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Abstract

Large Language Models (LLMs) often struggle
with tasks requiring external knowledge, such
as knowledge-intensive Multiple Choice Ques-
tion Answering (MCQA). Integrating Knowl-
edge Graphs (KGs) can enhance reasoning;
however, existing methods typically demand
costly fine-tuning or retrieve noisy KG informa-
tion. Recent approaches leverage Graph Neural
Networks (GNNs) to generate KG-based input
embedding prefixes as soft prompts for LLMs
but fail to account for question relevance, re-
sulting in noisy prompts. Moreover, in MCQA
tasks, the absence of relevant KG knowledge
for certain answer options remains a significant
challenge. To address these issues, we propose
Question-Aware Knowledge Graph Prompting
(QAP), which incorporates question embed-
dings into GNN aggregation to dynamically
assess KG relevance. QAP employs global at-
tention to capture inter-option relationships, en-
riching soft prompts with inferred knowledge.
Experimental results demonstrate that QAP out-
performs state-of-the-art methods across multi-
ple datasets, highlighting its effectiveness.1

1 Introduction

In recent years, pretrained Large Language Mod-
els (LLMs) (Brown et al., 2020; Touvron et al.,
2023a) have made significant strides in natural lan-
guage processing (NLP) tasks (Wei et al., 2022b;
Cohen et al., 2024; Chen et al., 2024) such as lan-
guage generation (Cheng et al., 2023) and text com-
prehension (Lewis et al., 2020). However, LLMs
still face challenges in tasks that require domain-
specific knowledge or external information (Zheng
et al., 2023; Wang et al., 2023). A notable example
is the knowledge-intensive Multiple Choice Ques-
tion Answering (MCQA) task, where the correct
answer often relies on complex background knowl-
edge beyond pretraining corpora (Asai et al., 2024).

1Code: https://github.com/HaochenLiu2000/QAP.

MCQA is becoming increasingly important as it
aligns with the growing demands of applications
such as multi-agent reasoning (Liang et al., 2024;
Chan et al., 2024) and LLM self-consistency (Wang
et al., 2023), which involve selecting among mul-
tiple options. To tackle this challenge, researchers
are exploring methods to integrate external knowl-
edge bases, such as Knowledge Graphs (KGs),
into LLMs to enhance their reasoning capabili-
ties (Jiang et al., 2024; Sun et al., 2024).

Existing studies have proposed to leverage KGs
for assisting LLMs in answering questions (Jiang
et al., 2023b; Ma et al., 2024). Several approaches
incorporate KG information directly into the fine-
tuning process of LLMs (Zhang et al., 2019; Wang
et al., 2021). For instance, K-Adapter (Wang et al.,
2021) introduces entity and relation knowledge dur-
ing model training to improve performance in rea-
soning tasks. However, these methods can be com-
putationally expensive and difficult to scale, partic-
ularly in resource-constrained environments. An-
other class of methods retrieves relevant informa-
tion from KGs and appends it to the LLM input as
references during inference (Baek et al., 2023; Sun
et al., 2024). While these approaches eliminate the
need for fine-tuning, the retrieval quality is often
suboptimal, especially when the retrieved KG con-
tent is not semantically aligned with the question.
This misalignment introduces noise and degrades
the quality of the generated answers (Xu et al.,
2024). More recently, researchers have sought to
combine the benefits of fine-tuning and retrieving
leveraging KG-based soft prompts (Lester et al.,
2021; Qin et al., 2021), which are lightweight
and flexible input embedding prefixes obtained
from KGs using Graph Neural Networks (GNNs)
to guide LLM’s output. However, existing GNN
soft prompting methods face two major limitations.
First, the GNN aggregation process does not incor-
porate the question, meaning edge importance is
determined solely by the graph, often emphasizing
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Figure 1: Illustration of the limitations of question-
agnostic GNNs and our proposed solution. Traditional
methods compute GNN weights solely based on graph
semantics, often overlooking question relevance. In con-
trast, our approach integrates question-aware GNN ag-
gregation, prioritizing relevant knowledge while down-
weighting less pertinent edges.

irrelevant information. For example, when answer-
ing “Which fruit has yellow color?”, a GNN may
not prioritize “Banana is yellow” over less relevant
edges like “Banana tastes sweet”. Second, KG in-
completeness can lead to missing information in
the soft prompt, especially when certain answer
options in MCQA lack explicit knowledge in KGs.
For example, in “Which animal is a herbivore?”,
the KG might only state “Lion eats meat”, without
providing explicit knowledge about “tiger”, mak-
ing it challenging to infer the correct answer.

To overcome these challenges, we propose a
novel method, Question-Aware Knowledge Graph
Prompting (QAP), which generates KG-based soft
prompts for LLM reasoning in a query-adaptive
manner, focusing on MCQA tasks. Our approach
addresses the first limitation by incorporating ques-
tion embeddings into a Question-Aware Neighbor-
hood Aggregation module (QNA), enabling the
GNN model to better assess the relevance of KG in-
formation to the question context. QNA improves
the model’s utilization of the KG data and creates a
stronger connection between KG and the question
text as shown in Figure 1. For the second limita-
tion, we design a Global Attention-Derived Prompt-
ing module (GTP), which enables global attention
across different answer options to enhance soft
prompt completeness. By capturing inter-option
relationships, GTP allows the model to infer miss-
ing knowledge based on option similarities. This
mechanism ensures that even when KG knowledge
is missing for certain options, the LLM can still
make informed decisions based on inferred rela-
tionships, as shown in Figure 2. The contributions
of our work can be summarized as follows:

• We investigate the challenges of KG-based GNN
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Figure 2: Illustration of the limitation posed by missing
KG knowledge for certain options and our proposed
solution. When the KG lacks dietary information for
tigers, traditional methods fail to retrieve relevant knowl-
edge. In contrast, our approach utilizes global attention
to capture the relationship between lions and tigers, en-
abling the model to infer that tigers are also carnivores.

soft prompting methods for MCQA, focusing on
the absence of question-relevance assessment in
GNN and the omission of knowledge for options.

