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Abstract

The scaling law of Large Language Mod-
els (LLMs) reveals a power-law relationship,
showing diminishing return on performance as
model scale increases. While training LLMs
from scratch is resource-intensive, fine-tuning
a pre-trained model for specific tasks has be-
come a practical alternative. Full fine-tuning
(FFT) achieves strong performance; however,
it is computationally expensive and inefficient.
Parameter-efficient fine-tuning (PEFT) meth-
ods, like LoRA, have been proposed to address
these challenges by freezing the pre-trained
model and adding lightweight task-specific
modules. LoRA, in particular, has proven effec-
tive, but its application to multi-task scenarios
is limited by interference between tasks. Re-
cent approaches, such as Mixture-of-Experts
(MOE) and asymmetric LoRA, have aimed to
mitigate these issues but still struggle with sam-
ple scarcity and noise interference due to their
fixed structure. In response, we propose CoLA,
a more flexible LoRA architecture with an effi-
cient initialization scheme, and introduces three
collaborative strategies to enhance performance
by better utilizing the quantitative relationships
between matrices A and B. Our experiments
demonstrate the effectiveness and robustness of
CoLA, outperforming existing PEFT methods,
especially in low-sample scenarios. Our data
and code are fully publicly available'.

1 Introduction

The scaling law (Kaplan et al., 2020; Zhai et al.,
2022) of Large Language Models (LLMs) de-
scribes a power-law relationship between the per-
formance of a deep learning model and its scale
(e.g., number of parameters, computation, and
data) as the model size increases. As the model
scale grows, the rate of performance improvement
gradually flattens. Despite the impressive under-
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standing and expressive capabilities of LLMs, train-
ing such a model from scratch is costly, which
hinders the application of the scaling law, espe-
cially for small companies or institutions. Fine-
tuning a single LLM for different downstream tasks
or knowledge domains has become a common
paradigm in various vertical fields (Araci, 2019;
Peng et al., 2021; Chalkidis et al., 2020; Rasmy
et al., 2021), and previous studies (Lester et al.,
2021a; Hernandez et al., 2021) indicate that the
scaling law also applies to fine-tuning. However,
this approach, i.e., full fine-tuning (FFT), requires
entire pre-trained weights of the LLM to be in-
volved in heavy gradient computation, demand-
ing substantial computational resources and energy
consumption, thus hindering further exploration of
the scaling law. In response, parameter-efficient
fine-tuning (PEFT) methods have been proposed,
where the backbone model’s parameters are frozen,
and only a small number of additional parame-
ters or external modules customized for specific
tasks or multi-task learning are modified. Com-
mon methods include LoRA (Hu et al., 2021),
Adapters (Lester et al., 2021b; Liu et al., 2021,
2022), and other variants (Liu et al., 2024b; Meng
et al., 2024; Tian et al., 2024), which offer a so-
lution for companies and researchers with limited
computational resources.

As a PEFT method, LoRA has gained significant
attention due to its simplicity, effectiveness, and
generality, leading to many promising works, in-
cluding exploration of better LORA architectures.
As shown in Figure 1 (a) and (b), unlike full fine-
tuning, which completely unfreezes the pre-trained
weight matrix W, LoRA freezes the pre-trained
matrix W and approximates the incremental up-
date AW of the pre-trained weights with two train-
able low-rank matrices A and B. These matri-
ces are inserted into each layer of the pre-trained
model, achieving comparable or even superior per-
formance to full fine-tuning. However, a single
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LoRA module projects the features of different
tasks into the same dense low-dimensional space,
causing interference between tasks and failing to ef-
fectively separate the knowledge of different tasks,
limiting adaptability in multi-task scenarios. Re-
cent research (Feng et al., 2024; Liu et al., 2024a;
Agiza et al., 2024) has introduced the Mixture-of-
Experts (MOE) idea to decouple multi-task infor-
mation in LoRA, as shown in Figure 1 (c). In this
design, multiple experts are separately designed
to learn task-shared and task-specific knowledge,
with each expert consisting of a pair of low-rank
matrices. This design allows the knowledge of
multiple tasks to be effectively learned while main-
taining parameter efficiency. Meanwhile, some
studies (Tian et al., 2024; Yang et al., 2024a) have
found that multiple smaller LoORA heads are more
effective than a single LoRA, as matrix A tends to
learn the commonality across all data, while matrix
B focuses on the unique aspects of each intrinsic
component. This leads to the design of an asym-
metric LoRA architecture, as shown in Figure 1 (d).
However, a single matrix A may struggle to capture
commonality in limited samples and is prone to in-
terference from noisy data. Moreover, these LoORA
variant structures consistently initialize matrices A
and B with Gaussian noise and zeros, which may
result in small or random gradients early in train-
ing, slowing the fine-tuning process or causing the
model to get stuck in suboptimal local minimum
points. As a result, various alternative initializa-
tion schemes for LoRA have been explored (Hayou
et al., 2024; Wang et al., 2024a; Meng et al., 2024),
e.g., PISSA (Meng et al., 2024), which directly
updates the model’s principal components during
fine-tuning through singular value decomposition,
thereby accelerating convergence and improving
performance.

Despite significant progress in the model pa-
rameter efficiency of different LoRA variant ar-
chitectures, the scaling law for model fine-tuning
remains limited in real-world scenarios due to the
fact that sample labeling is expensive and private
data is scarce. In particular, current LoORA methods,
due to their fixed structure, fail to effectively cap-
ture the more complex inherent diversity in scarce
samples. For example, as shown in Figure 3 in
Sec. 4.2, LoRA’s generalization ability deteriorates
sharply when the sample size starts to decrease be-
low 300. Therefore, it is crucial to further explore
the numerical and collaborative relationships be-
tween matrices A and B in LoRA, freeing it from

a monotonous structural design.

