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Abstract

Multimodal Large Language Models (MLLMs)
have gained increasing popularity as a promis-
ing framework for leveraging the strong lan-
guage reasoning capabilities in the vision-
language domain. Given a wide range of
MLLMs, model merging potentially offers a
cheap way to aggregate their diverse knowl-
edge into a single MLLM. However, directly
plug-in existing model merging approaches
often leads to suboptimal performance due
to (1) inclusion of harmful models that have
over-confident predictions in the target task;
(2) the lack of specialized designs for vision-
language inputs. To tackle these pain points,
we conduct pioneering investigations to dis-
sect the merging procedures and propose an
uncertainty-guided MLLM merging algorithm,
i.e., UQ-Merge, which 7) identifies beneficial
candidates for merging, ¢¢) determines the
merging order and the number of helpful can-
didates, and ¢¢7) performs appropriate merging.
Within our framework, we consider uncertainty
quantification on both text and vision inputs to
examine the MLLM prediction confidence, and
then decide whether and when a MLLM needs
to be included. It is worth mentioning that
our vision-language uncertainty quantification
does not require access to sample labels, mak-
ing it more practical in various scenarios. Ex-
tensive experiments consistently demonstrate
the superior MLLM merging performance of
UQ-Merge in both held-in and held-out vision-
language benchmarks. For example, compared
to existing state-of-the-art merging methods,
UQ-Merge brings substantial performance im-
provements of up to 44.3% on average accuracy
in 12 datasets. Codes are available at https:
//github.com/UNITES-Lab/UQ-Merge.git.

1 Introduction

Multimodal Large Language Models (MLLMs)
have achieved numerous successes in various
visual-language tasks including visual reason-
ing (Yin et al., 2023), autonomous driving (Cui
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Figure 1: The average accuracy of the best single model,
merging all models, and merging UQ-Merge selected
models. Held-in datasets refer to datasets used for UQ.
Held-out datasets are benchmarks unused for UQ.

et al., 2024), visual question answering (Zhang
et al., 2024a), etc. A popular paradigm to reach
impressive vision-language reasoning capabilities
typically combines a LLM backbone with a pre-
trained vision encoder (Alayrac et al., 2022; Liu
et al., 2024b,a; McKinzie et al., 2024; Tong et al.,
2024; Xue et al.,, 2024). Fine-tuning of pre-
trained MLLMs has been explored in many vision-
language domains like biomedicine answering (Li
et al.,, 2024b) and text-rich image understand-
ing (Zhang et al., 2023), pushing the need to in-
corporate knowledge from diverse domains. To
achieve this, rather than collecting all datasets
and spending massive computing costs to train a
new model from scratch, model merging has been
widely explored as a method to overcome high
training costs and aggregate knowledge from dif-
ferent datasets, by leveraging existing models and
merging them in a training-free manner. Existing
studies have shown superior merging results across
tasks, highlighting its advantage of efficiently inte-
grating separate advancements (Ding et al., 2024;
Goddard et al., 2024; Wan et al., 2024; Yang et al.,
2024; Lu et al., 2024).
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However, the model merging in the MLLM do-
main remains less explored. To begin with, we
apply a single-modal merging method (Figure 1

) and it achieves stronger performance com-
pared to the best single model (Figure 1 green).
Meanwhile, we observe that by selectively merging
MLLMs (Figure 1 ), the performance of the
merged model can be further improved.

Despite the performance gain, applying single-
modal merging methods on MLLM merging has
limitations. Firstly, existing merging methods as-
sume that all models are beneficial for merging
performance. As pointed out by (Zhao et al., 2024)
and observed in Figure 1, this assumption may not
hold true in real-world scenarios where models
to merge are trained on divergent datasets. Some
models produce over-confident predictions on tar-
get tasks and merging them will result in a perfor-
mance decrease of the merged model. Secondly,
these merging methods are designed solely to focus
on single-modal model merging. Given these limi-
tations, an ideal MLLM merge mechanism should
be selective and aware of multimodal inputs.

To address these challenges, we propose
UQ-Merge, an uncertainty guided MLLM merg-
ing algorithm that features vision-language opti-
mized design to ameliorate performance degra-
dation caused by merging over-confident mod-
els. Specifically, UQ-Merge @ uses image-text
perturbation-based uncertainty quantification (UQ)
to evaluate models, and @ sorts models by descend-
ing order of uncertainty to reduce the impact of
over-confident models. ® UQ-Merge incrementally
enlarge the group of models to merge, and @ return
the merged model when uncertainty stops decreas-
ing. Our contributions are summarized as follows:

* Due to the inclusion of over-confident models
and the lack of vision-language specific de-
signs, directly applying single-modal merging
methods results in suboptimal performance.
To resolve these issues, we conduct pioneer-
ing work in the MLLM field.

* To investigate design factors influencing
MLLM merging performance, we raise and
answer research questions: What is a more
effective metric for selecting helpful models?
How to decide the merging order and select
models? How to implement UQ for MLLM?
And how to properly merge selected models?

* We propose a MLLM-tailored image-text

perturbation-based UQ method and intro-
duce UQ-Merge, an uncertainty guided MLLM
merging method that identifies and excludes
over-confident models.

» Experiments demonstrate that UQ-Merge con-
sistently outperforms single-modal merging
methods. With the same number of models
used for merging, UQ-Merge achieves an aver-
age accuracy improvement of 2.62% on held-
in datasets and 1.06% on held-out datasets
compared to existing merging methods. Fur-
thermore, UQ-Merge can surpass single-modal
merging methods that have access to more
models, by 0.54% on held-in datasets and
1.3% on held-out datasets.

