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Abstract

Large language models (LLMs) excel in gener-
ating unstructured text. However, they struggle
with producing structured output while main-
taining accuracy in zero-shot information ex-
traction (IE), such as named entity recognition
(NER) and relation extraction (RE). To address
these challenges, we propose CROSSAGEN-
TIE, a multi-agent framework that enhances
zero-shot IE through multi-agent LLM collab-
oration. CROSSAGENTIE refines LLM pre-
dictions iteratively through two mechanisms:
intra-group cross-type debate, which resolves
entity-label conflicts through context-based ev-
idence and confidence aggregation, and inter-
group cross-task debate, where NER and RE
mutually refine outputs via bidirectional feed-
back. Furthermore, we introduce template fine-
tuning, distilling high-confidence multi-agent
outputs into a single model, significantly re-
ducing inference costs while preserving accu-
racy. Experiments across five NER and five
RE datasets show that CROSSAGENTIE signifi-
cantly outperforms state-of-the-art zero-shot
baselines by a large margin. CROSSAGEN-
TIE effectively addresses LLM limitations in
structured prediction with an effective and
efficient approach for zero-shot information
extraction. Our GitHub can be found at
https://github.com/Luca/CorssAgentIE.

1 Introduction

Information extraction (IE) is a fundamental task
in natural language processing (NLP) that aims to
extract structured information from unstructured
or semi-structured text (Li et al., 2023; Lu et al.,
2022). It includes subtasks such as named entities
recognition (NER) and relation extraction (RE).
Traditional supervised IE methods typically follow
a “pre-training — fine-tuning” paradigm, where a
pre-trained language model is adapted to a labeled
dataset with extensive supervision signals (Devlin
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et al., 2019; Raffel et al., 2023; Zhuang et al., 2021).
While effective, these methods suffer from high
annotation costs and limited generalization, making
them impractical for low-resource scenarios and
rapidly evolving domains.

Given these limitations, recent research has ex-
plored zero-shot IE as a promising direction (Wei
et al., 2024). Recent advances in large language
models (LLMs) (Lin et al., 2023; OpenAl, 2023b)
have enabled more effective zero-shot IE meth-
ods to overcome the shortcomings of traditional
supervised models. The LLMs’ strong language
understanding capabilities, gained through exten-
sive pre-training, allow them to perform IE tasks
effectively. LLM-based approaches for zero-shot
IE include direct prompting (Han et al., 2024; Wang
et al., 2023b; Xie et al., 2023a), in-context learning
(Brown et al., 2020; Min et al., 2022), synthetic
data generation (Heng et al., 2024), and pseudo-
labeling for fine-tuning (Gao et al., 2024a; Heng
et al., 2024; Sainz et al., 2024; Zaratiana et al.,
2024). These methods reduce reliance on anno-
tated data and enhance adaptability, making LLMs
a promising solution for zero-shot IE.

Despite advancements, LL.Ms still encounter crit-
ical challenges that limit their performance in zero-
shot IE. First, LLMs struggle to generate struc-
tured outputs that adhere to predefined labeling
schemas in IE. Unlike traditional models optimized
for structured representations, LLMs predomi-
nantly generate free-form text. Although prompt-
ing techniques, such as using symbols (Wang et al.,
2023b), lists (Zhou et al., 2024), and tables (Jiao
et al., 2023), have been explored, inconsistencies
persist in structured output generation. Second,
entity-label conflicts arise when identical entities
receive inconsistent categorizations (e.g., “Wash-
ington” might be labeled as both Location and
Person). Existing approaches (Li et al., 2024a;
Heng et al., 2024) tackle this issue through weak
supervision, either by fine-tuning smaller models
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on pseudo-labeled data or by transferring knowl-
edge from limited annotations. However, they
rely on external supervision rather than leverag-
ing the intrinsic reasoning embedded in LLMs’
representations, which limits the generalization of
these methods to broader scenarios. Third, LLMs
struggle with domain adaptation, failing to inter-
nalize domain-specific knowledge despite task in-
structions. While prompt engineering can create
role-specialized agents (Lu et al., 2024; Wang and
Huang, 2024), these methods require extensive tun-
ing and lack cross-domain generalization. As a
result of the above three challenges, current LLM-
based methods struggle with achieving high perfor-
mance in zero-shot IE (Jiang et al., 2024b; Shen
et al., 2023; Wan et al., 2023). For example, di-
rect prompting with GPT-3.5 achieves only 45%
F1 on CoNLLO3 (Li et al., 2024a) and 34% on
OntoNotes4 (Xie et al., 2023a) for NER.

To address the above challenges, we propose
CROSSAGENTIE, a multi-agent LLM collabora-
tion framework that enhances zero-shot NER and
RE performance through structured debate and
bidirectional refinement. First, intra-group cross-
type debate resolves entity-label conflicts by veri-
fying classifications (e.g., distinguishing "Washing-
ton" as "Location" or "Person") through context-
based reasoning. Second, inter-group cross-task
debate refines NER and RE predictions by inte-
grating relation-based feedback, enhancing contex-
tual grounding, and entity accuracy through bidi-
rectional knowledge exchange. Third, to enhance
domain adaptation, CROSSAGENTIE equips type
agents with domain-specific metadata, leveraging
entity-type knowledge and ontology constraints for
schema-aligned classification. Finally, to improve
inference efficiency, CROSSAGENTIE introduces
template fine-tuning that distills the multi-agent
outputs into a single model. This process reduces
computational cost while ensuring cross-domain
consistency, greatly enhancing the efficiency of
CROSSAGENTIE. Experiments across different
datasets show that CROSSAGENTIE significantly
outperforms state-of-the-art zero-shot baselines by
a large margin.

2 Related Work

LLMs for IE Recent advances in LLLM-based
IE have shown promise in tasks such as NER and
RE. NER identifies and classifies entities in un-
structured text into predefined categories (Keraghel

et al., 2024), while RE extracts relations between
entities from the text (Gao et al., 2024b). ChatlE
(Wei et al., 2024) enhances IE through structured di-
alogue with ChatGPT, enabling iterative refinement.
InstructUIE (Wang et al., 2023c) employs multi-
task instruction tuning to guide LLMs in NER, RE,
and event extraction (EE) using natural language
prompts. ULTRA (Zhang et al., 2024a) enhances
EE with a hierarchical framework, leveraging open-
source LLMs for cost-effective extraction while
mitigating positional bias.

LLMs for NER Several approaches enhance
NER with LLMs. GPR-NER (Wang et al., 2023b)
reformulates NER as text generation with en-
tity markers and self-verification, reducing over-
predictions via few-shot and in-context learning.
UniversalNER (Zhou et al., 2024) distills ChatGPT-
generated data into a smaller LLaMA-based model
through instruction tuning. VerifiNER (Kim et al.,
2024) integrates LLMs with external knowledge
bases for post-hoc verification, refining entity
boundaries and types. Decomposed-QA (Xie et al.,
2023a) improves NER via task decomposition, syn-
tactic augmentation, and self-consistency voting
with ChatGPT. ProGen (Heng et al., 2024) uses
step-by-step generation and self-reflection to en-
hance few-shot NER dataset construction and entity
attribute refinement.

LLMs for RE Several methods enhance RE with
LLMs. GPR-RE (Wan et al., 2023) optimizes
GPT’s in-context learning via improved exam-
ple retrieval and reasoning. URE (Wang et al.,
2023a)refines relational embeddings using positive
pair augmentation, margin loss, and contrastive
learning with BERT (Devlin et al., 2019). QA4RE
(Zhang et al., 2023) reformulates RE as a multiple-
choice QA task, converting relation templates into
instruction-tuned options. G&O (Li et al., 2024a)
employs a “generation and organization” pipeline
for zero-shot RE.

Multi-Agent LLM for IE The rise of LLM-
powered agents such as GPTs (Brown et al., 2020;
OpenAl, 2023b,a,c), LLaMAs (Touvron et al.,
2023), and PalLM (Anil et al., 2023; Chowdhery
et al., 2022) has enabled multi-agent collaboration.
These systems follow either cooperative strategies
to achieve shared goals (Zhang et al., 2024b; Zhou
et al., 2023; Qian et al., 2024; Lu et al., 2024),
or adversarial strategies to refine outputs (Aryan,
2024; Estornell and Liu, 2024). DAO (Wang and
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Huang, 2024) employs a multi-agent optimization
framework to refine LLM outputs for EE, integrat-
ing external tools to enhance retrieval quality and
prediction reliability. Applying multi-agent debate
to IE presents challenges such as real-time coordi-
nation, entity conflict resolution (Liu et al., 2024),
and effective discussion management (Cho et al.,
2024). Addressing these challenges enhances IE
accuracy, especially in domain-specific contexts.

3 CROSSAGENTIE Framework

This section introduces CROSSAGENTIE, a multi-
stage framework for structured information extrac-
tion using collaborative agents. We first formalize
the problem (Sec. 3.1), followed by type-agent
setup (Sec. 3.2), intra-group cross-type discussion
(Sec. 3.3), inter-group cross-task discussion (Sec.
3.4), and finally template fine-tuning (Sec. 3.5).
Figure 1 illustrates the overall framework, with
detailed prompts provided in Appendix D.