To address this, we introduce CoL A, a more flex-
ible LoRA architecture, and extend the efficient
PiSSA initialization scheme to CoLA, as shown in
Figure 2 in Sec.3. CoLA does not enforce strict
numerical relationships between matrices A and B.
To fully leverage their collaborative potential, we
have designed three collaborative strategies with
different energy consumption (computation): (i)
Fully collaborative CoLAT: Different matrices A
and B interact and learn from each other, with
deep parameter sharing. (ii) Random collabora-
tive CoLAT: A single matrix is randomly selected,
without relying on specific combinations, allowing
more diverse parameter learning. (iii) Heuristic
collaborative CoLA*: A combination of the two
structures, integrating the different advantages of
LoRA structures. The details of these three col-
laborative strategies are described in Sec.3.3. We
have conducted extensive experiments to validate
the effectiveness and robustness of CoL A, with ex-
periments performed on two recent Llama models
with different parameter sizes, using fine-tuning
data that reflect realistic scenarios. Four interesting
observations are made, as presented in Sec. 4.2.

2 Related Works

2.1 LoRA Architecture

As a parameter-efficient fine-tuning (PEFT)
method, LoRA has been widely used due to its sim-
plicity, effectiveness, and generality. It effectively
reduces the complexity of parameter updates by
introducing low-rank decomposition, significantly
improving fine-tuning efficiency while maintaining
model performance. Previous research (Qin et al.,
2021) has shown that despite the large number of
parameters in pre-trained models, the intrinsic di-
mensionality of the model on downstream tasks is
not large. Therefore, LoORA proposes the hypothe-
sis of low-rank decomposition for the incremental
update of pre-trained weight matrix Wy € R™"*"™:

W =Wy + AW = W, + BA, (1)

where B € R"™" A € R™™ and r <
min(n,m). It’s noted that during the prediction
phase, Wy, A and B can be combined into a single
matrix without increasing the inference cost.

Due to its simplicity and practicality, the vanilla
LoRA method has inspired considerable research.
However, its simple structure sometimes struggles
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Figure 1: The comparison between Full Fine-tuning and different LoRA variant structures.

to effectively capture the diversity of data sam-
ples. As a result, some studies have attempted to
combine the Mixture of Experts (MOE) approach,
where different LORA experts learn specific knowl-
edge or tasks (Liu et al., 2024a; Feng et al., 2024;
Agiza et al., 2024). In contrast, some methods are
designed with the idea that the matrices A and B in
LoRA tend to learn the commonality and intrinsic
diversity of domain knowledge or tasks, leading to
the proposal of asymmetric LoRA structures (Yang
et al., 2024a; Tian et al., 2024). The idea of using
two matrices to learn commonalities and diversities
is consistent with the layer-wise abstraction mecha-
nism (LeCun et al., 1998; Riesenhuber and Poggio,
1999; Hinton et al., 2006; Zhou et al., 2025a,b;
Li et al., 2025) in deep learning. Inspired by this,
a study (Gao et al., 2024) combining MOE and
LoRA has found that higher layers should allocate
more experts to effectively learn the more complex
features. However, in these LoRA methods, the
matrices A and B are limited by a fixed numerical
relationship, and the collaborative relationship be-
tween the matrices has not been explored further,
leading to suboptimal performance.

2.2 LoRA Parameter Initialization

Typically, LoRA initializes the matrices A and B
with Gaussian noise and zeros, respectively, to en-
force AW = 0 at the beginning. Intuitively, initial-
izing either the matrix A or the matrix B with zeros
seems feasible, and empirical results (Zhu et al.,
2024a) indicate that both approaches achieve simi-
lar performance. However, other research (Hayou
et al., 2024) suggests that initializing the matrix B
with zeros generally leads to better results. Mean-
while, other fixed initializations instead of ran-
dom initialization have been explored (Meng et al.,
2024; Ke et al., 2025). Specifically, PISSA (Meng
et al., 2024) shows significant performance im-
provements on several tasks by initializing with
top singular vectors to accelerate the convergence
of LoRA, and many similar works have been pro-

posed afterward (Wang et al., 2024a,b; Yang et al.,
2024b; Lingam et al., 2024; Zhang and Pilanci,
2024). Based on the effectiveness of singular value
decomposition, we extend PiSSA to the proposed
CoLA, and it serves as an essential component, as
discussed in Observation 2 of Sec. 4.2.

3 ColLA

In this section, we introduce the proposed CoLA, a
flexible LoRA achitecture as illustrated in Figure 2.
We then present the extended PiSSA initialization
scheme applied to CoL A and provide three collab-
orative strategies for the matrices A and B.

3.1 Flexible LoRA Architecture

Previous LoRA architectures have typically been
constrained by fixed relationships between the num-
ber of matrices A and B. Specifically, as shown
in Figures 1 (b) and (c), in vanilla LoRA and tra-
ditional LoRA + MOE architectures (Liu et al.,
2024a), the setting is #4 = #B = N, where #4
and #B denote the number of matrices A and B,
and N is a hyperparameter representing the number
of experts. However, this symmetric structure may
struggle to effectively learn both the shared com-
ponents and intrinsic diversity of domain knowl-
edge. To address this, some recent works have
proposed asymmetric LoRA architectures. As il-
lustrated in Figure 1 (d), HydraLoRA (Tian et al.,
2024) and MTL-LoRA (Yang et al., 2024a) adopt
the setting #4 = 1,#B = N. However, a sin-
gle matrix A may fail to capture commonalities
in limited samples and is prone to data noise, es-
pecially in data-scarce real-world scenarios. In
response, we introduce a more flexible LoRA ar-
chitecture—CoLA—that frees itself from the fixed
relationship between the number of matrices, i.e.,
#A = M,#B = N, where M is also a hyperpa-
rameter, as illustrated in Figure 2. Notably, existing
LoRA architectures can be viewed as special cases
of CoLA.
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Figure 2: Overview of CoLA with three collaborative strategies.

3.2 Extended PiSSA

For any matrix W € R™*™_ a singular value de-
composition (SVD) of the following form can be
found:

W =USV", (2)

where U € R"™*™ and V' € R™*"™ are orthogonal
matrices, and VT is the transpose of V. § € R"*™
is a non-negative diagonal matrix:

Aia =]
Sij = e (3)
0, i#]

where the diagonal elements are in descending or-
der, i.e., Ay > Ay > --- > 0, known as the singu-
lar values.