• We propose Question-Aware Knowledge Graph
Prompting (QAP) to address the studied chal-
lenges. Our approach provides the question-
relevance assessment in a Question-Aware
Neighborhood Aggregation module (QNA) and
designs a Global Attention-Derived Prompting
module (GTP) to generate soft prompts, effec-
tively leveraging the information from the query
to improve the overall reasoning by LLMs.

• Experimental results show that QAP surpasses
current state-of-the-art methods across multiple
datasets, confirming its effectiveness and superi-
ority in tackling domain-specific reasoning tasks.

2 Problem Formulation

In this work, we focus on the task of Multiple
Choice Question Answering (MCQA) based on
KG-enhanced LLM. We aim to answer a question
q by selecting one answer from n options from
the candidate set A = {ak|k = 1, 2, . . . , n} us-
ing a pretrained large language model, denoted
as LM . We achieve this with the assistance of
a knowledge graph G = (E ,R, T ), where E and
R represent sets of entities and relations, respec-
tively. T = {(h, r, t)|h, t ∈ E , r ∈ R} is the set of
knowledge triplets, each containing a head entity
h, a relation r, and a tail entity t.
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Figure 3: Overview of our proposed framework QAP. The framework consists of: (1) Subgraph Retrieval, where
contextualized subgraphs from the KG are extracted based on the question and answer options; (2) Question-
Aware Neighborhood Aggregation (QNA), where the contextualized subgraphs are processed with neighborhood
aggregation influenced by the question context; (3) Global Attention-Derived Prompting (GTP), which refines
the node embeddings generated by QNA by aligning them with all question and option sequences, producing soft
prompts enriched with global information. Finally, the soft prompts are prepended to the input question to guide the
LLM in predicting the correct answer.

3 Question-Aware Knowledge Graph
Prompting

In this section, we introduce our proposed frame-
work Question-Aware Knowledge Graph Prompt-
ing (QAP). As shown in Figure 3, QAP is struc-
tured into three phases: (i) Subgraph Retrieval,
(ii) Question-Aware Neighborhood Aggregation
(QNA), and (iii) Global Attention-Derived Prompt-
ing (GTP). In the Subgraph Retrieval phase, we
extract a contextualized subgraph from the KG,
containing the information of the entities in the
question. In the QNA phase, we utilize a special-
ized GNN, where the aggregation process is im-
pacted by the question, allowing it to emphasize
the KG information that is relevant to the question
and generate outputs that are aligned with the query.
Finally, in the Global Attention-Derived Prompt-
ing (GTP) phase, we employ an attention module
to capture the relationships among all options and
map the node representations obtained by QNA to
the text embedding space. With this attention mod-
ule, GTP generates soft prompt token embeddings
with global information, i.e., information from all
options, which are subsequently used to guide the
LLM’s reasoning. Notably, the entire framework is
optimized in an end-to-end manner without requir-
ing any intermediate training objectives.

3.1 Subgraph Retrieval
To effectively utilize and retrieve the useful infor-
mation in the KG that is relevant to the given ques-
tion, we extract the contextualized subgraphs of

the questions to reduce the size of the used KG
and capture useful data. Specifically, for an answer
option ak to question q, we first establish the set of
all entities in G that appears in the question q or an-
swer option ak, denoted as Ek

q . Given a predefined
hop limit N , we extract the N -hop neighbors of the
entities in Ek

q and the edges connecting them as the
contextualized subgraph of ak, denoted as Gk

q (Ya-
sunaga et al., 2022). This subgraph encapsulates
potentially useful knowledge that can assist LLMs
in determining whether the option ak is correct for
the given question q, which will be processed in
the subsequential phases.

3.2 Question-Aware Neighborhood
Aggregation

After obtaining the contextualized subgraphs dur-
ing the Subgraph Retrieval phase, we introduce the
Question-Aware Neighborhood Aggregation mod-
ule (QNA) for each subgraph Gk

q . The goal is to
generate node representations that not only capture
the structural properties of the contextualized sub-
graph but also emphasize the nodes’ relevance to
question q in a query-adaptive manner, thus making
the final output more compatible with the question.

QNA uses a specialized GNN that involves a
question-relevance assessment for each triplet in
the graph. In QNA, an attention mechanism is em-
ployed to incorporate the relevance between knowl-
edge graph entities and the question q to the GNN
aggregation process. We use a multi-head atten-
tion mechanism in the GNN model to enhance the
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model’s capacity.
In this mechanism, an L-layer GNN applies mul-

tiple attention heads to aggregate information from
neighboring nodes. For each head, we compute
the aggregation weights to weigh the contributions
of neighboring nodes. The feature update rule for
node i can be expressed as:

zl+1
i = Wo · Concat([

∑

j∈N (i)

αl
ij,HW

l
Hh

l
j ]
H
H=1)

(1)
hl+1
i = zl+1

i + hl
i, (2)

where hl
i is the feature of node i at layer l. N (i)

is the set of neighboring nodes of i. αl
ij,H is the

aggregation weight between i and j from head H
in layer l. Wl

H and Wo are the learnable linear
layers. H is the number of heads.

