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Abstract

With the widespread of Large Language Mod-
els (LLMs), there has been an increasing need
to detect LLM-generated texts, prompting ex-
tensive research in this area. However, ex-
isting detection methods mainly evaluate on
static benchmarks, which neglect the evolving
nature of LLMs. Relying on existing static
benchmarks could create a misleading sense of
security, overestimating the real-world effec-
tiveness of detection methods. To bridge this
gap, we introduce EvoBench, a dynamic bench-
mark considering a new dimension of gener-
alization across continuously evolving LLMs.
EvoBench categorizes the evolving LLMs into
(1) updates over time and (2) developments like
finetuning and pruning, covering 7 LLM fami-
lies and their 29 evolving versions. To measure
the generalization across evolving LLMs, we
introduce a new EMG (Evolving Model Gen-
eralization) metric. Our evaluation of 14 detec-
tion methods on EvoBench reveals that they all
struggle to maintain generalization when con-
fronted with evolving LLMs. To mitigate the
generalization problems, we further propose
improvement strategies. For zero-shot detec-
tors, we propose pruning the scoring model
to extract shared features. For supervised de-
tectors, we also propose a practical training
strategy. Our research sheds light on critical
challenges in real-world LLM-generated text
detection and represents a significant step to-
ward practical applications. The Evobench
is now available at: https://github.com/happy-
Moer/EvoBench.

1 Introduction

Large Language Models (LLMs), such as Chat-
GPT (OpenAI, 2022b), Claude (Anthropic, 2024),
and LLaMA (Touvron et al., 2023a), have demon-
strated remarkable capabilities in natural language
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Figure 1: Current benchmarks (Guo et al., 2023; Bao
et al.; Wang et al., 2024b,a; Kwan et al., 2024) pri-
marily focus on specific versions of LLMs and neglect
vast ecosystem of evolving LLMs beneath the surface,
including updates over time or developments through
fine-tuning or pruning. The figure primarily includes
LLMs before Jan 2025.

understanding and task processing, leading to their
widespread application (M Alshater, 2022; Yuan
et al., 2022; Christian, 2023). However, concerns
have been raised about the misuse of these models
in areas like social media (Ahmed et al., 2021),
education (Lee et al., 2023), and academic writ-
ing (Mitchell, 2022; Patrick Wood, 2023). For in-
stance, LLMs can be used to manipulate the public
by generating comments or to fabricate experimen-
tal data and statistical results in support of unveri-
fied hypotheses (Solaiman et al., 2019; Goldstein
et al., 2023). The potential misuse of LLMs high-
lights the urgent need to detect LLM-generated
text (Kaur et al., 2022; Chen and Shu, 2023).

The academic community has carried out ex-
tensive research to detect LLM-generated text ef-
fectively (Liu et al., 2019; Gehrmann et al., 2019;
Su et al., 2023; Solaiman et al., 2019). Current
methods can be categorized into supervised meth-
ods (Hu et al., 2023; Yu et al., 2024a; Chen et al.,
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Figure 2: Detection accuracy (measured in AUROC) of Fast-DetectGPT when faced with the evolving LLMs.
Figure (a) shows a clear decline in average detection performance as the LLM updates. Figure (b) illustrates the
developments of LLMs, including fine-tuning and pruning.

2024b; Yu et al., 2024b; Guo et al., 2024) and zero-
shot methods (Ippolito et al., 2020; Yang et al.;
Mitchell et al., 2023; Su et al., 2023; Bao et al.). Su-
pervised methods are typically trained with a binary
classifier to distinguish between texts generated by
LLMs and those created by humans, while zero-
shot methods primarily rely on statistical features
gathered from pre-trained large language models.
Although these methods show strong performance
on existing benchmarks (Bao et al.; Hu et al., 2023;
Chen et al., 2024b; Yu et al., 2024a), they often fall
short in real-world applications as current bench-
marks neglect the evolving nature of LLMs (Wang
et al., 2024b; Guo et al., 2023; Wang et al., 2024a;
He et al., 2024; Macko et al., 2023). As illustrated
in Figure 1, existing benchmarks include a limited
versions of LLMs, much like observers seeing only
the tip of an iceberg while overlooking the vast
evolving LLMs hidden beneath the surface.

In real-world applications, LLMs are contin-
uously evolving via regular updates, fine tun-
ing (Touvron et al., 2023b; Zhang et al., 2023),
or pruning (Sun et al.; Liang et al., 2021), all of
which affect LLMs’ output (Tao et al., 2024; Tou-
vron et al., 2023a; Gunasekar et al., 2023), thereby
impacting the detection performance. Figure 2
illustrates that the detection performance of cur-
rent detection methods suffers up to 25% drop as
LLMs evolve.1 Therefore, relying on current static
benchmarks for evaluation could create a mislead-
ing sense of security, leading the research commu-
nity to overestimate the real-world effectiveness
of detection methods. Therefore, it is crucial to
enhance existing benchmarks to better capture the
ongoing evolving LLMs.

1The widely used detection method, Fast-DetectGPT, de-
clines up to 25% drop when detecting the Claude-3-5-haiku-
20241022 compared to Claude-3-haiku-20240307.

In this paper, we propose EvoBench, a dynamic
benchmark that extends traditional benchmarking
to account for the evolving LLMs. EvoBench aims
to provide a more accurate evaluation of detection
methods by incorporating two dimensions of evolv-
ing LLMs: updates and developments, as shown
in Figure 1. Updates refer to changes made by
the LLM publishers, including LLM updates, i.e.,
GPT-4o undergoes updates approximately every 3
months 2. On the other hand, developments refer
to optimizations made by LLM developers for spe-
cific application scenarios, such as fine-tuning and
pruning. EvoBench introduces a new dimension of
generalization, enabling the evaluation of detection
methods across evolving LLMs, covering 7 widely
used LLMs and their 29 evolving versions.

Using EvoBench, we evaluate 14 widely used de-
tection methods and find that all struggle to adapt to
the evolving nature of LLMs. To intuitive quantify
the generalization across evolving LLMs, we intro-
duce the EMG (Evolving Model Generalization)
metric. Results reveal that the performance of 14
current detection methods, including widely used
Fast-DetectGPT (Bao et al.) and RADAR (Hu et al.,
2023) detectors, significantly drop when faced with
evolving versions, as reflected by low EMG values,
while some achieve high AUROC (0.91) scores on
individual models3. This phenomenon highlights
the limitations of current detection methods in gen-
eralization capabilities.

To mitigate this challenge, we explore two com-
plementary strategies targeting zero-shot and super-
vised detection methods, respectively. For zero-
shot detectors, we propose pruning the scoring

2These versions are gpt-4o-2024-05-13, gpt-4o-2024-08-
06, gpt-4o-2024-11-20, and chatgpt-4o-latest.

3Fast-DetectGPT achieve 0.91 AUROC when detecting
Claude-Haiku-2024-03-07, but drop to 0.65 AUROC when
detecting the version of 2024-10-22.