PiSSA divides S, along with U and V/, into two
groups: the principal singular values and vectors
(U7, Sprin)s Vi) ) and the residual singular
values and vectors ({U[:,T:], Sirr]s VW;]}). The
principal singular values and vectors are used to
initialize the matrices A and B in LoRA:

A= U[:,:T]Sl/2

[ory:r]?

B = Sl/2

[or,:r

Vo: @

Meanwhile, the residual singular values and vec-
tors are used to construct the residual matrix, which
remains frozen during fine-tuning:

Wy = U[:,r:]S[r:J:]‘/[;—l:r;}' (5)

Since elements of A} > elements of Ay,
PiSSA assumes that the initial BA contains the
most important directions of W, leading to faster
and better convergence. This assumption is
supported by the Eckart-Young-Mirsky theorem,
which is ignored by PiSSA, as formally described
in Theorem 3.1.

Theorem 3.1 Ifthe SVD of W € R™ ™ s
USV'", then the optimal rank r approxima-
tion of W is U[:n,:r] S[iﬂiﬂ 174

[tmyer]”

We extend PiSSA to the flexible CoLA architec-
ture. For the principal singular values and vectors

of matrices A and B, U, ., S[lﬁr] and S[ln{i] V[:T:T],
which are evenly distributed to each matrix A;

(1<i<M)and B; (1< j<N):

1/2 1/2
_ U[%”"] S[:r,:r] S[:r,:r] ‘/[7:7“]
M ’ N ’

Each matrix A; and B is initially treated equally
and aligned for full fine-tuning. During the fine-
tuning process, each matrix is optimized in differ-
ent directions, which allows CoLA to have more
diverse generalization capabilities. The extended
PiSSA initialization significantly benefits CoLA,
as observed in Observation 2 of Sec. 4.2.

Ai Bj = (6)

3.3 Collaborative Strategy

In the vanilla LoORA method, the matrices A and
B represent the incremental update AW = BA
of pre-trained weights through a one-to-one rela-
tionship. However, this simple, singular connec-
tion fails to capture the diversity of different tasks.
Therefore, some LoRA methods introduce the idea
of MOE (Mixture of Experts) to construct multiple
distinct one-to-one relationships within the matri-
ces A and B to achieve the more diverse incremen-
tal update AW = B1A; + --- + ByAn. How-
ever, since each expert is independent, although
it can effectively learn the intrinsic diversity of
knowledge, it struggles to capture the common-
ality of domain-specific knowledge. Thus, Hy-
dralLoRA and MTL-LoRA methods adopt a one-to-
many relationship between the matrices A and B
to represent the more complex incremental update
AW = (B; + - -- + Byn)A. However, the knowl-
edge that a single A matrix can learn is limited
and more prone to noise, especially in real-world
scenarios with sparse samples. Based on this, we
introduce a many-to-many relationship within the
matrices A and B to represent the more refined in-
cremental update, as shown in Figure 2. The three
collaborative strategies are as follows:
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Domain ‘ Fine-tuning Dataset ‘

Benchmark ‘ Function

Generality databricks-dolly-15k (Conover et al., 2023)
Law Lawyer-Instruct (Alignment-Lab-Al, 2024) and US-Terms (Chalkidis et al., 2023)
Medicine GenMedGPT-5k and clinic-10k from ChatDoctor (Li et al., 2023)
Math Training Set of GSM8k (Cobbe et al., 2021)
Finance Training Set of fingpt-fineval (Wang et al., 2023)

MMLU (Hendrycks et al., 2020)
Legal Tasks in MMLU
Medical Tasks in MMLU
Test Set of GSM8k
Test Set of fingpt-fineval

General Instruction Following
Legal Judgment
Medical Diagnosis
Mathematical Reasoning
Financial Q&A

Multi-tasking ‘ OpenOrca (Lian et al., 2023)

‘ Big-Bench Hard (BBH) (Suzgun et al., 2022) ‘ Natural Language Understanding (NLU) and Natural Language Generation (NLG)

Table 1: The basic information of the datasets used in our experiments.

* Fully Collaborative CoLAT: CoLAT repre-
sents the finest incremental update AW =
(B1+:+-+Bn)(A1+-- -+ Apr) by combin-
ing each matrix A and B. This collaborative
strategy breaks down the information trans-
mission barrier between each matrix A and B,
making it easier for beneficial knowledge to
be shared. However, this may introduce more
energy consumption.

» Random Collaborative CoLA: Inspired by
the dropout regularization technique (Srivas-
tava et al., 2014) in deep learning, CoLA'
represents the more robust incremental update
AW = (Bl BN)(A1+"'+AM) by
combining each matrix A with a randomly
chosen matrix B. This collaborative strat-
egy does not rely on a specific combination,
making the learned knowledge expected to be
more robust, while incurring the fewest energy
consumption.

* Heuristic Collaborative CoLA*: CoLA?
integrates multiple one-to-one and one-to-
many relationships between matrices A and
B (which can be seen as the combination of
Figures 1 (c) and (d)) to represent the com-
plex and diverse incremental update AW =
BiAy + -+ By—1Ay—1 + (B + - +
Bpy)Ajp (assume M < N). This collabora-
tive strategy combines the advantages of two
specific combinations, enabling the learning
of both general and diverse knowledge, while
producing moderate energy consumption.

We analyze the energy consumption produced by
these three collaborative strategies in Observation
4 of Sec. 4.2.

4 Experiments

In this section, we present the setup and details of
the experiments. Then, we share our findings and
provide concise explanations.

4.1 Experimental Setup
4.1.1 Datasets and Benchmarks

Following HydralLoRA (Tian et al., 2024), we
evaluate the performance of different fine-tuning
methods on datasets from single and multiple do-
mains. Table 1 shows the basic information of
these datasets, and more details can be found in
Appendix A.

4.1.2 Baselines

We select recent Llama models with different pa-
rameter scales (Dubey et al., 2024) (Llama-3.2-3B
and Llama-3.1-8B) as the backbone models for op-
timization. Additionally, we compare CoLA with
several different PEFT methods:

 Single domain: Full fine-tuning (FFT) (not
applied to Llama-3.1-8B due to resource limi-
tations), Prompt Tuning (Lester et al., 2021b),
P-Tuning (Liu et al., 2021), IA3 (Liu et al.,
2022), LoRA (Hu et al., 2021), DoRA (Liu
et al., 2024b), PiSSA (Meng et al., 2024), Hy-
dralLoRA (Tian et al., 2024).

e Multiple domain: MOELoRA (Liu et al.,,
2024a), MTL-LoRA (Yang et al., 2024a),
MoLA (Gao et al., 2024), HydraLoRA.