The aggregation weight αl
ij,H is a question-

aware weight that not only considers the relations
between two nodes, but also the relevance of nodes
to the question q. We will next introduce how to
calculate the aggregation weight αl

ij,H.

Question-Aware aggregation weight. In the fol-
lowing, we introduce the calculation of our aggre-
gation weight αl

ij,H in head H in Eq. (1).
The question q is encoded into an embedding

q ∈ Rdt by LM , which is used to guide the atten-
tion mechanism within the Question-Aware Neigh-
borhood Aggregation. dt is the dimension of the
embeddings of LM .

In head H, we denote Ql
i = Wl

Qh
l
i and Kl

i =

Wl
Khl

i are, respectively, the query and key vectors
for nodes i in head H in layer l, with hl

i being the
feature vector of node i in layer l. Here, Wl

Q and
Wl

K are, respectively, the learnable linear layers
for the query and key transformations. We have
three components for the target aggregation weight
between node i and j, n̂l

ij , ĥliq, and t̂lqj , respectively,
for (1) the attentions between neighboring nodes;
(2) the attentions between head node and question;
(3) the attentions between question and tail node.
These components are computed as follows, where
dk is the dimension of the key vectors:

n̂l
ij =

Ql
i ·Kl

j√
dk

, ĥliq =
Ql

i ·Kl
q√

dk
, t̂lqj =

Ql
q ·Kl

j√
dk

.

(3)
Here Kl

q = W′l
Kq and Ql

q = W′l
Qq are respec-

tively the key vector and query vector derived from
the question embedding q. Here W′l

Q and W′l
K

are learnable weights.

The attention components n̂l
ij , ĥ

l
iq, and t̂lqj are

then combined using a weighted sum and passed
through a Softmax function to compute the aggre-
gation weight in head H:

AH
ij = (1− 2γ)n̂l

ij + γĥliq + γt̂lqj , (4)

αl
ij,H =

exp(AH
ij )∑

v∈N (i) exp(A
H
iv)

, (5)

where γ ∈ (0, 0.5) is the weight for ĥliq and t̂lqj for
they are both the impact of the question on aggre-
gations. The aggregation weight αl

ij,H is then intro-
duced in Eq. (1) to guide the aggregation process
of GNN. The node representations computed in the
final GNN layer, hL

i , are enriched with question-
relevant information. These representations are
used in subsequent phases to generate soft prompts
for the LLM reasoning. The use of these node rep-
resentations to assist the LLM in answering ques-
tions will be detailed in the following subsection.

3.3 Global Attention-Derived Prompting
In this subsection, we introduce the Global
Attention-Derived Prompting (GTP) phase, which
follows QNA to generate soft prompts for LLM rea-
soning. In many cases, some options may lack suf-
ficient information in the KG. To address this issue,
we propose to leverage information contrast and
attention mechanisms in different options. GTP
employs a Global Attention mechanism to capture
relationships among all options to enable the model
to supplement missing knowledge and effectively
map the QNA output to the text embedding space.
In the following, we detail the Global Attention
mechanism and the construction of soft prompts.

Global Attention. After processing each sub-
graph through QNA, we have node representations
for each node in the subgraph. The Global Atten-
tion mechanism incorporates the relations between
a subgraph Gk

q corresponding to the answer option
ak and all answer options a1, a2, · · · , an to map
the node representations to the texts.

Let Hk ∈ RNk×dg denote the node represen-
tations for the subgraph Gk

q corresponding to the
answer option ak, where Nk is the number of
nodes in Gk

q and dg is the dimension of the node
representations. For the question q and its all
n answer options, we construct n different se-
quences T1,T2, . . . ,Tn, where each sequence
Tr ∈ Rm×dt is a concatenation of the m token
embeddings from question q and the r-th answer
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option ar as (q + ar) given by LM . After that,
for the k-th subgraph and the r-th option, we cal-
culate the attention between Hk and Tr. We use
Hk as the query and Tr as the key and the value to
compute H′

k,r ∈ RNk×dt :

H′
k,r = Attn(Hk,Tr), (6)

where Attn is the attention function between node
embeddings and token embeddings. Finally, the
outputs of a subgraph Gk

q from all n sequences are
concatenated and transformed via a feed-forward
layer as the final representation for each node:

Ĥk = FFN
(
H′

k,1∥H′
k,2∥ . . . ∥H′

k,n

)
. (7)

We have Ĥk ∈ RNk×dt as a distribution that not
only approximates the text embedding space but
also contains global information from multiple text
sequences corresponding to different answer op-
tions. This enables the model to leverage global
relationships among options during the decision-
making process, effectively compensating for miss-
ing knowledge in certain options. We introduce
the details of the Global Attention algorithm in
Appendix A.1.