3.1 Problem Definition

We formalize Named Entity Recognition (NER)
and Relation Extraction (RE) as structured infor-
mation extraction tasks. Given a sentence s =
{wi, ..., wy,} consisting of n words, the NER task
identifies text spans within s as entity mentions
and assigns each mention a label from a predefined
ontology (e.g., Location, Person). The extracted
entity set is denoted as F = {ey, ..., e}, where
k is the number of identified entities. Each entity
e; consists of a text span ¢; and an entity label ;,
i.e., e; = (t;,1;). Based on E, the RE task extracts
a set of relations R = {ry,...,ry}, where m is
the number of extracted relations. Each relation
ri = (ep,7i,€q) represents a directed relation 7;
between two entities e, and e, within F. Addi-
tionally, we define a set of collaborative agents
A = {Ay, Ay, ..., Ay}, where M denotes the
number of agents, which iteratively refine entity
recognition and relation extraction results. The fi-
nal refined entity and relation sets, denoted as E*
and R*, are obtained through the iterative refine-
ment process: E* = f(E, A) and R* = g(R, A),
where f and g are refinement functions modeled as
interactions among agents.

3.2 Type Agent Setup

To reduce inter-category confusion and improve
classification accuracy, we assign each entity and
relation type to a specialized agent. Rather than
using a single multi-tasking model that processes

multiple entity and relation types within a uni-
fied framework, each specialized agent makes task-
specific decisions with tailored prompting strate-
gies. For instance, NER agents (e.g., PER, LOC)
identify entities such as ‘“Reagan” as PER and
“America” as LOC, while RE agents (e.g., Live-in)
extract head and tail entities based on represen-
tative relationships. More details for type agent
prompting are in Appendix D.

3.3 Intra-Group Cross-Type Discussion

After setting up the type agents, we introduce a
structured debate mechanism to resolve conflicts
when multiple agents assign different labels to
the same entity. This mechanism enables con-
flicting agents to engage in discussions and refine
their classifications through ontology constraints
and contextual reasoning. This process follows
a debate-driven iterative refinement framework,
where agents engage in multiple debate rounds to
reach a consensus. Each type agent AP gener-
ates a set of entities SiType, with conflicts occurring
when agents assign inconsistent labels to the same
entity. The conflict set is defined as C' = {e; |
JATP, AP such that 1 (e;) # li(e;),Vi € T}
During conflict resolution, the agents AJT.ype and

AV iteratively refine their classifications for each
entity e; € C by re-evaluating prior classifica-
tions, reassessing the entity’s context, and enforc-
ing ontology-driven constraints to ensure consis-
tency. If consensus is reached, the entity is as-
signed a final type. Otherwise, a separate LLM,
the Summarizer, aggregates reasoning paths, confi-
dence scores, and contextual evidence to determine
the most probable classification. This hybrid ap-
proach ensures robust decision-making by combin-
ing structured debate resolution with LLM-based
consolidation, improving classification accuracy
and consistency across entity types.

3.4 Inter-Group Cross-Type Discussion

After resolving conflicts within a single task
through intra-group cross-type discussion, we fur-
ther refine outputs via inter-group cross-task dis-
cussion, where NER and RE agents exchange feed-
back to enhance coherence. At this stage, NER
agents generate a candidate set of extracted enti-
ties, guiding RE agents to focus on relevant entity
types for relation extraction. For example, in the
“Live-in” relation, RE agents identify entity pairs
consisting of a “Person” and a “Location” (e.g.,
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Figure 1: The overview of CROSSAGENTIE illustrates the multi-agent collaboration process through four stages,
converting an input document into structured outputs. The four stages include: 1) Type-agents setup, 2) Intra-group
cross-type discussion, 3) Inter-group cross-task discussion, and 4) Template fine-tuning on a single LLM.

PER: Reagan; LOC: America). Afterwards, based
on the extracted entities, RE agents generate rela-
tion statements (e.g., “Reagan lives in America”)
and integrate them into the NER input as contextual
knowledge, refining entity classification.

This iterative exchange helps resolve classifi-
cation ambiguities. In stage 3 of Figure 1, NER
agents initially misclassify “America” as both ORG
and LOC. However, the “Live-in” relation (i.e., a
person must live in a location rather than an organi-
zation) enables RE agents to confirm “America” as
LOC and provide feedback to NER, prompting the
removal of the incorrect ORG label. Similarly, RE
agents may initially misclassify “Reagan-America”
as both “Live-in” and “Work-for”. Here, NER
agents reinforce entity consistency by verifying
that “America” is LOC, enabling RE to refine its
relation classification.

While this iterative refinement process corrects
specific classification errors, a broader challenge
remains: how to ensure that NER and RE con-
sistently converge toward a unified entity-relation
structure. Since NER and RE operate indepen-
dently in zero-shot settings, discrepancies naturally
arise— NER may extract entities that are irrele-
vant to RE, while essential entities for RE may be
absent from the NER output. To address these in-
consistencies, we introduce a mathematical formu-

lation that explicitly quantifies the symmetric dif-
ference between the entities extracted and required
by NER and RE, which is defined as A(A, B) =
(A\B)U(B\ A), where A = { NE Rext, REex}
represents the entities extracted by NER and RE,
and B = {NEReq, REeq} represents the entities
required by NER and RE. By minimizing A(A, B),
we ensure better alignment between entity bound-
aries and relation predictions, reducing both spu-
rious and missing entities. The complete mathe-
matical details, including the definition of entity
discrepancies, the role of logical constraints, and
the minimization of prediction inconsistencies, are
provided in Appendix F.

3.5 Template Fine-tuning

After resolving conflicts through intra-group dis-
cussion and refining predictions via inter-group
interactions between NER and RE, we further opti-
mize inference efficiency. While structured collab-
oration enhances classification accuracy, its itera-
tive nature incurs substantial computational costs,
particularly for multi-label datasets. To mitigate
this, we propose template fine-tuning, which distills
high-confidence outputs into a single model. By in-
tegrating refined results from multiple agents, this
approach enhances zero-shot performance on multi-
label datasets while preserving accuracy and signif-
icantly reducing computational overhead. Please
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see Appendix J for details.

4 [Experiments

We evaluate CROSSAGENTIE on NER and RE
benchmarks using strict full-matching criteria, com-
paring them with state-of-the-art baselines. As
prior work (Section 2) has applied LLMs in various
settings, we select the most relevant state-of-the-art
(SOTA) zero-shot approaches. See Appendix B for
methods comparison. For fair comparison, we use
GPT-3.5 as the backbone, aligning with existing
baselines, and additionally test our approach on
GPT-4o for evaluation on a more advanced LLM.
Please see Section 4.3 for details.

4.1 Experimental Setup

NER Datasets We evaluate NER performance
on CONLLO3 (Tjong Kim Sang and De Meulder,
2003), CONLLO04 (Carreras and Marquez, 2004),
OntoNotes4 (Pradhan et al., 2013), Semeval (Hen-
drickx et al., 2010) and TACRED (Zhang et al.,
2017). Please refer to Appendix A.2 for details.

NER Baselines We compare CROSSAGEN-
TIE against the following baselines: (1) Self-
consistency (Wang et al., 2023d), which aggregates
multiple outputs via voting to improve stability. (2)
Soft Self-consistency (Wang et al., 2024), which
softens voting decisions using uncertainty-aware
aggregation. (3) All-Entity-in-One (AEiO) (Li
et al., 2024a), which extracts multiple entity types
in a single model, handling all categories together
(e.g., “Identify person, location, and organization
entities in the sentence”). (4) Type-Agents, which
uses multiple specialized LLM prompts, each fo-
cused on a specific type. (5) Template fine-tuning,
which fine-tunes a single LLM using distilled out-
puts.

RE Datasets We evaluate RE performance on
CONLL2004, Semeval, TACRED, NYT (Face,
2025), and SciERC (Luan et al., 2018). Please
refer to Appendix A.2 for details.

RE Baselines We compare CROSSAGENTIE
against the following baselines: (1) One-step (Li
et al., 2024a), which jointly extracts entities and
their relations within a single prompt in a structured
format, (2) Direct-prompting, which extracts rela-
tion triplets in a single step. (3) Type-Agents and
(4) Template fine-tuning, which follow the same
configurations as in the NER.

Implementation Details We conduct zero-shot
experiments using GPT-3.5-Turbo (OpenAl). Each
entity type is assigned a dedicated type agent, en-
suring one-to-one mapping with the entity label set.
Our framework is built on Microsoft’s open-source
Autogen . We set the temperature to 0.9, the max-
imum number of iterations to 2, and the frequency
penalty to 0.1.

Metrics and Evaluation We compute micro-
averaged precision, recall, and Fl-score ? using
a strict span-level matching, where only exact
matches with ground truth entities count as true
positives. See Appendix A.3 for details.

4.2 Main Results

We evaluate the performance of all methods using
micro F1-scores across NER and RE test sets.

Main Results in NER As our main NER results,
Table 1 presents the F1-scores achieved by GPT-
3.5 using various prompting strategies. The ef-
fectiveness of CROSSAGENTIE is evident, as it
consistently outperforms both the AEiO approach
and Type-Agents across all datasets, achieving an
average F-1 score improvement of 8.56% over
AEIiO and 7.63% over Type-Agents. We further
compare CROSSAGENTIE with the existing Self-
consistency (SC) and Soft Self-consistency frame-
work to validate the effectiveness. As shown in Ta-
ble 4, CROSSAGENTIE outperforms SC and Soft
SC by 5.97% and 11.32% in F1 score, respectively.

Main Results in RE As our main RE results,
Table 5 presents the F1 scores achieved by GPT-
3.5 across different methods. Compared to Direct-
Prompting and Type-Agents, CROSSAGENTIE
achieves an average F1 improvement of 9.13% over
Direct-Prompting, and 5.54% over Type-Agents
across all datasets, highlighting its robustness in
relation extraction.

