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Abstract

Multimodal Aspect-Based Sentiment Analy-
sis (MABSA) aims to extract aspect-sentiment
pairs from text and image data. While signifi-
cant progress has been made in aspect-image
alignment, due to the subtlety and complexity
of language expressions, there are not always
explicit aspect words in the language to align
with images. Existing methods typically as-
sume a direct alignment between images and
aspects, matching the entire image with a cor-
responding aspect. This rough alignment of im-
ages and aspects introduces noise. To address
the above issues, this paper proposes a Dual-
Aware Enhanced Alignment Network (DaNet)
designed for fine-grained multimodal aspect-
image alignment and denoising. Specifically,
we first introduce a Multimodal Denoising En-
coder (MDE) that jointly image and text to
guide the compression and denoising of vi-
sual sequences. And then, aspect-aware and
sentiment-aware networks are constructed to
jointly enhance fine-grained alignment and de-
noising of text-image information. To better
align implicit aspects, an Implicit Aspect Opin-
ion Generation (IAOG) pretraining is designed
under the guidance of large language model.
Extensive experiments across three MABSA
subtasks demonstrate that DaNet outperforms
existing methods.

1 Introduction

Multimodal Aspect-Based Sentiment Analysis
(MABSA) aims to jointly extract aspect terms from
text-image pairs and predict their sentiment polar-
ity (Zhao et al., 2024). As one of the significant
and complex tasks in sentiment analysis, MABSA
has received increasing attention in recent years
(Zhang et al., 2023; Ghorbanali and Sohrabi, 2023).
Depending on the task, MABSA typically also con-
tains two subtasks: Multimodal Aspect Term Ex-
traction (MATE) and Multimodal Aspect-oriented
Sentiment Classification (MASC). MATE focuses
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Figure 1: An example of an implicit aspect in MABSA.
The implicit aspect means that the aspect corresponding
to the sentimentis not explicitly in the text (not missing
data).

on extracting all aspect terms (Zhao et al., 2022),
while MASC aims to classify the sentiment of each
given aspect term (Khan and Fu, 2021). There are
significant differences in information density be-
tween image and text data. This undeniable data
heterogeneity and semantic gap make the learning
of fine-grained multimodal remains challenging.

Previous research on MABSA primarily focused
on exploring effective alignment between image
and text aspects (Zhao et al., 2024). Addressing the
alignment issue, some methods (Ling et al., 2022;
Yang et al., 2023; Yu et al., 2023) use trained object
detectors to identify potential objects in images,
achieving alignment between text words and visual
objects. However, these approaches are limited by
the categories and performance of the object de-
tectors, and the identified potential objects may be
unrelated to the text description. Other approaches,
based on visual coders such as ViT (Dosovitskiy
et al., 2021) or CLIP (Radford et al., 2021), fo-
cus on aligning images and text globally semanti-
cally (Peng et al., 2024; Wang et al., 2024a; Zhu
et al., 2024b). While overcoming the limitations
of the target detector, these methods associate en-
tire image with the text, neglecting that different
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regions of the image may correspond to different
aspects of the text. Additionally, the sentiment
of specific aspects may be influenced by other as-
pects, and global coarse-grained alignment intro-
duces noise (Bao et al., 2022). Moreover, due to the
subtlety and complexity of language expression, as-
pect terms may be omitted. For example, as shown
in Fig. 1, the term "hamburger" is not explicitly
mentioned in the language but is simplified and
implied. Existing methods typically assume a clear
alignment between images and aspects, making it
difficult to address such implicit alignment issues.

To resolve the above issues, two key challenges
need to be addressed: 1)How to efficiently focus
on regions in text-image pairs that are relevant to
opinions and aspects, and filter out irrelevant re-
gions to reduce noise? 2)How to recognize implicit
aspects (e.g., “hamburger") from multimodal infor-
mation and align them with textual opinions (e.g.,
“delicious")?

Based on the above thinking, this paper pro-
poses a Dual-Aware Enhanced Alignment Net-
work (DaNet) designed for fine-grained multi-
modal aspect-image alignment and denoising. The
motivation is that feature regions in images and
text that are related to aspect and sentiment should
receive higher attention, while irrelevant regions
should receive less attention. Specifically, we first
introduce a Multimodal Denoising Encoder(MDE)
that segments the global visual input into strongly
correlated and weakly correlated regions. Guided
by both image and text, the weakly correlated
regions are then injected into the corresponding
strongly correlated regions, reducing interference
from unrelated areas while enhancing the represen-
tation of the strongly correlated regions. And then,
this paper enhances fine-grained alignment in the
text-image pairs from an aspect perspective, filter-
ing out irrelevant regions to reduce noise. However,
aspect-to-aspect alignment lacks the interaction of
sentiment semantics. Additionally, relying solely
on aspects does not achieve alignment of implicit
aspects related to opinions. Therefore, we further
propose to perceive the alignment of emotions and
aspects from the perspective of emotional seman-
tics, aiming to achieve implicit aspect alignment
and reduce interference between different aspects
through the understanding of sentiment-semantic
relations of opinion words. To better align im-
plicit aspects, we propose a pre-training task for Im-
plicit Aspect Opinion Generation (IAOG) guided
by large language models. Additionally, introduc-

ing Visual Aspect Opinion Generation (VAOG) pre-
training task enhances the model’s ability to learn
the semantic relationships between common aspect-
sentiment pairs.