Soft Prompt Construction. Once we have trans-
formed the node representations of each subgraph
Gk
q into the text embedding space, we perform a

MaxPooling operation to aggregate embeddings
across all nodes in the subgraph. This operation
generates a single embedding for each subgraph:

ĥk = MaxPooling(Ĥk). (8)

Given that there are n answer options, this pro-
cess results in n pooled embeddings, one for each
subgraph. Each embedding encodes the relational
information between a specific option and all n op-
tions. These n embeddings are then concatenated:

Sp = {ĥ1, ĥ2, . . . , ĥn}. (9)

The resulting sequence of embeddings Sp serves as
soft prompts prepended to the input (q and A) to the
LLM, guiding the LLM to produce an output that is
more aligned with the knowledge provided by the
KG and tailored to the specific question. The final
LLM output is then used to determine the correct
answer option. GTP effectively bridges the gap
between the structured information in the KG and
the sequential processing of the LLM and enriches
the soft prompt with global attention across all
answer options. This approach addresses the issue
of missing knowledge for certain options, enabling
more reliable answer generation.

4 Optimization

The optimization of our proposed framework QAP
focuses on aligning the LLM’s output with the cor-
rect answer. Therefore, we propose to use the cross-
entropy loss for optimization. Let y denote the
ground truth text associated with the correct an-
swer option. The loss function used to optimize the
QAP model is formulated as:

L = − log P(y|Sp, q,A). (10)

This loss function is used to adjust the parameters
of the Question-Aware Neighborhood Aggregation
and the Global Attention-Derived Prompting mod-
ule in an end-to-end manner while keeping the
LLM parameters frozen. By minimizing the cross-
entropy loss, the QAP model learns to produce out-
puts that are increasingly aligned with the ground
truth text, thereby improving its ability to generate
soft prompts that can effectively guide the LLM
to generate the correct textual output based on the
information provided by the knowledge graph and
the associated question context.

5 Experiments

In this section, we introduce the experiments con-
ducted on three MCQA datasets to demonstrate the
effectiveness of the proposed method QAP. We also
give a parameter study on γ and an ablation study
to evaluate the contribution of each module in QAP.
A case study is shown in Appendix A.4.

5.1 Datasets
We evaluate our model on MCQA datasets from
both the general and biomedical domains, lever-
aging distinct knowledge graphs tailored to each
domain. For the general domain, we use OBQA
(OpenBookQA) (Mihaylov et al., 2018) and Rid-
dle(RiddleSense) (Lin et al., 2021) with Concept-
Net (Speer et al., 2017) as the background knowl-
edge graph. For the biomedical domain, we test
QAP on MedQA (MedQA-USMLE) (Jin et al.,
2021) dataset with KG Unified Medical Language
System (UMLS) (Bodenreider, 2004). We intro-
duce details of these datasets in Appendix A.2.

5.2 Baselines
We compare the performance of our proposed
method QAP with the following five baselines:

• LLM (LLM-Only): This baseline uses the
LLMs directly to answer the questions without
any additional enhancements.
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Table 1: Comparison of the accuracy(%) and standard deviation(%) over QAP and baselines on the three MCQA
datasets. The best and second-best results are respectively shown in bold and underlined.

Method
Flan-T5 (3B) Flan-T5 (11B) Llama2-chat (7B) Llama2-chat (13B)

OBQA Riddle MedQA OBQA Riddle MedQA OBQA Riddle MedQA OBQA Riddle MedQA

LLM 73.40±0.14 55.08±0.10 34.22±0.14 80.12±0.19 65.89±0.15 39.18±0.07 57.28±0.09 37.35±0.24 36.78±0.17 51.04±0.10 39.68±0.12 39.06±0.14

PE 74.88±0.14 55.84±0.08 34.36±0.11 82.98±0.21 65.09±0.15 39.54±0.15 52.48±0.10 37.93±0.10 36.33±0.17 51.00±0.18 44.63±0.16 40.83±0.10

KGEP 72.72±0.30 48.13±0.34 30.21±0.41 77.60±0.40 61.01±0.30 33.93±0.46 52.72±0.29 37.04±0.44 35.18±0.39 52.00±0.45 28.72±0.27 33.37±0.29

SP 74.94±0.64 53.91±0.51 33.98±0.49 84.36±0.34 64.89±0.42 38.98±0.33 27.16±0.45 20.77±0.51 27.82±0.28 28.90±0.27 23.59±0.19 23.94±0.22

GNP 76.12±0.34 56.73±0.40 33.87±0.26 85.04±0.32 67.42±0.39 39.76±0.31 56.88±0.35 54.82±0.41 32.01±0.29 58.72±0.33 47.76±0.41 25.01±0.28

QAP 81.62±0.44 68.38±0.49 38.33±0.30 87.74±0.43 76.62±0.46 44.01±0.34 67.52±0.45 66.42±0.48 39.94±0.33 66.32±0.44 63.25±0.46 42.56±0.34

• PE (Prompt-Enhanced LLM): This method
utilizes LLMs with designed prompts to align
LLMs with the specific requirements of the task.

• KGEP (KG Evidence Prompting) (Baek et al.,
2023; Liu et al., 2024): This approach integrates
Knowledge Graph triplets into the prompt by
ranking them based on their similarity to the
target question using an LLM encoder. The
selected triplets are then incorporated into the
prompt to help the LLM generate a more in-
formed response.

• SP (Soft Prompting) (Lester et al., 2021): This
baseline trains soft prompts without utilizing any
external KG information to assist LLMs.