Results in Template Fine-tuning Table 1 and
5 show that template fine-tuning improves perfor-
mance over zero-shot inference. On the CONLL04
NER dataset, the AEiO method achieves an F1-
score of 58.13%, while template fine-tuning boosts
it to 68.38%, a 10.25% increase. Across all
datasets, the template fine-tuned GPT-3.5 outper-
forms all baselines, improving NER performance
over AEiO by an average of 7.25% and RE perfor-
mance over Direct-Prompting by 6.08%.

1ht’cps: //microsoft.github.io/autogen/
2https://scikit-learn.org/stable/index.html
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Method CONLL03 CONLL04 SemEval TACRED OntoNotes ‘ Average
AEiO (Li et al., 2024a) 49.65 58.13 30.10 30.79 39.47 ‘ 41.63
CROSSAGENTIE

- Type-Agents 64.65 55.73 29.28 28.47 37.69 43.16
- CROSSAGENTIE 72.94 66.45" 33.87 32.52 45.18 50.19
- Template-finetuning (One-LLM) 71.78F 68.38 31.17F 31.497 41.56f 48.88f

Table 1: The micro F1 scores (%) of GPT-3.5 on the NER datasets with different prompting strategies. T indicates

the suboptimal performance.

Method F1
G&O (GPT-3.5 only) 63.94
(Li et al., 2024a)

-One-step 44.77
- AEiO 49.65

Self-Improving(Xie et al., 2024)

- Naive zero-shot prompting 68.97
- Entity-level threshold filtering 74.99
- Sample-level threshold filtering ~ 73.97
- Two-stage majority voting 74.51
CROSSAGENTIE

-Type-Agents 64.65
-CROSSAGENTIE 72.94
-Template-finetuning (One-LLM)  71.78

Table 2: NER results (%) on CONLLO3. Bold numbers repre-
sent the highest score for zero-shot approaches.

Method CONLL04
G&O (Li et al., 2024a) 33.50
-One-step 38.70
CROSSAGENTIE

-Direct-prompting 33.59
-Type-Agents 30.91

- CROSSAGENTIE 40.06
-Template-finetuning (One-LLM) 35.18

Table 3: F1 scores (%) of GPT-3.5 on the RE task—CONLLO04
using different strategies.

Fairness and Bias Control in Debate To ensure
fairness, all type agents have equal weights, pre-
venting any single agent from dominating classifi-
cation. The speaking order is randomized to elimi-
nate positional bias. If no consensus is reached, the
Summarizer LLM aggregates evidence and confi-
dence scores for the final decision, as detailed in
Section 3.3. These mechanisms ensure an unbiased
and balanced debate.

Additional Results We evaluate the self-
verification reasoning (Weng et al., 2023) within
the Type-Agents baseline across various backbone
models. As shown in Figure 3, self-verification
drags down the performance in zero-shot settings

Method CONLL04
Self-consistency (SC)

(Wang et al., 2023d) 60.48
Soft SC (Wang et al., 2024) 55.13
CROSSAGENTIE

-Type-Agents 55.73

- CROSSAGENTIE 66.45"
-Template-finetuning (One-LLM) 68.38

Table 4: F1 scores (%) of GPT-3.5 on the NER task—
CONLLO4 using different strategies.

across datasets and model sizes despite its
complexity. See Appendix C for further analysis.

4.3 Ablation Studies

To evaluate the contribution of key components
in our approach, we conduct ablation studies fo-
cusing on five aspects: (1) comparison with other
zero-shot methods (2) backbone model selection
(3) model structure design (4) effectiveness of con-
flict debate and (5) template fine-tuning optimiza-
tion. These studies quantify the impact of each
component on both NER and RE.

NER Baselines Comparison We compare our
approach with existing zero-shot LLM methods for
NER, including G&O (Li et al., 2024a), a simple
but effective work to analyze the GPT-3.5’s zero-
shot performance on IE tasks; Self-Improving for
Zero-Shot NER with LLM (Xie et al., 2024), which
enhances zero-shot NER through self-annotation,
pseudo-demonstrations, and consistency-based fil-
tering; and Decomposed-QA (Xie et al., 2023b),
which explores zero-shot NER with ChatGPT. As
shown in Table 2 and 6, CROSSAGENTIE out-
performs G&O by 7.07% and Self-Improving by
0.56% in F1 score on the CoNLLO3, while sur-
passing Decomposed-QA by 5.98% F1 score on
the OntoNotes. Furthermore, under the zero-shot
setting with a single LLM, our template fine-tuned
model exceeded G&O by 5.91% and Decomposed
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Method CONLL04 TACRED SemEval NYT SCIREC | Average
One-Step (Li et al., 2024a) 38.70f 39.27 1503 1055 1171 23.05
Direct-prompting 33.59 32.51 17.50 10.97 14.65 21.84
CROSSAGENTIE

- Type-Agents 30.91 43.93 1948 1406  18.76 25.43

- CROSSAGENTIE 40.06 46.81 23.08  19.18" 2373 30.97
- Template-finetuning (One-LLM) 35.18 42.541 20697 21.62 1957 | 27.92f

Table 5: The micro F1 scores(%) of GPT-3.5 on the RE datasets with different prompting strategies.' indicates the

suboptimal performance.

Method F1
Decomposed-QA (Xie et al., 2023b)  37.45
Vanilla 33.74
Syntactic prompting 39.00
Tool augmentation 39.20
CROSSAGENTIE

-Type-Agents 37.69
-CROSSAGENTIE 45.18
-Template-finetuning (One-LLM) 41.56

Table 6: NER results (%) on OntoNotes. Bold numbers repre-
sent the highest score for zero-shot approaches.

CROSSAGENTIE F1
NER

-Type-Agents 68.61
-CROSSAGENTIE 72.14
-Template-finetuning (One-LLM)  70.69
RE

-Type-Agents 49.79
-CROSSAGENTIE-RE 55.22
-Template-finetuning (One-LLM)  40.67

Table 7: Performance(%) on CONLL04 with GPT-4o0.

by 2.36%, further demonstrating its effectiveness.

RE Baselines Comparison We compare our ap-
proach with existing zero-shot LLM methods on
RE task, including One-step and G&O (Li et al.,
2024a). As shown in Table 3, CROSSAGENTIE out-
performs One-step by 5.63% and G&O by 10.83%
in F1 score on the CoNLLO04 dataset. Under the
zero-shot setting with a single LLM, our template
fine-tuned model surpasses One-step by 2.48% and
G&O by 7.68%.

Backbone Model Selection Our experiments
utilize GPT-3.5%, LlaMa3-8b*, Mistral-7B (Jiang
et al., 2023) and Mixtral 8x7B (Jiang et al., 2024a)
as backbone LLMs. Figure 3 presents their NER

3https://platform.openai.com/docs/models#
gpt-3.5
*https://ai.meta.com/blog/meta-1lama-3/

performance across three evaluation settings: Type-
Agents, Self-Verification, and Our method. Regard-
less of the reasoning method used, GPT-3.5 consis-
tently outperforms the other models in precision,
recall, and F1-score, highlighting the significant
impact of a stronger backbone model on overall
performance. This reinforces GPT-3.5 as the opti-
mal choice for our debate-driven multi-agent frame-
work. Additionally, we evaluate our approach using
GPT-40°, with results on the CONLLO04 dataset pre-
sented in Table 7. For a detailed comparison of
Type-Agents NER baselines and additional details,
please refer to Appendix A.1.

Framework Design Comparison While a strong
backbone model is essential, the reasoning frame-
work is equally crucial. A single-step summa-
rization approach reduces computational costs by
summarizing first-round responses instead of itera-
tive reasoning. However, this sacrifices refinement
and deeper reasoning, key strengths of our debate-
driven framework. To evaluate this trade-off, we
compared both methods, with results in Appendix
I confirming our structured debate’s superior per-
formance and efficiency.

Conflict Resolution Efficiency Entity classifica-
tion conflicts pose a key challenge in our multi-
agent debate system. We analyzed 300 CoNLLO3
documents, identifying 688 conflict instances, of
which 77.5% are successfully resolved in a sin-
gle debate turn. Among the unresolved cases, 35
are false positives, and only 6 require additional
rounds, demonstrating the system’s efficiency in
handling complex cases.

Effectiveness of Structured Debate We assess
the impact of structured debate on NER and RE
through an ablation study on CoNLL04, comparing
four configurations: (1) Type-Agents without de-

5https://platform.openai.com/docs/models#
gpt-4o0
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Figure 3: Performance (%) of different LLMs of NER on
CONLLO3.

bate, (2) Debate for RE only, (3) Debate for NER
only, and (4) Debate for both. Table 13 shows that
structured debate enhances performance by refining
entity classification and resolving label ambiguities,
as detailed in Appendix G. To further assess the
benefits of iterative NER-RE interactions, we con-
duct a second-round feedback experiment, where
cross-task refinements improve predictions. As
shown in Table 12, this iterative feedback boosts
recall by recovering missed entities and refining
relation classification. See Appendix H for details.

Template Fine-tuning Optimization Our tem-
plate fine-tuning mechanism aims to match the per-
formance of multi-agent refinement. To optimize
a single LLM for maximum accuracy, we explore
the optimal number of cases needed to achieve the
best F1-score. By varying the case count in NER
and RE tasks on the CONLLO04 dataset (Figure 2),
we find that the optimal number is 5 cases per type
for NER and 3-4 cases per type for RE. Please see
Appendix J for more details.

