clearly distinguish between these two types
of queries. This indicates that the hidden states
from a vanilla model can provide a clearer repre-
sentation for detecting query flaws.

Parameter size of LLM According to the results
shown in Figure 8, increasing the number of param-
eters in the LLM model used to extract the query’s
hidden states actually leads to lower classification
performance. Although larger-parameter models
are expected to provide richer hidden states, they
can dilute the features needed to identify query de-
fects, causing the embeddings to become overly dis-
persed. On the other hand, smaller models may not
fully capture complex knowledge or reasoning, but
they more distinctly capture query defects, often
yielding higher binary classification performance.

Figure 8: Effect of LLM parameter size on LQC perfor-
mance. As model size increases, performance tends to
decrease, possibly because larger models produce less
distinctive signals for identifying verification needed
queries.

They also offer lower resource consumption. In this
study, we use LLaMA-3.2-1B and Qwen2.5-0.5B
models for classification purposes (LQC), confirm-
ing that both can be run on a single 24GB RTX3090
GPU without difficulty.

5.2 Qualitative Evaluation

As shown in Table 3, the verification needed query
(“who served the longest term as president”) lacks
essential details (such as a country or time), yet
INSTANT and REFLECT both respond immediately
without any checks. In contrast, LQCllama and
LQCqwen first detect this ambiguity and request veri-
fication, thereby avoiding the generation of incor-
rect information.

The all clear query (“Who became the king of
england in 1830”) explicitly includes relevant infor-

14671

mation, enabling INSTANT to provide an immediate
and accurate answer. REFLECT, however, performs
an unnecessary verification step, while LQCllama
and LQCqwen respond swiftly and precisely, under-
scoring their ability to deliver correct answers for
well-defined queries.

These findings align with the quantitative evalu-
ation (Section 4.5), indicating that the LQC frame-
work which selectively applies verification only
when neededconfers a clear advantage in actual
conversational contexts.

5.3 Human Evaluation of GPT Responses

In the QA pipeline, responses generated
by the LLM are categorized into five types
(A,B,C,D,E) using the GPT-4o model, as
illustrated in Figure 3. To verify the reliability of
this GPT-based evaluation, we additionally report
results from human annotators. Specifically, 5%
of the total responses were randomly sampled and
independently labeled by three human annotators
according to the same categorization scheme. We
then compared the annotations from the human
evaluators with the GPT assessments and also
analyzed inter-annotator agreement. The results
show an average agreement rate of 88.3% between
GPT and human annotators, with a standard
deviation of 4.8%. Furthermore, Fleiss’ Kappa was
computed for statistical validation, yielding an
agreement score of 0.78. These findings indicate a
high level of consistency among human annotators
and demonstrate that the GPT-based evaluation
aligns closely with human judgment, supporting
its reliability.

6 Conclusion

In this study, we propose a query-verification model
called LQC to prevent hallucination issues in LLMs
that can arise from user’s incorrect queries, and
we present a complete pipeline that integrates LQC
into a QA system. LQC extracts the hidden states
from intermediate transformer layers using a newly
proposed “hybrid pooling” technique, then explic-
itly notifies users of queries that require verifica-
tion—demonstrating superior performance com-
pared to other baseline. Furthermore, the model
can be easily trained by extracting hidden states
from a lightweight LLM and employing a simple
MLP-based binary classification approach. Above
all, our results show that it is possible to clearly
identify and address defects in user queries without

modifying the LLM’s weights or input prompts in
any way. This lightweight approach functions as
an initial safeguard that complements the input and
output stages of LLMs, helping prevent the gener-
ation of incorrect information in QA systems and
ultimately enhancing user satisfaction.