2 Related Work

Multimodal Large Language Models (MLLMs).
Large Language Models (LLMs) have demon-
strated strong reasoning and instruction-following
capability (Zhao et al., 2023; Touvron et al.,
2023a,b). In light of this, many works (Alayrac
et al., 2022; Liu et al., 2024b,a; McKinzie et al.,
2024; Tong et al., 2024; Xue et al., 2024) pro-
pose to further incorporate pre-trained vision back-
bones (Radford et al., 2021; Zhai et al., 2023)
to enable visual perception capabilities in exist-
ing LLMs, producing Multimodal Large Language
Models (MLLMs). The mainstream architecture
of MLLMs consists of three components: a vision
encoder to extract features from visual inputs, a
modality adapter that projects the outputs of the vi-
sion encoder into the token embedding space of the
LLM backbone, and an LLM that processes both
image and text inputs to generate responses (Yin
et al., 2023; Zhang et al., 2024a). Given individual
MLLMs, it remains under-explored how to lever-
age these mdoels and aggregate their knowledge.
Motivated by this, we propose UQ-Merge, a UQ-
based MLLM merging method to incorporate mod-
els fine-tuned on different tasks.

Model Merging. Model Merging (Ainsworth
et al., 2023) combines multiple pre-trained or
fine-tuned models into a unified, powerful model,
leveraging the strengths of specialized models
while maintaining versatility without requiring ad-
ditional training. Early zero-shot merging meth-
ods, such as weight averaging and Linear Mode
Connectivity (Nagarajan and Kolter, 2021; Worts-
man et al., 2022), laid the foundation for this ap-
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proach. Task Arithmetic (Ilharco et al., 2023) ma-
nipulates task vectors for effective merging, while
TIES (Yadav et al., 2023) addresses parameter in-
terference through trimming and conflict resolution.
DARE (Yu et al., 2024) selectively optimizes pa-
rameters to enhance merging without extra training,
utilizing the geometric properties of weights (Shoe-
make, 1985; Jang et al., 2024). In the latest works,
DELLA merges models by pruning and re-scaling
weights based on their magnitude (Deep et al.,
2024), and Model Stock finds the optimal inter-
polation ratio between merging candidates, using
a pre-trained model to identify a robust anchor
point (Jang et al., 2024). In the multimodal domain,
model merging has similarly proven its ability to
transform modality-specific models into modality-
agnostic models (Sung et al., 2023). These existing
merging studies motivate us to explore model merg-
ing in the MLLM domain.

Uncertainty Quantification (UQ). Uncertainty
quantification in predictions from deep neural net-
works has been a longstanding and essential prob-
lem (Abdar et al., 2021; Gawlikowski et al., 2023).
The sources of uncertainty can be categorized into
data uncertainty (aleatoric uncertainty) and model
uncertainty (epistemic uncertainty). In the LLM
domain, various methods have been proposed (Gao
et al., 2024; Ye et al., 2024; Liu et al., 2024¢). In
the MLLM domain, UQ is less explored. One re-
cent work applies conformal prediction for UQ in
MLLMs (Ye et al., 2024; Kostumov et al., 2024).
However, the CP method requires labeled data to
estimate the model’s uncertainty, which is infea-
sible in many real-world applications due to the
lack of ground truth. In (Daheim et al., 2023), the
authors propose to utilize gradient-based UQ to
mitigate mismatches of gradients when merging
models trained on various tasks, but labels are still
required to compute the gradients. To address this,
we propose a vision-language perturbation-based
UQ method for MLLM that does not require labels.

3 Methodology

3.1 Preliminaries

The Architecture Overview of Multimodal
Large Language Model. The definition of Multi-
modal Large Language Models (MLLMs) is LLM-
based models with the ability to receive, reason,
and output with multimodal information (Yin et al.,

2023). Prior to MLLMs, many works were de-
voted to multimodality learning (Radford et al.,
2021; Li et al., 2021; Wang et al., 2021). In this
paper, we focus on MLLMs that process image-
text inputs and use (x,, ;) to represent an input
image x, and text z; pair to an MLLM M(-,-).
The most common MLLM architecture for image-
text inputs (Liu et al., 2024b,a; Chen et al., 2024;
McKinzie et al., 2024; Tong et al., 2024) typically
comprises a pre-trained vision encoder V (+), an
adapter A (-) and an LLM backbone F (-). An
overview of the model architecture is provided in
Figure 2 (a). The text input x; is split into textual
tokens h;. The vision encoder extracts visual fea-
tures from the input image x,,, represented as visual
tokens z,, = V (x,), which are then mapped by the
adapter into the embedding space of language to-
kens, yielding h,, = A (z,). The LLM processes
both visual tokens h, and language tokens h; to
generate an output F (h,, h;) to the textual query.

Model Merging. The goal of model merging is
to aggregate knowledge from two or more mod-
els with the same architecture into a unified model
that retains the strengths and capabilities of the
original models. Formally, given a set of models
{Myi,..., My}, model merging can be expressed
as M* = Merge (Mg, ..., M,,), where M* rep-
resents the merged model and Merge(+) is a merg-
ing method. In MLLM merging, as the vision en-
coders V of models with the same architecture are
usually initialized from the same pre-trained model
and kept frozen during the pre-training and fine-
tuning process (Liu et al., 2024b,a; Lin et al., 2024;
Xue et al., 2024), their weights are identical and do
not require merging. For this reason, Merge(-) only
considers the adapter A and the LLM backbone F
when applied on MLLMs.

3.2 UQ-Merge: UQ Guided MLLM Merging

To overcome the aforementioned challenges of
over-confident merging candidate models and the
lack of vision-language (VL) oriented merging
method, we propose UQ-Merge, which consists of
a vision-language perturbation-based MLLM un-
certainty quantification (Section 3.3) to evaluate
models, and a merging algorithm based on the un-
certainty of models (Section 3.4).

The procedure of UQ-Merge is described in Fig-
ure 2 (¢). First, UQ is applied to MLLMs to
quantify their uncertainty, and models are sorted
in descending order of uncertainty to later con-
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Figure 2: The overview of UQ-Merge. (a) illustrates the common architecture of MLLMs. In (b) it shows vanilla
merging fails when no selection is considered, and in contrast performance gains by selectively merging. (c) shows
the two steps in UQ-Merge: (1) UQ-Merge quantifies and sorts models by descending order of their uncertainty. (2)
After sorting, each model is gradually included and merged, and stops when uncertainty stops decreasing.

sider potentially over-confident models. Then,
UQ-Merge incrementally merge the sorted models
and record the uncertainty scores of the merged
model at each step. Finally, UQ-Merge returns the
merged model when uncertainty stops decreasing.
Throughout the process, UQ-Merge adopts the same
UQ function described in Section 3.3.