14606



Figure 3: The construction pipeline and the dataset statistics of EvoBench. EvoBench includes three dimensions of
generalization: dataset domains, generation strategies, and evolving LLMs. The evolving LLMs are further divided
into two categories: updates and developments.

model to extract shared features that enhance de-
tection generalization. This strategy is not limited
to Fast-DetectGPT (Bao et al.), which we adopt
as a representative case, but is applicable to a
broader class of zero-shot methods. Our experi-
ments demonstrate that this approach consistently
improves performance across a range of detec-
tors—including Likelihood, Rank, LogRank, Fast-
DetectGPT, and BiScope—when using Sheared-
LLaMA as the scoring model in detecting text gen-
erated by developments of LLaMA-2. For super-
vised detectors, we propose a practical training
strategy aimed at enhancing generalization: includ-
ing training data from the initial version of an LLM
family can significantly improve performance on
its subsequent updates.

Overall, EvoBench serves as a complementary
benchmark that focuses on the evolving nature of
LLMs, offering a more accurate framework for
evaluating the real-world applicability of detection
methods. While it does not claim to be a one-size-
fits-all solution, we envision EvoBench evolving
alongside detection methods and other benchmarks,
helping guide future developments in this area. In
particular, we suggest that extracting shared fea-
tures from evolving LLMs could enhance the gen-
eralization of detection methods. With EvoBench,
the community can more effectively evaluate and
refine detection methods, contributing to more ro-
bust and practical detection systems that mitigate
LLM misuse in real-world applications.

2 Related Work

2.1 Evolving LLMs

Updates of Pre-trained LLMs. The advent of
LLMs, such as ChatGPT (OpenAI, 2022a) and
GPT-4 (OpenAI, 2023), has marked a paradigm
shift in text generation. However, these pre-trained

models are not static (Tao et al., 2024; Touvron
et al., 2023a; Gunasekar et al., 2023; Biderman
et al., 2023); rather, they undergo continuous evo-
lution, with models like ChatGPT frequently updat-
ing their parameters to enhance performance and
adapt to new application scenarios (Zheng et al.,
2024; Touvron et al., 2023a).
Developments on Pre-trained LLMs. The rise of
open-source LLMs has facilitated their widespread
usage in diverse domains. Developers can flex-
ibly tailor LLMs to specific tasks through fine-
tuning (Touvron et al., 2023a,b; Zhang et al., 2023),
pruning (Sun et al.; Liang et al., 2021; Xia et al.),
and quantization (Du et al., 2024; Chen et al.,
2024a; Dettmers et al., 2023) techniques that mod-
ify the model’s parameters or structure, ultimately
influencing output characteristics. In this pro-
cess, developers could use domain-specific datasets
to enhance the model’s understanding of special-
ized fields and their contextual knowledge (Kerner,
2024). Furthermore, depending on practical ap-
plication scenarios, users may select models with
varying parameter scales to strike an optimal bal-
ance between performance, speed, and resource
consumption (Kim et al., 2024; Zhao et al., 2023).

2.2 LLM-generated Text Detection

Supervised Methods. Supervised methods (Liu
et al., 2019; Chen et al., 2024b) are usually
trained to differentiate between texts generated by
LLMs and texts created by humans. For exam-
ple, RADAR (Hu et al., 2023) introduces the idea
of adversarial learning to train a detector that can
resist paraphrase attacks. Text Fluoroscopy (Yu
et al., 2024a) extracts discriminative features from
the intermediate layers of the language model and
utilizes them to train a binary classifier, which
enhances the generalization of supervised detec-
tors across texts from different semantic domains.
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However, as LLMs continue to evolve, frequent
adaptation mechanisms—including updates, fine-
tuning, pruning, and other optimization strate-
gies—introduce changes in their generated text,
making it difficult to guarantee the effectiveness
of existing detection methods on newer model ver-
sions. This creates a significant gap between aca-
demic detection models and real-world applica-
tions, ultimately limiting the practical utility of
these methods.
Zero-shot Methods. Existing zero-shot methods
primarily rely on statistical features extracted us-
ing pre-trained large language models (Bao et al.;
Mitchell et al., 2023). These features include like-
lihood (Gehrmann et al., 2019), probability curva-
ture (Mitchell et al., 2023), divergence between
multiple completions of a truncated passage (Yang
et al.), and conditional probability curvature (Bao
et al.). Zero-shot detection methods are immune
to domain-specific degradation, demonstrating su-
perior generalization in detection tasks (Gehrmann
et al., 2019; Mitchell et al., 2023). However, the
effectiveness of zero-shot detection heavily de-
pends on the alignment between the pre-trained
LLM used for detection and the generation model
that produced the text to be detected (Bao et al.;
Mitchell et al., 2023). While current methods
achieve state-of-the-art results on existing bench-
marks (Guo et al., 2023; Bao et al.; Wang et al.,
2024b,a; Kwan et al., 2024), the evolving nature
of LLMs introduces significant shifts in this align-
ment. As models continue to evolve, the pre-trained
LLMs used for detection may become increas-
ingly misaligned with the updated generation mod-
els, leading to a decline in detection performance.
This explains why many methods, despite ranking
highly on leaderboards, often fail when deployed
in real-world scenarios.

3 EvoBench

3.1 Definition of Evolving LLMs

EvoBench primarily considers two evolving path-
ways for LLMs: (1) updates, which are released
by publishers, and (2) developments, which in-
volve optimization made by developers. These two
evolving pathways present significant challenges
to current detection methods.
Updates. We focus on two types of updates that
occur over time: model (Brown et al., 2020; Tao
et al., 2024) and version updates (Brown et al.,
2020). Model updates typically involve significant

changes to the model’s architecture. For example,
the transition from GPT-4 to GPT-4o represents a
major architectural shift (Achiam et al., 2023). In
contrast, version updates occur more frequently,
with shorter cycles and less perception, such as the
regular releases of new versions of GPT-4 every
2-3 months, such as updates in May, August, and
November 2024.
Developments. In EvoBench, model developments
include fine-tuning (Hu et al., 2022; Mangrulkar
et al., 2022), pruning (Liang et al., 2021), often
used for domain adaptation and optimizing effi-
ciency for real-world applications. Unlike updates,
these actions are nearly imperceptible to the detec-
tor (Bhattacharjee et al., 2023). For example, devel-
opers may fine-tune LLMs using private datasets,
making the detection more challenging.