Limitations

The proposed approach focuses on reducing the fre-
quency of hallucinations by filtering user queries
before the LLM generates a hallucinated answer.
However, it does not directly control or modify the
potential for hallucination inherent in the LLM it-
self. The query data used in this study consists of
relatively simple questions. When applied to a real
QA system, the difficulty of determining whether
a question needs verification may vary depending
on the domain, and there is a possibility of en-
countering a wider variety of query types. In future
research, it will be necessary to obtain a dataset
that includes more complex and diverse types and
domains of queries to verify the generalizability of
the proposed methodology.

Future Work

As shown in Appendix D (Tables 6 and 7),
the LQC classifier demonstrates strong in-
domain performance, achieving F1 scores of
up to 91.32% with Llama-3.2-1B and 89.06%
with Qwen2.5-0.5B. However, on the out-of-
distribution KUQ dataset (Amayuelas et al., 2024),
the F1 scores drop to 74% and 73%, respectively,
revealing a limitation in handling queries from
different distributions. While part of this drop
may be due to labeling inconsistencies in KUQ,
the results clearly indicate reduced robustness
to unfamiliar inputs. To address this issue, we
plan to expand the training data by including a
broader range of queries from diverse domains
and real-world applications. We also aim to
refine our taxonomy for ambiguous queries and
explore training strategies such as domain-adaptive
learning. These directions are intended to improve
the model’s generalization and reliability in
practical QA systems, where ambiguity is frequent
and varied.

Acknowledgments

This work was supported by Institute of Infor-
mation & Communications Technology Planning
& Evaluation (IITP) grant funded by the Korea

14672

government (MSIT) (RS-2025-02214591, Devel-
opment of an Innovative AI Agent for Worker-
Friendly Autonomous Manufacturing), Institute
of In formation & communications Technol-
ogy Planning & Evaluation (IITP) grant funded
by the Korea gov rnment(MSIT) (No.RS-2020-
II201373, Artificial Intelligence Graduate School
Program(Hanyang University)), and the National
Research Foundation of Korea (NRF) grant funded
by the Korea government (MSIT) (No. RS2024-
0040780).

References
D.A. Alber, Z. Yang, A. Alyakin, and et al. 2025. Med-

ical large language models are vulnerable to data-
poisoning attacks. In Nature Medicine.

Alfonso Amayuelas, Kyle Wong, Liangming Pan,
Wenhu Chen, and William Yang Wang. 2024. Knowl-
edge of knowledge: Exploring known-unknowns un-
certainty with large language models. In Findings of
the Association for Computational Linguistics: ACL
2024, pages 6416–6432, Bangkok, Thailand. Associ-
ation for Computational Linguistics.

Faeze Brahman, Sachin Kumar, Vidhisha Balachan-
dran, Pradeep Dasigi, Valentina Pyatkin, Abhilasha
Ravichander, Sarah Wiegreffe, Nouha Dziri, Khyathi
Chandu, Jack Hessel, Yulia Tsvetkov, Noah A. Smith,
Yejin Choi, and Hannaneh Hajishirzi. 2024. The art
of saying no: Contextual noncompliance in language
models. Preprint, arXiv:2407.12043.

Huixin Chen, Jan Büssing, David Rügamer, and Ercong
Nie. 2024. Team MGTD4ADL at SemEval-2024
task 8: Leveraging (sentence) transformer models
with contrastive learning for identifying machine-
generated text. In Proceedings of the 18th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2024), pages 1711–1718, Mexico City, Mexico. As-
sociation for Computational Linguistics.

Zeming Chen and Qiyue Gao. 2022. Probing linguis-
tic information for logical inference in pre-trained
language models. Preprint, arXiv:2112.01753.

Jeremy Cole, Michael Zhang, Daniel Gillick, Julian
Eisenschlos, Bhuwan Dhingra, and Jacob Eisenstein.
2023. Selectively answering ambiguous questions.
In Proceedings of the 2023 Conference on Empiri-
cal Methods in Natural Language Processing, pages
530–543, Singapore. Association for Computational
Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages

4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Bin Fu, Yunqi Qiu, Chengguang Tang, Yang Li, Haiyang
Yu, and Jian Sun. 2020. A survey on complex ques-
tion answering over knowledge base: Recent ad-
vances and challenges. Preprint, arXiv:2007.13069.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
SimCSE: Simple contrastive learning of sentence em-
beddings. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 6894–6910, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Yue Guan, Zhengyi Li, Jingwen Leng, Zhouhan Lin,
Minyi Guo, and Yuhao Zhu. 2022. Block-skim: Effi-
cient question answering for transformer. Preprint,
arXiv:2112.08560.

