
Findings of the Association for Computational Linguistics: ACL 2025, pages 14247–14258
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

FedLEKE: Federated Locate-then-Edit Knowledge Editing for
Multi-Client Collaboration

Zongkai Zhao1*, Guozeng Xu1*, Xiuhua Li1†, Kaiwen Wei2†, Jiang Zhong2

1School of Big Data & Software Engineering, Chongqing University, China
2College of Computer Science, Chongqing University, China

{zongkaizhao, archipes}@stu.cqu.edu.cn, {lixiuhua, weikaiwen, zhongjiang}@cqu.edu.cn

Abstract

Locate-then-Edit Knowledge Editing (LEKE)
is a key technique for updating large lan-
guage models (LLMs) without full retrain-
ing. However, existing methods assume a
single-user setting and become inefficient in
real-world multi-client scenarios, where decen-
tralized organizations (e.g., hospitals, finan-
cial institutions) independently update overlap-
ping knowledge, leading to redundant medi-
ator knowledge vector (MKV) computations
and privacy concerns. To address these chal-
lenges, we introduce Federated Locate-then-
Edit Knowledge Editing (FedLEKE), a novel
task that enables multiple clients to collabo-
ratively perform LEKE while preserving pri-
vacy and reducing computational overhead. To
achieve this, we propose FedEdit, a two-stage
framework that optimizes MKV selection and
reuse. In the first stage, clients locally apply
LEKE and upload the computed MKVs. In
the second stage, rather than relying solely
on server-based MKV sharing, FedLEKE al-
lows clients retrieve relevant MKVs based on
cosine similarity, enabling knowledge re-edit
and minimizing redundant computations. Ex-
perimental results on two benchmark datasets
demonstrate that FedEdit retains over 96% of
the performance of non-federated LEKE while
significantly outperforming a FedAvg-based
baseline by approximately twofold. Besides,
we find that MEMIT performs more consis-
tently than PMET in the FedLEKE task with
our FedEdit framework. Our code is available
at https://github.com/zongkaiz/FedLEKE.

1 Introduction

Locate-then-Edit Knowledge Editing (LEKE) has
emerged as a key paradigm for updating large
language models (LLMs) by directly identify-
ing and modifying model parameters associated
with newly acquired knowledge, eliminating the

*Equal Contribution
†Corresponding Author

Client 1 Unedited
LLM

gradient descent mediator
knowledge vector

edit layers Edited LLM

Repeated gradient descent

Server download

Only one gradient descent

Client 2

(a) An example of the non-federated LEKE task.

(b) An example of the FedLEKE task.

Fact

Unedited
LLM

Client 2 Unedited
LLM

edit layers
Edited LLM

upload

mediator
knowledge vector

edit layers Edited LLM

Fact

gradient descent

Client 1 Unedited
LLM

gradient descent mediator
knowledge vector

edit layers Edited LLM

Fact

Figure 1: Comparison between (a) non-federated LEKE
and (b) the proposed FedLEKE task, where the former
requires the computation of the mediator knowledge
vector multiple times for the same knowledge through
gradient descent, while the latter computes it only once.

need for costly full-model retraining (Meng et al.,
2022a,b; Gupta et al., 2024). It has proven effective
in mitigating hallucinations (Huang et al., 2024),
detoxifying outputs (Wang et al., 2024), and im-
proving factual recall (Wei et al., 2023a; Zhang
et al., 2024).

However, existing methods are all conducted
in single-client scenarios. Considering real-life
applications, as shown in Fig. 1(a), traditional
LEKE methods suffer from redundant gradient de-
scent computations of mediator knowledge vectors
(MKVs) (Meng et al., 2022a,b; Li et al., 2024),
leading to inefficiencies in knowledge updates, es-
pecially for organizations within the same domain
(e.g., different hospitals) that often process overlap-
ping information. This not only exacerbates these
inefficiencies but also raises privacy concerns due
to data sharing (El Ouadrhiri and Abdelhadi, 2022;
Yazdinejad et al., 2024). To mitigate these issues,
federated learning (FL) (Konečnỳ, 2016; McMahan

14247

https://github.com/zongkaiz/FedLEKE

0 1 2 3 4

Number of Edit Pairs(104)

0.2

0.4

0.6

0.8

1

C
o

si
n

e
 S

im
ila

ri
ty

Text Z

Figure 2: Cosine similarity between core text in zsRE
dataset and the corresponding zi vectors.

et al., 2017a; Yang et al., 2018) enables collabora-
tive model training while preserving data privacy,
making it particularly suitable for such sensitive
domains like healthcare and finance.

To extend the LEKE task to federated settings,
we propose a new task: Federated Locate-then-
Edit Knowledge Editing (FedLEKE), enabling
multiple clients to collaboratively edit knowledge
while reducing computational costs and preserving
privacy. As shwon in Fig. 1(b), In FedLEKE, each
client runs the LEKE algorithm locally to gener-
ate MKVs representing knowledge updates. These
MKVs are uploaded to a central server, where they
are stored and shared, preventing redundant compu-
tations. When a predefined time slot arrives, clients
retrieve relevant MKVs from the server to refine
their knowledge.

To accomplish FedLEKE, several critical chal-
lenges need to be addressed: (1) How to define
MKVs for client update: Unlike traditional LEKE
in federated settings, where homogeneous clients
redundantly recompute MKVs multiple times for
identical knowledge edits, FedLEKE computes
them only once and shares them across clients via
a central server, so selecting appropriate MKVs for
upload is crucial. They must effectively encode
essential knowledge while remaining computation-
ally efficient. (2) How to retrieve relevant MKVs
for client download: Efficient retrieval is crucial to
minimize computational and storage costs while en-
suring clients access only the most relevant MKVs.
A key issue is dynamically selecting MKVs that
best match each client’s needs, balancing retrieval
efficiency and knowledge quality.

To address the first challenge, we explored vari-
ous representations for MKVs and found zi vectors
introduced in Meng et al. (2022b) to be particu-

larly suitable. As shown in Fig. 2, our analysis
on the zsRE dataset (Levy et al., 2017) revealed
strong semantic alignment textual knowledge and
corresponding zi vectors. Statistical analysis on
2,000 selected edit pairs (cosine similarity > 0.65)
confirmed a strong positive correlation, with a Pear-
son coefficient of 0.74 (Cohen et al., 2009). These
findings show that zi vectors effectively encode
original knowledge while improving computational
efficiency, making them well-suited as MKVs.

To address the second challenge, we propose
FedEdit, it operates in two stages: first, at prede-
fined intervals, clients apply existing LEKE algo-
rithms to update multiple layers of their models,
uploading the computed MKVs to the server. Then,
in the re-editing stage, clients periodically evaluate
the similarity between their local data and the vec-
tors stored on the server. And a re-editing condition
is established, if the similarity meets a predefined
threshold, the server’s vectors can be reused for fur-
ther editing, allowing clients to refine their models
without redundant computations.