Details of the aforementioned PEFT methods
can be found in Appendix B. Specifically, unless
stated otherwise, the LoRA rank is set to 8 by de-
fault for the PEFT methods related to LoRA.

4.1.3 Implementation

Previous studies have shown that the quality of
text generated by models can be significantly in-
fluenced by sampling strategies (e.g., temperature),
and that generating the entire text leads to inef-
ficiencies (Renze and Guven, 2024; Zhu et al.,
2024b; Patel et al., 2024). Meanwhile, the multiple-
choice inference mode generates stable and con-
sistent results by using the model’s logits, requir-
ing only the computation of the logits for the final
token (Hendrycks et al., 2021). The specific dif-
ferences between these two inference modes, as
well as the code, can be found in Appendix C. To
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Method ‘ Llama-3.1-8B ‘ Prompt Tuning | P-Tuning ‘ 1A® ‘ LoRA,_g ‘ LoRA,_¢ ‘ LoRA, o4 ‘ LoRA, 3> ‘ DoRA ‘ PiSSA ‘ HydraLoRA ‘ CoLA ‘ CoLAT ‘ CoLAT ‘ CoLAf

#A [#B | - | - - fr |t vt v e e 3 132323 2|3
%Param | | 00004 0.0280 | 0.0065 | 0.2605 05196 07774 | 1.0338 | 02605 02605 05785 0.5325 | 0.6551 | 0.6551  0.6551
Generality 2295 25.38 2468 | 2296 | 5036 51.47 52.91 5235 | 51.56 | 54.72 45.86 58.04%% | 58.21%* | 4226  57.08%*
Law 24.62 2575 2609 | 2462 | 2598 26.60 24.96 2592 | 2632 | 26.58 2626 3625 | 4146%* | 2627  31.04*
Medicine 23.82 2491 2512 | 2382 | 4266 47.17 50.38 4594 | 4328 | 44.64 40.61 56.11%% | 54.33% | 4124  50.23
Math 24.79 26.00 26.16 | 2472 | 5102 54.66 56.94 5648 | 5118 | 57.00 47.31 5771 | 59.14%* | 4596 5634
Finance 26.42 28.30 2151 | 2642 | 4038 44.53 45.66 4868 | 41.13 | 46.79 38.87 52.45%% | 50.19%* | 37.51 4532

Table 2: Comparison of 0-shot performance (%) of different fine-tuning methods based on Llama-3.1-8B across
multiple single domains. The experiments are repeated 5 times under random seeds 42 to 46 and the average
performance is reported. #A and #B represent the number of matrices A and B, respectively. * and ** indicate that
the improvements over the strongest baseline with underlined are statistically significant, with p <0.05 and p <0.01,
respectively. The results based on Llama-3.2-3B are in Appendix E.

Method

| Base | LoRA,—¢s | MOELoRA | MTL-LoRA | MoLA | HydraLoRA | CoLA | CoLAT | CoLA! | CoLA*

#A | #B \ [ 1] 1 8 | 8 | 1 | 14 8|8 1 | 14 |1]14|4]10]4]10]4]10
%Param | - | 20465 20482 | 20051 21654 22107 | 20026 | 1.8330 | 1.8330 | 1.8330
Multi-tasking | 11ama-32-3B | 2036 | 34.89 30.77 3231 35.11 29.64 | 36.87%* | 3647* | 3118 | 34.58
S8 | Llama-3.1-8B | 2047 | 42.90 40.53 41.39 41.16 39.08 4287 | 43.62% | 39.26 | 4216

Table 3: Comparison of 0-shot performance (%) of different fine-tuning methods across multiple domains.

ensure fairness and reproducibility in evaluation,
we follow the evaluation settings recommended in
LlamaFactory (Zheng et al., 2024) and uniformly
convert the model’s generation task into a classi-
fication task. However, this may conflict with the
original instruction setup. We use powerful lan-
guage models to normalize the conflicting datasets
(GSMS8K and BBH) into multiple-choice formats.
All experiments are conducted using the LlamaFac-
tory framework. The prompts for normalization,
the prompt template used for the model’s zero-shot
evaluation, and additional experimental details can
be found in Appendix D.

4.2 Results

We conduct extensive experiments to demonstrate
the value of the proposed CoLA. Four key observa-
tions are summarized as follows.

Observation 1. CoLA is effective on both
single and multiple knowledge domains.

Table 2 and Table 5 in Appendix E show the
performance comparison of different fine-tuning
methods based on Llama-3.1-8B and Llama-3.2-
3B across multiple single domains in a 0-shot set-
ting. Our findings are as follows: (1) Compared to
methods like LoRA, fine-tuning approaches includ-
ing Prompt Tuning, P-Tuning, and IA3, although
designed with fewer parameters, struggle to effec-
tively capture the patterns of few samples and gen-
eralize to more samples in scenarios where data
is scarce, which can become a curse in practical
settings. (2) LoRA remains a simple yet hard-to-
beat baseline compared to the base model and other
methods, consistently achieving top-2 performance

across these baselines. (3) DoRA generally im-
proves the performance of LoRA,—g, indicating
the effectiveness of updating the weight decomposi-
tion’s directional components in LoRA. (4) PiSSA
achieves impressive performance with fewer pa-
rameters, due to its ability to pre-learn the principal
components of the pre-trained weights for faster
convergence. This also confirms the correctness
of CoLA’s efficient initialization scheme. Mean-
while, Hydral.oRA does not achieve the expected
results, likely due to its Gaussian noise initializa-
tion, which may lead to overfitting under condi-
tions with scarce samples. (5) CoLA, CoLAT, and
CoLA? (especially CoLA and CoLAT) consistently
achieve excellent performance, which is closely
tied to the advantages analyzed in Sec. 3.3, while
CoLAT does not yield the expected results. This
pseudo-LoRA implementation, averaging a matrix
B, contradicts the quantitative relationship between
the matrices A and B identified in Observation 3.