3.2 Dataset Collection

3.2.1 Data Collection Principle

EvoBench, incorporating the two evolving
pathways of LLMs, extends existing bench-
marks (Mitchell et al., 2023) widely used in current
detection methods, including DetectGPT (Mitchell
et al., 2023), Fast-DetectGPT (Bao et al.), and
ImBD (Chen et al., 2024b) to assess three key di-
mensions of generalization: (1) evolving LLMs, (2)
domain, and (3) generation paradigms. Figure 3 il-
lustrates our data collection pipeline to cover these
three key dimensions.
Generalization to LLM Evolution. To compre-
hensively assess evolving, we consider 7 widely
used LLM families: GPT-4o, GPT-4, Claude-
Haiku, Claude-Sonnet, Qwen, LLaMA3, and
LLaMA2, encompassing a total of 29 evolving ver-
sions. For updates, we focus on families of GPT-
4o, GPT-4, Claude, Gemini, Qwen, and LLaMA3,
tracking how detection methods perform across up-
dates of these models. For developments, we focus
on the LLaMA2 family, incorporating fine-tuning
and pruning techniques. Detailed specifications of
all LLMs are provided in the Appendix C.
Generalization to Domains. EvoBench in-
cludes five datasets spanning diverse tasks:
XSum (Narayan et al., 2018) for (1)news articles,
WritingPrompts (Fan et al., 2018) for (2) creative
story writing, and PubMed (Jin et al., 2019) for
(3) biomedical research question answering. Addi-
tionally, we also include two datasets: SocialMe-
dia (Kula and Gregor, 2024) for (4) datasets on
social media and PeerRead (Kang et al., 2018) for
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(5) peer-reviewed academic writing.
Generalization to Generation Paradigms.
EvoBench incorporates three distinct generation
paradigms: (1) continuation-based generation,
including XSum, Writing, and PeerRead; (2)
question-answering generation, including PubMed;
(3) paraphrased generation, including SocialMedia.
In the SocialMedia dataset, we specifically focus
on paraphrastic rewriting of text, which presents
a particularly challenging scenario for detection.
By integrating these diverse paradigms, EvoBench
offers a more comprehensive framework to assess
the robustness of detection methods in various text
generation paradigms.

In addition, EvoBench accounts for variation in
text length. PubMed and SocialMedia primarily
consist of shorter texts, while PeerRead includes
medium-length samples, and XSum and Writing
represent long-form text generation. This diversity
in length further enhances the benchmark’s ability
to test the generalization capabilities of detection
methods under varied textual conditions.

3.2.2 Dataset Collection Process

We detail our systematic dataset construction pro-
cess following the three-dimensional generaliza-
tion framework. For each dataset, we first carefully
selected 150 human-authored texts as reference
samples. To collect AI-generated texts, we em-
ployed consistent prompting strategies across all
evaluated models. Specifically, for continuation-
based generation tasks (Xsum, Writing, PeerRead),
we provided the prefix of human-written texts as
context. For PubMed, we maintained the original
question-answer format, while for SocialMedia, we
implemented a paraphrasing approach where mod-
els were tasked with preserving semantic meaning
while using different words. Details of prompts are
shown in Appendix E.

3.3 Dataset Statistics

EvoBench consists of 7 LLM families, encom-
passing a total of 29 evolving versions. For each
evolving LLM, we collect samples across 5 distinct
datasets, with each dataset containing a balanced
distribution of 150 human-authored texts and 150
machine-generated texts. In total, EvoBench com-
prises 29× 5× 150 = 21750 machine-generated
samples, resulting in a comprehensive evaluation
benchmark of 21, 750 pairs of text samples.

3.4 Evaluation Metrics
To quantify the generalization ability of detection
methods to evolving LLMs, we introduce the EMG
ΦE (Evolving Model Generalization) metric, in-
spired by the coefficient of variation. It evaluates
the consistency and trend of detection performance
across evolving LLMs.

For an LLM family with m evolving versions,
the widely evaluated version is selected as the base
model, and the remaining m− 1 versions as evolv-
ing models. The performance (measured by AU-
ROC ΦA) change ∆Φi

A between the i-th models
and the base model is :

∆Φi
A = Φi

A − Φbase
A , (1)

where Φi
A and Φbase

A is the ΦA of the i-th evolving
model and base model, respectively.

The average performance change µE of ∆ΦA,
representing the overall performance change, is:

µE =
1

m− 1

m−1∑

i=1

(
∆Φi

A

)
. (2)

The volatility σE of ∆ΦA using the standard
deviation is:

σE =

√√√√ 1

m− 1

m−1∑

i=1

(
∆Φi

A − µE

)2
. (3)

The proposed ΦE is defined as follows:

ΦE =
µE

σE + λ
× γ, (4)

where λ is a regularization term to prevent fluctua-
tions, and γ is a scaling factor. In this study, we set
λ and γ as 1 and 100, respectively.

3.5 Detection Methods
We evaluate a range of supervised and zero-shot
detection methods to assess their generalization
ability against evolving LLMs. Additionally, we
conducted repeated generation processes to ensure
that output diversity does not significantly impact
detection performance in Appendix B.

3.5.1 Existing Methods
For supervised detectors, we tested the GPT-2 de-
tectors developed by OpenAI (Liu et al., 2019),
the RADAR detector (Hu et al., 2023), Text Flu-
oroscopy (Yu et al., 2024a), and ImBD (Imitate
Before Detect) (Chen et al., 2024b). For zero-
shot detectors, we included Likelihood (average
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log probabilities) (Gehrmann et al., 2019), LRR
(a hybrid method combining log probability and
log-rank) (Su et al., 2023), LogRank (mean of
the log ranks sorted in descending order of prob-
abilities) (Solaiman et al., 2019), Entropy (aver-
age token-level entropy from the predictive dis-
tribution)(Ippolito et al., 2020), DNA-GPT (Yang
et al.), DetectGPT (Mitchell et al., 2023), and its
enhanced variants NPR (Su et al., 2023) and Fast-
DetectGPT (Bao et al.).

3.5.2 Optimizing Strategies
To address the challenges mentioned above, we
introduce a baseline method for EvoBench and ex-
plore it from two perspectives.
Enhancing Zero-shot Detector via Extracting
Shared Features. To enhance the detection gen-
eralization of the zero-shot method, we propose
to prune the scoring model ppruned

θ to extract the
shared features from the developments of LLMs.
Take Fast-DetectGPT as an example, we define our
detection metric d(x, p

pruned
θ ) based on conditional

probability curvature:

d(x, p
pruned
θ ) =

log p
pruned
θ (x|x)− µ̃

σ̃
, (5)

where µ̃ represents the expected log probability
under the pruned model:

µ̃ = E
x̃∼p

pruned
θ (x̃|x)[log p

pruned
θ (x̃|x)], (6)

and σ̃2 captures the variance of these log probabili-
ties:

σ̃2 = E
x̃∼p

pruned
θ (x̃|x)

[(
log p

pruned
θ (x̃|x)− µ̃

)2
]
.

(7)
In addition, this optimization strategy is not lim-

ited to Fast-DetectGPT; rather, it is designed for the
broader class of zero-shot detectors. These detec-
tors (Gehrmann et al., 2019) use a scoring model
to extract statistical features from human- and AI-
generated text, and then perform detection based
on these features.

Enhancing Supervised Detectors via Optimiz-
ing Training Data. To improve the generalization
of supervised detectors across evolving LLMs, we
propose an incremental training strategy that fo-
cuses on optimizing the training data. Specifically,
for each LLM family, we include only the initial
version in the training set and evaluate the detec-
tor’s performance on subsequent, unseen versions.
This approach reduces the need for frequent retrain-
ing while enhancing robustness to model updates.

4 Exprimental Results

4.1 Setup
Detection Methods. To mimic real-world scenar-
ios, we set up a black-box environment in which
the detector is assumed to be unaware of the source
model of the text to be detected under evalua-
tion. We tested 14 detection methods, including
5 supervised detectors and 9 zero-shot detectors.
Among them, RADAR (Hu et al., 2023) and Fast-
DetectGPT (Bao et al.) are well-known methods in
their respective categories. Details of experimen-
tal settings can be found in the Appendix D and
Appendix F.