In summary, our contributions are as follows:

• This paper proposes a Dual-Aware Enhanced
Alignment Network (DaNet), which reduces
the introduction of noisy regions and jointly
aligns the cross-modal information of text and
images from both aspect and affective seman-
tic perspectives, reducing mutual interference
between different aspects.

• This paper proposes a Multimodal Denoising
Encoder (MDE), which enhances the repre-
sentation of strongly correlated regions by in-
jecting weakly correlated regions of the task,
thereby reducing interference from irrelevant
regions.

• This paper proposes two specific pre-training
tasks which combine multimodal aspects (ex-
plicit and implicit) with opinion alignment
and awareness, aiming to capture common
sentiment patterns and aspect-sentiment se-
mantic within text-image information.

2 Related Work

Early MABSA studies usually straightforwardly
combined MATE and MASC subtasks or adapted
MATE to perform MABSA tasks (Ling et al., 2022).
UMT-collapse (Yu et al., 2020b), OSCGA-collapse
(Wu et al., 2020b), and RpBERT-Collapse (Yu and
Jiang, 2019) were adapted from models for MATE
by using collapsed labels to represent aspect and
sentiment pairs. These simple combination meth-
ods ignore the alignment and interaction between
the semantic information and sentiment of the two
subtasks, and the results are usually not satisfac-
tory. Recently, a growing number of research ef-
forts have been devoted to the alignment of joint
images and corresponding aspects. JML (Ju et al.,
2021) first proposed jointly extracting aspects and
classifying the corresponding sentiments to better
meet practical applications. VLP-MABSA (Ling
et al., 2022) and CMMT (Wu et al., 2022) de-
sign multiple visual-language pre-training tasks to
achieve a unified multimodal architecture for spe-
cific tasks. Although specific pre-training helps
improve model performance, the lack of align-
ment between aspects and emotions hinders further
performance enhancement. DPFN (Wang et al.,
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Figure 2: The overall framework of DaNet. The depicted multimodal decoder is designed for the MABSA task, and
it differs in its structure from the decoders used in the MATE and MASC tasks.

2024b) and Atlantis (Xiao et al., 2024) achieve
multi-modal fusion from different granularity fea-
tures, but do not address the mutual interference
between aspects and between sentiments. Further
research has focused on more fine-grained align-
ment, TMFN (Wang et al., 2024a) and AoM (Zhou
et al., 2023) focus on the alignment of text tokens
and image regions to reduce the interference of ir-
relevant regions, but overlook the complementarity
of sentiment and aspect alignment. Recent studies
have further improved the performance of MABSA
through specific prompt (Peng et al., 2024) and
aspect-enhanced pre-training (Zhu et al., 2024b).
Although these methods have made great progress
on the MABSA task, these methods associate en-
tire image with the text, neglecting that different
regions of the image may correspond to different
aspects of the text. Additionally, the sentiment
of specific aspects may be influenced by other as-
pects, and global coarse-grained alignment intro-
duces noise.

3 Methodology

In Fig. 2, DaNet mainly consists of a multimodal
denoising encoder, a dual-aware enhanced align-
ment network, and multimodal decoder. In addi-
tion, two specific pretraining tasks (i.e., IAOG and
VAOG, as shown in Fig. 4) were introduced to
further enhance DaNet’s ability to learn joint multi-

modal representation and the relationships between
aspect-sentiment in multimodal data.

3.1 Multimodal Denoising Encoder

We employ ViT (Dosovitskiy et al., 2021) to ex-
tract image representations. To be consistent with
the text representation, we adopt a linear transfor-
mation layer to project the image features F I to
d-dimensional vectors.

V = Reshape(WIViT(F I) + bi), (1)

where V denotes the projected image features,
WI ∈ Rdv×r×d and r denotes the number of visual
blocks. We consider every feature of a visual block
as an atomic feature. We use the BART (Lewis
et al., 2020) to obtain the embedding of the text T:

ET = Embedding(T ), ET ∈ Rlt×d, (2)

where lt denotes the length of the text sequence.
The multimodal embedding can be obtained:

EM = [E<img>, V, E</img>, E<bos>, ET , E<eos>], (3)

where EM ∈ Rlm×d, lm = r + lt + ls is the
length of multimodal sequence and ls is the length
of special tokens. As shown in Fig. 2, following
Liu et al. (2021), we use <img> and </img> to
mark the beginning and end of visual features, and
<bos> and <eos> for text boundaries.
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Figure 3: Joint image and text guidance for visual com-
pression and denoising.