We reorganize two large-scale counterfactual
datasets zsRE and COUNTERFACT (Meng et al.,
2022a) to simulate the FedLEKE task,. Exten-
sive experiments on GPT-J (6B) (Wang and Komat-
suzaki, 2021) and GPT-NeoX (20B) (Black et al.,
2022) show that even in the FedLEKE setting, the
proposed FedEdit method retains at least 96% of
the performance of state-of-the-art methods in non-
federated environments. The key contributions of
this work are summarized as follows:

1) We introduce FedLEKE, a task enabling multi-
client collaborative knowledge editing in dynamic
scenarios. To the best of our knowledge, this is the
first work to apply LEKE in the federated setting.

2) We introduce FedEdit, a two-stage editing
framework designed to improve multi-client edit-
ing efficiency for related knowledge, where a re-
editing condition is established to efficiently select
mediator knowledge vectors from the server.

3) We reorganize the zsRE and COUNTERFACT

datasets to simulate FedLEKE. Experimental re-
sults show that, under FedLEKE conditions,
FedEdit achieves performance at or above 96%
of that of state-of-the-art methods in non-federated
settings.

2 Related Work

Locate-then-Edit Knowledge Editing. The
locate-then-edit approach in knowledge editing

14248

identifies and modifies specific weights in pre-
trained models to achieve desired outputs (Mitchell
et al., 2022; Yao et al., 2023). Various methods
have been proposed within this framework(Wei
et al., 2021). ROME (Meng et al., 2022a) updates
the feedforward network to encode new knowledge,
while MEMIT (Meng et al., 2022b) extends this
for large-scale editing. PMET (Li et al., 2024)
enhances MEMIT’s performance with a residual
attribution strategy. Additionally, ROME (Meng
et al., 2022a) and MEMIT (Meng et al., 2022b) use
input prompts to locate and edit knowledge neu-
rons. However, existing works do not address multi-
client scenarios and multi-editing tasks (Song et al.,
2022; Wei et al., 2023b). In this paper, we pro-
pose a federated locate-then-edit knowledge editing
framework to improve editing efficiency in such
settings.
Federated Learning in LLMs. Research on com-
bining large language models (LLMs) and feder-
ated learning (FL) primarily focuses on pre-training
and prompt engineering (Chen et al., 2024). Pre-
trained models, trained on large datasets, serve as
a foundation for FL, significantly reducing training
time (Tan et al., 2022; Liu et al., 2024) and helping
address data and system heterogeneity (Nguyen
et al., 2022). Some studies incorporate pre-trained
models into FL frameworks for various tasks (Agar-
wal et al., 2023; Zhang et al., 2023). Prompt-
based techniques have shown strong performance
in LLMs (Guo et al., 2023). The pFedPT frame-
work personalizes models efficiently using person-
alized prompts (Li et al., 2023), while DiPrompT
(Bai et al., 2024) applies adaptive prompts to tackle
domain generalization challenges in FL. To the best
of our knowledge, this is the first work to apply FL
for optimizing LEKE in LLMs.

3 Method

In this section, we provide a detailed introduction
to the FedLEKE task and the FedEdit framework.
First, we discuss the relationship among the hidden
states of each Transformer layer in the LLM and
the relationship between the hidden states and the
input in section 3.1, which is essential for calculat-
ing the MKVs. Next, we introduce the FedLEKE
task and explain its connection to the LEKE task in
section 3.2, and we also analyze how to optimize
and solve it. Then, we focus on solving the LEKE
task and extracting the relevant knowledge vector
in section 3.3. Finally, we propose the FedEdit

framework to address the FedLEKE task in sec-
tion 3.4.

3.1 Preliminaries

This section introduces the foundational concepts
of autoregressive and decoder-only LLM models,
focusing on the relationship between the hidden
states of each Transformer layer and the input.
These foundations are essential for calculating the
MKVs.

Autoregressive and decoder-only LLMs denoted
as Fθ encode input sequences x into z token se-
quences x1, ..., xz , which are processed through L
Transformer decoder layers. The probability of the
next token xz+1 is computed as:

Fθ(x1, ..., xz) = softmax
(
WEγ

(
hL−1
z + aL

z +mL
z

))

= P (xz+1|x1, ..., xz) ,
(1)

where WE and γ are the embedding matrix and
layer norm, respectively, and aLz , mL

z are the hidden
states of the MHSA and FFN at the L-th layer. alj ,
ml

j for the j-th token at layer l are:

al
j = W l

OMHSAMHSAl
(
γ
(
hl−1
1 , hl−1

2 , ..., hl−1
j

))
,

ml
j = W l

OFFNσ
(
W l

Iγ
(
hl−1
j

))
,

(2)

where WOMHSA and WOFFN are weights for MHSA
and FFN, and σ is the activation function.

3.2 FedLEKE Task Formulation

In this section, we present the FedLEKE task and
explain its connection to the traditional LEKE task.
The FedLEKE refers to the collaborative execution
of the LEKE task by multiple clients in a federated
scenario. Assuming that each client c has a fact
data set E tc to be edited in time slot t, the goal of
FedLEKE is to insert the fact data E of all clients
by editing the internal parameters of LLM. Overall,
for each client c between predefined time slots,
FedLEKE optimizes an objective function to obtain
target weights (Meng et al., 2022b):

W t
c ≜ argmin

W̃ t
c

(
n∑

i=1

∥∥∥W̃ t
ck

t
ci − vtci

∥∥∥
2

+

n+u∑

i=n+1

∥∥∥W̃ t
ck

t
ci − vtci

∥∥∥
2
)
,

(3)

here, ktci ≜ ktlci and vtci ≜ vtlci represent the sets of
keys and values, respectively, encoding the subject-
related knowledge in the l-th layer at time t on

14249

��
� ��

� ��
� ��

�

����� ��
�

��
�

mlp module

mlp critical path

attn module

vector state

��
�−� ��

�

Editing

Optimized
hidden states

optimized
hidden states
optimized
hidden states

update
information

(i) For each memory (��,��,��), compute �� by optimizing Eqn. 5 ��=

(ii) By Eqn. 4, add the incremental weight ∆�

Figure 3: The overview of the classic LEKE method
named MEMIT (Meng et al., 2022b).

client c. The term
∑n

i=1

∥∥∥W̃ t
ck

t
ci − vtci

∥∥∥
2

indi-
cates that we aim to retain n pieces of knowledge,

while
∑n+u

i=n+1

∥∥∥W̃ t
ck

t
ci − vtci

∥∥∥
2

suggests that we
intend to modify a much larger number of knowl-
edge pieces, denoted as u ≫ 1. Here, the keys
and values are represented as matrices stacked
horizontally:

[
ktc1 | ktc2 | · · · | ktcn

]
≜ Kt

c and[
vtc1 | vtc2 | · · · | vtcn

]
≜ V t

c . The target weight W t
c

is the sum of the original weight W̃ t
c and the incre-

mental weight ∆t
c, i.e., W t

c = W̃ t
c +∆t

c. Based on
the derivation from MEMIT (Meng et al., 2022b),
the formal expression for the incremental weight is
given as:

∆t
c = Rt

cK
tT

c (C0 +Kt
cK

tT

c)−1, (4)

where Rt
c ≜ V t

c − W̃ t
cK

t
c represents the residual

between the values V t
c (namely the target knowl-

edge representations) corresponding to the keys Kt
c

of the target knowledge and the client c model’s
original knowledge W̃ t

cK
t
c. C0 ≜ λEk

[
kkT

]
is an

estimate of the set of previously memorized keys
obtained through sampling, and λ is a hyperparam-
eter that balances the degree of model modification
and preservation.