Linyang He, Peili Chen, Ercong Nie, Yuanning Li,
and Jonathan R. Brennan. 2024. Decoding prob-
ing: Revealing internal linguistic structures in neu-
ral language models using minimal pairs. Preprint,
arXiv:2403.17299.

Ganesh Jawahar, Benoît Sagot, and Djamé Seddah.
2019. What does BERT learn about the structure of
language? In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3651–3657, Florence, Italy. Association for
Computational Linguistics.

Ziwei Ji, Delong Chen, Etsuko Ishii, Samuel Cahyaw-
ijaya, Yejin Bang, Bryan Wilie, and Pascale Fung.
2024. LLM internal states reveal hallucination risk
faced with a query. In Proceedings of the 7th Black-
boxNLP Workshop: Analyzing and Interpreting Neu-
ral Networks for NLP, pages 88–104, Miami, Florida,
US. Association for Computational Linguistics.

Siduo Jiang, Cristopher Benge, and William Casey King.
2022. Bertvision – a parameter-efficient approach
for question answering. Preprint, arXiv:2202.12210.

Jing Jin, Houfeng Wang, Hao Zhang, Xiaoguang Li,
and Zhijiang Guo. 2024. DVD: Dynamic con-
trastive decoding for knowledge amplification in
multi-document question answering. In Proceed-
ings of the 2024 Conference on Empirical Methods
in Natural Language Processing, pages 4624–4637,
Miami, Florida, USA. Association for Computational
Linguistics.

Shahar Katz and Yonatan Belinkov. 2023. Visit: Visual-
izing and interpreting the semantic information flow
of transformers. Preprint, arXiv:2305.13417.

Hyuhng Joon Kim, Youna Kim, Cheonbok Park, Jun-
yeob Kim, Choonghyun Park, Kang Min Yoo, Sang-
goo Lee, and Taeuk Kim. 2024. Aligning language
models to explicitly handle ambiguity. In Proceed-
ings of the 2024 Conference on Empirical Methods
in Natural Language Processing, pages 1989–2007,
Miami, Florida, USA. Association for Computational
Linguistics.

14673

https://doi.org/10.18653/v1/2024.findings-acl.383
https://doi.org/10.18653/v1/2024.findings-acl.383
https://doi.org/10.18653/v1/2024.findings-acl.383
https://arxiv.org/abs/2407.12043
https://arxiv.org/abs/2407.12043
https://arxiv.org/abs/2407.12043
https://doi.org/10.18653/v1/2024.semeval-1.245
https://doi.org/10.18653/v1/2024.semeval-1.245
https://doi.org/10.18653/v1/2024.semeval-1.245
https://doi.org/10.18653/v1/2024.semeval-1.245
https://arxiv.org/abs/2112.01753
https://arxiv.org/abs/2112.01753
https://arxiv.org/abs/2112.01753
https://doi.org/10.18653/v1/2023.emnlp-main.35
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://arxiv.org/abs/2007.13069
https://arxiv.org/abs/2007.13069
https://arxiv.org/abs/2007.13069
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://arxiv.org/abs/2112.08560
https://arxiv.org/abs/2112.08560
https://arxiv.org/abs/2403.17299
https://arxiv.org/abs/2403.17299
https://arxiv.org/abs/2403.17299
https://doi.org/10.18653/v1/P19-1356
https://doi.org/10.18653/v1/P19-1356
https://doi.org/10.18653/v1/2024.blackboxnlp-1.6
https://doi.org/10.18653/v1/2024.blackboxnlp-1.6
https://arxiv.org/abs/2202.12210
https://arxiv.org/abs/2202.12210
https://doi.org/10.18653/v1/2024.emnlp-main.266
https://doi.org/10.18653/v1/2024.emnlp-main.266
https://doi.org/10.18653/v1/2024.emnlp-main.266
https://arxiv.org/abs/2305.13417
https://arxiv.org/abs/2305.13417
https://arxiv.org/abs/2305.13417
https://doi.org/10.18653/v1/2024.emnlp-main.119
https://doi.org/10.18653/v1/2024.emnlp-main.119