Cost and Time Efficiency We evaluate cost per
data point and time consumption for long and short
debates. Using the Efficiency Score as a measure
of cost-effectiveness, our framework optimally bal-
ances computational efficiency and performance.
The final results depend on the required debate
rounds per dataset, demonstrating its practicality
for scalable applications. Please see Appendix L.

Error Types Baseline-NER  1st-Debate-NER  2nd-Feedback-NER
Boundary Errors 90 81 90

‘Wrong types 333 251 343

Missing Entities 686 680 618

Total 1109 1012 1051

Table 8: Error Type Counts on CONLLO04 for NER: Com-
parison of Baseline, 1st-Round Cross-Type Discussion, and
2nd-Round Cross-Task Discussion. Bold numbers indicate
total errors, showcasing reductions achieved by our methods.

4.4 Case study

Error Analysis We analyze errors in our multi-
agent framework on the CONLLO04 dataset, cate-
gorizing them into three types to identify model
limitations and guide improvements.

Error Types and Statistics Table 8 summarizes
error statistics, categorizing errors into wrong type
errors, boundary errors, and missing entities. 1)
Wrong type errors occur when an entity is assigned
an incorrect type from the predefined label set. 2)
Boundary errors arise when the predicted span mis-
aligns with the gold annotation, either by fully con-
taining, being contained within, or partially over-
lapping it. 3) Missing entities refer to undetected
gold entities. Additionally, we consider spurious
entity errors, where the model predicts non-existent
entities, though our primary focus remains on the
three main error types. For a detailed breakdown
of error distribution, impact across model stages,
and case studies, see Appendix K for details.

Case Study of Error Correction and Error In-
crease As shown in Table 8, Cross-task Debating
effectively reduces Boundary Errors and Wrong
Types errors. In the Baseline stage, errors are
dominated by false negatives (FN) and false posi-
tives (FP), leading to suboptimal performance. The
Ist-Debate-NER stage significantly reducesFP and
slightly decreases FN, improving precision and F1-
score. The 2nd-Feedback-NER stage further re-
duces FN, achieving an 8.73% recall improvement
with a minor FP increase. This demonstrates that
when FN are the primary source of error, RE-based
knowledge augmentation in 2nd-Feedback-NER ef-
fectively reduces FN, boosting recall and F1-score.
Despite a slight FP increase, the FN reduction leads
to net performance gains. Please see Appendix K.

5 Conclusion

In this paper, we propose CROSSAGENTIE, a cross-
type and -task multi-agent collaboration framework
designed to enhance structured prediction in infor-
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mation extraction (IE) tasks using LLMs. Unlike
conventional zero-shot strategies, CROSSAGEN-
TIE introduces two collaboration mechanisms that
enable mutual refinement between NER and RE
tasks, improving prediction accuracy. Additionally,
we develop template fine-tuning to consolidate out-
put knowledge into a single model, significantly
enhancing efficiency. Test under zero-shot IE set-
tings with GPT-3.5, our bidirectional collaboration
and template fine-tuning achieve substantial per-
formance gains, demonstrating the effectiveness of
CROSSAGENTIE. Ablation studies further validate
the efficiency of each component in our multi-agent
system, while evaluations across diverse LLMs
and datasets demonstrate the generalizability of
CROSSAGENTIE. We hope our work inspires fu-
ture research on multi-agent collaboration frame-
works in LLMs and contributes to the development
of effective and interpretable IE systems.
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Limitations

Due to computational constraints, our evaluation
was conducted on a limited set of datasets and
tasks. While these experiments demonstrate the
effectiveness of CROSSAGENTIE, incorporating
more domain-specific datasets could further en-
hance the robustness of our conclusions. Below,
we outline key limitations of our approach.

Computational Cost Our multi-agent frame-
work incurs additional computational overhead due
to iterative debate and bidirectional refinement.
Although template fine-tuning reduces inference
costs, the initial debate process remains expensive,
particularly for large-scale datasets.

Scalability in Multi-Agent Collaboration As
the number of agents increases, coordination com-
plexity grows. Managing conflicts and ensuring
convergence in large-scale settings requires further
optimization to prevent excessive inference time.

Dependency on Model Accuracy The frame-
work relies on the reasoning capabilities of LLMs,
which can still produce hallucinated or inconsis-
tent outputs. While intra-group and inter-group
debates help mitigate errors, misclassifications in
entity recognition and relation extraction may still
occur. Additionally, due to the inherent instability
of large language model generation, biases, trust
issues, or other uncertainties may arise, potentially
undermining the reliability of the extracted infor-
mation.

Ontology Constraints Our approach operates
within predefined entity and relation ontologies,
which limits its adaptability to open-domain or
evolving schemas. Extending it to dynamic on-
tologies would require additional mechanisms for
expansion and adaptation.

Ethics

In this work, we propose a method to improve LLM
performance on the fundamental task of relation
extraction. We do not anticipate any ethical issues
regarding the topics of this research.
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A Detailed Experiment Setup

A.1 Models

Our research focuses on GPT-3.5, specifically the
gpt-3.5-turbo (OpenAl, 2023a) . While it is not
the latest model, we use it to maintain experimental
consistency. For open-source LLMs, we employ
Llama 3-8B (AI) 7, Mistral-7B (Jiang et al., 2023)
8, and Mixtral 8x7B (Jiang et al., 2024a) °. All
experiments involve forward inference only, ex-
cept for template fine-tuning. GPT-3.5 inference is
conducted through the OpenAl API, while open-
source models run on HuggingFace Transformers.
Llama 3-8B and Mistral-7B are deployed on sin-
gle NVIDIA A100 80G GPUs, and Mixtral 8x7B
runs on two GPUs. Our multi-agent debate frame-
work utilize Microsoft’s open-source Autogen (Wu
et al., 2023) '°. For template fine-tuning, we use
the gpt-3.5-turbo-1106 version '!, following Ope-
nAD’s official fine-tuning guidelines !2. Details on
fine-tuning dataset construction and analysis are
provided in Appendix J.

CONLL03 CONLL04 SemEval TACRED OntoNotes

n-instance 3453 288 2717 15509 8262
n-entity-type 4 3 2 17 18
n-entity-mention 4945 844 5434 31018 11257

Table 9: NER dataset statistics.

CONLL04 TACRED SemEval NYT SCIREC
n-instance 288 446 2717 369 1088
n-entity-type 5 4 10 7 7
n-entity-mention 42 446 2717 265 974

Table 10: RE dataset statistics.

A.2 Datasets

NER In the NER task, we use datasets from mul-
tiple sources: CoNLL2003 (Tjong Kim Sang and
De Meulder, 2003), CoNLL2004 (Carreras and
Marquez, 2004), OntoNotes4 (Pradhan et al., 2013),
TACRED (Zhang et al., 2017), and SemEval2010
(Hendrickx et al., 2010). The CoNLL2003 and

6platform.openai.com/docs/models/
gpt-3-5-turbo
"https://huggingface.co/unsloth/Meta-Llama-3.
1-8B-bnb-4bit
8huggingface.co/mistralai/
Mistral-7B-Instruct-ve.2
9huggingface.co/mistralai/
Mixtral-8x7B-Instruct-ve.1
Ohttps://microsoft.github.io/autogen/
11https://platform.openai.com/docs/models
12https://platform.openai.com/docs/guides/
fine-tuning

CoNLL2004 datasets are sourced from (Li et al.,
2024b), while TACRED and SemEval come from
the processed versions in (Wan et al., 2023). We
preprocess all datasets to align with our study while
preserving their original structure. Specifically, we
extract labeled phrases from each sentence, group
them by entity type, and use them as ground truth
for computing the micro F1-score per doc_id. For
instance, CoNLL2004 contains three label types
(PER, ORG, and LOC), and we exclude “MISC”
for fair comparison with G&O. For TacRed, we
test our method on six label types to verify our
effectiveness (ORG, PER, LOC, Country, City, Na-
tionality, and URL). For GPT-3.5, we process en-
tire paragraphs. In contrast, other LLMs receive
sentence-level inputs due to memory constraints.
All models are provided with raw sentences with-
out labeled entities. For simplicity, we briefly refer
to CoNLL2003 as CoNLLO03 and CoNLL2004 as
CoNLLO04 throughout the paper for consistency.
We report the performance on the test set of each
dataset, and the detailed statistics are shown in Ta-
ble 9.

RE For the RE task, we use CoNLL2004 (Car-
reras and Marquez, 2004), NYT (Face, 2025), Se-
mEval 2010 (Hendrickx et al., 2010), TACRED
(Zhang et al., 2017)and SciERC (Luan et al., 2018).
Consistent with NER, NYT is sourced from (Wang
et al., 2023c) and SciERC from (Wan et al., 2023).
For TACRED, we retain only four relation types to
evaluate the effectiveness of our framework: “orga-
nization has member”, “organization has website”,
“per: cities_of_residence” and “person_has_age”.
In SemEval 2010, subjects and objects are treated
as independent agents to align with our workflow.
When type-specific agents generate no conflicts,
we skip the debate stage and proceed directly to
bidirectional refinement and template fine-tuning.
To improve agent understanding, we provide natu-
ral language explanations for relation labels. For
example,“per: cities_of_residence” is defined as “a
person lives or has lived in a city as their place of
residence”. We report the performance on the test
set of each dataset, and the detailed statistics are
shown in Table 10.