• GNP (Graph Neural Prompting) (Tian et al.,
2024): GNP uses a GNN to encode KG informa-
tion into the LLM’s prompts. In this method, the
GNN encoder is optimized by both LLM output
and a self-supervised link prediction intermedi-
ate objective. This objective trains the model to
predict missing edges using the GNN outputs as
representations that capture graph semantics and
structural dependencies for entities and relations.

5.3 Experimental Settings
We implement our method with the 3B/11B pa-
rameter versions of the Flan-T5 model (Wei et al.,
2022a) (encoder-decoder model) and 7B/13B pa-
rameter versions of Llama2-chat model (Touvron
et al., 2023b) (decoder-only model) as the large
language models enhanced by KGs.

The model performance is evaluated using accu-
racy, with the final results reported as the average
performance over five independent runs. More im-
plementation details are shown in Appendix A.3.

5.4 Results and Analysis
In this subsection, we compare QAP with various
baselines across three MCQA datasets. The over-

all results of QAP and the baselines are presented
in Table 1. Our method consistently outperforms
the baselines in both the general domain (OBQA
and Riddle) and the biomedical domain (MedQA),
demonstrating its robustness and effectiveness.

In Riddle and OBQA, the integration of Con-
ceptNet alongside QNA demonstrates a significant
improvement in extracting and utilizing relevant
knowledge to solve the questions. This is further
complemented by the GTP’s ability to model differ-
ent options, which facilitates improved reasoning.
On MedQA, where questions require highly spe-
cialized medical knowledge, the incorporation of
UMLS as a knowledge graph proves to be criti-
cal. By leveraging UMLS, our method enables the
model to access and integrate domain-specific in-
formation that is often absent in general-purpose
language models. This integration empowers QAP
to interpret biomedical contexts more accurately,
resulting in notable performance improvements.
These results highlight QAP’s superior capability
to leverage external knowledge graphs and effec-
tively reason through challenging tasks in different
domains, outperforming all baselines significantly.

Notably, GNP and QAP extract fundamentally
different types of features. GNP utilizes self-
supervised graph tasks to model and train on all
existing edges within the KG, capturing intrinsic
graph semantics and structural dependencies by
learning comprehensive entity and relation repre-
sentations. In contrast, our approach follows a
different principle, focusing on selectively empha-
sizing only the unlabeled edges that are highly rel-
evant to a given query. To achieve this, we employ
a query-adaptive mechanism that dynamically en-
hances the integration of KG information with the
context, effectively capturing cross-modality rele-
vance. This targeted feature extraction ultimately
leads to better performance compared to GNP.

1393



Table 2: Experimental results of ablation studies. This table presents the accuracy(%) of the studies on three MCQA
datasets. The best results are shown in bold, respectively. Here “w/o Q” and “w/o G” represent the removal of QNA
and GTP, respectively. “w/o Q, G” represents the removal of both QNA and GTP. “w/o MH” respectively represent
the removal of multiple heads in QNA.

Method
Flan-T5 (3B) Flan-T5 (11B) Llama2-chat (7B) Llama2-chat (13B)

OBQA Riddle MedQA OBQA Riddle MedQA OBQA Riddle MedQA OBQA Riddle MedQA

QAP 81.62 68.38 38.33 87.74 76.62 44.01 67.52 66.42 39.94 66.32 63.25 42.56
QAP w/o Q 75.60 63.53 34.87 84.38 68.04 42.26 57.06 56.08 37.47 31.60 36.47 26.81

QAP w/o G 76.62 63.73 35.19 82.44 66.67 42.73 51.22 58.43 34.96 55.04 53.73 27.02

QAP w/o Q, G 72.40 55.47 30.14 81.30 64.75 35.99 47.78 53.11 30.01 29.72 30.51 23.59

QAP w/o MH 76.44 63.92 35.42 84.96 70.39 43.05 58.40 60.98 37.66 59.44 55.69 28.99

Llama2’s results on Soft Prompting (SP) are very
low compared to other baselines, due to its decoder-
only architecture, which lacks a dedicated encoder
to structure input information effectively. In con-
trast, Flan-T5, with its encoder-decoder structure,
can generate richer input representations, improv-
ing SP performance by leveraging internal reason-
ing. Additionally, GNP underperforms general
LLMs on Llama2 in certain settings, suggesting
that integrating graph embeddings may not fully
utilize KG information in decoder-only models.
This could stem from misalignment between GNN-
encoded representations and the LLM’s reasoning
capabilities, leading to diminished performance on
both general and domain-specific tasks.

5.5 Parameter Study
To analyze the impact of the weight distribution
among the components in our Question-Aware
Neighborhood Aggregation module (QNA), we
perform a parameter study on Flan-T5 (11B) and
Llama2-chat (7B) by varying the weight distribu-
tion between the three key components in the aggre-
gation process: n̂l

ij , ĥ
l
iq, and t̂lqj . In this study, we

adjust the weight distribution using the parameter
γ. The weight is (1 − 2γ) for n̂l

ij , and γ for both
ĥliq and t̂lqj , which are the ratios of question-related
interactions. We evaluate the effect of γ on both
the OBQA and MedQA datasets, which represent
the general and biomedical domains, respectively.
The results, as shown in Figure 4, indicate that the
optimal value of γ differs slightly between the two
datasets. For OBQA, QAP achieves its best per-
formance with γ around 0.2 and 0.3, whereas for
MedQA, the optimal γ is closer to 0.4.