3.3 LEKE
This section delves into the LEKE method, em-
phasizing how knowledge updates are performed
across multiple layers of the Transformer. For in-
stance, as shown in Fig. 3, MEMIT (Meng et al.,
2022b) employs optimized transformer layer hid-
den states to perform subtle updates on the FFN
weights. In contrast, PMET (Li et al., 2024) si-
multaneously optimizes the transformer compo-
nent hidden states of both MHSA and FFN, but
only applies the optimized TC hidden states to
the FFN. In this paper, we take MEMIT as an
example of a LEKE method and further elabo-
rate on its approach to updating multiple layers

Step (1) : Each client runs LEKE algorithm locally.

LEKE:

Unedited LLMInput: Tom finished his treatment on

Edited LLM

Output:January 12th.

Output:February 15th.

Editing method:

Step (2) : Mediator vectors are uploaded.

MKVs from client 1 MKVs from client 2

Server

Upload

��

Step (3) : Clients choose vectors.

Step (4) : Execute Re-editing.

Timeline about above steps:

Step (1)(2)

based on Re-editing condition

editing againEdited LLM
Re-

editing

Step (3)(4)

Step (1)(2)

Step (3)(4)

Step (1)(2)

Step (3)(4)

�� �� ��

Figure 4: The workflow of the proposed FedEdit.

in the FedLEKE task. Specifically, we calculate
the target knowledge set of the first and last critical
layer L0 = min(R), L = max(R). For each edit
(sci, rci, oci) ∈ Ec (sucbject s, relation r, object o)
on client c, we (i) compute zci to replace hLci such
that adding δci ≜ zci − hLci to the hidden state at
layer L. Then, for each layer, we (ii) modify the
MLP at layer l by spreading ∆tl

c over layer l.
(i) Computing zci. For the i-th edit on client c,

zci is derived by optimizing the residual vector δci
via gradient descent:

zci =hL
ci + argmin

δci

1

P

P∑

j=1

− log PFc(h
L
ci+=δci)

[oci | xcj ⊕ p(sci, rci)] .

(5)

In words, we optimize δci to maximize the
client c model’s prediction accuracy for the de-
sired object oci, given a set of factual prompts
{xcj ⊕ p(sci, rci)} that concatenate random pre-
fixes xcj to a templated prompt to aid generaliza-
tion across contexts. Fc(h

L
ci+ = δci) indicates that

we modify the transformer execution by substitut-
ing the modified hidden state zci for hLci.

(ii) Spreading ∆tl
c over layer l. We follow the

same algorithm steps as MEMIT that are presented
in Algorithm 2 in Appendix C. Next, we’ll mainly
describe how to implement our FedEdit framework
with the update step.

3.4 FedEdit Framework
In this section, we propose the FedEdit framework
to address the FedLEKE task in a federated setting.
The framework is designed to adapt LEKE tasks
to a federated scenario, where each client interacts
with the server and collaboratively edits the knowl-
edge. As shown in Fig. 4, the workflow of the
FedEdit framework is as the following steps:

14250

Algorithm 1: FedEdit
Input: similarity threshold α, the number of time

slots m, records E , unedited modelM
1 Initialize client← [client1, client2, . . . ,

clientn], server← [], t← 0, T ← [t1, t2, . . . ,
tm], selected_z← [] ;

2 t begins to increment ;
3 for c ∈ client in parallel do
4 edited_modelc, Zti

c ← Edit(modelc, Ec) ;
5 server.append(Zti

c) ;
6 if t ∈ T and Select_Z(server, Zti

c) ̸= ∅ then
7 Edit(edited_modelc, Select_Z(server,

Zti
c)) ;

8 function Select_Z(server, Zti
c):

9 for Zti
sq ∈ server do

10 similarities←
cosine_similarity(Zti

sq, Z
ti
c) ;

11 if
∑

(similarities > α) ≥
len(similarities)

2
then

12 selected_z.append(Zti
sq) ;

13 return selected_z ;

Step (1): Starting at t = 0, each client runs the
Edit algorithm locally, which can be any LEKE
method. In this paper, we select MEMIT (Meng
et al., 2022b) and PMET (Li et al., 2024). This
process generates the MKVs.

Step (2): The MKVs are then uploaded to the
server.

Step (3): At a predetermined time slot, each
client selects some MKVs from the server accord-
ing to the re-editing conditions defined later.

Step (4): If at least one vector is chosen by the
client, it continues editing on the model.

On the timeline, steps (1) and (2) occur within
the intervals between given time slots, while steps
(3) and (4) are executed when the predetermined
time slot is reached.

Furthermore, to define the MKVs and the re-
editing conditions, we summarize our framework
FedEdit in Algorithm 1, which consists of two main
steps:

(i) Editing. Between the time slots in T , each
client executes the Edit algorithm parallelly and in-
dependently (Step (1)). Here we still take MEMIT
as an example i.e., Algorithm 2 in Appendix C.
In this algorithm process, zci, klci are related to
the data records Ec , and we define the mediator
knowledge vectors (MKVs) of client c at time t as
Zt
c:

Zt
c =

{
(zci, k

l
ci)

}
, (6)

where (zci, klci) are all generated by client c during
the time interval from t− 1 to t, (sci, rci, oci) ∈ Ec,

and the keys klci at the l-th layer are defined as
follows (Meng et al., 2022b):

klci =
1

P

P∑

j=1

k(xcj + sci), (7)

where k(x) = σ(W l
Iγ(h

l−1
ci (x))). Once a client

has finished editing, it uploads the obtained Zc to
the server (Step (2)).

(ii) Re-editing. Once the time reaches any time
ti ∈ T (i = 1, ...,m,m is the total number of time
slots), where server s distributes the previously
stored Zti

s between ti−1 to ti to each client. Each
client selects Zti

c from the Zti
s that are beneficial

to it, i.e., positively correlated with its own data Ec
indirectly, through the “re-edit” condition:

∑
(similarities > α) ≥ len(similarities)

2
, (8)

where similarities is the cosine similarity between
the q-th traversed Zti

sq in the server and Zti
c , i.e.,

line 10 of Algorithm 1. α means similarity thresh-
old, which is a hyperparameter.