Table 3 presents a performance comparison of
different fine-tuning methods across multiple do-
mains in a O-shot setting. Several insights are
drawn: (1) Compared to the base model, the
three multi-task LoORA method (MOELoRA, MTL-
LoRA, and HydralLoRA) are effective, but fail to
effectively learn the instruction patterns in the pre-
trained weights due to the random initialization of
their experts. (2) MoLA (specifically MoLA-V)
and LoRA,—g4 show comparable performance and
consistently outperform MOELoRA, indicating the
effectiveness of allocating more experts to higher
layers with advanced features. (3) With the similar
parameters, CoLA and CoLAT consistently achieve
the best performance, which indicates that they can
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Figure 3: The impact of PiSSA initialization on LoRA and CoLA based on Llama-3.1-8B in the generality domain

when the sample size is reduced.

Law Medicine
#A #A
1 2 3 4 5 1 2 3 4 5

— 26.58 2530 24.90 24.67 2507 28.60 37.75 44.03 37.82

o | 30.86 58.34 | 56.25 [45.73

27.28

29.61 2847 2439

25.52 27.06

3149 26.94 27.17

53.99 5249 5263

55.56 | 47.44 55.84

w [ 32,51 CYAEN 2944 25.64 59.10 | 53.92 56.18

Finance
#A
1 2 3 4 5

46.79 44.15 EXWAN 4226

51.04 | 49.06 49.81 51.32 EZEX]

50.19 50.19 | 48.68

52.13 | 50.57 | 50.57 ELEY]
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58.83

59.41 | 56.99 Krigd w [SURERRORCREGYRPY 46.79 46.04

Figure 4: The performance of Llama-3.1-8B when the number of matrices A and B in CoLA differs across the

domains of law, medicine, math, and finance.

also learn the inherent diversity of domain-specific
knowledge in multitask learning. This is due to
the fully collaborative strategy, which allows each
matrix A and B to fully share knowledge.

Observation 2. Compared to the LoRA
method, the impact of parameter initializa-
tion on CoLA is more significant when the
sample size is reduced.

We investigate the robustness of the CoLLA initial-
ization scheme with continuously decreasing sam-
ples in harsh environments. In the generality do-
main, based on Llama-3.1-8B, we select LoRA,—1¢
and LoRA,—_o4 as the baselines for our CoLA
(#A = 1,#B = 3) and CoLAT (#4A = 2, #B = 3),
respectively, to explore the necessity of the ex-
tended PiSSA initialization for CoLA, as shown
in Figure 3. From this, we observe: (1) In ex-
tremely harsh environments (sample size = 100),
all methods fail, especially the LoRA, whose per-
formance starts to degrade sharply when the sample
size reaches 300. (2) CoL A without the extended
PiSSA, while not outperforming LoRA, demon-
strates consistently the best performance after ini-
tialization and remains stable even with fewer sam-
ples (sample size = 200). This suggests that the
extended PiSSA has a significant impact on CoLA.

CoLA’s ability to maintain high performance in
such challenging environments is attributed to its
use of multiple different matrices A and B, and the
extended PiSSA initialization allows both matrices
to learn the foundational instruction patterns of the
pre-trained model, enabling efficient learning in
distinct directions, leading to improved generaliza-
tion.

Observation 3. In CoLLA, the number of ma-
trix A should be fewer than the number of
matrix B, as the benefit of increasing the ma-
trix B outweighs that of increasing the matrix

A.

We explore the quantitative relationship between
matrices A and B in CoLA across four domains:
law, medicine, math, and finance. The experiments
are based on Llama-3.1-8B, where #A and #B
range from 1 to 5. From Figure 4, we can observe:

* When either matrix A or B is fixed, increasing
the number of the other matrix generally ben-
efits the model. However, excessive increase
can lead to overfitting (e.g., #A =5, #B =1
in the finance domain), highlighting the need
for careful tuning of the number of A and B
matrices.
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Figure 5: Energy consumption of three collaborative strategies based on Llama-3.1-8B.

* When #A = #B, simply increasing the num-
ber of experts does not necessarily improve
model performance and may even degrade
it (e.g., #A = #B = 5 in the math domain).
This suggests that traditional LoORA + MOE ar-
chitectures, like MOELoRA, may not be opti-
mal. On the contrary, when matrices A and B
are asymmetric, particularly when #4 < #B,
increasing the number of experts tends to ben-
efit the model (e.g., #A = 1,#B = 3 —
#A =2,#B =4 — #A = 3,#B =5).

e Let x < y. The model benefits more from
#A = x,#B = y rather than #4 = y,#B =
x. That is, the number of matrix A in CoLA
should be fewer than that of matrix B. This
insight is inspired by the model structure de-
signs in HydraLoRA and MoLA-V: matrix
A learns the underlying commonalities in the
data, while matrix B focuses on the unique
aspects of each component, with higher-level
features receiving more weight. This can also
be drawn from real life, where people often re-
member the contour of a face but overlook
facial details (e.g., the width of the nose),
though these details are crucial for accurate
facial recognition (Zhao et al., 2003; Liu and
Liu, 2010; Tan and Triggs, 2010).

Observation 4. The three collaborative
strategies (CoLAT, CoLAT and CoLA¥) have
significantly different energy consumption,
and more refined collaborative strategies are
worth exploring.