In data, not all the image content has the match-
ing text description. It is necessary to prune the
visual sequence to reduce the redundant informa-
tion unrelated to the text. Therefore, we propose
an image-text jointly guided visual sequence com-
pression and noise reduction method, as shown in
Fig. 3. We take EM as the Q (query) and V as the
K (key) to obtain the attention weights.

a = softmax(
EM · V T

√
d

), (4)

where a is the attention distribution of EM to V .
Based on the attention weights and the specified
retention ratio α (Appendix C provides a detailed
analysis of the α), the visual regions are classified
into strongly correlated regions V S and weakly
correlated regions V W .We consider that neigh-
boring visual regions express similar features to
some extent, so for each visual marker in a weakly
correlated region vx, a nearest-neighbor visual re-
gion found in a strongly correlated region vy cor-
responds to it. By cosine similarity, the nearest
neighbor region is calculated as:

Sx,y =
vTx vy

||vx|| ||vy||
, (5)

vnear = argmaxSx,y
vy∈V S

, (6)

where vnear denotes the nearest neighbor region
of weakly correlated region vx.Then, the fusion
weights of vx and vnear are computed, and vx is
weighted and merged into vnear to obtain the up-

dated vnew.

θx =
exp(Sx,near)

exp(Sx,near) + e
, (7)

vnew = (1− θx)vnear + θxvx, (8)

where θx is the fusion weight of the weakly cor-
related region vx, e is Euler’s number. Multi-
modal representation EM is reconstructed using
the weighted fused visual sequence V̂ ∈ Rαr×d to
obtain the noise-reduced representation ÊM :

ÊM = [E<img>, V̂ , E</img>, E<bos>, ET , E<eos>], (9)

where ÊM ∈ Rαr+lt+ls . We feed ÊM into the
Multimodal Encoder to obtain the multimodal rep-
resentation.

3.2 Dual-Aware Enhanced Alignment
Network

To achieve fine-grained cross-modal text-image
aspect alignment and sentiment-aspect semantic
alignment, we propose a dual-aware enhanced
alignment network. As shown in Fig. 2.

1) Aspect-Aware Alignment Module (AAAM):
Given a text-image pair, we first use the NLP tool
SpaCy1 to extract noun phrases from the sentence
and YOLOv82 to identify target entities in the im-
age. After merging and deduplicating the extracted
noun phrases and target entities, we obtain k can-
didate aspects (CA). Then, the hidden layer states
HCA =

{
hCA
1 , ..., hCA

i , ..., hCA
k

}
, HCA ∈ Rk×d

corresponding to the candidate aspects are obtained
through the multimodal encoder. Given the t-th
hidden feature ht of the multimodal hidden state H
as the query, the attention distribution αA

t ∈ Rlm×k

guided by the candidate aspects as keys can be rep-
resented as:

Zt(ht, H
CA) = tanh(cat(WHht + bH ,
WCAH

CA + bCA; dim = −1))
, (10)

αA
t (ht, H

CA) = softmax(WαZt + bα), (11)

where Zt ∈ Rαr×k×2d represents the extracted
composite features, WH ∈ Rd×d, WCA ∈ Rd×d,
Wα ∈ R1×2d, bH ∈ Rd, bCA ∈ Rd, and bα ∈ R
are learnable parameters. Then, by calculating the
weighted sum of αA

t and all candidate aspects, we
obtain the aspect-related hidden feature hAt .

hAt =

k∑

i

αA
t · hCA

i (12)

1https://spacy.io
2https://yolov8.com
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Figure 4: The framework of the pre-training tasks.

Since not all image regions are aspect-related,
we introduce a weight factor βt to learn the additive
weight of the original hidden feature ht and the
aspect-related hidden feature hA

t , as detailed below:

βt = sigmoid(Wβcat(W1ht,W2h
A
t )+bβ), (13)

ĥAt = βtht + (1− βt)h
A
t , (14)

where Wβ ∈ R1×2d, W1 ∈ Rd×d, W2 ∈ Rd×d,
and bβ ∈ R are learnable parameters of the fully
connected layers. ĥAt ∈ ĤA is the final output of
AAAM.

2) Sentiment-Aware Alignment Module
(SAAM): Firstly, according to the VADER sen-
timent dictionary (Hutto and Gilbert, 2014), the
words with sentiment significance in the text se-
quence are searched as candidate sentiments (CS).
Then, the hidden states of these candidate senti-
ments are obtained through the multimodal encoder,
represented as HCS ∈ Rw×d, where w denotes the
number of candidate sentiment words in the se-
quence. As shown in Fig. 2, SAAM has a similar
network structure to AAAM. By comparing the
final output Eq. (14) of AAAM, the final output ĥSt
of SAAM after sentiment-aware alignment can be
obtained:

ĥSt = δtht + (1− δt)h
S
t (15)

Similarly, δt is the weight factor, and hSt =
e∑
i
αS
t · hCS

i represents the hidden features ob-

tained by weighting the sentiment-guided attention
distribution αS

t ∈ Rlm×e and all candidate senti-
ments HCS . Unlike AAAM, which focuses on
the alignment between aspects, SAAM emphasizes
the semantic relationship alignment between senti-
ments and aspects.