3.3 Vision-Language Perturbation-based UQ

UQ (Mehrtash et al., 2020; Guo et al., 2024; Gao
et al., 2024) has demonstrated promising effective-
ness in evaluating models without labels, which is
highly practical in real-world scenarios. UQ pro-
vides a quantified score for a model, indicating its
confidence level reliability and performance (Wang
et al., 2022; Si et al., 2023). In light of this, we
develop a vision-language perturbation-based UQ
to evaluate MLLMs for model merging.
Specifically, given input image-text pair x,, and
xt, our perturbation-based MLLM UQ(-, -, -) on a
MLLM model M is defined in Equation 1, where
J is the number of perturbations, z, and x; are
original image-text input, M s the Jtn perturbed
model, 735(-) is the j;, perturbation function for
the image input, Pg () is the ji, text perturba-
tion function, and #(+) is the entropy function.

UQ (Ma ':Eval‘t) ~ H

}Ing (P, PG | -5 Son (M2 (Pi(a). Pl () )
j=1 j=1

The perturbed model M is derived by adding
Dropout (Srivastava et al., 2014) to the attention
score. We implement P} (+) as a composition of im-
age transformation functions such as Shear, Trans-
late, Rotate, Equalize, and Posterize (Cubuk et al.,
2018; Hendrycks et al., 2020). P/(-) is imple-
mented by adding randomly selected prompts to the
original text input. Following previous works (Ye
et al., 2024; Kostumov et al., 2024), we employ the
prompt to ask the model to answer with an option
and extract the logits of option letters from the first
newly generated token, and entropy is computed on
the logits. The model uncertainty is the difference
between total and data uncertainty, where the total
uncertainty is the entropy of the average prediction,
and the data uncertainty is the average entropy of
each prediction. In the literature below, we use
UQ(M) to represent the average uncertainty of M
over samples by using UQ(-, -, ).

3.4 UQ Guided Merging for Model Selection

Given models to merge, we sort the models in de-
scending order of uncertainty to reduce the impact
of over-confident models for merging (Step (1)
in Figure 2 (c)). Starting from the model with
the lowest uncertainty, UQ-Merge gradually consid-

ey

-~

~
Model uncertainty Total uncertainty

-~

Data uncertainty
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Algorithm 1 UQ-Merge

1: Input: Models { M, ..., M}, UQ(+),
Merging method Merge(+)
2: Output: Merged model M*

3: Compute VL uncertainty {uj,--- ,u,} for
each model in {M;,..., M,}
40 {M), ... M} + Sort {My,..., M, } by

descending order of {uy, - ,u,}

5: Set merged model’s uncertainty as u* < co
6: Initialize the merged model as M* + M
7: for a model M} in {M},..., M.} do

8 M rgea ¢ Merge(Mi, ..., M})

9: uincrgcd — E(ancrgcd)

100 iful g <u* then

11 M* anerged; u* uinerged
12: else

13: return M*

14 end if

15: end for

16: return M*

ers each model. At each step, one model M; is
added to the merging group, and merging method
Merge(-) is employed to produce a merged model
Mperged, and UQ(+) is applied to quantify its un-
certainty. In our practice of UQ-Merge, Merge(-)
is implemented as linearly averaging the weights
of all models. UQ-Merge allows different choices
of merging functions, but as will be shown in Ta-
ble 6, linear merging is simple and brings strong
performance. UQ-Merge returns when the uncer-
tainty of the merged model stops decreasing (Step
(2) in Figure 2 (c)). As the merged model aggre-
gates knowledge from diverse domains, we view
low uncertainty after merging as a signal of strong
capability on tasks and select the model.

4 Experiments

4.1 Implementation Details

Model Preparation. In our experiments, we
begin with the pre-trained LLaVA-v1.5-7B
model (Liu et al., 2024a), which utilizes Vicuna-
1.5-7B (Chiang et al., 2023) as the LLM backbone
F, a CLIP-ViT-L-336px (Radford et al., 2021) as
the vision encoder V), and a two-layer MLP with a
hidden dimension of 4096 as the modality adapter
A. The model is fine-tuned with instruction-tuning
datasets that focus on diverse vision-language ca-
pabilities to create the models for merging. More
details are provided in Supplementary B.5.

Single-Modal Baselines. For sufficient compari-
son with our method that uses UQ to guide MLLM
merging, we compare UQ-Merge against various
single-modal merging methods and test their per-
formance in multimodal scenarios. Specifically, we
consider DARE (Yu et al., 2024), DELLA (Deep
et al.,, 2024), Linear (Wortsman et al., 2022),
TIES (Yadav et al., 2023), Task Arithmetic (ITharco
et al., 2023), and Model Stock (Jang et al., 2024).
Due to the lack of model selection capability, we
compare these methods in @ average performance
in random selections and ® merge all models. Al-
though baseline methods were originally designed
for single-modal merging, they are capable of merg-
ing models that have the same architecture. We
consider adapter and LLM backbone when using
baselines, as a naive extension of these methods.

Datasets for UQ and Evaluation. We select
vision-language classification datasets as our
benchmarks for UQ(-). Specifically, five datasets
across five domains are considered: MMBench
(reasoning/perception, Liu et al., 2023a), OODCV-
VQA (out-of-distribution robustness, Zhao et al.,
2022), ScienceQA (world knowledge, Lu et al.,
2022), SEEDBench (spatial and temporal un-
derstanding, Li et al., 2023a), and AI2D (dia-
grams, Kembhavi et al., 2016). In line with (Ye
et al., 2024; Kostumov et al., 2024), we reformat
the answers and add two additional choices “I don’t
know” and “None of the above”. Since our vision-
language perturbation-based UQ does not require
labels, we treat these datasets as held-in datasets
and also use them for the evaluation of merged
models’ performance in vision-language classifi-
cation format tasks. We also test our method on
held-out vision-language generation datasets.