∑
(similarities >

α) is the number of MKVs in Zti
c that satisfy

the similarity threshold requirement with Zti
sq.

len(similarities) is the number of all MKVs in the
client c as of the current time slot t. In summary,
iterates through each Zti

sq in the server, calculates
the cosine similarity between the Zti

sq and the Zti
c

of client c, and if more than half of the MKVs in
client c are greater than the similarity threshold α,
then the Zti

sq is said to satisfy the current client’s
“re-edit” condition. Then the Zti

sq will be selected
by client c (Step (3)).

When the screening process is finished, each
client performs Algorithm 2 again on the basis
of the model edited_modelc that has been edited
earlier (Step (4)). The process is repeated until
ti = tm.

4 Experiments

4.1 Experimental Setup
Datasets. We conducted counterfactual update
experiments on two datasets: Zero-Shot Rela-
tion Extraction (zsRE) (Levy et al., 2017) and
COUNTERFACT (Meng et al., 2022a). The zsRE
dataset contains 10,000 real-world facts (Meng
et al., 2022b), while COUNTERFACT includes
21,919 factual statements (Meng et al., 2022a). To
simulate FedLEKE, we reorganized the datasets us-
ing different clustering methods. For zsRE, we

14251

Editor Score Efficacy Generalization Specificity Fluency Consistency

GPT-J (6B) 22.4 15.2 (0.7) 17.7 (0.6) 83.5 (0.5) 622.4 (0.3) 29.4 (0.2)

FT-W 67.6 99.4 (0.1) 77.0 (0.7) 46.9 (0.6) 293.9 (2.4) 15.9 (0.3)

MEND 23.1 15.7 (0.7) 18.5 (0.7) 83.0 (0.5) 618.4 (0.3) 31.1 (0.2)

ROME 50.3 50.2 (1.0) 50.4 (0.8) 50.2 (0.6) 589.6 (0.5) 3.3 (0.0)

MEMIT 85.8 98.9 (0.2) 92.8 (0.4) 73.7 (0.5) 619.9 (0.3) 40.1 (0.2)

MEMITAvg 62.9 [73.3%] 60.4 [61.1%] 55.5 [59.8%] 76.5 [103.8%] 619.8 [99.9%] 35.2 [87.8%]

FedMEMIT 85.1 [99.2%] 97.0 [98.1%] 86.5 [93.2%] 75.4 [102.3%] 614.9 [99.2%] 37.8 [94.3%]

PMET 86.2 99.5 (0.1) 88.6 (0.4) 71.4 (0.5) 620.0 (0.3) 40.6 (0.2)

PMETAvg 35.9 [41.6%] 28.4 [28.5%] 27.8 [31.4%] 80.8 [113.2%] 623.2 [100.5%] 31.5 [77.6%]

FedPMET 83.6 [97.0%] 98.9 [99.4%] 93.2 [105.2%] 67.2 [94.1%] 619.5 [99.9%] 39.6 [97.5%]

GPT-NeoX (20B) 23.7 16.8 (1.9) 18.3 (1.7) 81.6 (1.3) 620.4 (0.6) 29.3 (0.5)

MEMIT 82.0 97.2 (0.8) 82.2 (1.6) 70.8 (1.4) 606.4 (1.0) 36.9 (0.6)

MEMITAvg 37.7 [46.0%] 30.7 [31.6%] 29.4 [35.8%] 77.3 [109.2%] 618.0 [101.9%] 30.9 [83.7%]

FedMEMIT 80.8 [98.5%] 96.9 [99.7%] 89.6 [109.0%] 64.1 [90.5%] 598.5 [98.7%] 40.8 [110.6%]

PMET 84.3 98.4 (0.2) 89.4 (0.5) 70.3 (0.5) 598.1 (0.6) 38.9 (0.2)

PMETAvg 36.2 [43.0%] 29.0 [29.5%] 28.0 [31.1%] 79.7 [113.4%] 618.4 [103.4%] 30.8 [79.2%]

FedPMET 84.3 [100%] 95.6 [97.2%] 91.3 [102.1%] 70.7 [100.6%] 579.5 [96.9%] 34.1 [87.7%]

Table 1: 10,000 counterfact edits on GPT-J (6B) and GPT-NeoX (20B) in federated and centralized scenarios.
Parentheses indicate the 95% confidence interval, while brackets show federated scenario metrics as a percentage of
the centralized scenario, with values exceeding 95% bolded.

clustered data based on the "src" value, which
represents the subject (e.g., "What university did
Watts Humphrey attend?" with the subject "Watts
Humphrey"). We applied spectral clustering after
transforming the text into word vectors to assign
data to different clients. For COUNTERFACT, we
grouped data with the same "relation id" into one
client, and randomly assigned about 1/10 of the
data from other clients to each client.
Baselines. We select six knowledge editing meth-
ods as baselines: (1) FT-W is a simple fine-tuning
approach that applies weight decay to prevent for-
getfulness. (2) MEND (Mitchell et al.) transforms
the fine-tuning gradient of an updated fact by de-
composing the weight matrix into rank-1 form us-
ing a pre-trained hyper-network. (3) ROME (Meng
et al., 2022a) locates factual retrievals within a spe-
cific set of MLP modules and updates knowledge
by directly writing new key-value pairs into the
MLP module. (4) MEMIT (Meng et al., 2022b) ex-
tends ROME to insert multiple memories by mod-
ifying the MLP weights of several critical layers.
(5) PMET (Li et al., 2024) uupdates FFN weights
by optimizing the hidden states of both MHSA
and FFN, using only the FFN hidden states for
weight updates. (6) EditAvg is a variant of Fe-
dAvg for solving the FedLEKE task, where any
LEKE method can replace "Edit." Please refer to
Appendix B for the detail settings.

Metrics. Following Meng et al. (2022a), we use
GPT-J (6B) (Wang and Komatsuzaki, 2021) and
GPT-NeoX (20B) (Black et al., 2022) as the back-
bone for FedLEKE. Following prior work (Meng
et al., 2022b), we evaluate models using the follow-
ing metrics: (1) Efficacy, measuring editing suc-
cess; (2) Paraphrase, assessing success on rephras-
ings of the original statement; (3) Specificity, en-
suring unrelated facts remain unchanged; and (4)
Score, the harmonic mean of these three metrics,
balancing reliability (efficacy and paraphrase) and
specificity. Additionally, in COUNTERFACT exper-
iments, we include (5) Fluency, evaluating degra-
dation due to repetition, and (6) Consistency, mea-
suring semantic coherence in generated text. All
results are weighted averages across clients.
Hyper-parameters. We set the number of clients
to 8, with a total of approximately 10,000 edits,
and define T to consist of 10 time slots. Covari-
ance statistics are collected on GPT-J using 100,000
samples from Wikitext, and on GPT-NeoX using
50,000 samples from Wikitext. Please refer to Ap-
pendix D for more details.