Finally, we add the ĥAt and ĥSt to obtain the
final dual-aware enhanced alignment hidden layer
feature ĥt ∈ Ĥ .

ĥt = ĥAt + ĥSt (16)

3.3 Multimodal Decoder
The multimodal decoder takes Ĥ and the previous
decoder output y<t as inputs to generate yt. We
take the MABSA task as an example, as Fig. 2
shows.

hdt = Decoder(Ĥ, y<t), (17)

where t is the tth step. We predict the token proba-
bility distribution Pt with hdt , as follows:

Pyt = softmax([ET ;ES ]h
d
t ), (18)

where ES is the embedding of the sentiment label
set. The loss function is as follows:

L = −
N∑

t=1

logP (yt | y<t, Ĥ) , (19)

where N is the length of the target sequence.

3.4 Pre-training Tasks
To further enhance DaNet’s ability to learn joint
multimodal representation and the relationships
between aspect-sentiment, we designed two spe-
cific pre-training tasks on MVSA-Multi (Niu et al.,
2016), as shown in Fig 4.

1) Implicit Aspect-Opinion Generation
(IAOG): First, using the method mentioned
in Section 3.2, we obtain k candidate aspects
(CA) and an sentiment word. Next, we create
the following prompt: “Please choose a word
from ‘candidate aspects’ that is most suitable
to be modified by ‘sentiment word’, and output
the corresponding sentiment word and aspect. If
none, output ‘none’.” as the input for ChatGPT-3.5
(Brown et al., 2020), leveraging ChatGPT to
generate the matched sentiment-aspect pairs.

The opinion-aspect pairs generated by ChatGPT-
3.5 serve as the target supervision for GI ={
g1, ..., gt, ..., g|GI |

}
. Then, IAOG Decoder takes

the multimodal encoder output Ĥ and the previous
decoder GI

<t as inputs to predict the probability
distribution P (gt) of the token.

hdt = IAOGD(Ĥ;GI
<t), (20)

P (gt) = Softmax(EThdt ), (21)
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Methods Venues
Twitter-2015 Twitter-2017

P R F1 P R F1

UMT+TomBERT* ACL 2020; IJCAI 2019 58.4 61.3 59.8 62.3 62.4 62.4
OSCGA+TomBERT* MM 2020; IJCAI 2019 61.7 63.4 62.5 63.4 64.0 63.7
OSCGA-collapse* MM 2020 63.1 63.7 63.2 63.5 63.5 63.5
UMT-collapse* ACL 2020 61.0 60.4 61.6 60.8 60.0 61.7
RpBERT-collapse* AAAI 2021 49.3 46.9 48.0 57.0 55.4 56.2
JML* EMNLP 2021 65.0 63.2 64.1 66.5 66.5 66.0
VLP-MABSA* ACL 2022 65.1 68.3 66.6 66.9 69.2 68.0
CMMT* IPM 2022 64.6 68.7 66.5 67.6 69.4 68.5
AoM* ACL 2023 67.9 69.3 68.6 68.4 71.0 69.7
AESAL* IJCAI 2024 68.7 70.4 69.5 69.4 74.8 72.0

DaNet(ours) - 70.8 71.5 71.2 71.3 72.9 72.1

Table 1: Results of different methods for MABSA. "∗" denotes the results from AESAL (Zhu et al., 2024b).

where hdt ∈ Rd is the output of the decoder and E
denotes the embedding matrix of all tokens in the
vocabulary.

LIAOG = −
|GI |∑

t=1

logP (gt|g<t, Ĥ) (22)

2) Visual Aspect-Opinion Generation (VAOG):
We use the pre-trained ANP (Adject-noun Pair) de-
tector DeepSentiBank (Chen et al., 2014) to predict
the ANP in the image, and select the ANP with
the highest probability as the supervision signal for
the VAOG task. For example, the ANP predicted
for the image shown in Fig. 1 is a “Smiling girl".
Compared to IAOG, the loss function for VAOG
can be expressed as:

LV AOG = −
|GV |∑

t=1

logP (gt|g<t, Ĥ) (23)

To optimize all model parameters, we adopt an
alternating optimization strategy to iteratively op-
timize our two pre-training tasks. The objective
function is as follows:

Lpre = λ1LIAOG + λ2LV GOG, (24)

where λ1 and λ2 are the trade-off hyperparameters
to control the contribution of each task.

4 Experiments

4.1 Experimental Settings
Datasets. Following prior studies (Ju et al., 2021;
Zhou et al., 2023; Ling et al., 2022), we evalu-
ate the performance of DaNet using two widely

used benchmark datasets: Twitter-2015 and Twitter-
2017 (Yu and Jiang, 2019). The details of the
datasets are shown in Appendix A.1.

Training Details. All models are built on the
PyTorch (Paszke et al., 2019) with RTX A40 GPU.
λ1 and λ2 are all set to 1. Appendix A.2 describes
the details of hyper-parameter setting.