We analyze the energy consumption of three
collaborative strategies in CoLA (CoLAT, CoLAT,
and CoLA%) to validate the low energy consump-
tion of our experimental setup. Our experiments
are conducted on a GPU infrastructure powered by
two NVIDIA A800 80GB GPUs and an Intel(R)
Xeon(R) Platinum 8358 CPU @ 2.60GHz. We
use CodeCarbon (Patterson et al., 2021) to record

Domain ‘ Generality ‘ Law ‘ Medicine ‘ Math ‘ Finance ‘ Multi-tasking

CoLAfT 42.26 26.27 41.24 4596 | 37.51 39.26
CoLAT 52.26 31.02 48.15 54.89 | 46.32 40.64

Table 4: Performance comparison of two different ran-
dom collaborative strategies based on Llama-3.1-8B.

the energy consumption of CoLAT, CoLA', and
CoLA? based on Llama-3.1-8B across different
single domains, with a random seed of 42. As
shown in Figure 5, we observe the following: (1)
The energy consumption of the three collaborative
strategies—CoLAT, CoLAT, and CoLA*—differs
significantly, representing high, low, and medium
configurations, respectively, which are suitable for
different real-world application scenarios to meet
diverse user needs. (2) Compared to the energy
consumption results from HydralLoRA (Tian et al.,
2024), our experiment consumes less than 1/10th
of the energy. This is not only due to our sampling
a smaller number of samples, which aligns with
the scarcity of samples in real-world scenarios and
presents a significant challenge for the performance
of current PEFT methods, but also due to our exper-
imental setup. We convert the model’s generation
evaluation into a classification evaluation, resulting
in fewer tokens (the model’s output is often just
a capital letter). More details on our evaluation
method can be found in Appendix D.

However, we also observe that the CoLAT col-
laborative strategy performs poorly overall in our
experiments, as it violates the principle identified
in Observation 3. In contrast, we introduce an-
other random collaborative strategy, CoLAT, which
combines each matrix B with a random matrix A.
We fine-tune Llama-3.1-8B on multiple different
single-domain and multi-domain tasks, as shown
in Table 4. From the table, we find that CoLA' con-
sistently outperforms CoLAT, which demonstrates
the universality and effectiveness of Observation
3. Furthermore, due to space limitations, more
refined collaborative strategies that align with the
principles we discover remain to be explored. For
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example, as shown in Figure 2, where matrix A
and B form a bipartite graph, this graph has many
interesting properties (e.g., maximum matching),
making it a promising avenue for future research.

5 Conclusion

In conclusion, this paper introduces CoLLA, a flexi-
ble LoRA architecture designed to address the lim-
itations of current parameter-efficient fine-tuning
methods, particularly in scenarios with scarce data.
By decoupling the rigid numerical relationship be-
tween matrices A and B, CoLA enables more ef-
fective collaboration through three various strate-
gies. Through extensive experimentation on multi-
ple Llama models, we demonstrate that CoLA sig-
nificantly improves generalization and robustness,
especially in resource-constrained environments.

6 Limitations

Our experiment involves multiple knowledge do-
mains: generality, law, medicine, math, finance,
and mixed domains (multi-tasking). However, we
do not validate the proposed CoLLA method in the
code domain, which is related to the consistent eval-
uation approach we adopted (also recommended
by the LlamaFactory framework), as shown in Ap-
pendix D. Additionally, code-related questions are
challenging to transform into multiple-choice ques-
tions. We are actively seeking a simple yet non-
trivial way to add to the model’s input tokens. Fur-
thermore, the more refined collaborative strategy
in the CoLA method is worth exploring. For ex-
ample, as shown in Figure 2, a bipartite graph is
formed between matrices A and B. Investigating
the maximum matching of such a bipartite graph
and identifying appropriate scenarios is promising,
and we leave this as future work.
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A Datasets

In our experiment, a total of 8 datasets are used for
fine-tuning, and their descriptions are as follows.

* databricks-dolly-15k: databricks-dolly-15k
is an open-source dataset with 15,000 high-
quality, human-generated prompt/response
pairs, created by over 5,000 Databricks em-
ployees in March and April 2023. It is de-
signed for instruction tuning LLMs and in-
cludes expressive and diverse examples across
various tasks such as brainstorming, content
generation, classification, summarization, in-
formation extraction, closed QA, and open
QA. Inspired by the behavioral categories in
the InstructGPT (Ouyang et al., 2022), this
dataset supports a wide range of instruction-
following applications.

* Lawyer-Instruct: Lawyer-Instruct is an
English-based conversational dataset derived
from the original LawyerChat dataset. It fea-
tures legal dialogue scenarios restructured into
a format with clear instructions, inputs, and ex-
pected outputs. This redesigned format makes
it particularly suitable for training supervised
dialogue models.

* US-Terms: LegalLAMA is a comprehensive
benchmark suite consisting of 8 sub-tasks, de-
signed to evaluate the extent of legal knowl-
edge acquired by PLMs during pre-training.
US-Terms is one of these sub-tasks.

¢ GenMedGPT-5K, clinic-10k: GenMedGPT-
5k and iclinig-10k both originate from Chat-
Doctor. GenMedGPT-5k contains a dataset
of over 5,000 GPT-generated doctor-patient
dialogues, while iclinig-10k includes a dataset
of over 10,000 patient-doctor dialogues.

¢ GSMS8k: GSMS8K (Grade School Math 8K)
is a dataset of 8.5K high-quality, linguisti-
cally diverse grade school math word prob-
lems. The dataset is designed to support the
task of question answering on basic mathemat-
ical problems that require multi-step reason-
ing. We use the option-filled prompt shown in
Appendix D to convert it into multiple-choice
questions.

* fingpt-fineval: fingpt-fineval comes from Fin-
GPT and includes Chinese multiple-choice

questions instructions. However, the Llama
model family does not support the Chinese
language, so we used Google Cloud Transla-
tion? to translate it into English.

* OpenOrca: OpenOrca is an instruction-
tuning dataset, with 2.91M samples derived
from augmented FLAN (Longpre et al., 2023).
It includes around 1M GPT-4 completions and
3.2M GPT-3.5 completions, organized as per
ORCA’s distribution (Mukherjee et al., 2023),
aimed at training and evaluation in natural
language processing tasks.

It is worth noting that we do not fine-tune the
entire aforementioned datasets, but instead ran-
domly select 1,000 samples with a random seed
of 42, based on the following considerations: (i)
In real-world scenarios, fine-tuning samples are
scarce (Van, 2023; Schifer et al., 2024; Zhou
et al., 2024; Pecher et al., 2024). Data collection
and labeling are costly, and high-quality samples
are even harder to obtain for specific tasks. The
scarcity of samples can easily lead to model over-
fitting, which poses a significant challenge for all
PEFT methods. (ii) Limited resources. All re-
sources are utilized on two NVIDIA A800-SXM4
(80G) GPUs, but most research institutions do not
even have such configurations. We provide ad-
ditional experiments with larger sample sizes in
Appendix E to demonstrate the robustness of the
proposed CoLA.