4.2 UQ-Merge Is Effective for Removing
Harmful Models

In this section, we compare our UQ-Merge against
various single-modal merging methods on held-in
and held-out datasets to show the effectiveness of
UQ-Merge in excluding harmful models. For base-
line merging methods, we evaluate them by measur-
ing the average performance of their merged mod-
els. For all baseline methods, each time the merged
model is produced by merging a random model
selection from all models we fine-tuned, and the
number of models selected each time is the same as
the selection of our method UQ-Merge. Evaluation
results are summarized in Table 1, and the perfor-
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Table 1: The comparison between UQ-Mergeand single-modal merging methods. Baseline methods merge
randomly selected the same number of models to UQ-Merge. Average and standard error of the accuracy
of baselines across selections are reported. Results are measured with 3 selections. The best and second-best
performances are highlighted in bold and underline, respectively.

Vision-Language Classification Datasets

Mereine Methods Average AI2D ScienceQA SeedBench MMBench OOD-CV
gme 13.75+3.09 | 801694 2724260  573+496 2625+0.75 26.04+0.48

DELLA 53.15+£5.72 | 4323+7.63 57974806 5513£7.55 7026+131 39.14+495

Linear 5543+3.88 | 49.41+3.64 64.15+£643 57.16+507 69.82+0.62 36.60 +3.70

TIES 51.10+7.23 | 43.58+7.81 5240688 48581428 70.02+1.39 40.95+6.07

Task Arithmetic | 21.73+£7.27 | 1822+ 11.31 17.17£19.61 20.35+13.45 27.60+1.14 25.32+1.09

Model Stock 49.99+0.58 | 43.81+£0.92 6507+0.06 49.11+0.84 64.10+0.82 27.86+0.52

Ours | 5805 | 51.75 68.07 60.56 70.35 39.52

‘ Vision-Language Generation Datasets

Merging Methods | Average | OKVQA TextVQA GQA MMMU VizWiz VQAV2 POPE
DARE 12834801 | 037+£035 548+476 1091£9.82 2622+0.80 243+211 19.77+17.35 24.60+21.64
DELLA 47.94+375 | 40.53£8.05 41.17+1.77 4396+326 3278+1.31 41.92+5.66 6533+3.46 69.87+18.26
Linear 54.13+0.72 | 4461 £590 42.74+1.83 49.83+0.92 33.71£0.95 52.80+4.44 69.52+1.77 85.71+0.48
TIES 5495+ 1.18 | 50.16+5.58 44.35+0.35 5287+1.61 3248=+1.11 46.66+337 71.34+157 86.81+0.23
Task Arithmetic | 18.06+12.38 | 2.73+2.36 13.61+11.02 16.68+15.07 2622+ 174 330+2.65 28.67+24.04 3523+31.08
Model Stock 37794226 | 227+096 3436+2.60 3829+126 3259+023 5424x020 59.19+2.08 43.57+11.01
Ours | 5601 | 5039 43.49 50.75 35.22 54.13 71.77 86.33

mance of each selection is in Table 10 and Table 11.
From the results, the following observations can
be drawn: @ Our UQ-Merge demonstrates superior
performance compared to all other merging meth-
ods. Specifically, UQ-Merge achieves 2.62% ~
44.3% and 1.06% ~ 43.18% improvement on aver-
age accuracy of held-in and held-out datasets. This
validates the effectiveness of UQ-Merge in model
selection to exclude over-confident models. @ On
the held-in dataset, which is used for uncertainty
quantification, UQ-Merge obtains a more significant
performance gain compared to held-out datasets,
with 4 out of 5 highest accuracy. This justifies
our practice of using UQ to perform model selec-
tion, as in real-world applications labels are usually
unavailable and UQ only relies on input to evalu-
ate a model, and UQ-guided model selection can
effectively improve the performance on these appli-
cations and even generalize to held-out datasets. ©
The performance of single-modal merging methods
varies a lot in MLLM merging. The gap of average
accuracy for baselines is 41.68% and 42.12% on
held-in and held-out datasets, respectively. These
large gaps show the various effectiveness of state-
of-the-art single-modal merging methods when the
setting is shifted to the MLLM merging.

4.3 UQ Guided Model Merging Surpasses
Existing Merging Methods

We further compare UQ-Merge in a more chal-
lenging setting, where baseline merging methods
have an “unfair" advantage to access all the knowl-

edge within models and merge. Experiment re-
sults show that @ Compared to baseline methods,
UQ-Merge still achieves the best average accuracy
on both held-in and held-out datasets, surpassing
these single-modal methods by 0.54% ~ 51.69%
and 1.3% ~ 52.6% respectively. @ Compared
to the average performance of merging randomly
selected portions of all models, all merging meth-
ods except DARE and Task Arithmetic enjoy per-
formance increase by adding more models. This
suggests the benefit of incorporating more models
from diverse tasks to build a stronger model and
supports our claim that model merging is a cheap
way to aggregate knowledge from different models.
It is worth noting that existing single-modal merg-
ing methods have a certain ability to resolve po-
tentially harmful models when merging, by adopt-
ing model weight level manipulation to resolve
weight conflict and preserve knowledge from differ-
ent tasks (Ilharco et al., 2023; Yadav et al., 2023; Yu
et al., 2024). However, these methods are limited
to single-modal model merging. Our UQ-Merge is
orthogonal to these works, as we consider model
level removal of harmful over-confident models
in MLLM merging situations to improve the per-
formance, and can benefit from the techniques to
ameliorate weight conflict.

4.4 Research Questions and Ablation Study

In this section, we conduct an in-depth investiga-
tion of the designs adopted in UQ-Merge and how
they contribute to improved performance. Specifi-
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Table 2: The comparison between UQ-Mergeand single-modal merging methods. Baselines merge all 10 models.
The best and second-best performances are highlighted in bold and underline.