Evaluation Metrics. Following previous work
(Ju et al., 2021; Zhou et al., 2023; Ling et al., 2022),
we evaluate the performance of our model on the
MABSA task and MATE task using F1 score (F1),
Precision (P), and Recall (R). For the MASC task,
we evaluate performance using Accuracy (Acc) and
F1.

Baselines. Please refer to Appendix B for more
details on baselines.

4.2 Quantitative Results and Analysis

We compare DaNet with state-of-the-art methods
on MABSA’s three subtasks, where it achieves su-
perior or competitive results across both datasets.

Results of MABSA: As shown in Table 1,
DaNet outperforms all other methods on the
MABSA task, except for slightly lower than AE-
SAL on metric R. Specifically, although the R-
metric of DaNet on Twitter-2017 is slightly lower
than AESAL, all other metrics outperform AESAL.
The average performance of DaNet on Twitter-
2015 is 2.36% higher than that of AESAL, which
further proves the effectiveness of DaNet.

Results of MATE: As shown in Table 2, in the
MATE task, while DaNet significantly outperforms
all other models except AESAL across all metrics,
it only outperforms AESAL in R-value on Twitter-
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Methods
Twitter-2015 Twitter-2017

P R F1 P R F1

RAN* 80.5 81.5 81.0 90.7 90.7 90.0
UMT* 77.8 81.7 79.7 86.7 86.8 86.7
OSCGA * 81.7 82.1 81.9 90.0 90.7 90.4
JML* 83.6 81.2 82.4 92.0 90.7 91.4
VLP-MABSA* 83.6 87.9 85.7 90.8 92.6 91.7
CMMT* 83.9 88.1 85.9 92.2 93.9 93.1
AoM* 84.6 87.9 86.2 91.8 92.8 92.3
AESAL* 90.2 90.6 90.4 93.1 96.4 94.7

DaNet (ours) 87.6 90.8 89.2 94.6 93.9 94.2

Table 2: Results of MATE. “∗" denotes the results from
AESAL (Zhu et al., 2024b).

Methods
Twitter-2015 Twitter-2017

Acc F1 Acc F1

ESAFN* 73.4 67.7 67.8 64.2
TomBERT* 77.2 71.8 70.5 68.0
CapTrBERT* 78.0 73.2 72.3 70.2
JML* 78.7 - 72.7 -
VLP-MABSA* 78.6 73.8 73.8 71.8
CMMT* 77.9 - 73.8 -
AoM* 80.2 75.9 76.4 75.0
AESAL* 80.1 75.2 78.8 75.9

DaNet (ours) 81.3 78.5 79.0 76.4

Table 3: Results of MASC. “*” denotes the results from
AESAL (Zhu et al., 2024b).

2015 and P-value on Twitter-2017, and the over-
all performance is still lower than AESAL. The
main reason is that AESAL performs supervised
aspect-related pre-training on the Twitter-2015 and
Twitter-2017 datasets, which helps to extract as-
pect information in the MATE task. In contrast,
the IAOG and VAOG pre-training performed by
DaNet on MVSA-Mult dataset relies on ChatGPT
and DeepSentiBank for supervision labels due to
the inability to obtain actual opinion-aspect pairs,
which may lead to errors and affect the reliability of
the results. However, considering the performance
improvement of the main task MSABA through
IAOG and VAOG pre-training, as well as the explo-
ration of implicit aspect alignment, this research
remains significant. We also believe that providing
more precise opinion-aspect pairs will yield better
results.

Results of MASC: Table 3 shows that DaNet
outperforms all other models on the MASC task.
Specifically, compared to the currently publicly

Methods
Twitter-2015 Twitter-2017

P R F1 P R F1

VisualGLM-6B* 69.2 64.6 66.8 57.2 52.0 54.5
ChatGPT-3.5* 66.3 66.3 66.3 58.9 58.9 58.9
DQPSA* 81.1 81.1 81.1 75.0 75.0 75.0

DaNet (ours) 79.1 77.9 78.5 76.8 76.0 76.4

Table 4: Results of comparison with LLMs on MASC
task. “∗" denotes the results from DQPSA (Peng et al.,
2024).

available best model AESAL, DaNet improved the
F1 scores on the Twitter-2015 and Twitter-2017
datasets by 4.39% and 0.66%, respectively. This in-
dicates that DaNet more effectively integrates text
and image information for the sentiment classifica-
tion of each aspect term.

4.3 Sentiment Analysis Compared to LLMs
Considering the excellent performance of large
language models (Touvron et al., 2023; Du et al.,
2022) in NLP tasks, we compare the performance
of DaNet with VisualGLM-6B and ChatGPT-3.5.
Since LLMs are not specifically designed to recog-
nize aspects in text, the output structure is difficult
to unify. Therefore, following previous research
(Peng et al., 2024), we only tested on the MASC
task to ensure a fair comparison. Table 4 shows that
DaNet outperforms LLMs (e.g., VisualGLM-6B
and ChatGPT-3.5) with fewer parameters, validat-
ing its effectiveness. However, on the Twitter-2015
dataset (61.65% one-aspect data), DaNet underper-
forms compared to DQPSA, primarily owing to
DQPSA’s use of prompts such as "Sentiment of ’as-
pect term’ is [positive, neutral, negative]", which
enhance one-aspect sentiment classification. In
contrast, on the multi-aspect Twitter-2017 dataset
(66.46%), DaNet surpasses DQPSA across all met-
rics. This indicates that as the number of aspect
terms increases, DQPSA’s performance deterio-
rates due to interference between aspects, whereas
DaNet’s dual-aware alignment effectively reduces
such interference, maintaining stable performance.