In addition, the descriptions of the MMLU and
BBH datasets used in our experiments are as fol-
lows.

 MMLU: MMLU (Massive Multitask Lan-
guage Understanding) is a benchmark de-
signed to evaluate models in zero-shot and
few-shot settings, covering 57 subjects across
diverse fields like STEM, humanities, and so-
cial sciences. It tests both world knowledge
and problem-solving ability, ranging from ba-
sic to advanced levels, and helps identify mod-
els’ blind spots. The test challenges models
to demonstrate extensive knowledge across
multiple domains.

* BBH: BBH (BIG-Bench Hard) is a challeng-
ing subset of the BIG-Bench (bench authors,
2023), developed by Google and Stanford. It

Zhttps://cloud.google.com/translation-hub
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consists of 23 tasks that require multi-step rea-
soning, testing large language models’ logical
and reasoning abilities.

It’s noted that we select tasks related to law (in-
ternational law, jurisprudence, professional law)
and medicine (anatomy, clinical knowledge, col-
lege medicine, human aging, human sexuality, med-
ical genetics, professional medicine, virology) in
MMLU for evaluation in the fields of law and
medicine. We use the complete benchmark data for
evaluation to ensure the adequacy and comprehen-
siveness of the experiments.

B Baselines

In our experiment, a total of 10 different PEFT
methods are used to optimize the recent Llama
models, described as follows.

* Prompt Tuning: Prompt Tuning introduces
task-specific prompts to the input, updating
only the prompt parameters while keeping the
pretrained model’s parameters frozen. It treats
all tasks as generation tasks, with prompts
being the focus of adaptation.

e P-Tuning: P-Tuning introduces trainable
prompt embeddings optimized by a prompt
encoder, eliminating manual prompt design.
It allows prompt tokens to be added anywhere
in the input sequence and includes anchor to-
kens to enhance performance.

» IA3: IA? improves efficiency by integrating
learned vectors into transformer models, re-
ducing trainable parameters while maintain-
ing performance and minimizing inference
latency. This PEFT method involves multiply-
ing model activations by three learned vectors,
offering a more efficient alternative to LoORA
with fewer parameters to update.

* LoRA: LoRA is a low-rank decomposition
technique that reduces trainable parameters,
speeding up fine-tuning and reducing memory
usage by inserting trainable low-rank parame-
ters into the original model weights.

* DoRA: DoRA decomposes the pre-trained
weights into two components—magnitude
and direction—to facilitate fine-tuning, us-
ing LoRA specifically for directional updates,
which effectively minimizes the number of
trainable parameters.

* PiSSA: PiSSA improves upon LoRA by ini-
tializing the adapter with principal singular
values and vectors, optimizing the key com-
ponents while freezing the "noisy" ones. This
method leads to faster convergence and better
performance than LoRA.

* HydraLLoRA: HydralLoRA is an asymmetric
fine-tuning architecture that effectively identi-
fies and adapts to intrinsic data components,
such as sub-domains or diverse tasks. It al-
locates distinct B matrices for task-specific
features, while a shared A matrix integrates
global information, enabling efficient parame-
ter utilization and enhanced performance.

* MOELoRA: MOELoRA combines the ben-
efits of multi-task learning and parameter-
efficient fine-tuning by using multiple experts,
each consisting of a pair of low-rank matrices,
keeping trainable parameters minimal. The
expert modules enable MOELoRA to handle
task differences effectively and mitigate the
negative impact of data imbalance on perfor-
mance.

* MTL-LoRA: MTL-LoRA enhances low-rank
adaptation (LoRA) by adding task-specific pa-
rameters, improving multi-task learning. It
enables LLMs to adapt to diverse tasks ef-
ficiently, using fewer trainable parameters
while capturing shared knowledge across
tasks in low-dimensional spaces.

* MoLA: MoLA for Transformer-based models
allows each layer to use a variable number of
LoRA experts, with more experts allocated
to higher layers, enhancing model effective-
ness while maintaining a fixed total number
of experts.

The PEFT methods related to LoRA men-
tioned above are used to optimize all linear mod-
ules (down_proj, k_proj, v_proj, q_proj, up_proj,

gate_proj, o_proj).
C Two Types of Inference Modes

Codes 1 and 2 represent the code for two different
inference modes, respectively. As can be observed,
Code 1 is more suitable for classification tasks (e.g.,
multiple-choice questions), as it is based on the
model’s logits for inference. When selecting the
final answer, the decision is made directly by choos-
ing the option with the highest probability. This
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mode does not involve a text generation process, SO
its results are relatively stable and consistent. The
evaluation accuracy of this mode is not affected by
the randomness of the generation process. In con-
trast, Code 2 is based on generation tasks (e.g., text
generation, question answering, etc.). It generates
the entire text to obtain the answer (extracted via
regular expressions, with different studies even us-
ing different extraction methods), and the quality of
the generated output is significantly influenced by
sampling strategies (e.g., temperature). A trade-off
must be made between diversity and accuracy in
the generation process. For reproducibility, we se-
lect the first mode recommended by LlamaFactory
for all experiments.

@torch.inference_mode ()
def batch_inference_logit(self,
batch_input: Dict[str, "torch.Tensor
"]) -> List[str]:
# self.choice_inputs: Encoding of
the options in the instruction
logits = self.model (**batch_input).
logits
lengths = torch.sum(batch_input[”
attention_mask”], dim=-1)
word_probs = torch.stack([logits[i,
lengths[i] - 1] for i in range(
len(lengths))], dim=0)
choice_probs = torch.nn.functional.
softmax (word_probs[:, self.
choice_inputs], dim=-1).detach()
return [chr(ord("A") + offset.item()
) for offset in torch.argmax(
choice_probs, dim=-1)]

Code 1: Inference mode with logit.