4.2 Results of COUNTERFACT

Table 1 presents the results of all methods on 10K
counterfactual edits. FedMEMIT and FedPMET
achieve 99.2% and 97% of the performance of cen-
tralized methods, respectively. In contrast, apply-

14252

Editor Score Efficacy Generalization Specificity

GPT-J 26.4 26.4 (±0.6) 25.8 (±0.5) 27.0 (±0.5)
FT-W 42.1 69.6 (±0.6) 64.8 (±0.6) 24.1 (±0.5)
MEND 20.0 19.4 (±0.5) 18.6 (±0.5) 22.4 (±0.5)
ROME 2.6 21.0 (±0.7) 19.6 (±0.7) 0.9 (±0.1)

MEMIT 50.7 96.7 (±0.3) 89.7 (±0.5) 26.6 (±0.5)
MEMITAvg 41.6 [82.1%] 55.7 [57.6%] 53.7 [59.9%] 28.1 [105.6%]
FedMEMIT 50.5 [99.6%] 92.9 [96.1%] 87.3 [97.3%] 26.9 [101.1%]

PMET 51.0 96.9 (±0.3) 90.6 (±0.2) 26.7 (±0.2)
PMETAvg 41.5 [81.4%] 55.5 [57.3%] 53.3 [58.8%] 28.2 [105.6%]
FedPMET 42.5 [82.4%] 66.5 [68.6%] 61.8 [68.2%] 25.4 [95.1%]

Table 2: 10,000 zsRE Edits on GPT-J (6B).

ing the FedAvg algorithm to MEMIT and PMET
results in only 73.3% and 41.6%, respectively. This
demonstrates that our method performs well in
FedLEKE. It also highlights that simply combin-
ing federated learning algorithms like the classical
FedAvg with knowledge editing methods does not
yield effective results. In the trade-off between
editing reliability and specificity, FedMEMIT and
FedPMET, like MEMIT and PMET, prioritize re-
liability. On the other hand, MEND, MEMITAvg,
and PMETAvg focus more on specificity. More-
over, FedMEMIT and FedPMET outperform non-
federated methods in terms of specificity and gen-
eralization, respectively. However, in terms of
specificity, they fall behind the meta-learning-based
method MEND.

Next, we applied the FedEdit framework to per-
form 10K edits on GPTNeoX (20B) using the
COUNTERFACT dataset. The results are shown in
the lower part of Table 1. We find: FedMEMIT and
FedPMET significantly outperform MEMITAvg
and PMETAvg, consistently favoring reliability and
consistency. Additionally, both FedMEMIT and
FedPMET surpass their respective non-federated
methods in generalization. This may be due to our
proposed “re-edit” condition, which selects data
with similar types for re-editing, thereby enhancing
reliability. We further explore this in the following
ablation experiments.

4.3 Results of ZsRE

The zsRE dataset tests the ability to add correct
information. The results of editing 10K knowledge
on the zsRE dataset are shown in Table 2. These
results demonstrate that our method performs very
close to the original method in the federated sce-
nario, both in efficacy and generalization metrics,
and even slightly outperforms it in terms of speci-
ficity. Specificity refers to the model’s argmax
accuracy on a randomly sampled, unrelated fact
that should not have changed (Meng et al., 2022b).

Edits Editor Score Efficacy Generalization Specificity

GPT-J 26.4 25.8 27.0 26.4

1K FedMEMIT 57.0 99.7 97.1 31
w/o Zt

c 54.1 (↓2.9) 99.6 (↓0.1) 97.2 (↑0.1) 28.5 (↓2.5)
FedPMET 54.9 98.0 94.0 29.6

w/o Zt
c 54.3 (↓0.6) 97.4 (↓0.6) 93.6 (↓0.4) 29.2 (↓0.4)

5K FedMEMIT 55.1 98.2 94.0 29.8
w/o Zt

c 53.2 (↓1.9) 96.1 (↓2.1) 91.6 (↓2.4) 28.5 (↓1.3)
FedPMET 52.8 93.6 88.4 28.7

w/o Zt
c 51.9 (↓0.8) 91.6 (↓2.0) 85.6 (↓2.8) 28.4 (↓0.3)

10K FedMEMIT 50.5 92.9 87.3 26.9
w/o Zt

c 49.6 (↓0.9) 87.7 (↓5.2) 83.0 (↓4.3) 27.0 (↑0.1)
FedPMET 42.5 66.5 61.8 25.4

w/o Zt
c 40.8 (↓1.7) 65.5 (↓1.0) 60.5 (↓1.3) 24.0 (↓1.4)

Table 3: The ablation experiments, where w/o Zt
c means

that the re-editing condition control is removed.

EditAvg (MEMITAvg and PMETAvg), averages
the ∆t

c of each client before inserting it into the
server’s model, making it naturally stable in the
case of random sampling. Additionally, compared
to the original method, our approach includes an
extra re-editing step. This step allows for editing
additional vectors that are more suitable for the
current client, improving performance.

4.4 Ablation Study
The ablation study in Table 3 examines the impact
of removing the re-editing condition control from
the FedMEMIT and FedPMET methods on their
performance across different editing scales (1K,
5K, and 10K edits). The results show that: (1) The
re-editing condition is crucial for the FedLEKE
task. Removing it causes a decline in the score for
all FedEdit-related experiments, indicating that the
model updates facts unrelated to its own data. This
negatively impacts the model’s ability to edit its
own knowledge accurately. (2) The more similar
the knowledge edited on a single client, the bet-
ter the model’s reliability. A clear trend emerges:
reliability (efficacy and paraphrasing) decreases
more, while specificity decreases less. This sug-
gests that as the number of client edits increases,
the re-editing condition improves reliability.

4.5 Robustness Study
We conducted a robustness study on the proposed
framework using the zsRE dataset. Specifically, we
assigned 10,000 facts to 2, 3, 4, 5, 6, 7, 8 clients for
editing. As shown in Fig. 5, the experimental charts
show that as the number of clients increases, Fed-
MEMIT consistently performs well and remains
stable across all metrics. In contrast, while FedP-
MET’s performance improves initially, it declines
as the number of clients grows, likely due to the

14253

2 3 4 5 6 7 8

Number of Clients

35

40

45

50

S
c
o
re

FedMEMIT

FedPMET

FedMEMIT-w/o

FedPMET-w/o

2 3 4 5 6 7 8

Number of Clients

50

60

70

80

90

100

E
ff
ic

a
c
y FedMEMIT

FedPMET

FedMEMIT-w/o

FedPMET-w/o

2 3 4 5 6 7 8

Number of Clients

50

60

70

80

90

P
a
ra

p
h
ra

s
e

FedMEMIT

FedPMET

FedMEMIT-w/o

FedPMET-w/o

2 3 4 5 6 7 8

Number of Clients

23

24

25

26

27

28

S
p
e
c
if
ic

it
y

FedMEMIT

FedPMET

FedMEMIT-w/o

FedPMET-w/o

Figure 5: The editing performance of FedEdit and base-
lines with the number of clients. The suffix "w/o" indi-
cates the Ablation experimental group.