4.4 Ablation Studies
Table 5 shows that without the various compo-
nents of the DaNet model, the overall performance
decreases. Further analysis reveals that the per-
formance is most significantly affected without
AAAM, with the average F1 score of the three
subtasks decreasing by 3.82%. This indicates that
the aspect-aware alignment of text and images in
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Methods
Twitter-2015 -

MABSA MATE MASC Avg

DaNet (full) 71.2 89.2 78.5 -
w/o MDE 69.9 87.3 77.5 1.74%↓
w/o AAAM 69.1 85.9 74.7 3.82%↓
w/o SAAM 70.8 88.6 75.9 1.66%↓
w/o Pretraining 69.3 88.9 77.6 1.38%↓
w/o IAOG 70.5 89.8 77.8 0.40%↓
w/o VAOG 70.7 88.2 78.4 0.65%↓

Table 5: Results of ablation studies. We evaluate all
tasks in terms of F1. w/o denotes without. “Avg” de-
notes the average decrease of performance. “↓" means
decrease.

the MABSA task is crucial. As a complementary
module to AAAM, SAAM also plays a significant
role in the MABSA task. Furthermore, the per-
formance drop without pre-training suggests that
task-specific pre-training is beneficial for enhanc-
ing model performance. This is consistent with
that pre-training language models improve model
performance (Zhu et al., 2024a).

4.5 Evaluation of Implicit Aspect Influence

To analyze the impact of implicit aspect scenarios
on model performance, we compared DaNet with
high performing models that provide reproducible
code (i.e., VLP-MABSA, CMMT, and AoM). On
the Twitter-2015 dataset, we simulated implicit as-
pect scenarios by randomly replacing 50% of the
aspect terms in the test and validation sets with
"<mask>". To further explore the influence of the
IAOG, AAAM, and SAAM modules on DaNet in
this scenarios, we conducted ablation analysis.

From Table 6, it is evident that even the cur-
rent better performing models experience a signifi-
cant performance drop in scenarios simulating im-
plicit aspects. For example, the F1 scores of VLP-
MABSA and CMMT for three tasks in implicit sce-
narios decreased by 42.89% and 37.67%, respec-
tively, compared to the average in general scenarios.
The main reason is that both VLP-MABSA and
MMTT, as multi-task pre-trained and joint learning
models, lack alignment specifically for sentiment
and aspects compared to AoM and DaNet. This
indicates that the ability to learn such alignment en-
ables AoM and DaNet to maintain a certain level of
performance in scenarios involving implicit aspects.
DaNet further introduces the aware alignment of
sentiment to aspects and the pre-training task of
implicit aspect generation, which allows DaNet to

Methods
Twitter-2015 -

MABSA MATE MASC Avg

DaNet (ours) 65.1 (71.2) 87.9 (89.2) 71.6 (78.5) 6.27%↓
VLP-MABSA 25.1 (66.5) 40.2 (85.0) 63.6 (73.7) 42.89%↓
CMMT 29.7 (66.6) 49.6 (85.4) 61.8 (73.2) 38.3%↓
AoM 60.4 (66.7) 80.2 (85.7) 65.9 (74.5) 9.13%↓
w/o IAOG 64.8 (71.2) 87.1 (89.2) 68.4 (78.5) 8.07%↓
w/o AAAM 61.4 (71.2) 80.8 (89.2) 70.5 (78.5) 11.12%↓
w/o SAAM 64.3 (71.2) 84.5 (89.2) 69.4 (78.5) 8.85%↓

Table 6: Results of implicit aspect analysis. We evaluate
all tasks in terms of F1. The values in “()” denote
the results of the general scenario in the experimental
setting of this paper. “Avg” denotes the average decrease
of performance. “↓" means decrease.

perform better in implicit aspect scenarios while
improving overall performance. In addition, we
observe that the performance of DaNet decreases
significantly without SAAM and AAAM, which
further demonstrates the importance of aspect and
sentiment awareness and alignment.

To investigate the effectiveness of the model in
detecting aspect-opinion related information, Ap-
pendix C provides the impact of image retention
rates α, Appendix D provides a visualization, and
Appendix E provides the case studies.