A.3 Details

During pre-processing for the NER task, we extract
entities for each ontology-defined type from every
document, constructing type-specific ground truth
annotations. If a document lacks entities of a given
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type, the corresponding list remains NULL. For RE,
we extract head-tail entity pairs for each relation
type, leaving the output empty when no valid pairs
exist.

Due to their generative nature, LLMs often in-
troduce noise during post-processing, leading to
discrepancies between outputs and the original text.
Common issues include extraneous content, spac-
ing inconsistencies, tense variations, and redundant
acronym clarifications. These inconsistencies are
particularly prevalent in large models, which may
alter phrasing or terminology when extracting enti-
ties or relationships.

We filter noisy content by matching generated
outputs with original sentences to mitigate these
issues. For RE, we format the output as [head:
head_entity, tail: tail_entity] and validate entity
pairs for each relation type. Consequently, we ob-
tain structured entity lists: in NER, entities of a
specific type per document; in RE, head-tail entity
pairs per relation type.

We provide natural language explanations that
explicitly define the expected entity types for each
relation to maintain the correct logical order be-
tween the head and tail entities. This ensures that
extracted entities align with their intended semantic
roles and follow the correct relationship direction.
By clarifying entity-role expectations, we aim to
mitigate errors such as entity misidentification or
head-tail position errors caused by position bias
or incorrect ordering. Furthermore, enforcing role
consistency through relation constraints reduces re-
lational confusion, enhancing extraction accuracy.

We follow the traditional pipeline for template-
based fine-tuning inference on a single GPT model,
sequentially processing each sentence for NER
and RE across all labels. Finally, we evaluate
model performance using precision, recall, and F1-
score, measuring alignment between predicted and
ground truth entity spans. We use a full match
criterion, requiring exact span agreement between
predictions and ground truth to maintain consis-
tency with traditional methods. For instance, in
the sentence from doc_id 3: "He’s working for the
White House", the ground truth entity labeled as
ORG_Agent might be:

’doc_id 3: [White House]

If the ORG_agent predicts:

’doc_id 3: [the White House]

with the additional word "the" in the span, it would
be counted as both a false positive and a false nega-
tive under the full match evaluation. Similarly, if
the ORG_Agent label incorrectly includes "White
House" in its list, it would also be considered in-
correct under the matching criteria. This rigorous
evaluation method ensures a thorough assessment
of the model’s performance by capturing subtle
span mismatches that could impact entity recog-
nition accuracy. For OntoNotes, we first filter the
data points based on type labels to extract those
containing the target entity types. Then, we use
type-specific agents to identify the representative
entities for each type. During the fine-tuning phase,
we use a single model to perform entity recognition
for all types across 100 data points. We randomly
sampled 100 data points from each dataset’s test
set for method evaluation.

B Baseline selection

This section categorizes and introduces key re-
search on LLM-based NER and RE, highlighting
approaches distinct from our setting.

LLMs for NER Beyond our zero-shot setting,
LLM-based NER methods generally follow two
paradigms: few-shot/in-context learning and su-
pervised fine-tuning. Few-shot approaches primar-
ily leverage in-context learning (ICL), providing
labeled examples within prompts to guide predic-
tions. For example, GPT-NER (Wang et al., 2023b)
frames NER as a text generation task, employ-
ing entity markers and self-verification to miti-
gate over-predictions. ProGen (Heng et al., 2024)
enhances this paradigm with few-shot learning
through step-by-step generation and self-reflection,
improving dataset quality rather than directly ex-
tracting entities. Supervised fine-tuning methods
explicitly train models on annotated or synthetic
datasets. For example, UniversalNER (Zhou et al.,
2024) employs instruction tuning and targeted dis-
tillation to train an LLaMA-based model, lever-
aging ChatGPT-generated synthetic data for cost-
efficiency and domain generalization. VerifiNER
(Kim et al., 2024) focuses on post-hoc verification,
utilizing external knowledge bases to refine entity
boundaries and classifications.

LLMs for RE Beyond our zero-shot set-
ting, LLM-based RE methods follow two main
paradigms: few-shot in-context learning and su-
pervised fine-tuning. Few-shot approaches extract

13967



relational information without fine-tuning. For ex-
ample, GPT-RE (Wan et al., 2023) enhances in-
context learning by optimizing example retrieval
and incorporating reasoning-based augmentation,
improving alignment between input text and rela-
tion labels. Supervised fine-tuning explicitly trains
models for RE. For example, URE (Wang et al.,
2023a) refines relational embeddings through con-
trastive learning and margin loss within a BERT-
based framework. QA4RE (Zhang et al., 2023) re-
frames RE as a multiple-choice QA task, aligning
LLM predictions with structured relation templates
using instruction-tuned datasets.

Nonetheless, existing studies have overlooked
the challenges of LLMs’ performance in structured
prediction with mixed prompts and have yet to
fully explore their embedding-level capabilities for
enhancing NER and RE performance, which are
the central topics of our research.

C More Results Analysis

Additional Analysis Table 11 summarizes the
existing methods, including supervised fine-tuning,
few-shot learning, and in-context learning, and
their results for NER on CONLLO3 and RE on
TACRED. Although our framework falls behind
advanced tuning-based methods, the performance
gap has narrowed. Three key factors drive these
improvements over zero-shot baselines: 1) The
multi-agent debate enables dynamic collaboration
among agents and allows iterative refinement of
entity and relation predictions. 2) Ontology-guided
learning leverages structured ontology information
to enhance agents’ comprehension of NER and
RE, providing a systematic framework for entity
categorization and relation modeling. 3) Enriched
knowledge integration incorporates task-specific
contextual information, offering richer semantic
cues that improve prediction accuracy. We further
analyze the effectiveness of structured debate com-
ponents in Appendix G.

D Detail prompts for NER

Type-Agent Prompt Below is an example of the
prompt design for the Type Agent in the NER task:
Listing: PER_Agent

<bot> Response: ###list of extracted
persons and confidence scores
#it# .

Include "###" before and after each
extracted entity and confidence
score.

Person entities are named persons or

families. For each extracted
entity, assign a confidence
score between @ and 1 based on
how certain you are about the
entity’s classification.

Return the extracted entities along
with their confidence scores in
the specified format.

Text: {text}

<bot> Response:

In the prompts, entity types are rephrased to en-
hance model comprehension. For example, “PER”
is rewritten as “person”, and “ORG” as “organiza-
tion”, improving clarity while ensuring consistency
across models. Each type’s ontology definition is
a key distinguishing feature of its dedicated Type
Agent.

We adopt the All-Entity-in-One (AEiO) ap-
proach from G&O (Li et al., 2024a) as our baseline,
a method that generates all entities simultaneously,
as shown below. The AEiO approach performs
both information extraction and structuring in a
single step.

Cross-Type prompt When conducting cross-
type debates to resolve conflicts, we first identify
conflicts where multiple entity labels are assigned
to the same entity within a sentence, as shown be-
low.

Example of Cross-Type Conflicts-NER

You are a knowledgeable assistant who
specializes in recognizing and
understanding named entities.

<Human>Given the following text, extract

all the ’Person’ named entities and
return the result in the following
format:

{

"doc_id": "1",

"sentence”: "An art exhibit at the
Hakawati Theatre in Arab east
Jerusalem was a series of
portraits of Palestinians killed

in the rebellion."”,

"entity"”: "Hakawati Theatre”,

"conflict_types": [

"Loc",
"ORG"
1
}!
{

"doc_id": "2",

"sentence”: "PERUGIA , Italy ( AP )"

"entity": "PERUGIA",

"conflict_types": [

"Loc",
"ORG"
]
}!
{
"doc_id": "3",
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Method Ontology Usage Paradigm CONLL0O3 TACRED
GPT-NER (Wang et al., 2023b) X SFT 89.97 -
GNN-SL (Wang et al., 2022) X SFT 93.20 -
GPT-RE_FT (Wan et al., 2023) X SFT, FCL-15 - 72.14
0&G- GPT3.5 only(Li et al., 2024b) v 7S 63.94 -
Self-improving_ZS (Xie et al., 2024) v 7S 74.51 -
Self-improving_Demo (Xie et al., 2024) X ICL-full 83.51 -
GPT-RE_SimCSE (Wan et al., 2023) X FCL-15 - 37.44
QAA4RE (Zhang et al., 2023) v 7S - 4421
Debate-NER (GPT-3.5) v 7S 72.94% -
Debate-RE (GPT-3.5) v ZS - 46.81

Table 11: NER results (%) on CONLLO3 and RE results on TACRED. Bold numbers represent the highest score for zero-shot
approaches.” represents the second-best. SFT denotes supervised fine-tuning. FCL denotes few-shot learning. ICL denotes
in-context learning, and ICL-Full denotes with the full training dataset.

"sentence"”: "Reagan sounded positive
notes reminiscent of earlier
speeches throughout his
political career _ the pre-
eminent position of ¢ ¢ We the
People ’ ’ in the American
system , the image of America as
a shining ¢ ¢ city upon a hill
, 7’ the importance of paying
more attention to American

history.",
"entity": "America",
"conflict_types”: [
"LOoC",
"ORG"
]
}!
{
"doc_id": "3",
"sentence”: "Reagan sounded positive
notes reminiscent of earlier
speeches throughout his
political career _ the pre-
eminent position of ¢ ¢ We the
People ’ ’ in the American
system , the image of America as
a shining ¢ ¢ city upon a hill
, 7 7 the importance of paying
more attention to American
history.",
"entity": "Regan",
"conflict_types"”: [
"LOC",
"PER"
]
3

Example of Cross-Type Conflicts-RE

{
"doc_id": "11",
"entity": [
"MILAN",
"Italy"”
:l ’
"conflict_types”: [
"Organization-based-in",
"Located-in"

] y

"sentence”: "MILAN , Italy ( AP
Yo"

}

Next, we use the following prompts to construct
the conflict resolution discussion framework. Simi-
lar to the design of Type agents, the prompts for the
debate framework follow the approach illustrated
in Listings 5-6.