@torch.inference_mode ()
def batch_inference_text(self,
batch_input: Dict[str, "torch.Tensor
"1) -> List[str]:
outputs = self.model.generate(
input_ids=batch_input["input_ids
"]’
attention_mask=batch_input["”
attention_mask"],
max_length=self.eval_args.

max_answer_length, #
Adjustable maximum generated
length

num_beams=1,
early_stopping=True

)

return [self.tokenizer.decode (output
, skip_special_tokens=True) for
output in outputs]

Code 2: Inference mode with text.

D Experimental Details

Some fine-tuning datasets (GSM8K and subsets of
BBH) have instruction formats that are not based

on multiple-choice questions, so they need to be
extended through answer options to adapt to classi-
fication tasks. We generate additional options using
the following option-filling prompt.

e The Prompt for Option Filling

Now there is a question about {subject}
and a correct option. Please fill in the other
incorrect options based on the question’s
context. Note that you should add the
incorrect options, not solve the question.
Question: Henry and 3 of his friends order
7 pizzas for lunch. Each pizza is cut into
8 slices. If Henry and his friends want to
share the pizzas equally, how many slices
can each of them have?

Correct Option: A. 14

Answer:

B. 56

C.8

D. 18

Question: Farmer Brown has 20 ani-
mals on his farm, all either chickens or
cows. They have a total of 70 legs, all
together. How many of the animals are
chickens?

Correct Option: C. 5

Answer:

A.20

B. 15

D. 70

Question: {question}

Correct Option: {correct_option}
Answer:

{incorrect_options}

We use the zero-cost API GLM-4-Flash? to ac-
complish the above task. In addition, the following
evaluation template in our experiments is used, as
shown in Figure 6.

Note that we present our experimental details, as
shown in Tables 6 and 7.

E Additional Experimental Results

To verify the robustness of CoLA when faced with
larger sample sizes (sample size = 1000, 2000,

3https://bigmodel.cn/dev/activities/free/
glm-4-flash
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Method | Llama-3.2-3B | FFT | Prompt Tuning | P-Tuning | TA® | LoRA,_s | LoRA,—i | LoRA,—y | LoRA,_3; | DoRA | PiSSA | HydraLoRA | CoLA | CoLAT | CoLA' | CoLA!

#A[#B | - [ [ S A O O I O | Lfpn o] [ 3 3 2323 2|3
%Param | - | | 00008 00530 0.0089 | 03770 | 07511 | 1.1224 14910 | 0.3770 03770 | 08267 | 07581 0.9406 | 0.9406  0.9406
Generality 2301 32.87 2471 2502 | 2456 | 2628 31.25 32.88 3490 | 2638 | 37.33 25.37 45.36**  46.99%* | 2653  43.15%*

Law 24.73 26.28 23.09 2569 | 24.94 | 2490 25.07 24.73 2456 | 2496 | 2456 2479 2751 2685 | 2489 2499
Medicine 24.03 3229 23.28 2539 | 2424 | 2471 2539 25.80 2587 | 2457 | 27.10 2451 39.86%% 37.41% | 2491  33.08*
Math 24.87 53.92 25.17 2509 | 2479 | 4587 50.04 50.11 5216 | 4556 | 5350 4473 56.71%  56.79% | 4172 5286
Finance 26.42 42.03 24.53 2566 | 2678 | 3509 36.60 39.25 3962 | 3434 | 4038 3321 39.62 4151 | 3893 4032

Table 5: Comparison of 0-shot performance (%) of different fine-tuning methods based on Llama-3.2-3B across

multiple single domains.

e USER.

The following are multiple choice questions (with
answers) about {subject}. Please provide only
the correct option (one uppercase letter).
{instruction}

Answer:

o ASSISTANT.

{correct_option}

Figure 6: Evaluation Template

Hyperparameter ‘ Setting
Batch Size 8
Train Epochs 5.0
Validation Size 0.1
Learning Rate Se-5
Cutoff Length 1024
Gradient Accumulation Steps 8
Random Seed 42,43,44,45,46
Scheduler Type cosine
Precision fpl6
Evaluation Strategy steps
Optimizer Adamw
GPU two NVIDIA A800-SXM4 (80G) GPUs

Table 6: Experimental hyperparameter settings

3000, 4000, 5000, All), we selected PiSSA,—1¢
and PiSSA,—o4 as the baselines for CoLA (#A =
1,#B = 3) and CoLAT (#4 = 2,#B = 3) in the
generality domain, as shown in Table 8. From the
table, it can be observed that as the sample size in-
creases, CoLA and CoLAT consistently outperform
PiSSAr = 16 and PiSSAr = 24, which confirms
the robustness of CoL A with respect to more sam-
ples. We also notice that having too many samples
(ALL) does not necessarily lead to optimal perfor-

Method | Hyperparameter | Setting
Prompt Tuning prompt_tuning_init_text | Answer the following question as required.\n
num_virtual_tokens 20
- encoder_hidden_size 256
P-Tuning
encoder_num_layers 2
encoder_reparameterization_type MLP
1A3 target_modules default
r 8.16,24,32,64
LoRA target_modules down_proj, k_proj, v_proj, q_proj, up_proj, gate_proj, o_proj
lora_alpha rx2
DoRA r | 8
PiSSA | r | 8
HydraLoRA #A | #B | 1131114
MOELoRA | #A1#B | 818
MTL-LoRA #A | #B | 1114
#A 1 #B 818
MoLA ‘ Type ‘ Inverted-Triangle (MoLA-V)
r 8
(L5 #A 4B ‘ 113213,1114,4110

Table 7: Hyperparameter settings used in our experi-
ments for different PEFT methods.

Sample Size | 1000 | 2000 | 3000 | 4000 | 5000 | ALL

PiSSA,—16 | 55.95 | 57.28 | 59.60 | 61.86 | 60.82 | 57.37
PiSSA,—24 | 55.62 | 52.02 | 60.88 | 61.00 | 60.85 | 57.29
CoLA 58.04 | 59.48 | 62.49 | 62.89 | 62.14 | 59.53
CoLAT 58.21 | 58.84 | 61.54 | 63.28 | 63.33 | 60.56

Table 8: Performance comparison of CoLLA and PiSSA
in the generity domain based on Llama-3.1-8B as the
sample size increases.

mance, which may be due to the model’s parameter
scale not keeping up with the scaling law.

14130