In both cases, the results suggest that a balance
between node-to-node and question-related interac-
tions is crucial for optimal performance. When γ is
too low, the model over-relies on node-to-node in-
teractions, failing to fully capture the relevance of
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Figure 4: Parameter study on Flan-T5 (11B) and
Llama2-chat (7B) for OBQA (general domain) and
MedQA (biomedical domain).

the question to the knowledge graph, which is par-
ticularly important for complex reasoning tasks.
Conversely, when γ is too high, placing exces-
sive emphasis on question-related interactions, the
model loses the structural information inherent in
the knowledge graph, which is essential for retain-
ing factual consistency.

For general-domain datasets like OBQA, giving
slightly more emphasis to the node-to-node interac-
tions helps retain important structural information
from the knowledge graph, which aligns with the
nature of the questions that often require factual
recall. In contrast, for biomedical-domain datasets
like MedQA, increasing the weight on question-
related interactions enhances the model’s ability to
leverage the question context for more complex,
domain-specific reasoning.

5.6 Ablation Study
We perform ablation studies to evaluate the con-
tribution of key components in our model, shown
in Table 2. First, we remove the Question-Aware
Neighborhood Aggregation module (QNA) by ex-
cluding the question embeddings and using only
KG embeddings for aggregation. This modification
results in a substantial drop in accuracy, demon-
strating the necessity of incorporating question
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context to guide the GNN process. Without this
guidance, the model struggles to identify the con-
textual relevance of the knowledge graph informa-
tion effectively. Second, we remove the Global
Attention-Derived Prompting module (GTP). With-
out this module, the model cannot manage rela-
tions between different options, leading to a no-
ticeable performance decrease. Third, we remove
both QNA and GTP modules and the performances
decline even more significantly, highlighting their
complementary effects in different aspects of the
query context. Finally, we evaluate the effect of re-
moving the multiple heads of aggregation in QNA,
which reduces the model’s ability to capture diverse
perspectives from the KG. This leads to further per-
formance declines. Each of these components is
found to play a vital role in the overall performance
of our model.

6 Related Work

Large Language Models and Question Answer-
ing. Large Language Models (LLMs), such as
GPT-3 (Brown et al., 2020) and Flan-T5 (Wei
et al., 2022a), have shown remarkable perfor-
mance across various natural language processing
tasks (Wei et al., 2022b), including MCQA (Tian
et al., 2024). However, LLMs still face limitations
in reasoning tasks that require access to factual
knowledge beyond their pretraining corpus (Luo
et al., 2024). Several approaches have been pro-
posed to augment LLMs with external knowledge
sources, such as KGs, to enhance their factual accu-
racy and reasoning capabilities (Baek et al., 2023).
For example, methods like Retrieval-Augmented
Generation (RAG) have introduced mechanisms to
retrieve relevant information from external sources,
including KGs, and incorporate it into LLM in-
puts (Xu et al., 2024; Shi et al., 2024; Wang et al.,
2024). Although effective in some scenarios, these
approaches often struggle with noisy retrievals or
insufficient background knowledge, limiting their
effectiveness in complex reasoning tasks.

Knowledge Graphs for Enhancing Question An-
swering. Knowledge graphs provide structured
representations of entities and their relationships,
making them valuable resources for improving the
reasoning abilities of LLMs in knowledge-intensive
tasks (Zhang et al., 2019; Ma et al., 2024; Jiang
et al., 2024). Prior work, such as QA-GNN (Ya-
sunaga et al., 2021), has demonstrated the effec-
tiveness of using graph neural networks (GNNs) to

process KGs for graph reasoning. This inspires
approaches to enhance LLMs with graph mod-
els, bridging gaps in factual knowledge that are
not readily accessible through text-based models
alone (Jiang et al., 2023b,a; Sun et al., 2024). Re-
cent advances in integrating GNNs with LLMs
have introduced the use of GNNs to generate soft
prompts (Lester et al., 2021; Fang et al., 2023),
and guide the LLM’s reasoning process by encod-
ing KG information directly into the model’s input.
For example, Graph Neural Prompting (Tian et al.,
2024) utilizes a GNN to generate neural prompts
that capture intrinsic graph semantics, thereby en-
hancing the LLM’s performance. GNN-based ap-
proaches, however, often rely on static KG struc-
tures and fail to consider the graph with query rele-
vance (Pan et al., 2024; Zhang et al., 2022). This
gap can result in suboptimal utilization of the KG,
especially for questions requiring nuanced reason-
ing. For MCQA tasks, these approaches generate
each soft prompt token independently for different
answer options, failing to maintain a global view of
the text features in alignment with the knowledge
graph information.