List-5: Person_agent

system_message = "You determine if the
entity belongs to a person.”,

description = "Responsible for
determining if an entity is a person
or people. For each determination,
assign a confidence score between 0
and 1 based on how certain you are
about the classification.”,

confidence = "The confidence score
reflects the certainty of the agent
in classifying the entity as a
person.”

List-6: Location_agent

system_message = "You are a specialized
agent responsible for verifying if
an entity belongs to the Location
type.",
description = "Responsible for
determining if an entity is a
location, which includes politically
or geographically defined locations
such as cities, provinces,
countries, international regions,
bodies of water, mountains, etc.
each determination, assign a
confidence score between @ and 1
based on how certain you are about
the classification.”,
confidence = "The confidence score
reflects the certainty of the agent
in classifying the entity as a
location.”

For
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List-7: Organization_agent

system_message = "You are a specialized
agent responsible for verifying if
an entity belongs to the
Organization type."”,

description = "Responsible for
determining if an entity is an
organization, which includes named
corporate, governmental, or other
organizational entities. For each
determination, assign a confidence
score between @ and 1 based on how
certain you are about the
classification.”,

confidence = "The confidence score
reflects the certainty of the agent
in classifying the entity as an
organization.”

The prompt to initiate group debate:
Conflict Resolution Group_chat Debate

chat_result = initiator_agent.
initiate_chat(
group_chat_manager,
message=(
f"The entity ’{entity}’ appears
in the context: ’{sentence}
f"There is a conflict between {
Location} agent and {
Organization} agent over
which type this entity
belongs to. "
f"The {Location} agent has
assigned a confidence score
of {location_confidence} to
classify the entity as ’
Location’, "
f"while the {Organization} agent
has assigned a confidence
score of {
organization_confidence} to
classify the entity as ’
Organization’. "
f"Based on the given context and
confidence scores, please
discuss and decide which
type the entity ’{entity}’
should belong to.”
),
)

tual alignment, and confidence level comparison.
If consensus is reached, the agreed label is as-
signed. When confidence scores vary significantly,
the agent with the highest score prevails. If no
consensus is achieved, unresolved conflicts are es-
calated for further analysis or external review.

This process is particularly relevant when mul-
tiple Type Agents classify the same entity under
different labels, such as both Person and Organi-
zation agents claiming the same entity. By inte-
grating confidence scores and iteratively resolving
conflicts, the Cross-Type Debate Process enhances
classification precision, ensuring accurate labeling
with minimal ambiguity.

E Detail prompts for RE

RE is more challenging than NER as it requires
not only entity identification but also contextual
relationship interpretation. Ambiguous relation la-
bels, such as “place lived” or “located in,” often
confuse LLMs. To mitigate this, we take a two-
step approach: first, we design tailored prompts to
improve contextual understanding; second, we use
relation logic to define type constraints for head
and tail entities, reinforcing their semantic roles.
For the RE task, Listings 8-9 illustrate how to
construct a Relation Type Agent using examples
from two relation types.
List-8: Killer_Victim_Relationship

Each Type Agent resolves conflicts by generating a
new response based on a conflict-specific prompt,
leveraging sentence context and confidence scores
to refine its reasoning. These prompts guide agents
in justifying their predictions, providing confidence
levels, and considering arguments from conflicting
agents.

The structured validation process requires agents
to critically assess evidence, including contextual
cues, boundary definitions, label-specific charac-
teristics, and confidence scores. The final label
is assigned based on logical reasoning, contex-

% Please identify the "Killer kills the
Victim" relationship in the
paragraph,

% which means a person (Killer) causes
the death of another person (Victim)

% This relationship is often expressed
in the form of "Killer kills the
Victim".

% Use the provided candidate entities as

a reference, but also recognize

% any other entities in the sentence if

necessary.

- Sentence: "{sentencel}”

- Candidate Entities: {entities}

- Task: Identify all pairs of entities
involved in a "Kill"” relationship.

<bot> Response: ["Head": "##t#entity###",

"Tail": "@@Rentity@e@"]

% Include "###" to identify the Head
entity and "@@@" to identify the
Tail entity.

% Return the identified pairs of
entities in this specified format,
% ensuring clarity and accuracy.

List-9: Person_Location_Relationship
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% Please analyze the given paragraph to
identify any instances where it
implies or states

% that a person resides or has resided
in a specific location.

% This relationship is between a person
and a location, where the person has

lived in the location.

% The person is the head entity and the
location is the tail entity.

% Use the provided candidate entities as

a reference, but also consider any
other entities

% in the sentence if necessary.

- Sentence: "{sentencel}"”

- Candidate Person Entities: {
person_entities}

- Candidate Location Entities: {
location_entities}

- Task: Identify all pairs of entities
where a person resides or has
resided in a location.

% Format your response as follows:
% - Head Entity (Person): ###fentity###
% - Tail Entity (Location): @@GRentityee@

% Example:
<bot> Response:
###" ) "Tail”:

["Head": "###John Smith
"@@@New York@e@"]

% Return the identified pairs of
entities in this specified format,
% ensuring clarity and accuracy.

Furthermore, we use the One-Step RE prompt,
adapted from G&O (Li et al., 2024a), as our base-
line, simplifying the process into a single prompt.

Another baseline, Direct Prompting, extracts re-
lational triplets (head, relation, tail) directly from
text without explicit entity span classification. This
approach prompts a single LLM to identify all rela-
tion types in a given sentence and extract head-tail
pairs in a single step, while enforcing a predefined
output format.

F Mathematical Formulation of
Cross-Task Discussion

To better understand the structured interaction be-
tween named entity recognition (NER) and rela-
tion extraction (RE), we define a complete round
of cross-task collaboration. In this process, NER-
extracted entities serve as candidates for RE (NER
— RE), while relational knowledge from RE pro-
vides structured feedback to refine entity classifica-
tion (RE — NER). This iterative exchange estab-
lishes structured constraints, ensuring consistency
between entity extraction and relation identification
while maintaining a zero-shot setting.

However, due to the independent nature of NER
and RE in zero-shot scenarios, discrepancies of-
ten arise between the entity sets used in each task.
These inconsistencies introduce a symmetric dif-
ference between NER-extracted entities and RE-
required entities, leading to additional entity pre-
dictions that do not belong to the original entity set
of each task. To resolve these inconsistencies, we
introduce a cross-task debate mechanism, where
NER and RE agents iteratively refine their predic-
tions by minimizing this symmetric difference in
their generated entity sets.

The following section presents a formal mathe-
matical formulation of this debate process, detail-
ing how NER and RE collaborate through struc-
tured constraints to enforce entity-relation consis-
tency.

NER — RE: Entity Candidates Augmen-
tation. NER agents generate a set of candi-
date entities Engr = {61, €9, ...y ek}, e, =
(ti,l;,cnpr(ei)) where ¢; is the extracted entity
span, [; is the predicted entity label, and exgr(€;)
represents the confidence score. These extracted
entities serve as input for RE agents, which pre-
dict the relation set: Rrg = {(ep, 7, €q, cre(7))}
where e, and e, are entity pairs, r is the predicted
relation, and crg(r) is the confidence score. Since
NER operates in a zero-shot setting, discrepancies
may arise between the extracted entities Fngr and
those required by (Erg). We define this entity dis-
crepancy as:

En = ExgrAERE

where Exgr \ ERrg represents spurious entities
extracted by NER but unnecessary for RE, and
Egg \ Engr represents missing entities that re-
quired by RE but not recognized by NER. To
address these inconsistencies, RE agents enforce
logical constraints, including hard constraints and
soft constraints, to filter out implausible relations
and maintain consistency in entity-relation pairs.
Hard constraints enforce strict predefined rules by
rejecting relations that violate logical structures;
for instance, a "Work-for" relation cannot link
a Person and a Location, as this contradicts es-
tablished entity-role mappings. Complementing
this, soft constraints incorporate probabilistic rules
that guide relation plausibility, aligning predictions
with real-world tendencies. For example, orga-
nizations are more likely to be headquartered in
locations rather than in other entities like persons.
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2nd round Precision  Recall F1 Baseli

NER Baseline-RE

1st round Debate-NER  1st round Debate-RE  Direct-RE

Flow RE—> NER
Flow NER—> RE
(+) Self-verification-RE

58.20%
57.14%
58.24%

82.49%  68.25% 5.77%
49.14%  52.84%
52.09% 54.99%

1.80%

16.93% 8.51% 19.25%

Table 12: Performance Improvements through 2nd Round Iterative Feedback between NER and RE

By integrating hard constraints (to eliminate invalid
relations) and soft constraints (to refine plausible
ones), RE agents enhance relational prediction ro-
bustness, ensuring alignment with domain knowl-
edge.