Vision-Language Classification Datasets

Merging Methods 0 oe | ARD  ScienceQA  SeedBench MMBench OOD-CV

DARE 636 | 0.00 14.10 17.54 14.10 17.54

DELLA 5750 | 6296  71.69 41.94 71.69 41.94

Linear 56.90 | 67.39 69.98 36.93 69.98 36.93

TIES 5751 | 6299  71.69 41.94 71.69 41.94

Task Arithmetic | 10.94 | 0.29 26.58 25.78 26.58 25.78

Model Stock 5155 | 65.21 65.74 29.47 65.74 29.47

Ours | 5805 |68.07 7035 39.52 70.35 39.52

‘ Vision-Language Generation Datasets

Merging Methods | Average | OKVQA TextVQA GQA MMMU VizWiz VQAv2 POPE
DARE 3.41 0.02 0.23 0.00  23.56 0.00 0.03  0.00
DELLA 54.69 47.84 4479  51.65 3356 4838 7051  86.12
Linear 5471 4451 4423 4856 3500 5521 7021 8523
TIES 54.70 47.89 4481 51.65 3356 4839 7051  86.11
Task Arithmetic 3.56 0.00 0.04 0.00 2489 0.01 0.01  0.00
Model Stock 45.05 8.09 3824 4249 3278 5619  63.63 73.93
Ours | 56.01 | 50.39 4349 5075 3522 5413 7177 86.33

cally, we address the following: (1) Is UQ a more
effective way to exclude harmful models, and how
should uncertainty of models be used? (Section
4.4) (2) How to select models to merge after quan-
tifying models’ uncertainty? (Section 4.4) (3) How
to design UQ? (Section 4.4) (4) After selection,
how to merge models? (Section 4.4).

RQ1: Is UQ more effective than accuracy?
How to use uncertainty? Al: Yes; sort by de-
creasing uncertainty. In UQ-Merge, uncertainty
is adopted to measure each model and exclude
harmful models. An intuitive alternative to un-
certainty is the accuracy of the model on valida-
tion datasets, with sorting done in either ascending
or descending order. To address these research
questions, we compare uncertainty and accuracy
to determine which serves as better guidance. We
replace uncertainty in UQ-Merge with accuracy on
held-in datasets and test both kinds of guidance
in ascending and descending order. Other compo-
nents in UQ-Merge are kept untouched. We evaluate
these modified designs on held-out datasets due to
the usage of held-in datasets for testing accuracy.
As shown in Tab 3, sorting by descending order
achieves the best average performance compared
to other options, confirming the effectiveness of
our design. Compared to ascending uncertainty, de-
scending order leads to a better performance, which
justifies our aim to exclude over-confident models.

RQ2: How to select models to merge? A2:
When the uncertainty of the merged model stops
decreasing. After sorting models by descending

order of uncertainty, it remains unsure how to ex-
clude harmful models and select beneficial ones.
In UQ-Merge, this process is conducted by pick-
ing the merged model when uncertainty stops de-
creasing. To verify this, we evaluated the correla-
tion between uncertainty, accuracy on validation
benchmarks, and accuracy on held-out datasets.
In our experiments, we used RealWorldQA (xAlI,
2024), Seedbench 2 Plus (Li et al., 2024a), and
OcrBench (Liu et al., 2024d), which focus on real-
world QA, multi-disciplinary knowledge, and text
recognition, respectively. As shown in Table 4, the
point uncertainty rises and the highest validation
accuracy align with the peak performance on held-
out datasets. Our findings indicate that lower un-
certainty corresponds to better performance. We at-
tribute this to the enhanced capability of the merged
model that makes it more robust to input perturba-
tion and could generate consistent answers. When
uncertainty further decreases, the model becomes
over-confident, leading to the performance drop.

RQ3: How to design perturbation? A3: Vision-
Language input perturbation is crucial. In this
research question, we aim to investigate how dif-
ferent perturbation designs would affect the merg-
ing performance of UQ-Merge. Specifically, we
compare the input and model perturbation method
adopted in UQ-Merge versus only using input per-
turbation, by using them as different UQ functions
in our UQ-Merge framework and test the merged
model. We implement input perturbation following
the same design of UQ-Merge, by adding random
image transformations and text prompts to the im-
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Table 3: Comparison of uncertainty and accuracy for guidance. Each guidance is implemented with ascending and
descending orders to sort models. Accuracy for merging guidance is tested on held-in datasets, and all results are
reported on held-out datasets. The best and second-best performances are highlighted in bold and underline.

Performance with Different Guidance

Guidance ‘
| Order | Average | OKVQA TextVQA GQA MMMU VizWiz VQAv2 POPE
Uncertaingy | Ascending | 5430 | 4564 4461 4531 3456 5452 7005 8542
Neetaity | Descending | 56.01 | 50.39 4349 5075 3522 5413 7177 8633
A Ascending | 5472 | 44.56  44.12 4858 3500 5534 7022 85.24
CCUTAY | Descending | 52.27 | 30.33 4068 5058 35.67 5573 6734 8558

Table 4: The correlation of uncertainty with accuracy on validation benchmarks and held-out benchmarks. The
point uncertainty stops decreasing and the highest validation accuracy and held-out accuracy are marked in bold.

# Models ‘ 1 2 3 4 5 6 7 8 9 10
Uncertainty 0.21197 0.13290 0.05609 0.04866 0.04531 0.04155 0.03950 0.03954 0.03740 0.03675
Validation Accuracy | 18.75 18.48 36.32 37.30 38.84 39.20 39.91 39.15 39.28 39.60
Held-out Accuracy 47.09 51.22 52.47 54.15 54.13 54.54 56.01 55.56 54.15 54.14

Table 5: Comparison of perturbation types. Results are
average accuracy on datasets.

‘ Held-in Held-out
| 56.82  56.00
Input & Model | 56.80  56.01

Input

Table 6: Comparison of merging methods on the same
group of models. Results are average accuracy on held-
in and held-out datasets.