Daoyang Li, Haiyan Zhao, Qingcheng Zeng, and Meng-
nan Du. 2025. Exploring multilingual probing in
large language models: A cross-language analysis.
Preprint, arXiv:2409.14459.

Yong Lin, Hangyu Lin, Wei Xiong, Shizhe Diao, Jian-
meng Liu, Jipeng Zhang, Rui Pan, Haoxiang Wang,
Wenbin Hu, Hanning Zhang, Hanze Dong, Renjie Pi,
Han Zhao, Nan Jiang, Heng Ji, Yuan Yao, and Tong
Zhang. 2024a. Mitigating the alignment tax of rlhf.
Preprint, arXiv:2309.06256.

Yuping Lin, Pengfei He, Han Xu, Yue Xing, Makoto
Yamada, Hui Liu, and Jiliang Tang. 2024b. Towards
understanding jailbreak attacks in LLMs: A repre-
sentation space analysis. In Proceedings of the 2024
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 7067–7085, Miami, Florida,
USA. Association for Computational Linguistics.

Renze Lou, Kai Zhang, and Wenpeng Yin. 2024.
Large language model instruction following: A
survey of progresses and challenges. Preprint,
arXiv:2303.10475.

Lukas Muttenthaler, Isabelle Augenstein, and Johannes
Bjerva. 2020. Unsupervised evaluation for question
answering with transformers. In Proceedings of the
Third BlackboxNLP Workshop on Analyzing and In-
terpreting Neural Networks for NLP, pages 83–90,
Online. Association for Computational Linguistics.

Matanel Oren, Michael Hassid, Nir Yarden, Yossi Adi,
and Roy Schwartz. 2024. Transformers are multi-
state RNNs. In Proceedings of the 2024 Conference
on Empirical Methods in Natural Language Process-
ing, pages 18724–18741, Miami, Florida, USA. As-
sociation for Computational Linguistics.

Xuan Ren, Biao Wu, and Lingqiao Liu. 2024. I learn
better if you speak my language: Understanding the
superior performance of fine-tuning large language
models with LLM-generated responses. In Proceed-
ings of the 2024 Conference on Empirical Methods in
Natural Language Processing, pages 10225–10245,
Miami, Florida, USA. Association for Computational
Linguistics.

Lena Schmidt, Julie Weeds, and Julian P. T. Higgins.
2020. Data mining in clinical trial text: Transform-
ers for classification and question answering tasks.
Preprint, arXiv:2001.11268.

Aviv Slobodkin, Omer Goldman, Avi Caciularu, Ido
Dagan, and Shauli Ravfogel. 2023. The curious case
of hallucinatory (un)answerability: Finding truths in
the hidden states of over-confident large language
models. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 3607–3625, Singapore. Association for Com-
putational Linguistics.

Mark Stevenson and Yikun Guo. 2010. Disambiguation
in the biomedical domain: The role of ambiguity type.
Journal of Biomedical Informatics, 43(6):972–981.

Md Mehrab Tanjim, Xiang Chen, Victor S. Bursztyn,
Uttaran Bhattacharya, Tung Mai, Vaishnavi Muppala,
Akash Maharaj, Saayan Mitra, Eunyee Koh, Yunyao
Li, and Ken Russell. 2025. Detecting ambiguities
to guide query rewrite for robust conversations in
enterprise ai assistants. Preprint, arXiv:2502.00537.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019.
BERT rediscovers the classical NLP pipeline. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4593–
4601, Florence, Italy. Association for Computational
Linguistics.