4.2 Main Results
To begin with, we select two leading detection
methods, Fast-DetectGPT and RADAR detector,
and evaluate them on our EvoBench, the results are
shown in Table 1.

First, a trend is that texts generated by more ad-
vanced LLMs are harder to detect in the same
LLM family. For instance, comparing Claude-
3-Haiku4 and Claude-3-Opus 5, the latter demon-
strates more advanced capabilities. When detect-
ing these two LLMs, Fast-DetectGPT and RADAR
showed decreased detection AUROC of 3.58% and
2.77%, respectively, as shown in Table 1. Similarly,
comparing detecting SocialMedia datasets gener-
ated by GPT-4o-mini with GPT-4o, two detectors
showed a decline in detection AUROC of 3.22%
and 6.69%, respectively.

Our results also reveal an intriguing pattern: ex-
isting detection methods often over-optimize for
specific LLM versions, rather than maintaining
robust generalization capabilities across different
evolving LLMs. Specifically, detectors with high
AUROC on widely used LLM families often show
performance degradation with newer versions of
the same family. For example, Fast-DetectGPT per-
formed excellently on the GPT-4o-05-13 version,
achieving an average detection accuracy of 0.8003
on EvoBench, but dropped to 0.7422 when facing
the GPT-4o-latest version. Similar patterns were
observed in other widely used LLM families, such
as GPT-4 and Claude-Sonnet. In contrast, when
evaluating less widely used LLMs like LLaMA3,
detectors tend to demonstrate better generalization
capabilities across evolving LLMs. For example,
the detection performance of the RADAR remained

4claude-3-haiku-20240307
5claude-3-opus-20240229
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LLMs
Version Time/
Version Name

Fast-DetectGPT RADAR

Xsum Writing PubMed SocialMedia PeerRead Avg. Xsum Writing PubMed SocialMedia PeerRead Avg.

Updates

GPT-4o

2024-05-13 0.90 0.97 0.73 0.58 0.83 0.80 0.99 0.83 0.83 0.60 0.68 0.79

2024-08-06
0.87

(−2.75%)
0.94

(−2.41%)
0.70

(−3.54%)
0.59

(+1.76%)
0.77

(−5.89%)
0.77

(−2.57%)
0.99

(−0.11%)
0.86

(+3.27%)
0.82

(−0.53%)
0.62

(+2.12%)
0.69

(+0.75%)
0.80

(+1.10%)

2024-11-20
0.72

(−17.6%)
0.90

(−6.90%)
0.70

(−3.77%)
0.57

(−0.09%)
0.78

(−4.25%)
0.73

(−6.54%)
0.99

(−0.87%)
0.72

(−11.0%)
0.79

(−4.08%)
0.62

(+2.02%)
0.66

(−1.47%)
0.75

(−3.09%)

Latest
0.70

(−20.0%)
0.91

(−6.13%)
0.70

(−3.36%)
0.58

(+0.64%)
0.82

(−0.14%)
0.74

(−5.81%)
0.99

(−0.79%)
0.75

(−7.49%)
0.80

(−2.83%)
0.64

(+4.46%)
0.67

(−0.53%)
0.77

(−1.44%)

GPT-4o-mini 2024-07-18
0.91

(+0.91%)
0.97

(+0.12%)
0.73

(−0.42%)
0.61

(+3.02%)
0.80

(−2.14%)
0.80

(+0.30%)
1.00

(+0.33%)
0.87

(+3.82%)
0.82

(−0.68%)
0.66

(+6.69%)
0.64

(−3.96%)
0.80

(+1.24%)

GPT-4

2023-06-13 0.93 0.98 0.76 0.49 0.75 0.78 0.99 0.87 0.89 0.66 0.75 0.83

2023-11-06
0.92

(−0.85%)
0.93

(−4.76%)
0.73

(−2.94%)
0.55

(+5.43%)
0.83

(+7.71%)
0.79

(+0.92%)
0.99

(−0.01%)
0.79

(−8.49%)
0.80

(−8.81%)
0.66

(+0.24%)
0.63

(−12.3%)
0.77

(−5.88%)

2024-01-25
0.89

(−3.22%)
0.94

(−3.41%)
0.70

(−5.75%)
0.54

(+4.23%)
0.82

(+7.34%)
0.78

(−0.16%)
0.99

(−0.23%)
0.80

(−7.23%)
0.84

(−5.09%)
0.65

(−0.46%)
0.66

(−8.68%)
0.79

(−4.34%)

2024-04-09
0.83

(−9.30%)
0.91

(−6.56%)
0.72

(−4.39%)
0.58

(+8.27%)
0.79

(+4.08%)
0.77

(−1.58%)
0.99

(−0.36%)
0.79

(−8.45%)
0.82

(−7.07%)
0.60

(−5.92%)
0.60

(−14.8%)
0.76

(−7.32%)

Claude-Sonnet

2024-02-29 0.95 0.98 0.81 0.58 0.93 0.85 0.97 0.86 0.84 0.74 0.61 0.80

2024-06-20
0.97

(+2.33%)
0.99

(+0.80%)
0.77

(−4.32%)
0.66

(+7.69%)
0.90

(−2.90%)
0.86

(+0.72%)
0.99

(+1.61%)
0.81

(−5.21%)
0.82

(−2.44%)
0.72

(−1.05%)
0.55

(−5.57%)
0.78

(−2.53%)

2024-10-22
0.90

(−4.43%)
0.93

(−5.39%)
0.68

(−13.9%)
0.51

(−7.80%)
0.78

(−15.3%)
0.76

(−9.37%)
0.95

(−1.52%)
0.72

(−13.4%)
0.74

(−9.85%)
0.67

(−6.74%)
0.55

(−6.38%)
0.73

(−7.59%)

Claude-Haiku
2024-03-07 1.00 1.00 0.86 0.75 0.94 0.91 1.00 0.93 0.84 0.77 0.67 0.84

2024-10-22
0.84

(−15.5%)
0.92

(−7.56%)
0.64

(−21.7%)
0.39

(−35.9%)
0.46

(−47.4%)
0.65

(−25.6%)
1.00

(−0.07%)
0.86

(−7.50%)
0.73

(−10.9%)
0.70

(−6.38%)
0.82

(+14.7%)
0.82

(−2.04%)

Claude-Opus 2024-02-29
0.97

(−2.49%)
0.96

(−3.89%)
0.82

(−3.80%)
0.72

(−3.27%)
0.89

(−4.46%)
0.87

(−3.58%)
0.99

(−0.33%)
0.87

(−6.01%)
0.82

(−2.23%)
0.77

(+0.29%)
0.62

(−5.57%)
0.81

(−2.77%)

Qwen

Qwen1.5-7B 0.92 0.99 0.66 0.49 0.91 0.80 0.93 0.90 0.72 0.51 0.48 0.71

Qwen2-7B
0.99

(+6.86%)
1.00

(+0.29%)
0.74

(+7.35%)
0.46

(−2.75%)
0.89

(−1.37%)
0.82

(+2.08%)
0.89

(−4.13%)
0.87

(−3.42%)
0.82

(+9.46%)
0.52

(+1.35%)
0.54

(+6.14%)
0.73

(+1.88%)