RE — NER: Knowledge-base enhancement.
After relation extraction, RE agents generate struc-
tured knowledge in natural language statements,
such as “John lives in New York”. These state-
ments are appended to the original input, providing
additional contextual signals for NER agents to re-
assess their classifications. The updated entity set
is defined as:

FEupdated = ENer U (ERE \ ENER)

where: Frg\ Engr represents new entities inferred
from relational knowledge, and Engr \ ERg repre-
sents spurious entities that remain unchanged due
to zero-shot constraints. If inconsistencies arise
(e.g., an entity previously classified as ORG ap-
pears in a "Live-in" relation), a conflict resolution
protocol is applied: 1). Conflict Detection: Iden-
tify entities whose labels contradict the relational
knowledge introduced by RE. 2). Constraint-Based
Re-Evaluation: NER agents reassess these entities
based on the entity types appearing in the newly
introduced relation statements. 3). Final Update:
Each NER agent updates its extracted entities and
classifications according to the relational context,
ensuring alignment with the structured knowledge
provided by RE.

To further enhance the reliability of the debate
process, our framework integrates external knowl-
edge sources to guide entity classification and re-
lation extraction. A domain ontology provides a
structured hierarchy of entity types and their rela-
tionships, ensuring classification consistency. For
example, "Country" is categorized as a subclass
of "Location", enabling a structured classification
scheme. In addition to ontology-based guidance,
logical constraints enforce consistency and prevent
implausible entity-relation assignments. These con-
straints fall into two categories: Hard constraints,
which impose strict rules that must always be satis-
fied. For instance, a "Person" entity cannot be clas-
sified as a "Location", a "Born-in" relation must

19.08% 10.66% 21.40%
Precision | Recall F1
o Debate NER w/o Debate RE 36.46 35.38 | 35.91
62.48(54.32/7354) | Debate RE 47.29 40.79 | 43.80
Debate NER w/o Debate RE 38.44 36.36 | 37.37
66.45(60.45/73.76) | Debate RE 47.86 41.28 | 44.33

Table 13: Performance (%) comparison of Baseline
and Debate-based NER and RE configurations on
CoNLL2004. The results for NER are reported in the
format “F1 (Precision / Recall)”. w/o Debate represents
Type-Agents baseline without debating.

link a "Person" and a "Location", and a "Work-
for" relation cannot exist between two "Location"
entities. Soft constraints, which introduce proba-
bilistic guidelines to shape relation plausibility. For
example, organizations are more likely to be head-
quartered in locations rather than in other entity
types, and people are more commonly associated
with multiple locations over time. By integrating
domain ontology and logical constraints, our frame-
work reinforces valid entity-relation structures, en-
hances model robustness, and ensures adaptability
within a zero-shot setting.

G Effectiveness of Structured Debate

From the results in Table 13, we can draw the fol-
lowing conclusions: (1)Using baseline models for
both NER and RE improves performance by 2.32%,
demonstrating the benefits of structured integration.
(2)Adding the debate mechanism to RE improves
performance by 7.89%, effectively resolving ambi-
guities and enhancing classification. (3) Applying
the debate mechanism to NER improves precision
and outperforms the baseline by 3.97%, resolving
label conflicts. (4) Combining debate-based NER
with baseline RE yields a 1.46% improvement by
reducing error propagation. These findings confirm
the effectiveness of the debate mechanism in ad-
dressing challenges collaboratively and enhancing
NER and RE performance.

H Enhancing Performance via
Second-Round Feedback

To evaluate the impact of iterative interactions be-
tween NER and RE, we conducted a second-round
feedback experiment on the CONLLO4 dataset.
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This experiment explores how sequentially lever-
aging the output of one task (e.g., RE) to refine the
other (e.g., NER), and vice versa, enhances predic-
tions. The results, summarized in Table 12,high-
light the effectiveness of our iterative mechanism
and its contributions to overall performance. From
the table, Key observations include: (1) Second-
Round Feedback from RE to Improve NER: Com-
pared to baseline NER, integrating RE feedback
leads to a 5.77% improvement. Incorporating first-
round debate mechanisms further enhances per-
formance by 1.80%, demonstrating the iterative
process’s role in refining NER predictions based
on RE. (2)Second-Round Feedback from NER
to Improve RE: Using NER outputs to improve
RE in the second round achieves 57.14% Preci-
sion, 49.14% Recall, and 52.84% F1, marking a
16.93% gain over baseline RE and an additional
8.51% improvement over first-round debate RE.
These results emphasize the mutual reinforcement
between NER and RE through circle-based feed-
back. 3) Incorporating Self-Verification for RE:
Adding self-verification to RE results in a total
improvement of 19.08% over baseline RE, which
is an additional 2.15% gain beyond the 16.93%
improvement achieved through second-round feed-
back from NER. This highlights the role of self-
verification in further reducing errors and enhanc-
ing RE robustness. By leveraging outputs itera-
tively, the model resolves ambiguities and reduces
error propagation, as evidenced by the substan-
tial improvements across Precision, Recall, and
F1 in both tasks. These findings confirm the im-
portance of iterative circle-based mechanisms com-
bined with self-verification in improving the col-
laborative performance of NER and RE on the
CONLLO04 dataset.

From the results, we draw the following con-
clusions: (1)Using baseline models for both
NER and RE improves performance by 2.32%,
demonstrating the benefits of structured integration.
(2)Adding the debate mechanism to RE improves
performance by 7.89%, effectively resolving ambi-
guities and enhancing classification. (3) Applying
the debate mechanism to NER improves precision
and outperforms the baseline by 3.97%, resolving
label conflicts. (4) Combining debate-based NER
with baseline RE yields a 1.46% improvement by
reducing error propagation. These findings confirm
the effectiveness of the debate mechanism in ad-
dressing challenges collaboratively and enhancing
NER and RE performance.

Second Round Iterative Feedback. To assess
the impact of iterative NER-RE interactions, we
conducted a second-round feedback experiment
on the CONLLO04 dataset, refining predictions for
both tasks. Results in Table 12 show that additional
NER-RE interactions further improve performance
for both tasks. Please refer to Appendix H for more
details.

I Effectiveness of Summarizer Agent

To explore the impact of CROSSAGENTIE frame-
work designs, we analyze the performance of a
system that relies solely on a summarizer. Without
effective iterative debates, multi-round summarizer-
based interactions fail to ensure consistent improve-
ments. In contrast, our framework—incorporating
type-specific agents, debate-driven resolution, and
cross-task collaboration—reliably enhances NER
and RE precision and recall. Experimental results
on CONLLO3 (Table 14) show that adding the Sum-
marizer Agent (GPT-3.5) increases recall to 73.51%
but lowers precision to 71.04%, resulting in an F1-
score of 72.25%. While the summarizer captures
broader context, it sacrifices precision due to noise.
Further incorporating a two-round discussion with
the summarizer and type-specific agents results in
precision of 73.02%, recall of 57.05%, and F1 of
64.05%, a notable decline in recall and F1 com-
pared to both the baseline and single-round sum-
marizer. These findings highlight the limitations
of summarizer-based multi-round setups and un-
derscore the importance of structured task-specific
interactions, such as type-agent debates, in achiev-
ing optimal performance for NER and RE.

J Template Fine-tuning

For fine-tuning dataset construction, we follow the
guidelines provided by OpenAl’s official website.
We designed template fine-tuning with the ultimate
goal of improving the overall zero-shot IE perfor-
mance of a single LLM, thereby enhancing effi-
ciency. To determine the optimal number of cases
for achieving the best performance, we conducted
template fine-tuning experiments on the CONLL04
dataset. The dataset includes three NER entity
types: LOC, PER, and ORG, and five RE rela-
tion types: Kill, Live-in, Located-in, Organization-
based-in, and Work-for.

Case selection. To construct the fine-tuning
dataset, we employ an LLM-based selection mech-
anism. Instead of directly using model-generated
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outputs, we prompt the LLM to re-evaluate each
input-output pair and assign a confidence score to
its correctness. These confidence scores are then
used to rank the cases in descending order, select-
ing the highest-ranked ones for fine-tuning. This
approach ensures that fine-tuning is guided by the
most reliable examples while reducing the inclu-
sion of uncertain or noisy predictions. Confidence
scores are derived from the GPT-3.5 model’s re-
evaluation process.

NER Task Optimization. For NER task, we
tested case numbers of 10, 15, 20, 25, and 30. The
results indicate that performance peaks at 15 cases
before gradually declining as the number of cases
increases. This suggests that adding more data
does not necessarily improve extraction accuracy,
potentially due to overfitting to noisy examples.

RE Task Optimization. For RE, we conducted
the same case number tests and observed that per-
formance is highest at 15 cases but, unlike NER, the
F1-score gradually improves again as more cases
are added. This indicates that relation extraction
benefits from larger training sets. However, con-
sidering computational efficiency, we selected 10
cases as the optimal balance between performance
and cost. The results are shown in Figure 2.

Demonstration of a Fine-tuning Case. Below
is an example of how we format the fine-tuning
dataset for NER, using a structured JSONL format.
This format follows OpenAlI’s instruction-tuning
style, where the system role defines the task, the
user provides input text, and the assistant outputs
structured entity annotations.

Listing-10: CONLL04 NER Finetuning dataset

Missing Entities

Boundary Errors
29.97%
Wrong Types

Boundary Errors

49.01% Missing Entities

Wrong Types

Figure 4: Percentage (%) of different error types in CoONLL-04
for the NER task.