Merging Methods | Number of Models
7 10
DARE 22.30 4.64
DELLA 56.26 55.86
Linear 56.86 55.62
TIES 56.26 55.87
Task Arithmetic 22.21 6.64
Model Stock 46.82 47.76

age and text branches respectively. As shown in
Table 5, when only use input perturbation, the per-
formance is slightly improved on held-in datasets.
On held-out datasets, the performance is slightly
worse for input perturbation only. We attribute
this to the robust capability of LLM backbones
and dynamic sparsity of LLM inference (Liu et al.,
2023b), which makes model perturbation may not
significantly affect the performance of the LLM.

RQ4: What merging method to use given a
group of MLLMs? A4: TIES, Linear or
DELLA. Existing merging methods are designed
to deal with single-modal merging, and it remains
unclear how these merging methods perform for
merging multimodal models. In this research ques-

tion, we explore the performance of these single-
modal merging methods in the multimodal scenario
by evaluating their performance on a given group of
models. Specifically, we evaluate DARE, DELLA,
Linear, TIES, Task Arithmetic, and Model Stock
on held-in and held-out datasets and calculate the
average performance on all the datasets. From re-
sults in Table 6 we observe that DELLA, Linear,
and TIES perform better than other methods. In
10-model merging, all instruction-tuned models are
merged. As shown in Table 6, given the same ten
models, TIES achieve the best performance. When
merging seven models with the highest uncertainty,
we observe that @ The performance of all merging
methods improved, demonstrating the benefit of
model selection. @ linear merging achieves the
best performance, which supports our choice in
UQ-Merge that linearly merges models.

5 Conclusion

In this paper, we present a novel MLLM merging
algorithm UQ-Merge to aggregate diverse knowl-
edge of models into a single MLLM. We design a
multimodal-tailored vision-language perturbation-
based UQ and employ it to guide the merging pro-
cess. As a result, UQ-Merge could identify benefi-
cial models to merge and use the uncertainty value
to decide the merging order and number of models
to merge, and apply appropriate merging on se-
lected models. Extensive experiments on datasets
from diverse domains consistently demonstrate the
effectiveness of model selection and significantly
improved performance with our algorithm.
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A Additional Experiment Results
A.1 Ablation Study about UQ in UQ-Merge

In this section we provide more ablation studies
about UQ in UQ-Merge. We conduct experiments
with various ratios of dataset samples used for UQ,
and compare with alternatives of the perturbation-
based UQ method used in UQ-Merge. The results
are shown in Table 7 and Table 8. Results in Ta-
ble 7 show that UQ-Merge achieves stable perfor-
mance across various ratios of samples used for
UQ, demonstrating the data efficiency of UQ-Merge.
We also test image-only perturbation, text-only per-
turbation and conformal prediction (CP) as alterna-
tive UQ methods in Table 8. Compared with alter-
natives, results in Table 8 prove the effectiveness
of our vision-language perturbation-based UQ.

A.2 Evaluation of fine-tuned models

In Table 9, we provide uncertainty quantification
results of fine-tuned models on held-in datasets.
We conduct evaluation three times and the final un-
certainty is the average. As observed in Table 9, the
uncertainty is stable and consistent, showcasing the
effectiveness and stability of our vision-language
perturbation-based UQ.

A.3 Evaluation of Baselines over Random
Selections

In Table 10 and Table 11, we provide performance
of baseline single-modal merging methods on held-
in and held-out datasets over model selections. As
observed in tables, DELLA, Linear and TIES con-
sistently outperform other merging methods with a
small variance. The average and standard error are
reported based on results above, and the error bar
represents the 95% confidence interval.

A.4 Evaluation during Merging Steps

In Table 12, Table 13 and Table 14, we present
the evaluation results of Table 4 before averaging
during merging steps.

B More Implementatiin Details

B.1 Text Perturbation

Prompts used for perturbation of text inputs:

* ’you are a helpful assistant’,

* ’you are a question-answering assistant’,
* ’you are a nice assistant’,

* ’You are a helpful assistant’,

* ’You are a question-answering assistant’,

* *You are a nice assistant’,

* ’You are a helpful assistant.’,

* *You are a question-answering assistant.’,
* "You are a nice assistant.’

B.2 Image Perturbation

The image perturbation is implemented by utilizing
the implementation of AugMix (Hendrycks et al.,
2020) in torchvision (Aug), and all parameters are
set to default.

B.3 Datasets for Fine-tuning Models

To prepare fine-tuned models for merging, we
choose visual reasoning datasets (GQA Hudson
and Manning, 2019, RefCOCO Kazemzadeh

et al.,, 2014; Mao et al., 2016); text-rich
datasets (OCRVQA Mishra et al., 2019,
TextCaps Sidorov et al., 2020); knowledge-

based VQA datasets (OKVQA Marino et al., 2019,
A-OKVQA Schwenk et al., 2022); GPT-generated
datasets (LLaVA-Instruct Liu et al., 2024b,
ShareGPT ShareGPT, 2023); and general VQA
datasets (VQAv2 Goyal et al., 2017, VG Krishna
et al., 2017). We follow the original train-test split
of these datasets.

B.4 Datasets for Uncertainty Quantification

We use the code from (Kostumov et al., 2024) to
process MMBench (Liu et al., 2023a), OODCV-
VQA (Zhao et al., 2022), ScienceQA (Lu et al.,
2022), SEEDBench (Li et al.,, 2023a), and
AI2D (Kembhavi et al., 2016) for vision-language
perturbation-based UQ.

B.5 Evaluation of Models

We adopt LMMs-Eval (Zhang et al., 2024b) with
all default parameters to conduct evaluation of
models on all benchmarks except MMBench and
OODCV-VQA, which are evaluated directly using
our pre-processed datasets. To more comprehen-
sively evaluate the merged models’ performance,
we choose seven vision-language generation tasks
of six domains, including open real-world knowl-
edge (OKVQA Marino et al., 2019, MMMU Yue
et al., 2024), text understanding (TextVQA Singh
et al., 2019), compositional questioning answering
(GQA Hudson and Manning, 2019), low-quality
image understanding (VizWiz Gurari et al., 2018),
general visual QA (VQAv2 Goyal et al., 2017),
and hallucination (POPE Li et al., 2023b) as the
benchmarks.
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Table 7: Performance of the merged models from UQ-Mergewith different ratios of samples used for UQ.