Megh Thakkar, Quentin Fournier, Matthew D Riemer,
Pin-Yu Chen, Amal Zouaq, Payel Das, and Sarath
Chandar. 2024. A deep dive into the trade-offs of
parameter-efficient preference alignment techniques.
Preprint, arXiv:2406.04879.

Nandan Thakur, Luiz Bonifacio, Crystina Zhang,
Odunayo Ogundepo, Ehsan Kamalloo, David
Alfonso-Hermelo, Xiaoguang Li, Qun Liu, Boxing
Chen, Mehdi Rezagholizadeh, and Jimmy Lin. 2024.
“knowing when you don‘t know”: A multilingual
relevance assessment dataset for robust retrieval-
augmented generation. In Findings of the Association
for Computational Linguistics: EMNLP 2024, pages
12508–12526, Miami, Florida, USA. Association for
Computational Linguistics.

Praneeth Vadlapati. 2023. Investigating the impact of
linguistic errors of prompts on llm accuracy. ESP
Journal of Engineering Technology Advancements,
3:150–153.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2023. Attention is all
you need. Preprint, arXiv:1706.03762.

Bo Wang and Tsunenori Mine. 2024. One stone,
four birds: A comprehensive solution for qa sys-
tem using supervised contrastive learning. Preprint,
arXiv:2407.09011.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao-
ran Wei, Huan Lin, Jialong Tang, Jialin Wang,
Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Ma, Jianxin Yang, Jin Xu, Jingren Zhou, Jinze Bai,
Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Ke-
qin Chen, Kexin Yang, Mei Li, Mingfeng Xue, Na Ni,
Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize
Gao, Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan,
Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge,
Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren,
Xinyu Zhang, Xipin Wei, Xuancheng Ren, Xuejing
Liu, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan,
Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang,
Zhifang Guo, and Zhihao Fan. 2024. Qwen2 techni-
cal report. Preprint, arXiv:2407.10671.

14674

https://arxiv.org/abs/2409.14459
https://arxiv.org/abs/2409.14459
https://arxiv.org/abs/2309.06256
https://doi.org/10.18653/v1/2024.emnlp-main.401
https://doi.org/10.18653/v1/2024.emnlp-main.401
https://doi.org/10.18653/v1/2024.emnlp-main.401
https://arxiv.org/abs/2303.10475
https://arxiv.org/abs/2303.10475
https://doi.org/10.18653/v1/2020.blackboxnlp-1.8
https://doi.org/10.18653/v1/2020.blackboxnlp-1.8
https://doi.org/10.18653/v1/2024.emnlp-main.1043
https://doi.org/10.18653/v1/2024.emnlp-main.1043
https://doi.org/10.18653/v1/2024.emnlp-main.571
https://doi.org/10.18653/v1/2024.emnlp-main.571
https://doi.org/10.18653/v1/2024.emnlp-main.571
https://doi.org/10.18653/v1/2024.emnlp-main.571
https://arxiv.org/abs/2001.11268
https://arxiv.org/abs/2001.11268
https://doi.org/10.18653/v1/2023.emnlp-main.220
https://doi.org/10.18653/v1/2023.emnlp-main.220
https://doi.org/10.18653/v1/2023.emnlp-main.220
https://doi.org/10.18653/v1/2023.emnlp-main.220
https://doi.org/10.1016/j.jbi.2010.08.009
https://doi.org/10.1016/j.jbi.2010.08.009
https://arxiv.org/abs/2502.00537
https://arxiv.org/abs/2502.00537
https://arxiv.org/abs/2502.00537
https://doi.org/10.18653/v1/P19-1452
https://arxiv.org/abs/2406.04879
https://arxiv.org/abs/2406.04879
https://doi.org/10.18653/v1/2024.findings-emnlp.730
https://doi.org/10.18653/v1/2024.findings-emnlp.730
https://doi.org/10.18653/v1/2024.findings-emnlp.730
https://doi.org/10.56472/25832646/JETA-V3I6P111
https://doi.org/10.56472/25832646/JETA-V3I6P111
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://doi.org/10.1109/ACCESS.2024.3469163
https://doi.org/10.1109/ACCESS.2024.3469163
https://doi.org/10.1109/ACCESS.2024.3469163
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2407.10671