Qwen2.5-7B
0.99

(+6.51%)
1.00

(+0.10%)
0.79

(+12.3%)
0.47

(−2.11%)
0.90

(−0.78%)
0.83

(+3.22%)
0.90

(−2.60%)
0.91

(+0.66%)
0.79

(+6.85%)
0.52

(+1.31%)
0.53

(+4.95%)
0.73

(+2.23%)

LLaMA3

LLaMA-3.1-8B 0.99 0.98 0.85 0.69 0.97 0.90 1.00 0.89 0.78 0.72 0.63 0.80

LLaMA-3.1-70B
1.00

(+0.31%)
1.00

(+1.50%)
0.81

(−3.72%)
0.67

(−1.73%)
0.96

(−0.96%)
0.89

(−0.92%)
1.00

(−0.19%)
0.88

(−1.32%)
0.76

(−1.57%)
0.74

(+1.29%)
0.62

(−1.22%)
0.80

(−0.60%)

LLaMA-3.2-1B
0.96

(−3.46%)
0.99

(+1.09%)
0.92

(+7.29%)
0.86

(+17.5%)
0.96

(−0.30%)
0.94

(+4.43%)
0.96

(−3.51%)
0.94

(+4.39%)
0.82

(+3.74%)
0.75

(+2.80%)
0.71

(+7.52%)
0.83

(+2.99%)

LLaMA-3.2-3B
0.99

(−0.13%)
0.99

(+0.31%)
0.91

(+6.56%)
0.77

(+8.32%)
0.96

(−0.30%)
0.93

(+2.95%)
0.99

(−0.44%)
0.92

(+2.71%)
0.82

(+3.70%)
0.77

(+4.23%)
0.66

(+2.80%)
0.83

(+2.60%)

LLaMA-3.3-70B
1.00

(+0.32%)
1.00

(+1.61%)
0.79

(−5.53%)
0.69

(+0.15%)
0.90

(−6.38%)
0.88

(−1.97%)
1.00

(−0.32%)
0.89

(−0.74%)
0.79

(+0.94%)
0.73

(+0.76%)
0.65

(+2.29%)
0.81

(+0.59%)

Developments

Fine-tuning

LLaMA-2-7B-chat-hf 0.97 0.99 0.91 0.90 0.97 0.95 0.92 0.81 0.70 0.64 0.64 0.74

Vicuna-1.5-7B
1.00

(+2.36%)
1.00

(+0.52%)
0.80

(−10.4%)
0.88

(−1.58%)
0.94

(−2.54%)
0.92

(−2.34%)
0.97

(+5.00%)
0.93

(+12.0%)
0.81

(+11.0%)
0.64

(−0.00%)
0.65

(+1.00%)
0.80

(+5.80%)

Wizardmath-7B
0.92

(−5.17%)
0.98

(−1.00%)
0.74

(−17.0%)
0.85

(−4.73%)
0.84

(−12.8%)
0.87

(−8.14%)
0.75

(−17.0%)
0.76

(−5.00%)
0.70

(−0.00%)
0.55

(−9.00%)
0.68

(+4.00%)
0.69

(−5.40%)

Pruning

Sheared-llama1.3B
0.77

(−20.2%)
0.91

(−8.04%)
0.56

(−34.5%)
0.76

(−13.6%)
0.88

(−8.93%)
0.78

(−17.0%)
0.77

(−15.0%)
0.66

(−15.0%)
0.59

(−11.0%)
0.54

(−10.0%)
0.73

(+9.00%)
0.66

(−8.40%)

Sheared-LLaMA1.3B-pruned
0.50

(−47.2%)
0.83

(−16.0%)
0.39

(−51.5%)
0.53

(−36.6%)
0.78

(−18.9%)
0.61

(−34.0%)
0.92

(−0.00%)
0.79

(−2.00%)
0.70

(−0.00%)
0.65

(+1.00%)
0.87

(+23.0%)
0.79

(+4.40%)

Sheared-LLaMA2.7B-pruned
0.60

(−37.2%)
0.89

(−10.0%)
0.44

(−46.5%)
0.59

(−30.6%)
0.79

(−17.9%)
0.66

(−28.4%)
0.84

(−8.00%)
0.76

(−5.00%)
0.59

(−11.0%)
0.55

(−9.00%)
0.78

(+14.0%)
0.70

(−3.80%)

Table 1: The detection performance (measured in AUROC) of two leading detection methods, Fast-DetectGPT
and RADAR, on EvoBench. For each LLM family, we set the LLMs that are widely evaluated in text generation
detection benchmarks as anchor points. ‘Latest’ refers to the LLM currently used in the web version of GPT-4o.

stable across different versions of the LLaMA3
family, with AUROC scores across five datasets
ranging from 0.7989 to 0.8348.

This suggests that the essence of generalization
lies in the overfitting problem. Current detec-
tors are often optimized to achieve superior per-
formance on existing benchmarks, which leads to
overfitting to a specific LLM version rather than
being truly effective. This also reveals the vulnera-
bility of current detection methods across evolving
LLMs. From a practical perspective, a key priority
for future research lies in developing more adapt-
able detection frameworks that can simultaneously
preserve detection performance while demonstrat-
ing robust generalization across dataset domains
and evolving LLMs.

4.2.1 Detection Generalization across
Evolving LLMs

To visually demonstrate the generalization ability
of detection methods across evolving LLMs, we
evaluate the 14 detection methods using the EMG
metric, with results shown in Table 2.

Table 2 demonstrates that no method can
maintain stable performance across all evolving
LLMs. Specifically, detectors like ImBD and Text-
Fluoroscopy perform well on complex models like
GPT-4o and GPT-4. Meanwhile, detectors like en-
tropy and RADAR exhibit better generalizations of
newer model families, including Qwen, LLaMA3,
and the developments of LLaMA2. This varia-
tion in performance across different detectors sug-
gests that improving generalization might require
adopting strategies that combine the strengths of
different approaches, which may help improve the
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Methods
Updates Developments

Avg.
GPT-4o GPT-4 Claude-Sonnet Claude-haiku Qwen LLaMA3 Fine-tuning Pruning

Supervised Detectors

RoBERTa-base −2.252 −4.593 −8.325 −15.95 +5.862 +1.457 −2.378 +6.871 −2.413
RoBERTa-large −1.878 −5.577 −10.06 −14.63 +4.646 +3.448 −0.725 +12.54 −1.530

RADAR −0.537 −5.775 −4.934 −2.394 +2.053 +1.372 +11.96 +7.302 +1.131
Text-Fluoroscopy −0.493 −0.655 +0.902 −0.123 −5.241 +1.895 −11.03 −15.77 −3.815

Imitate Before Detect +0.440 +2.397 −1.572 −4.445 +0.023 −0.054 +8.942 −9.842 −0.513

Zero-Shot Detectors

Likelihood −0.873 −0.047 −3.810 −8.280 −1.174 +0.439 −6.991 −32.99 −6.717
Rank −2.127 +1.071 −0.178 −12.09 +4.249 +1.023 −9.661 −7.109 −3.103