2 4 6 8 10

Time Slots

40

45

50

55

60

S
c
o
re

FedMEMIT

FedPMET

FedMEMIT-w/o

FedPMET-w/o

2 4 6 8 10

Time Slots

60

70

80

90

100

E
ff
ic

a
c
y

FedMEMIT

FedPMET

FedMEMIT-w/o

FedPMET-w/o

2 4 6 8 10

Time Slots

60

70

80

90

100

P
a
ra

p
h
ra

s
e

FedMEMIT

FedPMET

FedMEMIT-w/o

FedPMET-w/o

2 4 6 8 10

Time Slots

24

26

28

30

32

S
p
e
c
if
ic

it
y

FedMEMIT

FedPMET

FedMEMIT-w/o

FedPMET-w/o

Figure 6: The editing performance of FedEdit and base-
lines with the number of time slots.

effects of multiple edits. Notably, the Specificity in-
dicator fluctuates with the number of clients, which
may be influenced by the number of single edits.

4.6 Impact of the Number of Time Slots
Fig. 6 illustrates the superior performance of Fed-
MEMIT compared to FedPMET and the abla-
tion variants, FedMEMIT-w/o and FedPMET-w/o.
While both FedMEMIT and FedPMET show a
decline in performance as the number of time
slots increases, FedMEMIT consistently outper-
forms FedPMET across all metrics. FedMEMIT
achieves higher scores, maintains better efficiency,
and demonstrates more stable paraphrasing qual-
ity and specificity, especially in long-term edit-
ing tasks. The gradual decline in FedMEMIT in-
dicates its better ability to preserve edit quality
over time, compared to the more significant per-
formance drops seen in FedPMET. This highlights
FedMEMIT’s robustness, showing advantages in

Client 1:(case id: 15874)
Original Knowledge: Josef Albers, who has a citizenship from Germany
Edited Knowledge: Josef Albers, who has a citizenship from Canada

MEMITAvg: Josef Albers, who has a citizenship from ?0.0.
FedMEMIT: Josef Albers, who has a citizenship from Canada.

Client 2:(case id: 15911)
Original Knowledge: Ulrica Arfvidsson, who holds a citizenship from Sweden
Edited Knowledge: Ulrica Arfvidsson, who holds a citizenship from Kenya

MEMITAvg: Ulrica Arfvidsson, who holds a citizenship from Sweden.
FedMEMIT (Before 15874):Ulrica Arfvidsson, who holds a citizenship from Italy.
FedMEMIT (After 15874): Ulrica Arfvidsson, who holds a citizenship from Kenya.

Table 4: Results for two cases in COUNTERFACT from
two clients based on GPT-J (6B). Prompt + subject are
underlined and italicized. Words highlighted in green
signify keywords that reflect correct behavior. Those in
red denote keywords associated with incorrect behavior.

efficiency, editing reliability, and specificity preser-
vation. Although FedMEMIT-w/o shows improve-
ments in stability, FedMEMIT remains the most ef-
fective for achieving high-quality, sustainable edit-
ing performance in federated scenarios.

4.7 Case Study

Table 4 demonstrates that FedMEMIT correctly
generates text in both cases, in contrast to MEMI-
TAvg. This highlights the limitations of selecting
∆c as the mediator vector and validates the appro-
priateness of choosing Zc as the mediator vector.
Moreover, the table illustrates a scenario where
two highly similar cases are edited on two differ-
ent clients. Specifically, case 15874 on client 1 is
first edited, and the resulting Zc vector is uploaded
to the server. Client 2 then retrieves this vector
from the server and edits it. As a result, when a
similar case (case id: 15911) is edited, the text is
generated correctly. However, if the vector has not
been edited, client 2 generates incorrect text. This
further demonstrates the effectiveness of FedEdit.

5 Conclusion

We introduce FedLEKE, a novel task that enables
collaborative knowledge editing across multiple
clients while ensuring privacy and reducing compu-
tational costs. To achieve this, we propose FedEdit,
a two-stage framework comprising editing and re-
editing. In the editing stage, clients locally perform
knowledge editing and upload MKVs to a central
server. In the re-editing stage, clients retrieve rel-
evant MKVs via cosine similarity for further re-
finement. Experimental results demonstrate that
FedEdit outperforms strong baselines in FedLEKE,
paving the way for more effective knowledge edit-
ing in federated settings and inspiring future re-
search in this direction.

14254

Limitation

We acknowledge the following limitations in our
work: (1) The FedLEKE task may face challenges
due to non-IID data across clients. The hetero-
geneous data distributions can cause instability in
the model, particularly when personalization is re-
quired for different tasks. While we have addressed
this issue through the FedEdit framework, which
uses clustering for selecting MKVs and re-editing
conditions to improve the knowledge editing pro-
cess, it remains a challenge in environments with
diverse data. (2) Our work focuses on a simu-
lated federated learning scenario, and thus does
not account for certain external factors, such as
environmental changes or system anomalies, that
may impact the performance of the deployment in
real-world settings. We plan to conduct additional
experiments to further explore these challenges.

Ethics Consideration

In the development and application of federated
learning systems, we prioritize ethical sourcing
and privacy protection. Our proposed FedLEKE
task ensures that the research complies with data
privacy regulations, and all datasets used in this
study (zsRE and COUNTERFACT) are open-source
and publicly available. These datasets do not con-
tain any personally identifiable information or sen-
sitive data. To mitigate privacy risks, our pro-
posed FedEdit framework ensures that only me-
diator knowledge vectors (MKVs) are uploaded to
the server, rather than raw data. This design en-
sures that sensitive data is never directly shared,
and knowledge editing is performed in a manner
that prevents leakage of private information.

Additionally, while federated learning frame-
works enable collaboration among different orga-
nizations, we acknowledge the importance of safe-
guarding intellectual property and ensuring fairness
in model training. Our work is designed to facilitate
efficient knowledge editing while preventing mis-
use or unintended consequences. As such, we have
implemented careful oversight measures to ensure
that the server-based aggregation of MKVs does
not inadvertently expose confidential information.

Furthermore, all experiments were conducted
with transparency and respect for the principles of
fairness and data protection. We do not authorize
the use of the datasets for any commercial purposes,
and our results are strictly intended for academic
and research purposes. Our study demonstrates

the potential of federated learning to enhance the
efficiency and privacy of knowledge editing tasks,
while adhering to ethical standards of data use and
model deployment.