5 Conclusion

In this paper, we propose DaNet, a dual-aware
enhanced alignment network designed for fine-
grained multimodal aspect-image alignment and
denoising. Specifically, we first introduce a Multi-
modal Denoising Encoder (MDE) that jointly im-
age and text to guide the compression and denois-
ing of visual sequences. And then, DaNet aligns
aspects with image regions based on aspect aware-
ness to filter out irrelevant regions and reduce noise.
Additionally, DaNet aligns sentiment with aspects
through sentiment-aware semantic relationships.
This not only enhances the sentiment-semantic re-
lationship and facilitates implicit aspect alignment
between text and image, but also reduces mutual
interference between different aspects. MABSA-
related pre-training tasks further enhance DaNet’s
ability to learn common sentiment patterns and
semantic relationships in text-image information.
Extensive experiments and ablation studies on the
three sub-tasks of MABSA, validating the effec-
tiveness of the DaNet and the necessity of each
module.
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Limitations

This paper explores the fine-grained multimodal
aspect-image alignment and denoising, thereby fur-
ther enhancing the performance of MABSA. How-
ever, there are still some limitations that need to
be addressed in future work. Firstly, given that we
do not have access to the actual opinion pairs from
the pre-trained dataset MVSA-Multi (Niu et al.,
2016), it is not possible to compute the exact er-
ror rates for ChatGPT and DeepSentiBank, which
could potentially lead to flawed results. Secondly,
in the experimental analysis of implicit aspects,
we masked aspect words in text on the available
dataset to simulate the implicit experimental set-
ting. Implicit aspects are not missing data and are
scenarios with higher requirements for alignment.
To make the dataset usable, we retained the posi-
tion of the masked words in the sequences, which
reduced the testing difficulty to some extent. In the
future, we will collect more samples with implicit
aspects from social media to further enhance the
training of our model in realistic scenarios.
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Labels
Twitter -2015 Twitter -2017

Train Dev Test Train Dev Test

Negative 368 149 113 416 144 168
Neutral 1883 670 607 1638 517 573
Positive 928 303 317 1508 515 493

One aspect 2,159 (61.65%) 976 (33.54%)
Mult. aspects 1,343 (38.35%) 1,934 (66.46%)
Total Aspects 3,502 2,910

Table 7: Dataset statistics."Mult. aspects" denotes "Mul-
tiple aspects".

A Experimental settings

A.1 Datasets
Following prior research (Ju et al., 2021; Zhou
et al., 2023; Ling et al., 2022), we evaluate the per-
formance of our proposed DaNet model using two
widely used benchmark datasets: Twitter-2015 and
Twitter-2017 (Yu and Jiang, 2019). The statistics
of these two datasets are summarized in Table 7.

A.2 Implementation Details
All models are built on the PyTorch with the
NVIDIA RTX A40 GPU. The Adam optimizer
is used for both pre-training and fine-tuning. Our
model is based on BART (Wang et al., 2024c),
trained for 60 epochs with a batch size of 32 on
the pretraining task and 35 epochs with a batch
size of 16 on the downstream task of MABSA. The
learning rate is set to 7e-5. The trade-off hyperpa-
rameters λ1 and λ2 are all set to 1. The hidden layer
size is 768. SpaCy, YOLOv8, DeepSentiBank, and
ChatGPT all use the default settings provided on

Hyper-parameter Value

d 768
α 0.7

λ1,λ2 1
Hidden size 768
Optimizer Adam

Learning rate 7e-5
Epoch for training 35

Epoch for pretraining 60
Batch size for training 16

Batch size for pretraining 35

Table 8: Hyper-parameters setting.

their official websites. The experimental results are
taken as the average of three consecutive experi-
ments. The details of the relevant parameters are
given in Table 8.

A.3 Computational Overhead

Table 9 provides the computational overhead for
model pre-training (on MVSA-Multi (Niu et al.,
2016)) and training (on Twitter-2015 (Yu and Jiang,
2019)).

B Baselines

This paper compares the performance of DaNet
with other baseline models on the MATE, MASC,
and MABSA tasks.

Baselines for MATE: RAN (Wu et al., 2020a)
proposes a region-aware alignment network to
align text with object regions in images. UMT
(Yu et al., 2020b) uses a cross-modal transformer
to fuse text and image representations to mitigate
visual biases. OSCGA (Wu et al., 2020b) bridges
visual and linguistic information by utilizing object
labels as embeddings for multimodal interaction.

Baselines for MASC: ESAFN (Yu et al., 2020a)
learns entity-sensitive visual representations and in-
tegrates them with LSTM to mitigate visual noise.
TomBERT (Yu and Jiang, 2019) applies BERT
to model intra-modality dynamics for obtaining
aspect-sensitive text representations. CapTrBERT
(Khan and Fu, 2021) constructs an auxiliary sen-
tence for the translation of an image, to provide
multimodal information for the language model.