Sample Ratios ‘Average ‘ AI2D ScienceQA SeedBench MMBench OOD-CV

5% Samples 58.08 | 51.75 68.07 60.53 70.44 39.60
10% Samples 58.00 | 51.70 67.95 60.39 70.35 39.60
20% Samples 58.34 | 5223 68.95 60.52 70.21 39.77
30% Samples 57.96 | 51.42 67.85 60.66 70.30 39.56
100% Samples | 58.05 | 51.75 68.07 60.56 70.35 39.52

Sample Ratio | Average ‘ OKVQA TextVQA GQA MMMU VizWiz VQAv2 POPE

5% Samples 56.01 50.40 43.49 50.61  35.67 53.91 71.69  86.33
10% Samples 55.36 50.71 41.74 4986  34.67 55.64 68.66  86.26
20% Samples 55.30 44.17 43.57 5092  36.44 53.86 71.69  86.48
30% Samples 56.00 50.37 43.58 50.80  35.67 53.73 71.67  86.18
100% Samples | 56.01 50.39 43.49 50.75 3522 54.13 71.77  86.33

Table 8: Performance of the merged models with alternatives of vision-language perturbation-based UQ.

‘Average ‘ AI2ZD ScienceQA SeedBench MMBench OOD-CV

CP 56.86 | 5042 67.19 59.83 69.88 36.98
Image Only | 57.11 |50.58  67.51 60.40 69.94 37.14
TextOnly | 57.05 |50.55  67.39 60.59 69.87 36.86
Ours | 58.05 | 5175  68.07 60.56 70.35 39.52

| Average | OKVQA TextVQA GQA MMMU VizWiz VQAv2 POPE

CP 54.60 44.27 43.97 48.56  34.67 55.20 70.16  85.37
Image Only | 54.84 44.35 43.43 50.68  34.78 53.92 71.67  85.07
Text Only 55.06 44.55 43.26 5039  36.11 54.24 71.62  85.23

Ours 56.01 50.39 43.49 50.75 3522 54.13 71.77  86.33
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Table 9: Uncertainty of all models on held-in datasets.

Tuning Dataset ‘Average AI2D MMBench OOD-CV ScienceQA SeedBench

OKVQA 0.1314 | 0.1199 0.1073 0.1350 0.1149 0.1802
OCRVQA 0.0548 | 0.0555 0.0564 0.0669 0.0505 0.0446
GQA 0.2141 | 0.2032 0.2375 0.2136 0.2219 0.1941
VQAvV2 0.0322 | 0.0286 0.0355 0.0350 0.0311 0.0306
TextCaps 0.0073 | 0.0078 0.0085 0.0115 0.0054 0.0030
A_OKVQA 0.1078 | 0.1318 0.0746 0.1066 0.1132 0.1130
RefCOCO 0.0275 | 0.0250 0.0309 0.0311 0.0267 0.0238
LLaVA-Instruct | 0.0713 | 0.0670 0.0767 0.0787 0.0672 0.0668
ShareGPT 0.0317 | 0.0246 0.0380 0.0386 0.0320 0.0255
VG 0.0379 | 0.0334 0.0412 0.0417 0.0360 0.0372
Tuning Dataset ‘ Average | AI2D MMBench OOD-CV ScienceQA SeedBench
OKVQA 0.1305 | 0.1199 0.1072 0.1317 0.1152 0.1787
OCRVQA 0.0544 | 0.0550 0.0560 0.0663 0.0505 0.0444
GQA 0.2141 | 0.2024 0.2408 0.2084 0.2229 0.1962
VQAV2 0.0323 | 0.0288 0.0361 0.0347 0.0312 0.0307
TextCaps 0.0072 | 0.0077 0.0087 0.0114 0.0055 0.0029
A_OKVQA 0.1077 | 0.1326 0.0751 0.1070 0.1117 0.1123
RefCOCO 0.0273 | 0.0251 0.0305 0.0305 0.0265 0.0238
LLaVA-Instruct | 0.0713 | 0.0668 0.0771 0.0803 0.0662 0.0659
ShareGPT 0.0318 | 0.0246 0.0375 0.0394 0.0318 0.0255
VG 0.0378 | 0.0335 0.0408 0.0419 0.0361 0.0369
Tuning Dataset ‘ Average | AI2D MMBench OOD-CV ScienceQA SeedBench
OKVQA 0.1306 | 0.1205 0.1067 0.1334 0.1157 0.1767
OCRVQA 0.0547 | 0.0554 0.0562 0.0668 0.0501 0.0448
GQA 0.2130 | 0.2020 0.2369 0.2115 0.2220 0.1926
VQAV2 0.0323 | 0.0288 0.0357 0.0344 0.0313 0.0311
TextCaps 0.0073 | 0.0078 0.0085 0.0115 0.0055 0.0030
A_OKVQA 0.1082 | 0.1324 0.0758 0.1069 0.1123 0.1135
RefCOCO 0.0273 | 0.0249 0.0303 0.0308 0.0266 0.0238
LLaVA-Instruct | 0.0713 | 0.0666 0.0763 0.0801 0.0667 0.0666
ShareGPT 0.0316 | 0.0245 0.0379 0.0388 0.0319 0.0247
VG 0.0376 | 0.0335 0.0406 0.0417 0.0360 0.0363
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Table 10: Accuracy of baselines on held-in datasets when merging random model selections.