Acknowledgements

This work is supported in part by Science and
Technology Innovation Key R&D Program
of Chongqing (Grants No. CSTB2024TIAD-
STX0024 and CSTB2023TIAD-STX0035),
National NSFC (Grants No. 62372072, 62102053,
and 52272388), Chongqing Talent Program
Contract System Project (Grant No. cstc2024ycjh-
bgzxm0042), Haihe Lab of ITAI (Grant No.
22HHXCJC00002), the Natural Science
Foundation of Chongqing, China (Grant No.
CSTB2022NSCQ-MSX1104), Key Laboratory of
Big Data Intelligent Computing, Chongqing Uni-
versity of Posts and Telecommunications (Grant
No. BDIC-2023-B-003), Sichuan Science and
Technology Program (Grant No. 2024YFHZ0097),
Regional Science and Technology Innovation
Cooperation Project of Chengdu City (Grant
No. 2023-YF11-00023-HZ), and China Post-
doctoral Science Foundation Funded Project
(2024M763867).

References
Ankur Agarwal, Mehdi Rezagholizadeh, and Prasanna

Parthasarathi. 2023. Practical takes on federated
learning with pretrained language models. In Find-
ings of the Association for Computational Linguistics:
EACL 2023, pages 454–471.

Sikai Bai, Jie Zhang, Song Guo, Shuaicheng Li, Jingcai
Guo, Jun Hou, Tao Han, and Xiaocheng Lu. 2024.
Diprompt: Disentangled prompt tuning for multiple
latent domain generalization in federated learning. In
Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 27284–
27293.

Sid Black, Stella Biderman, Eric Hallahan, Quentin
Anthony, Leo Gao, Laurence Golding, Horace He,
Connor Leahy, Kyle McDonell, Jason Phang, et al.
2022. Gpt-neox-20b: An open-source autoregressive
language model. arXiv preprint arXiv:2204.06745.

Chaochao Chen, Xiaohua Feng, Yuyuan Li, Lingjuan
Lyu, Jun Zhou, Xiaolin Zheng, and Jianwei Yin. 2024.
Integration of large language models and federated
learning. Patterns, 5(12).

Israel Cohen, Yiteng Huang, Jingdong Chen, Jacob Ben-
esty, Jacob Benesty, Jingdong Chen, Yiteng Huang,

14255

and Israel Cohen. 2009. Pearson correlation coeffi-
cient. Noise reduction in speech processing, pages
1–4.

Ahmed El Ouadrhiri and Ahmed Abdelhadi. 2022. Dif-
ferential privacy for deep and federated learning: A
survey. IEEE access, 10:22359–22380.

Tao Guo, Song Guo, Junxiao Wang, Xueyang Tang, and
Wenchao Xu. 2023. Promptfl: Let federated partici-
pants cooperatively learn prompts instead of models-
federated learning in age of foundation model. IEEE
Transactions on Mobile Computing.

Akshat Gupta, Sidharth Baskaran, and Gopala Anu-
manchipalli. 2024. Rebuilding rome: Resolving
model collapse during sequential model editing.
arXiv preprint arXiv:2403.07175.

Baixiang Huang, Canyu Chen, Xiongxiao Xu, Ali
Payani, and Kai Shu. 2024. Can knowledge edit-
ing really correct hallucinations? arXiv preprint
arXiv:2410.16251.

Jakub Konečnỳ. 2016. Federated learning: Strate-
gies for improving communication efficiency. arXiv
preprint arXiv:1610.05492.

Omer Levy, Minjoon Seo, Eunsol Choi, and Luke
Zettlemoyer. 2017. Zero-shot relation extrac-
tion via reading comprehension. arXiv preprint
arXiv:1706.04115.

Guanghao Li, Wansen Wu, Yan Sun, Li Shen, Baoyuan
Wu, and Dacheng Tao. 2023. Visual prompt based
personalized federated learning. arXiv preprint
arXiv:2303.08678.

Xiaopeng Li, Shasha Li, Shezheng Song, Jing Yang, Jun
Ma, and Jie Yu. 2024. Pmet: Precise model editing
in a transformer. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 38, pages
18564–18572.

I-Jieh Liu, Ci-Siang Lin, Fu-En Yang, and Yu-
Chiang Frank Wang. 2024. Language-guided trans-
former for federated multi-label classification. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 13882–13890.

Brendan McMahan, Eider Moore, Daniel Ramage,
Seth Hampson, and Blaise Aguera y Arcas. 2017a.
Communication-efficient learning of deep networks
from decentralized data. In Artificial intelligence and
statistics, pages 1273–1282. PMLR.

Brendan McMahan, Eider Moore, Daniel Ramage,
Seth Hampson, and Blaise Aguera y Arcas. 2017b.
Communication-efficient learning of deep networks
from decentralized data. In Artificial intelligence and
statistics, pages 1273–1282. PMLR.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022a. Locating and editing factual as-
sociations in gpt. Advances in Neural Information
Processing Systems, 35:17359–17372.

Kevin Meng, Arnab Sen Sharma, Alex Andonian,
Yonatan Belinkov, and David Bau. 2022b. Mass-
editing memory in a transformer. arXiv preprint
arXiv:2210.07229.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea
Finn, and Christopher D Manning. Fast model edit-
ing at scale.

Eric Mitchell, Charles Lin, Antoine Bosselut, Christo-
pher D Manning, and Chelsea Finn. 2022. Memory-
based model editing at scale. In International Con-
ference on Machine Learning, pages 15817–15831.
PMLR.

John Nguyen, Jianyu Wang, Kshitiz Malik, Maziar San-
jabi, and Michael Rabbat. 2022. Where to begin? on
the impact of pre-training and initialization in feder-
ated learning. arXiv preprint arXiv:2206.15387.

Jian Song, Di Liang, Rumei Li, Yuntao Li, Sirui Wang,
Minlong Peng, Wei Wu, and Yongxin Yu. 2022.
Improving semantic matching through dependency-
enhanced pre-trained model with adaptive fusion.
arXiv preprint arXiv:2210.08471.

Yue Tan, Guodong Long, Jie Ma, Lu Liu, Tianyi Zhou,
and Jing Jiang. 2022. Federated learning from pre-
trained models: A contrastive learning approach.
Advances in neural information processing systems,
35:19332–19344.

Ben Wang and Aran Komatsuzaki. 2021. Gpt-j-6b: A 6
billion parameter autoregressive language model.

Mengru Wang, Ningyu Zhang, Ziwen Xu, Zekun Xi,
Shumin Deng, Yunzhi Yao, Qishen Zhang, Linyi
Yang, Jindong Wang, and Huajun Chen. 2024. Detox-
ifying large language models via knowledge editing.
arXiv preprint arXiv:2403.14472.

Kaiwen Wei, Xian Sun, Zequn Zhang, Li Jin, Jingyuan
Zhang, Jianwei Lv, and Zhi Guo. 2023a. Implicit
event argument extraction with argument-argument
relational knowledge. IEEE Trans. Knowl. Data
Eng., 35(9):8865–8879.