Baselines for MABSA: UMT-collapse (Shi
et al., 2024), OSCGA-collapse (Wu et al.,
2020b), and RpBERT-collapse (Sun et al.,
2021) are adapted from models for MATE
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Model Params Time / Epoch

Pre-training 153 M 27m 34s
Training 158 M 1m 38s

Table 9: Computational overhead.
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Figure 5: The impact of different image retention rates
α.

by using collapsed labels to represent aspect-
sentiment pairs. UMT+TomBERT and OS-
CGA+TomBERT achieve joint multimodal aspect-
based sentiment analysis by combining UMT (Yu
et al., 2020b) and OSCGA (Wu et al., 2020b) with
TomBERT (Yu and Jiang, 2019). JML (Ju et al.,
2021) performs the MABSA task by introducing
auxiliary cross-modal relation detection. CMMT
(Wu et al., 2022) introduced a gating mechanism to
control the contribution of multimodal information
during the interaction process between modalities.
VLP-MABSA (Ling et al., 2022) designs multiple
visual language pre-training tasks to perform task-
specific unified multimodal architectures. AoM
(Zhou et al., 2023) focuses on the alignment of text
tokens and image blocks to reduce the interference
of irrelevant regions. AESAL (Zhu et al., 2024b)
proposes an aspect-enhanced and syntax-adaptive
learning approach to capture differences in the im-
portance of various words within the text.

C Impact of Image Retention Rate.

To evaluate the impact of image retention rates α
on performance, we tested MABSA under vary-
ing α values and measured F1 scores, as shown in
Fig. 5. Results indicate that both excessively high
and low α degrade performance across datasets.
For Twitter-2015, optimal performance occurs at
α ≈ 0.6, while for Twitter-2017, it peaks at α ≈
0.7. This difference arises because Twitter-2015
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(b) Text attention weights
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Ground Truth:

Input image-text paris Visualization

Figure 6: Visualization aspects related to attention.

primarily contains single-aspect data (61.65%), re-
quiring fewer retained image regions and exhibit-
ing greater stability. In contrast, Twitter-2017 in-
cludes more multi-aspect data (66.46%), where
excessive regions introduce noise, and insufficient
regions lose critical information. Notably, this ef-
fect is manageable due to our approach of weight-
ing weakly relevant regions and fusing them with
strongly relevant ones, preserving key information.
Since Twitter-2017 achieves a satisfactory F1 score
of 71.2 at α = 0.7, we standardized α = 0.7 for
all datasets in subsequent experiments.

D Implicit Case Study and Visualization

To evaluate DaNet’s ability to detect implicit aspect-
opinion relationships, we visualize the attention
mechanism using the example in Fig. 1, shown in
Fig. 6.

For visual attention: Fig. 6(a) illustrates the
proportion of visual information retained in the
last step of the dual-aware enhanced alignment net-
work, where we weighted add the representation of
visual patches and the corresponding aspects. It can
be observed from Fig. 6(a) that semantically rele-
vant image regions are successfully located. For
example, in the case of Fig. 6, the text “Very deli-
cious, would you like some?” semantically refers
to food. Combined with the visual information of a
girl happily offering a hamburger, it can be known
that the semantically related area in the image is a
hamburger. The heatmap of Fig. 6(a) shows that
the regions associated with "hamburger" are promi-
nently preserved, while other irrelevant regions are
ignored.
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Figure 7: Case studies. NEU, POS, and NEG denote Neutral, Positive, and Negative sentiments.

For text attention: Fig. 6(b) shows the attention
given to the input text by the last hidden layer state
of the encoder after the dual-aware enhanced align-
ment network. From Fig. 6(b), it is evident that text
related to aspects and sentiments receives more at-
tention. For example, from the text "Very delicious,
would you like some?", candidate aspects (“same”)
and candidate sentiments (“delicious”, “like”) are
extracted. These candidate words receive relatively
high attention, as shown in Fig. 6(b). When an-
alyzed together with the image, “delicious ham-
burger” fits the context better, and “delicious” re-
ceives more attention compared to “like”. This
highlights DaNet’s semantic understanding, en-
hanced by guidance from LLM.

E Case Studies

To further demonstrate the effectiveness of our
model DaNet, we compared DaNet with high per-
forming models that provide reproducible code
(i.e., VLP-MABSA, CMMT, and AoM). Fig. 7
presents three examples with predictions from
VLP-MABSA, CMMT, AoM, and our DaNet.

Fig. 7 clearly illustrates that, in example (a), both
VLP-MABSA and AoM incorrectly classified the
aspect term “MotorCityPride”. It is possible that
“MotorCityPride” is a compound word and that
both the word “Pride” and the content of the im-

age express positive sentiment. However, CMMT
only identified the aspect terms “Equality_M” and
“Detroi”, failing to predict “MotorCityPride”. In ex-
ample (b), all baseline models made correct predic-
tions except for VLP-MABSA, which incorrectly
predicted the sentiment for “Chris Pau”. It is worth
noting that all models make the correct entity pre-
diction in case (c), which may be affected by the
fact that case (c) as a whole expresses negative sen-
timent, and AoM and CMMT put the neutral “La
Liga” prediction as negative sentiment. Benefiting
from fine-grained alignment with dual awareness
of aspects and sentiments, as well as enhancement
from specific pre-training tasks, our model, DaNet,
accurately extracted all aspect terms and classified
the sentiments in all three cases.
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