7 Conclusion
In this paper, we propose a novel approach,
Question-Aware Knowledge Graph Prompting
(QAP) to enhance Large Language Models (LLMs)
for Multiple Choice Question Answering (MCQA)
by integrating Knowledge Graphs (KGs). Our
method addresses two key challenges in existing
approaches. First, we introduce Question-Aware
Neighborhood Aggregation (QNA), which incorpo-
rates the question into the Graph Neural Network
(GNN) to create query-adaptive models, improv-
ing the assessment of KG relevance based on the
question context. This enables the GNN to focus
on the most relevant knowledge. Second, we de-
sign Global Attention-Derived Prompting (GTP)
to capture relationships among different answer
options and compensate for missing KG knowl-
edge in certain options. By leveraging global at-
tention, GTP enriches the soft prompt by transfer-
ring relevant information across options, thereby
enhancing the LLM’s reasoning ability. We eval-
uate QAP on three datasets across two domains,
demonstrating that QAP outperforms state-of-the-
art models. We believe that integrating structured
knowledge with LLMs through cross-modal atten-
tion and question-aware mechanisms in more tasks
represents a promising direction for LLMs.
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8 Limitations

While our proposed method significantly enhances
large language models by integrating knowledge
graphs and leveraging Question-Aware and Global
Attention strategies, several limitations remain.
First, our approach heavily depends on the quality
of the external knowledge graph. In domains where
the KG is sparse or lacks sufficient coverage—such
as less-studied areas or questions involving uncom-
mon entities—the model’s performance may de-
grade. Additionally, our method does not explicitly
address cases where external knowledge is ambigu-
ous or conflicts with the question context, which
could lead to confusion in the model’s final pre-
dictions. Second, the computational complexity of
our design increases inference time, making it less
suitable for real-time applications or deployment
in resource-constrained environments.

9 Ethics Statement

Our work aims to enhance the performance of large
language models (LLMs) by integrating structured
knowledge from knowledge graphs (KGs). While
our approach improves the factual accuracy and
reasoning capabilities of LLMs, several ethical con-
siderations must be acknowledged. First, the use
of external knowledge sources, such as KGs, intro-
duces potential biases inherent in the data. Knowl-
edge graphs often reflect the perspectives and bi-
ases of their creators, including historical, cultural,
and societal influences, which may inadvertently
affect the fairness and neutrality of the model’s
predictions. Second, in sensitive domains such as
healthcare (e.g., MedQA), reliance on imperfect
knowledge graphs can lead to incorrect or poten-
tially harmful predictions, particularly when the
KG contains outdated or incomplete information.
This highlights the critical need for rigorous valida-
tion and continuous updates of external knowledge
sources to ensure accuracy and reliability. We are
committed to fostering fairness and effectiveness
in AI and encourage the responsible use of our
method, particularly in high-stakes applications
where errors can have significant consequences.
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A Appendix

A.1 Global Attention

In this subsection, we introduce Global Attention in
detail. After processing each subgraph Gk

q through
QNA, we obtain node representations for each node
in the subgraph. Let Hk ∈ RNk×dg denote the
node representations for the subgraph Gk

q corre-
sponding to the answer option ak. For the question
q and its n answer options, we construct n different
sequences T1,T2, . . . ,Tn, where each sequence
Tr is a concatenation of the token embeddings
from question q and the r-th answer option ar. We
denote Tr = {Tr,1,Tr,2, . . . ,Tr,m}, where m is
the number of tokens in Tr and each token em-
bedding Tr,s ∈ Rdt , with dt as the dimension of
the embedding of the token. To ensure compatibil-
ity between the node and token embeddings, we
first project these embeddings into the same dimen-
sional space. For the i-th node in Hk and the s-th
token in Tr:

H′
k[i] = WPg ·Hk[i], T′

r[s] = WPt ·Tr[s],
(11)

where WPg and WPt are the projection matri-
ces. Next, we perform an attention operation. For
each answer option ak, we use n separate atten-
tion heads. Each head corresponds to one of the n
token embedding sequences. Specifically, for the
r-th head, the attention between the i-th node em-
bedding and the s-th token embedding is computed
as follows:

βr
is =

exp
(
H′

k[i]·T′
r[s]√

dt

)

∑m
u=1 exp

(
H′

k[i]·T′
r[u]√

dt

) , (12)

where βr
is represents the attention weight between

node i in subgraph Gk
q and token s in the r-th text

sequence. The resulting attention weights βr
is are

then used to compute a weighted sum of the token
embeddings for the r-th head as a new representa-
tion for each node i:

H′
k,r[i] =

m∑

s=1

βr
isT

′
r[s]. (13)

Finally, the outputs from all n sequences are con-
catenated and transformed as the final representa-
tion for each node:

Ĥk = FFN
(
H′

k,1∥H′
k,2∥ . . . ∥H′

k,n

)
. (14)

A.2 Datasets

In this subsection, we introduce the data we use to
evaluate the proposed method QAP.

• OBQA (OpenBookQA) (Mihaylov et al., 2018):
This is a QA dataset focuses on open-book sci-
ence questions that require reasoning with facts
from a set of elementary-level science concepts.
This is a 4-way MCQA task containing 5,957
elementary science questions. We use Concept-
Net (Speer et al., 2017) as the background knowl-
edge graph to provide external knowledge for
reasoning.

• Riddle (RiddleSense) (Lin et al., 2021): This
dataset is designed for commonsense reasoning,
where questions are riddles that require higher-
level reasoning skills. It is a 5-way MCQA task
testing complex riddle-style commonsense rea-
soning with 5,715 questions. We use Concept-
Net (Speer et al., 2017) as the knowledge graph
to support the reasoning process.

• MedQA (MedQA-USMLE) (Jin et al., 2021):
This is a QA dataset in the biomedical domain
that contains questions from the United States
Medical Licensing Examination (USMLE). It is
a 4-way MCQA task containing 12,723 United
States Medical License Exam questions. For
this dataset, we use the Unified Medical Lan-
guage System (UMLS) (Bodenreider, 2004) as
the knowledge graph to provide domain-specific
biomedical knowledge.