LogRank −1.316 −0.106 −4.272 −9.443 −0.608 +0.837 −6.851 −30.14 −6.488
Entropy −3.202 +0.416 +0.602 −3.411 +4.138 +2.145 +5.150 +25.12 +3.869

LRR −2.511 −0.075 −5.864 −14.26 +2.629 +1.911 −6.964 −17.45 −5.325
NPR −2.846 +7.436 −2.237 −15.26 +7.132 +0.866 −8.063 −31.18 −5.520

DNA-GPT −3.805 +1.249 −4.621 −12.26 −1.332 +1.337 −6.355 −36.11 −7.738
DetectGPT −4.095 +10.04 +2.258 −11.09 +2.357 −0.336 −5.442 −20.18 −3.312

Fast-DetectGPT −3.558 −0.271 −4.115 −13.16 +2.632 +1.094 −5.095 −27.94 −6.302

Table 2: EMG performance of 14 detection methods on EvoBench. Red indicates a negative EMG, signifying a
decrease in AUROC when facing evolving LLMs, while a larger EMG value reflects a better generalization of the
detection method.

Developments of LLaMA-2 Detection Methods LLaMA-2-7b (baseline) Sheared-LLaMA-1.3B Sheared-LLaMA-2.7B Wanda-LLaMA

Fine-tuning

Likelihood 0.8616 0.8515 0.8529 0.8593
Rank 0.6288 0.6781 0.6469 0.6163
LogRank 0.8762 0.8551 0.8632 0.8714
Entropy 0.3908 0.3362 0.3524 0.3881
Fast-detectGPT 0.9350 0.9152 0.9376 0.9339
Average 0.7384 0.7272 0.7306 0.7338

Pruning

Likelihood 0.3921 0.7948 0.5378 0.4633
Rank 0.6583 0.7950 0.7179 0.6113
LogRank 0.4273 0.8209 0.5806 0.5046
Entropy 0.7343 0.4614 0.5407 0.6871
Fast-detectGPT 0.6847 0.8913 0.8066 0.7518
Average 0.5793 0.7526 0.6367 0.6036

Fine-tuning and Pruning

Likelihood 0.6269 0.8232 0.6954 0.6613
Rank 0.6436 0.7366 0.6824 0.6138
LogRank 0.6518 0.8380 0.7219 0.6880
Entropy 0.5625 0.3988 0.4465 0.5376
Fast-detectGPT 0.8099 0.9033 0.8721 0.8429
Average 0.6589 0.7400 0.6837 0.6687

Table 3: Average Detection performance across LLaMA-2 developments, including fine-tuning and pruning versions,
using five detection methods with different scoring models.

adaptability of the detector and reduce sensitivity
to specific LLM evolution trends.

4.2.2 Performance of Optimizing Strategies

Extracting Shared Features To improve the gener-
alization of current detection methods across evolv-
ing LLMs, we have preliminarily explored two pos-
sible approaches, with results presented in Table 3.

For zero-shot detection methods, we propose
a general optimization strategy called extracting
shared features, which is not limited to Fast-
DetectGPT but is designed for the broader class of
zero-shot detectors. Specifically, we prune the scor-

ing model to preserve the discriminative features
that are shared across different generative models,
aiming to improve generalization against model de-
velopments such as fine-tuning and pruning. To val-
idate the effectiveness of this strategy more broadly,
we conduct experiments across multiple detectors,
including Likelihood, Rank, LogRank, and Entropy.
Additionally, we examine how different pruning
strategies for the scoring model impact detection
performance. We use LLaMA-2-7b as the base-
line and evaluate three pruned versions: Sheared-
LLaMA-1.3B, Sheared-LLaMA-2.7B, and Wanda-
LLaMA.
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LLMs
Version Time/
Version Name

Text Fluoroscopy

Original Dataset Adding Initial Version

GPT-4o

GPT-4o-mini 0.8373 0.8464
2024-08-06 0.8240 0.8327
2024-11-20 0.7910 0.8035
Latest 0.7986 0.8057

GPT-4
2023-11-06 0.8117 0.8633
2024-01-25 0.8061 0.8549
2024-04-09 0.8131 0.8584

Claude-3.5-Sonnet
2024-06-20 0.8699 0.8720
2024-10-22 0.8218 0.8401

Table 4: Average Detection Performance across updates
of three LLM families with and without the initial ver-
sion in the training dataset under Text Fluoroscopy eval-
uation.

We assess the average detection AUROC of
each configuration under two types of model
development—fine-tuning and pruning. The re-
sults, shown in the table below, demonstrate that
using Sheared-LLaMA-1.3B as the scoring model
consistently leads to higher detection performance
across all detectors. This suggests that the pruned
model retains key shared features, making it a
strong general-purpose scoring model for detect-
ing AI-generated text across a variety of model
variants.

Including the Initial Version For supervised
detectors, we introduce a training set-based gen-
eralization strategy that can be applied beyond a
single method. Rather than tailoring our approach
to a specific architecture, we propose a practical
and broadly applicable training strategy, including
the initial version of an LLM family in the train-
ing data. This enables the detector to generalize
more effectively to subsequent, unseen updates of
the same LLM family, without requiring frequent
retraining.

To validate this strategy, we extended our exper-
iments to include both Text Fluoroscopy (Yu et al.,
2024a) and the Roberta-based detector (Liu et al.,
2019). Details of experiment settings are shown
in Appendix D. In each case, we incorporated the
initial version of an LLM family into the training
dataset and evaluated performance on later versions
of that family. For example, for the GPT-4o fam-
ily, we selected GPT-4o (2024-05-13) as the initial
version and added its data to the training set. We
then tested the detector’s generalization on multiple
subsequent versions: GPT-4o-mini (2024-07-18),
GPT-4o (2024-08-06), GPT-4o (2024-11-20), and
GPT-4o (latest). This setup allowed us to evalu-
ate the model’s ability to generalize across updates
directly.

As shown in the Table 4, both supervised de-
tectors demonstrated improved generalization after
including the initial LLM version in training. No-
tably, for the GPT-4 family, adding data from GPT-
4 (2023-06-13) led to substantial gains. For the
GPT-4 family, after only adding data from the ini-
tial version (GPT-4-2023-06-13), the performance
on GPT-4-2023-11-06 increased from 0.8117 to
0.8633, and on GPT-4-2024-01-25, it improved
from 0.8061 to 0.8549. Therefore, when devel-
oping detectors, it is essential to consider model
updates. To address this, it is crucial to at least
include the initial version of each LLM family in
the training data. This can improve performance
on future unseen updates of the same LLM family
without the need for frequent retraining.

5 Conclusion

In this paper, we introduce EvoBench, a novel
benchmark for evaluating the generalization of
LLM-generated text detection methods across
evolving LLMs. EvoBench defines two key di-
mensions of LLM evolution: (1) updates made by
LLM publishers over time and (2) developments
carried out by developers, ensuring a comprehen-
sive understanding of how evolving LLMs impact
detection performance. To quantify this evolving
dimension generalization, we propose the EMG
(Evolving Model Generalization) metric.