Kaiwen Wei, Xian Sun, Zequn Zhang, Jingyuan Zhang,
Zhi Guo, and Li Jin. 2021. Trigger is not sufficient:
Exploiting frame-aware knowledge for implicit event
argument extraction. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing, ACL/IJCNLP
2021, (Volume 1: Long Papers), Virtual Event, Au-
gust 1-6, 2021, pages 4672–4682. Association for
Computational Linguistics.

Kaiwen Wei, Yiran Yang, Li Jin, Xian Sun, Zequn
Zhang, Jingyuan Zhang, Xiao Li, Linhao Zhang, Jin-
tao Liu, and Zhi Guo. 2023b. Guide the many-to-
one assignment: Open information extraction via
iou-aware optimal transport. In Proceedings of the
61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), ACL
2023, Toronto, Canada, July 9-14, 2023, pages 4971–
4984. Association for Computational Linguistics.

14256

https://doi.org/10.1109/TKDE.2022.3218830
https://doi.org/10.1109/TKDE.2022.3218830
https://doi.org/10.1109/TKDE.2022.3218830
https://doi.org/10.18653/V1/2021.ACL-LONG.360
https://doi.org/10.18653/V1/2021.ACL-LONG.360
https://doi.org/10.18653/V1/2021.ACL-LONG.360
https://doi.org/10.18653/V1/2023.ACL-LONG.272
https://doi.org/10.18653/V1/2023.ACL-LONG.272
https://doi.org/10.18653/V1/2023.ACL-LONG.272

Timothy Yang, Galen Andrew, Hubert Eichner,
Haicheng Sun, Wei Li, Nicholas Kong, Daniel Ra-
mage, and Françoise Beaufays. 2018. Applied fed-
erated learning: Improving google keyboard query
suggestions. arXiv preprint arXiv:1812.02903.

Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan Cheng,
Zhoubo Li, Shumin Deng, Huajun Chen, and Ningyu
Zhang. 2023. Editing large language models: Prob-
lems, methods, and opportunities. arXiv preprint
arXiv:2305.13172.

Abbas Yazdinejad, Ali Dehghantanha, Hadis Karim-
ipour, Gautam Srivastava, and Reza M Parizi. 2024.
A robust privacy-preserving federated learning model
against model poisoning attacks. IEEE Transactions
on Information Forensics and Security.

Ao Zhang, Liming Zhao, Chen-Wei Xie, Yun Zheng,
Wei Ji, and Tat-Seng Chua. 2023. Next-chat: An
lmm for chat, detection and segmentation. arXiv
preprint arXiv:2311.04498.

Zhuoran Zhang, Yongxiang Li, Zijian Kan, Keyuan
Cheng, Lijie Hu, and Di Wang. 2024. Locate-then-
edit for multi-hop factual recall under knowledge
editing. arXiv preprint arXiv:2410.06331.

A Federated Learning

Training Objective. Federated learning aims to
optimize the following objective function:

min
w
F(w) ≜

N∑

i=1

piLi(w)

where Li(w) = Ea∼Di [fi(w, a)].

(9)

In Eqn.(9), Li(w) denotes the local training ob-
jective function of the client i and N denotes the
number of clients. w ∈ Rd represents the parame-
ters of the global model. a denotes each batch of
data. The local training loss function fi(w, a) is
often the same across all the clients, while Di de-
notes the distribution of the local client data, which
is often different across the clients, capturing the
heterogeneity. pi is defined as the training size pro-
portion in Eqn. (4), where |Di| is the training size
of client i.

pi =
|Di|∑N
i=1 |Di|

(10)

Training Procedure. Federated learning is an iter-
ative process shown in Figure 2. The server initial-
izes the global model, followed by multiple com-
munication rounds between the server and clients.
In each communication round, there are four steps
between the server and clients. 1) In round t, the
server sends the global model wt to all the clients.
2) After clients receive the global model wt as the

initialization of the local model, they start to train
it using their own data for multiple epochs and ob-
tain the local model changes ∆wt

i during the local
training stage. 3) The clients send their local model
changes to the server. 4) The server aggregates the
local model changes ∆wt

i collected from different
clients as Eqn. (3) shows, and then uses the t-th
round’s global model wt and the aggregated local
model changes ∆wt

i to update the global model.
As Eqn. (4) shows, wt+1 is the global model after
the update. Here, n denotes the server learning rate.
The server will send the updated model wt+1 to the
clients, then the (t+ 1)-th round starts.

The above procedure will repeat until the algo-
rithm converges.

∆wt =

N∑

i=1

pi∆wt
i (11)

wt+1 = wt − η∆wt (12)

FedAvg. Federated Averaging (FedAvg) (McMa-
han et al., 2017b) uses stochastic gradient descent
(SGD) as the local training optimizer to optimize
the training procedure and uses the same learning
rate and the same number of local training epochs
for all the clients.

B Details of EditAvg

In this approach, ∆t
c is selected as the MKV for

client c at time t ∈ T , and it is transferred to the
server after execution of Algorithm 2 (equation
(4)). The server then aggregates all ∆t

c using the
formula ∆t

c =
∑N

c=1 p
t
c∆

t
c, where ptc represents

the proportion of edits made by client c from t− 1
to t.

C MEMIT

In Algorithm 2, with the exception of the symbol
rli in line 8, the symbol definitions in the rest of
the formulas are consistent with those defined in
section 3. rli ←

zi−hL
i

L−l+1 is the residual, which is
spread over layersR.

D Detailed Hyper-parameters

We set the number of clients to 8, with a total
of approximately 10,000 edits, and define T to
consist of 10 time slots. Covariance statistics are
collected on GPT-J using 100,000 samples from
Wikitext, and on GPT-NeoX using 50,000 samples
from Wikitext. R = {3, 4, 5, 6, 7, 8} for GPT-J

14257

Algorithm 2: MEMIT
Input: Requested edits E = {(si, ri, oi)},

generator G, layers to edit S,
covariances C l

Output: Modified generator containing
edits from E

1 for si, ri, oi ∈ E do
2 δi ←argminδi

1
P

∑P
j=1− logPG(hL

i +=δi)

[oi | xj ⊕ p(si, ri)];
3 zi ← hLi + δi;

4 for l ∈ R do
5 hli ← hl−1

i + ali +ml
i;

6 for si, ri, oi ∈ E do
7 kli ← 1

P

∑P
j=1 k(xj + si);

8 rli ←
zi−hL

i
L−l+1 ;

9 K l ← {kli, . . . , kli};
10 Rl ← {rli, . . . , rli};
11 ∆l ← RlK lT (C l +K lK lT)−1;
12 W l ←W l +∆l

and R = {6, 7, 8, 9, 10} for GPT-NeoX. Further
implementation details about LKE are the same as
Meng et al. (2022b) and Li et al. (2024). For the
computing resources, we utilize 8 NVIDIA A800
80GB GPUs.

14258