{"messages": [

{"role": "system", "content”: "You
are a helpful assistant tasked
with extracting relational
triples (Head, Relation, Tail)

for the types of relations: Kill
, Located-in, Live-in,
Organization-based-in, and Work-

for from a given text."},
{"role": "user"”, "content”: "An
enraged Nikita Khrushchev
instructed Soviet ships to
ignore President Kennedy’s naval
blockade during the Cuban
missile crisis, but the order
was reversed just hours before
an inevitable confrontation,
according to a new book."},

{"messages": [

{"role": "system”, "content”: "You
are a helpful assistant that
extracts Location (LOC), Person
(PER), and Organization (ORG)
entities from a given text."},

{"role"”: "user", "content": "An art
exhibit at the Hakawati Theatre
in Arab east Jerusalem was a
series of portraits of
Palestinians killed in the
rebellion."},

{"role": "assistant”, "content”: "{
\"Person\": [\"NULL\"J, \"
Location\": [\"Jerusalem\"], \"
Organization\": [\"Hakawati
Theatre\"”, \"Arab east Jerusalem
\"13"3

13}

Listing-11: CONLL04 RE Fine-tuning Dataset

{"role": "assistant"”, "content": "{
\"Relations\": [{\"Head\": \"
Nikita Khrushchev\”, \"Relation
\": \"Live-in\", \"Tail\": \"
Soviet\"3}13}"3}]
}
Method Precision Recall F1
Baseline-NER 74.91 65.12  69.68
(+) Summarizer 71.04 73.51  72.25
2nd-round Type-agent 73.02 57.05 64.05

Table 14: Effectiveness (%) of Summarizer Agent (GPT-3.5)
on CONLLO3

Method P R F1
NER

-Type-Agent 61.15 78.15 68.61
-CROSSAGENTIE 64.81 8134 72.14
-Template finetuning (One LLM)  62.12 82 70.69
RE

-Type-Agents 5737 4398 49.79
-CROSSAGENTIE-RE 66.10 4742 5522
-Template finetuning (One LLM) 37.03 45.12 40.67

Table 15: Performance(%) on CONLL04 with GPT-40. Preci-
sion (P), Recall (R), and F1-score (F1) are reported.

K Error Analysis.

Detailed Error Analysis. As illustrated in Fig-
ure 4, the majority of errors in the Baseline-NER
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stage are Wrong Types and Missing Entities, to-
gether accounting for nearly 80% of all errors.
These two categories represent the primary chal-
lenges our Type-Agent Multi-Agent Framework
seeks to address. The Wrong Types errors stem
from the GPT-3.5 model’s limited ability to distin-
guish nuanced entity type distinctions within the
label set. Even when the entity is correctly identi-
fied, the model frequently misclassifies its type due
to an inadequate understanding of contextual con-
straints. Conversely, Missing Entities errors often
arise from the model’s reliance on its pre-trained
knowledge base, leading it to prioritize entities that
align with prior knowledge while overlooking less
frequent or domain-specific entities. This high-
lights a key limitation in handling entities that de-
viate from commonly encountered patterns or fall
outside the model’s pre-trained distribution. To bet-
ter understand these errors, we further categories
Boundary Errors into three subtypes: 1). Contain
Gold, where the predicted span fully encompasses
the gold entity. 2). Contained by Gold, where the
predicted span is entirely within the gold annota-
tion. 3). Overlap with Gold, where the predicted
and gold spans partially overlap. By addressing
these error types, our framework aims to improve
both entity classification and the identification of
less-aligned entities, tackling the core sources of
failure in the Baseline-NER stage.

Impact of Different Frameworks on Error
Types. As shown in Table 8, the proposed 1st-
Debate-NER and 2nd-Feedback-NER frameworks
introduce distinct improvements across different
error types. The Boundary Errors remain relatively
stable across all frameworks (Baseline: 90, 1st-
Debate: 81, 2nd-Feedback: 90), suggesting that
while cross-type debate improves type classifica-
tion, it does not significantly impact span alignment.
Wrong Type Errors, however, show a marked de-
crease in the 1st-Debate-NER stage (333 — 251),
indicating that cross-type debate helps refine en-
tity type classification. Interestingly, these errors
increase again in the 2nd-Feedback-NER stage
(251 — 343), suggesting that the integration of
relation extraction (RE) feedback introduces new
type inconsistencies. The most significant improve-
ment is observed in Missing Entities, where the
2nd-Feedback-NER stage reduces errors from 686
(Baseline) to 618, demonstrating that RE feedback
enhances recall by recovering previously missed en-
tities. These findings indicate that while cross-type

debate enhances type consistency, the RE-NER
integration plays a crucial role in entity recovery,
shifting the refinement towards higher recall.

Qualitative Error Analysis. Wrong type errors
often arise from contextual ambiguity. For exam-
ple, in "Washington is the capital of the United
States," the baseline model misclassified "Wash-
ington" as a Person (PER) instead of a Location
(LOC) due to statistical biases in pre-trained data.
The 1st-Debate-NER framework resolved this by
leveraging cross-type discussions, demonstrating
its effectiveness in refining entity classification.
Boundary errors occur when the predicted span
misaligns with the gold annotation. In "The New
York Times is a famous newspaper,” the base-
line model truncated the entity, predicting only
"Times" as Organization (ORG) instead of "New
York Times." The 1st-Debate-NER framework cor-
rected this by incorporating broader contextual val-
idation, improving span selection. Missing enti-
ties remain a challenge in zero-shot settings. In
"Barack Obama was elected as the president of
the United States," the baseline model failed to
detect "Barack Obama" due to low entity promi-
nence in the given context. The 2nd-Feedback-
NER framework, through relation-based feedback,
successfully recovered the entity by reinforcing
contextual dependencies. These cases highlight
the strengths of different stages in our framework:
cross-type debate improves type consistency, multi-
agent validation enhances boundary alignment, and
relation-based feedback significantly boosts recall.

Details for Error Correction and Error Increase.
In the Baseline-NER stage, errors were dominated
by 686 false negatives (FN) and 423 false posi-
tives (FP), resulting in a total error count of 1,109.
While precision and recall were relatively balanced,
the high FP count lowered overall precision and
impacted model performance.

With 1st-Debate-NER, false positives dropped
significantly from 423 to 332, reducing total errors
to 1,012. The primary impact of this stage was
an increase in precision, as cross-type debate cor-
rected entity type misclassifications, leading to a
modest improvement in the F1-score. However,
false negatives (missed entities) remained nearly
unchanged, with only a slight reduction from 686
to 680, leading to a minimal recall improvement of
0.22%.

In contrast, the 2nd-Feedback-NER stage fo-
cused on recall, reducing false negatives from 680
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Method Time (seconds) Cost per Doc ID (USD) Total Tokens

Single Agent 11-14 0.000336 551
0.000841 1377

0.001682 2755

Short Conversation (2-4 agents) 18-25
Long Conversation (Large Debate) 50-75

Table 16: Time and Cost Efficiency of Different Prompt-
ing Methods

to 618—a substantial improvement that resulted
in an 8.73% increase in recall. However, this gain
came at the expense of increased false positives,
which rose from 332 to 433, leading to a slight in-
crease in total errors (1,051). Despite this trade-off,
the overall F1-score improved, as the reduction in
missed entities outweighed the negative impact of
additional false positives.

These results highlight the strategic trade-off
between precision and recall in an iterative opti-
mization setting. When false negatives dominate
the error distribution, a controlled increase in false
positives can effectively enhance recall, ultimately
leading to better overall performance.

L Time and cost efficiency

Table 16 presents the time, token consumption, and
cost per document ID across different settings. The
single-agent approach processes each instance in
11-14 seconds with minimal token usage and cost.
In contrast, multi-agent interactions (2-4 agents)
handling a small number of type labels collabora-
tively require 18-25 seconds, with token consump-
tion often exceeding twice that of a single agent.
More complex scenarios involving over four agents
significantly increase computational cost and la-
tency, with conversations lasting 50-75 seconds
and token usage rising fourfold or more.

Notably, template fine-tuning—which optimizes
a single LLM before inference—achieves effi-
ciency comparable to the single-agent setting, as
inference occurs on a fine-tuned model without ad-
ditional agent interactions, keeping cost and time
nearly the same. These findings underscore the
trade-offs between efficiency and reasoning com-
plexity, particularly the non-linear cost escalation
in multi-agent decision-making.

To quantify the trade-off between performance
and inference cost, we introduce an Efficiency
Score metric, inspired by prior work on compu-
tational efficiency in NLP models (Strubell et al.,
2019; Kaplan et al., 2020):

F1-score
Cost Per Doc_ID

Efficiency Score =

where F1-score represents the model’s accuracy
in Named Entity Recognition (NER) or Relation
Extraction (RE), and Cost per Doc ID denotes the
computational expense (USD) per document. As
shown in Table 17, a higher Efficiency Score indi-
cates better cost-effectiveness. Among the evalu-
ated methods, the Single Agent approach achieves
the highest Efficiency Score (158.2) due to its ex-
tremely low computational cost, despite having
the lowest Fl-score. This suggests that while it
is the most cost-effective in terms of inference ex-
pense, its lower accuracy limits its practical utility.
In contrast, Template Fine-tuning balances accu-
racy, inference time, and cost efficiency, achieving
a score of 100.70 by significantly improving F1-
score while maintaining a relatively low computa-
tional cost. CROSSAGENTIE, although demonstrat-
ing strong performance, has the lowest efficiency
(60.4) as its higher computational overhead out-
weighs its accuracy gains.
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Method Dataset  F1-score (%) Cost per Doc ID (USD) Efficiency Score

Single Agent CoNLL04 53.13 0.000336 158.2
CROSSAGENTIE CoNLL04 66.45 0.001100 60.4
Template Fine-tuning CoNLLO04 70.38 0.000699 100.70

Table 17: Efficiency Score of Different Methods Based on Cost Per Doc_ID
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