We evaluate 14 widely used detection meth-
ods using EvoBench, revealing their vulnerabili-
ties when facing evolving LLMs. In response, to
improve the generalization of zero-shot methods
across developing LLMs, we propose two strate-
gies: for zero-shot methods, we suggest pruning
the scoring model to extract shared features across
LLM developments; for supervised methods, we
recommend augmenting training data with data
from LLM updates. Our benchmark represents a
key step towards bringing detection methods into
real-world scenarios for evolving LLMs. We also
envision continuously updating this benchmark to
cover a broader range of evolving LLMs, enabling
more comprehensive evaluations across various do-
mains and evolving LLMs.
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Limitations

Although we have thoroughly considered the three
key dimensions of generalization toward real-world
scenarios, certain limitations remain that warrant
further exploration in future research. First, it is
important to emphasize that EvoBench is not in-
tended to replace existing benchmarks for eval-
uating the generalization of LLM-generated text
detection methods but rather to complement them.
Therefore, EvoBench primarily focuses on three
key dimensions in real-world scenarios: domains,
generation strategies, and evolving models. We
have not covered other aspects of generalization,
such as language. A potential direction for future
research is to extend EvoBench to incorporate ad-
ditional dimensions of generalization.

Second, robustness has not been addressed in
this study, as our focus was mainly on detection
generalization. However, EvoBench could serve
as a foundation for inspiring current robustness
research, as robustness also involves tasks such as
rewriting text using different LLMs.
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A Examples of Texts Generated by
Different LLMs

In this section, we provided examples of responses
from different updates of the same LLMs to the
same question, offering a visual representation of
how changes in versions lead to variations in the
model’s output in Table 5 and Table 6.

B Additional Experiment

Additionally, to eliminate the influence of output
diversity on detection performance, we first gener-
ated 150 texts from each model for every dataset,
resulting in a total of 300 texts. Additionally, we
conducted repeated experiments with several mod-
els to ensure that output diversity does not signif-
icantly impact changes in detection difficulty. By
doing so, we ensure that the variations in detection
difficulty primarily stem from model evolution it-
self, rather than biases introduced by the diversity
of the generated texts. The results of this exper-
imental process are presented in Table 7, where
we highlight the potential range of biases caused
by the diversity of generated texts. This helps fur-
ther to understand the relationship between model
evolution and detection performance.

C Details of Evolving LLMs

The details of evolving LLMs are shown in Table 8.

D Details of Optimizing Strategies

In this section, we provide the details of two op-
timizing strategies. For the zero-shot detection
method, we chose to optimize the Fast-DetectGPT
detector. We use the pruned model ’princeton-
nlp/Sheared-LLaMA-2.7B-Pruned’ to replace the
scoring model ’meta-llama/Llama-2-7b-hf’ model
as the scoring model. For the supervised detector,
we chose to optimize the Text Fluoroscopy. Follow-
ing Text Fluoroscopy, we used the first 200 entries
of the open-source Human-ChatGPT Comparison
Corpus (HC3) (Guo et al., 2023) dataset collected
by previous researchers as a training set. The ratio
for splitting the training and validation is 8 : 1. We
use a specific LLM of the LLM families to regener-
ate machine text in the training dataset and then use
the new dataset and the original dataset to retrain
the detector. Specifically, we regenerated this part
of the training set using GPT-4-0613 and tested
the results on the GPT-4 family. For the GPT-4o
family, we used GPT-4o-2024-05-13, and for the
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Table 5: An example of content generated by different versions of the GPT-4o and GPT-4o-mini

Does airway surgery lower serum lipid levels in obstructive sleep apnea patients?

Human Answer Surgery may improve blood lipid levels in patients with OSA, especially in patients
with preoperative dyslipidemia, potentially yielding a major benefit in metabolism
and cardiovascular sequelae. Prospective studies should examine this ...

GPT-4o
2024-05-13

Airway surgery for obstructive sleep apnea (OSA) has been shown to reduce serum
lipid levels in some patients. The improvement is likely due to better oxygenation
and reduced inflammation following successful surgery, ...

GPT-4o
2024-08-06

Airway surgery can potentially lower serum lipid levels in obstructive sleep apnea
(OSA) patients. Surgical interventions that alleviate OSA symptoms may improve
metabolic profiles, including lipid levels, due to reduced hypoxia and ...

GPT-4o
2024-11-20

Yes, airway surgery in obstructive sleep apnea (OSA) patients may lower serum lipid
levels. Studies suggest that by improving oxygenation, reducing inflammation, and
addressing the metabolic impacts of OSA, surgeries like ...

GPT-4o
Latest

Yes, airway surgery for obstructive sleep apnea (OSA) can lower serum lipid levels.
By improving airway patency and reducing hypoxia, surgery may enhance lipid
metabolism and decrease systemic inflammation, which are linked ...

GPT-4o-mini
2024-07-18

Airway surgery in obstructive sleep apnea patients may lead to improvements in
overall health and potentially lower serum lipid levels. However, the extent of lipid
level changes can vary among individuals and ...

Table 6: An example of content generated by different versions of the Claude-Haiku and Calude-Opus

Neck pain treatment with acupuncture: does the number of needles matter?

Human Answer For this pathology, the number of needles, 5 or 11, seems not to be an important
variable in determining the therapeutic effect when the time of stimulation is the
same in the two groups.

Claude-Haiku
2024-03-07

Acupuncture for neck pain can be effective, but the number of needles used may
not be the most critical factor. The placement and selection of acupuncture points
tailored to the individual’s condition are more important ...

Claude-Haiku
2024-10-22

Research suggests that the number of acupuncture needles may not significantly
impact neck pain treatment. Effectiveness depends more on precise needle placement,
practitioner skill, and individual patient response. Further studies are needed to
definitively determine ...

Claude-Opus
2024-02-29

The number of needles used in acupuncture for neck pain treatment may impact its
effectiveness. However, factors such as needle placement, depth of insertion, and
stimulation technique are likely more important than the specific number ...

Claude-Haiku family, we used Claude-3-sonnet-
20240229. we use gte-Qwen1.5-7B-instruct6

as the encoder and the classifier consists of three
fully connected layers with Tanh function. The di-
mensions of the intermediate layers in the classifier
are 1024 and 512, respectively. The batch size is

6https://huggingface.co/Alibaba-NLP/gte-Qwen1.5-7B-
instruct

set to 16, and Adam (Kingma and Ba, 2014) opti-
mizer is employed with an initial learning rate of
3e− 3.

E Data Collection.