• ConceptNet (Speer et al., 2017): ConceptNet
is a general-domain knowledge graph repre-
senting general human knowledge in the form
of semantic relationships between words and
phrases (concepts), containing 799,273 nodes
and 2,487,810 edges.

• UMLS (The Unified Medical Language Sys-
tem) (Bodenreider, 2004): UMLS is a biomedi-
cal knowledge graph developed by the U.S. Na-
tional Library of Medicine, containing 9,958
nodes and 44,561 edges. It integrates multiple
medical terminologies and ontologies into a sin-
gle structured resource. UMLS is particularly
valuable for domain-specific tasks where gen-
eral language models lack sufficient expertise in
biomedical knowledge.
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Question:
An ice cube placed in sunlight will?
Answer options:
A: shrink B: change color C: grow D: freeze

Question:
A person can see?
Answer options:
A: a radio recording B: an emotion C: a written 
message D: an abstract idea

Prediction:
LLM:   B
     Logits:  A: -0.90  B: 0.28  C: -1.10  D: -2.43
QAP:    A
     Logits: A: 1.11   B: -0.78 C: -1.20  D: -4.02

Prediction:
LLM:   D
     Logits:  A: -0.65 B: -2.88  C: -0.25  D: 0.11 
QAP:    C
     Logits:  A: -5.30  B: -3.75  C: 1.56  D: -2.87

Question:
An 11-month-old boy is brought to the physician for a 
well-child examination. He is growing along with the 
75th percentile and meeting all milestones. Physical 
examination shows a poorly rugated scrotum. The 
palpation of the scrotum shows only 1 testicle. A 2nd 
testicle is palpated in the inguinal canal. The 
examination of the penis shows a normal urethral 
meatus. The remainder of the physical examination 
shows no abnormalities. Which of the following is the 
most appropriate next step in management?
Answer options:
A: Chorionic gonadotropin therapy B: Exploratory 
laparoscopy C: Orchiectomy D: Orchiopexy

Question:
A 60-year-old man presents to the office for shortness of 
breath. The shortness of breath started a year ago and is 
exacerbated by physical activity. He has been working in 
the glass manufacturing industry for 20 years. His vital 
signs include: heart rate 72/min, respiratory rate 30/min, 
and blood pressure 130/80 mm Hg. On physical exam, 
there are diminished respiratory sounds on both sides. 
On the chest radiograph, interstitial fibrosis with 
reticulonodular infiltrate is found on both sides, and 
there is also an eggshell calcification of multiple 
adenopathies. What is the most likely diagnosis?
Answer options:
A: Berylliosis B: Silicosis C: Asbestosis D: Talcosis

Prediction:
LLM:   B
     Logits:  A: 1.03  B: 2.11   C: 0.17   D: 1.22
QAP:   D
     Logits:  A: 0.90  B: 1.52   C: 0.91   D: 2.08

Prediction:
LLM:   D
     Logits:  A: -2.85  B: 1.04  C: -1.42  D: 1.24
QAP:    B
     Logits:  A: -2.81  B: 1.71  C: -0.41  D: 1.08

QAP

Figure 5: Comparison of QAP and LLM-only performance using Flan-T5 (11B) across both general and biomedical
domains. We list the logits given by LLM and our method QAP. The example shows that QAP provides a more
accurate prediction. The correct answer and the option with the highest logit value are shown in red.

A.3 Implementation Details

We implement our method using PyTorch, with
the 3B and 11B parameter versions of the Flan-
T5 model (Wei et al., 2022a) and the 7B and 13B
parameter versions of the Llama2-chat model (Tou-
vron et al., 2023b) as the large language models.
Contextualized subgraphs are extracted from these
KGs including the two-hop neighbors of entities
appearing in the question and options to assist in
answering questions.

The GNN model in QNA consists of 3 layers
with 4 heads, γ = 1

3 and 12,288 dimensions.
Soft prompts are trained end-to-end to enhance
LLM performance. We use the AdamW opti-
mizer (Loshchilov and Hutter, 2018) and a learning
rate of 5× 10−6 for both the Flan-T5 models and
1× 10−4 for the Llama2-chat models.

We conduct all experiments on NVIDIA A100
GPUs with 80GB of memory, using Python 3.11.7.
We implement our framework with PyTorch.

We provide the code and the datasets at https:
//github.com/HaochenLiu2000/QAP.

A.4 Case Study
To further illustrate the effectiveness of QAP, we
conduct a case study by selecting examples from
both the general domain (OBQA) and the biomed-
ical domain (MedQA) to compare the next-token
prediction results between QAP and the baseline
that only uses LLM. For each example, we ana-
lyze the LLM’s predicted logits for the next token
corresponding to each answer option (A, B, C, D).

In these examples, we find that when only the
LLM is used, the highest-score token predicted
by the model does not correspond to the correct
answer. However, when our method is applied,
which incorporates knowledge from KG through
QNA and GTP, the correct answer token receives
the highest predicted score. This demonstrates the
effectiveness of QAP in guiding the model toward
more accurate predictions. We present these results
visually in Figure 5. In the figure, the scores shift
more favorably towards the correct answer when
our method is used, further validating the benefit
of our method.
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