Zhenrui Yue, Bernhard Kratzwald, and Stefan Feuer-
riegel. 2021. Contrastive domain adaptation for ques-
tion answering using limited text corpora. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 9575–
9593, Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Michael J. Q. Zhang and Eunsol Choi. 2021. Situat-
edqa: Incorporating extra-linguistic contexts into qa.
Preprint, arXiv:2109.06157.

Shaolei Zhang, Tian Yu, and Yang Feng. 2024a.
Truthx: Alleviating hallucinations by editing large
language models in truthful space. Preprint,
arXiv:2402.17811.

Tong Zhang, Peixin Qin, Yang Deng, Chen Huang, Wen-
qiang Lei, Junhong Liu, Dingnan Jin, Hongru Liang,
and Tat-Seng Chua. 2024b. CLAMBER: A bench-
mark of identifying and clarifying ambiguous infor-
mation needs in large language models. In Proceed-
ings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 10746–10766, Bangkok, Thailand. As-
sociation for Computational Linguistics.

14675

https://doi.org/10.18653/v1/2021.emnlp-main.754
https://doi.org/10.18653/v1/2021.emnlp-main.754
https://arxiv.org/abs/2109.06157
https://arxiv.org/abs/2109.06157
https://arxiv.org/abs/2402.17811
https://arxiv.org/abs/2402.17811
https://doi.org/10.18653/v1/2024.acl-long.578
https://doi.org/10.18653/v1/2024.acl-long.578
https://doi.org/10.18653/v1/2024.acl-long.578

A Dataset Details

In this section, we provide a detailed overview
of the datasets used to train LQC. We outline the
dataset categories and offer example sentences
namely, those requiring verification and those
deemed clear. For more information, please refer
to Table 4 and Table 5.

B Baseline Details

This section describes the implementation details
of the baseline.

INSTANT Using the template provided below, we
perform inference directly without any additional
instructions. In doing so, the generation tempera-
ture is set to 0.5, and the generated results are used
for evaluation.

INSTANT

Respond to the following query in one sentence:

Query: {query}
Response:

REFLECT Using the template presented below,
the model first determines whether verification is
required for a given query and then provides an
answer. In this process as well, the generation tem-
perature is set to 0.5, and the generated results are
used for evaluation.

REFLECT

Answer the following query. If the query
warrants additional verification, please provide
a one-sentence explanation of why further
verification is necessary; otherwise, deliver
your best one-sentence answer.

Query: {query}
Response:

C Prompt for Evaluation

In this section, we present the prompt used to
classify the answers generated by the answer-
generation model into the five categories shown
in Figure 3 for metric calculation.

Verification needed query evaluation prompt

You need to classify the responses of an LLM
into two categories.

Query: {query}
Response: {response}

Review the query and response. Classify
the response into one of the two categories
based on the following guidelines:
If the response mentions that the query is unan-
swerable due to a wrong premise, contextual
incompleteness, linguistic ambiguity, known un-
knowns, or any other reason, output "1". Other-
wise, output "2". Only output the corresponding
number based on the guidelines.
Classification result:

All clear query evaluation prompt

You need to classify the responses of an LLM
into three categories.