In this section, we describe the process of data
collection. Most of these datasets were generated
following the dataset construction methodology
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Fast-DetectGPT RADAR Text-Fluoroscopy Imitate Before Detect RoBERTa-base RoBERTa-large Likelihood Rank LogRank Entropy DetectGPT LRR NPR DNA-GPT

GPT-3.5-turbo-2024-01-25 0.8301 0.8280 0.8904 0.8992 0.6621 0.6723 0.7701 0.6432 0.7663 0.4163 0.4910 0.7098 0.6072 0.8160
0.8420

(+1.19%)
0.8319

(+0.39%)
0.8917

(+0.13%)
0.9011

(+0.19%)
0.6629

(+0.08%)
0.6696

(−0.26%)
0.7822

(+1.21%)
0.6511

(+0.78%)
0.7787

(+1.24%)
0.4118

(−0.44%)
0.5008

(+0.98%)
0.7120

(+0.22%)
0.6276

(+2.05%)
0.8266

(+1.06%)

GPT-4o-mini-2024-07-18 0.8053 0.7954 0.8800 0.8831 0.5539 0.5799 0.7238 0.6474 0.7133 0.4617 0.5374 0.6341 0.6045 0.7255
0.8033

(−0.20%)
0.7976

(+0.22%)
0.8777

(−0.23%)
0.8886

(+0.55%)
0.5566

(+0.27%)
0.5827

(+0.28%)
0.7264

(+0.26%)
0.6494

(+0.20%)
0.7154

(+0.21%)
0.4543

(−0.74%)
0.5417

(+0.43%)
0.6356

(+0.15%)
0.6101

(+0.56%)
0.7291

(+0.36%)

GPT-4-turbo-2024-04-09 0.7644 0.7459 0.8535 0.8534 0.5053 0.5146 0.6959 0.6315 0.6856 0.4526 0.5229 0.6182 0.5982 0.7114
0.7661

(+0.17%)
0.7595

(+1.36%)
0.8504

(−0.31%)
0.8559

(+0.25%)
0.5034

(−0.18%)
0.5099

(−0.47%)
0.6953

(−0.06%)
0.6278

(−0.37%)
0.6848

(−0.08%)
0.4533

(+0.07%)
0.5208

(−0.20%)
0.6109

(−0.72%)
0.5925

(−0.57%)
0.6952

(−1.63%)

Table 7: We selected several LLMs and produced LLM-generated text many times, and then conducted inspections
to evaluate the impact of diversity on the detector.

used in DetectGPT and Fast-detectGPT, which are
widely recognized in the literature on AI-generated
text detection. This setting minimizes the influ-
ence of factors, other than model evolution, on the
detection performance.

To assess the domain generalization capability
of detection methods, we included the following
datasets: Writing, PubMed, Community, and Peer-
Read. We also incorporated three different genera-
tion paradigms: continuation, question-answering,
and paraphrasing. Specifically, the prompts used
for generating each dataset are as follows:

• Xsum: "Please write an article with about 150
words starting exactly with: <prefix>"

• Writing: "Please write an article with about
150 words starting exactly with: <prefix>"

• PubMed: "Please answer the question in
about 50 words: <question>"

• SocialMedia: "Generate text similar to the in-
put social media text but using different words
and sentence composition: <Full text>"

• PeerRead: "Please write a peer review with
about 150 words starting exactly with: <pre-
fix>"

F Experimental Setup Details

In this section, we provide a detailed description
of the experimental setup. Specifically, for zero-
shot, we follow Fast-DetectGPT (Bao et al.) and
use GPT-J-6B (Wang and Komatsuzaki, 2021) and
GPT-Neo-2.7B (Black et al., 2021) as the scoring
models for zero-shot methods. For supervised de-
tectors, we used the pre-trained detectors provided
by the authors. All experiments are conducted on a
workstation equipped with 4 NVIDIA A100 GPUs.

For the valuation metric, we measure the detec-
tion performance using two metrics: AUROC(the
area under the receiver operating characteristic) and
EMG (evolving model generalization). A higher

AUROC value indicates better detection quality,
while a higher EMG metric indicates better gener-
alization ability across evolving LLMs.

G The explanation of EMG

In this section, we provide an explanation of EMG.
A positive EMG value indicates that the detection
performance improves as the LLM evolves, while
negative values reflect a decline in generalization.
The magnitude of the EMG value also reflects the
degree of improvement or decline in generaliza-
tion; smaller values indicate worse stability. EMG
reflects the direction and degree of fluctuations.
However, it does not directly indicate the actual
detection performance regarding AUROC.

For example, as shown in Table 2, in the GPT-
4o family, the EMG values for RADAR and Text-
Fluoroscopy are −0.537% and −0.493%, respec-
tively. However, as shown in Table 1, the AUROC
values for RADAR range from 0.8416 to 0.8694,
while those for Text-Fluoroscopy fluctuate between
0.75426 to 0.79618. Although the EMG values are
similar, the AUROC differs significantly, suggest-
ing that both methods have comparable general-
ization abilities in the face of evolving LLMs, but
their actual detection performance varies. There-
fore, we recommend evaluating both AUROC and
EMG together.
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Table 8: Details of evolving LLMs.

Evolving LLMs Version Time Source

GPT-4o 2024-05-13 gpt-4o-2024-05-13
GPT-4o 2024-08-06 gpt-4o-2024-08-06
GPT-4o 2024-11-20 gpt-4o-2024-11-20
GPT-4o Latest chatgpt-4o-latest
GPT-4o-mini 2024-07-18 gpt-4o-mini-2024-07-18
GPT-4 2023-06-13 gpt-4-0613
GPT-4 2023-11-06 gpt-4-1106-preview
GPT-4 2024-01-25 gpt-4-0125-preview
GPT-4 2024-04-09 gpt-4-turbo-2024-04-09
Claude-Sonnet 2024-02-29 claude-3-sonnet-20240229
Claude-Sonnet 2024-06-20 claude-3-5-sonnet-20240620
Claude-Sonnet 2024-10-22 claude-3-5-sonnet-20241022
Claude-Haiku 2024-03-07 claude-3-haiku-20240307
Claude-Haiku 2024-10-22 claude-3-5-haiku-20241022
Claude-Opus 2024-02-29 claude-3-opus-20240229
Qwen Qwen1.5-7B Qwen/Qwen1.5-7B-Chat
Qwen Qwen2-7B Qwen2-7B-Instruct
Qwen Qwen2.5-7B Qwen/Qwen2.5-7B-Instruct
LlaMa3 Llama-3.1-8B meta-llama/Meta-Llama-3.1-8B-Instruct
LlaMa3 Llama-3.1-70B meta-llama/Meta-Llama-3.1-70B-Instruct
LlaMa3 Llama-3.2-1B meta-llama/Meta-Llama-3.2-1B-Instruct
LlaMa3 Llama-3.2-3B meta-llama/Meta-Llama-3.2-3B-Instruct
LlaMa3 Llama-3.3-70B meta-llama/Meta-Llama-3.3-70B-Instruct
Fine-tuning LLaMA-2-7B-chat-hf meta-llama/Llama-2-7b-chat-hf
Fine-tuning Vicuna-1.5-7B lmsys/vicuna-7b-v1.5
Fine-tuning Wizardmath-7B WizardLMTeam/WizardMath-7B-V1.0
Pruning Sheared-LLaMA1.3B princeton-nlp/Sheared-LLaMA-1.3B
Pruning Sheared-LLaMA1.3B-pruned princeton-nlp/Sheared-LLaMA-1.3B-Pruned
Pruning Sheared-LLaMA2.7B-pruned princeton-nlp/Sheared-LLaMA-2.7B
Pruning Sheared-LLaMA2.7B princeton-nlp/Sheared-LLaMA-2.7B-Pruned
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