Merging Methods ‘ Vision-Language Classification Datasets

‘ Average | AI2D ScienceQA SeedBench MMBench OOD-CV
DARE 15.68 | 11.98 5.19 8.47 26.53 26.21
DELLA 46.73 | 34.42 50.05 46.97 68.76 33.45
Linear 57.85 | 51.65 67.83 60.25 70.19 39.35
TIES 55.60 | 49.29 55.96 56.14 70.74 45.85
Task Arithmetic 15.13 5.18 12.98 5.20 26.53 25.78
Model Stock 50.65 | 44.82 65.12 50.08 64.86 28.37
Merging Methods | Average | AI2D ScienceQA SeedBench MMBench OOD-CV
DARE 10.18 0.00 0.00 0.00 25.40 25.50
DELLA 55.02 | 47.54 57.70 56.57 70.81 42.47
Linear 5748 | 51.36 67.90 59.91 70.17 38.07
TIES 5495 | 46.76 56.78 57.49 70.90 42.83
Task Arithmetic 20.54 | 24.19 0.00 24.96 27.46 26.10
Model Stock 49.56 | 43.56 65.10 48.56 63.24 27.34
Merging Methods | Average | AI2D ScienceQA SeedBench MMBench OOD-CV
DARE 1539 | 12.05 2.96 8.72 26.81 26.42
DELLA 57.69 | 47.73 66.16 61.86 71.20 41.51
Linear 5095 | 45.21 56.73 51.31 69.10 32.39
TIES 4277 | 34.68 44.47 32.11 68.41 34.16
Task Arithmetic 29.52 | 25.29 38.54 30.89 28.80 24.08
Model Stock 49.77 | 43.04 65.00 48.70 64.21 27.88
Ours 58.05 | 51.75 68.07 60.56 70.35 39.52

Table 11: Accuracy of baselines on held-out datasets when merging random model selections.

Merging Methods ‘ Vision-Language Generation Datasets

‘ Average ‘ OKVQA TextVQA GQA MMMU VizWiz VQAv2 POPE
DARE 18.78 0.41 7.82 19.06  27.11 3.85 3248  40.70
DELLA 43.78 41.69 39.74 40.83 31.67 40.75 6246  49.32
Linear 53.78 39.45 40.67 49.65 34.67 57.20 69.01 85.83
TIES 56.31 56.08 44.75 54.72 33.33 45.32 73.03 86.94
Task Arithmetic 4.04 0.04 0.91 0.33 24.67 0.26 0.96 1.09
Model Stock 39.37 3.35 37.30 39.54 32.33 54.38 61.51 47.18
Merging Methods | Average ‘ OKVQA TextVQA GQA MMMU VizWiz VQAv2 POPE
DARE 3.71 0.00 0.00 0.00 26.00 0.00 0.00 0.00
DELLA 51.08 47.94 43.15 43.70 32.44 36.94 69.17 84.23
Linear 53.66 43.35 4343 49.02 33.67 52.88 68.06 85.18
TIES 54.15 49.39 44.19 52.08 31.22 44.17 71.07 86.94
Task Arithmetic 22.70 4.47 20.60 19.69 25.89 4.53 41.02 4272
Model Stock 38.79 1.95 33.38 38.30 32.67 54.34 58.55  52.33
Merging Methods | Average ‘ OKVQA TextVQA GQA MMMU VizWiz VQAv2 POPE
DARE 15.99 0.70 8.61 13.66  25.56 3.44 26.84  33.10
DELLA 48.95 31.97 40.62 47.34 34.22 48.07 64.35  76.06
Linear 54.96 51.04 44.12 50.83 32.78 48.33 71.48 86.11
TIES 54.40 45.01 44.11 51.81 32.89 50.50 69.93 86.54
Task Arithmetic 27.45 3.67 19.32 30.01 28.11 5.11 44,02 61.88
Model Stock 35.20 1.51 32.39 37.02 32.78 54.01 57.50 31.21
Ours 56.01 50.39 43.49 50.75 35.22 54.13 71.77 86.33
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Table 12: Uncertainty on held-in datasets during merging steps. Bold denotes the step UQ-Merge stops.

Held-in Datasets

Merging Steps

|1 2 3 5 6 7 9 10
AI2D 020129 0.11652 0.06806 0.06142 0.05759 0.05062 0.04600 0.04676 0.04328 0.04248
MMBench 023477 0.11862 0.04576 0.03985 0.03784 0.03560 0.03583 0.03488 0.03368 0.03307
ScienceQA 021144 0.13648 0.06652 0.05888 0.05306 0.04905 0.04543 0.04672 0.04356 0.04222
SeedBench 022157 0.12653 0.05543 0.04701 0.04384 0.04079 0.03865 0.03837 0.03703 0.03606
OOD-CV 0.19077 0.16634 0.04470 0.03616 0.03423 0.03168 0.03160 0.03097 0.02945 0.02990
Average | 0.21197 0.13290 0.05609 0.04866 0.04531 0.04155 0.03950 0.03954 0.03740 0.03675

Table 13: Accuracy on validation datasets during merging steps. Bold denotes the step UQ-Merge stops.

Validation Datasets ‘

Merging Steps

|1 2 3 4 5 6 7 8 9 10
RealWorldQA 27.58 2248 4745 46.80 47.19 4758 49.15 47.32 4732 47.84
SeedBench 2 Plus | 23.36 1036 39.00 40.40 4133 41.81 4207 4172 4251 4216
OCRBench 530 2260 2250 2470 28.00 2820 2850 2840 28.00 28.80
Average | 1875 1848 3632 37.30 3884 3920 3991 39.15 39.28 39.60

Table 14: Accuracy on held-out datasets during merging steps. Bold denotes the step UQ-Merge stops.

Held-out Datasets ‘ Merging Steps

|1 2 3 4 5 6 7 8 9 10
OKVQA 27.05 5477 5048 4801 4621 44.13 5039 47.90 48.01 4621
TextVQA 2315 36.06 3424 3796 41.19 41.82 4349 4322 3796 41.19
GQA 61.73 5408 5077 5029 4897 49.98 50.75 49.75 5029 4897
MMMU 3000 29.78 3378 3422 3444 3500 3522 3522 3422 3456
VizWiz 4425 3469 4672 5436 5461 5566 54.13 5531 5436 5461
VQAV2 60.03 66.09 66.70 6830 67.81 6871 7177 7125 6830 6781
POPE 8339 83.07 84.60 8591 85.68 86.46 8633 8629 8591 85.66
Average 4709 5122 5247 5415 5413 5454 5601 5556 54.15 54.14
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