Query: {query}
Response: {response}

Review the query and response. Classify
the response into one of the three categories
based on the following guidelines:
- If the response analyzes or points out errors,
contradictions, or issues in the query, output
"5".
- If the response provides an accurate answer to
the query, output "3".
- If the response provides incorrect information,
output "4".
Only output the corresponding number based
on the guidelines.
Classification result:

D Classifier Results

We compare the performance of Llama-3.2-1B
and Qwen2.5-0.5B, which are primarily used for
LQC implementation. For each model, we present
comparison tables for different α values, focusing
on the layers from which hidden states are extracted
and the pooling methods. The performance com-
parison of Llama-3.2-1B is given in Table 6, and
that of Qwen2.5-0.5B is presented in Table 7.

14676

Category
Examples

Verification Needed Queries All Clear Queries

Contextual Incompletenss when was the decimal currency system introduced when was the decimal currency system introduced in india

Linguistic Ambiguity What are some popular spirits at the bar?
Who is the artist that performed the song "Doomed"

in the context of the album "That’s the Spirit"?

Unanswerable What does the pancreas do in the urinary system? What does the urethra do in the urinary system?

Table 4: Three representative categories of user query flaws used in our study—Contextual Incompleteness, Linguistic
Ambiguity, and Unanswerable—along with illustrative examples. For each category, we provide both a verification
needed query and its corresponding all clear version, as used for training and evaluating the proposed LQC classifier.

Category Definition Source
Size

Verification Needed All Clear

Contextual

Incompleteness

Requests that lacks crucial situational or background

information needed to provide a definitive answer.

SituatedQA - Geo 3234 3423

SituatedQA - Temp 2004 2297

Linguistic

Ambiguity

Requests that can be interpreted in multiple ways due to

imprecise or unclear wording or sentence structure.
CLAMBER 340 340

Unanswerable
Requests that are based on false or unverifiable premises,

or refer to concepts that are universally unknown.

CoCoNot - False Presuppositions 680 340

CoCoNot - Universal Unknowns 313 0

Table 5: Summary of verification needed query categories used in our study, including their definitions, dataset
sources, and the number of examples for both verification needed and all clear queries. These categories form the
basis for training and evaluating the proposed LQC classifier.

α

0 0.25 0.5 0.75 1

Layer

0 85.21 86.2 82.03 81.27 78.72 80.32 69.91 71.43 67.5 70.09
4 89.42 89.78 88.99 89.17 87.06 87.41 85.51 85.93 85.94 86.17
8 89.81 89.89 90.93 90.74 90.41 90.33 89.51 89.51 88.61 88.83

12 89.42 89.98 90.84 90.75 91.27 91.32 89.77 89.72 88.52 88.80
16 84.74 85.81 86.24 87.41 86.46 86.77 87.40 87.58 87.32 87.18

Table 6: Classification performance of LQC using hidden states from different layers of Llama-3.2-1B, evaluated
across various α values in the hybrid pooling mechanism. Each cell shows the accuracy (left) and F1 score (right) of
the classifier trained with features from the corresponding layer and pooling ratio. α controls the balance between
mean pooling (α = 0) and last-token pooling (α = 1). The best-performing configuration is shown in bold.

α

0 0.25 0.5 0.75 1

Layer

0 82.72 83.44 81.73 80.76 76.70 73.74 51.33 67.84 51.33 67.84
6 87.83 88.05 85.81 84.68 88.48 88.48 84.78 85.25 86.16 85.71
12 88.74 88.99 88.39 88.00 86.93 87.46 85.55 84.57 86.46 86.23
18 87.83 88.72 88.69 89.06 86.80 86.15 85.60 86.06 84.18 83.83
24 83.83 84.56 84.78 85.52 84.09 84.56 81.47 80.40 82.29 81.29

Table 7: Classification performance of LQC using hidden states from different layers of Qwen2.5-0.5B under varying
hybrid pooling ratios (α). Each cell contains the accuracy (left) and F1 score (right) for a specific combination of
layer and pooling weight. The pooling weight α determines the relative contribution of the last token vector and the
mean-pooled vector. Bold values indicate the best-performing configuration across all settings.

14677

