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Abstract

Large Language Models (LLMs) are increas-
ingly adopted across real-world applications,
yet traditional evaluations rely on expensive,
domain-specific ground-truth labels that are of-
ten unavailable or infeasible. We introduce
a ground-truth-free evaluation framework fo-
cused on reasoning consistency and instruc-
tion following, shifting the emphasis from cor-
rectness—which is elusive without labels—to
transparent, coherent, evidence-based reason-
ing. Each model response includes a direct an-
swer, a structured multi-step explanation, and
supporting evidence, all assessed via semantic
similarity and output adherence checks. We
further propose TopK-ReRank, which refines
rankings by constructing a consensus answer
from the most reliable models, reducing ambi-
guity across diverse reasoning styles. Exper-
iments show that our framework outperforms
existing label-free methods, including major-
ity voting, triplet ranking, and peer-review ap-
proaches, providing a more interpretable and
efficient alternative for evaluating LLMs in the
absence of ground-truth labels. Our code is
available at https://github.com/MorrisZJ/
ReasonerRank.

1 Introduction

Large Language Models (LLMs) have demon-
strated exceptional proficiency in a variety of
language-related tasks across multiple domains,
and their success has led to rapid adoption in real-
world applications (Achiam et al., 2023; Yin et al.,
2024; Yuan et al., 2024). This widespread use has
spurred a growing interest in understanding and
comparing their capabilities (Chang et al., 2024;
Wang et al., 2024; Yuan et al., 2025). Tradition-
ally, such evaluations rely on meticulously curated
datasets with ground-truth labels to assess the cor-
rectness of model outputs. However, obtaining la-
beled data is expensive, time-consuming, and often
requires domain expertise—particularly challeng-

ing in specialized areas like healthcare, law, and
scientific research. This labeling bottleneck im-
pedes efficient model evaluation and hence slows
the integration of new LLMs into evolving applica-
tion domains.

In many scenarios, labeling is simply infeasi-
ble. Emerging (“fresh”) or zero-shot data can re-
quire subjective or multi-faceted responses, mak-
ing it difficult to define a single “correct” answer.
Dynamic environments—such as finance, cyber-
security, or breaking news—can also evolve too
rapidly for human annotators to keep pace. Conse-
quently, researchers urgently need methods to eval-
uate LLMs without relying on ground-truth data, a
setting that raises fundamental questions about how
to gauge “better” or “worse” performance when
correctness itself remains elusive. Existing label-
free approaches, including LLM-as-a-judge (Zheng
et al., 2024b), multi-agent debate (Chan et al.,
2024), and majority voting (a.k.a. the most com-
mon answer (Mienye and Sun, 2022)) among peer
models, can reduce human labor but introduce new
pitfalls. Voting schemes may embed biases, and
LLM-as-a-judge can hallucinate or impose arbi-
trary standards, thus lacking transparent or reliable
criteria for discerning which outputs are truly more
coherent, logical, or helpful.

In this paper, we propose a new ground-truth-
free evaluation framework for comparing LLMs,
centered on reasoning consistency and instruction-
following ability rather than on correctness—an
inherently inaccessible notion without labeled data.
Our approach is motivated by how humans intu-
itively evaluate responses in real-world contexts:
rather than focusing exclusively on the final answer,
we also consider whether the reasoning process is
transparent, coherent, and grounded in evidence.
Building on insights from cognitive science and
argumentation theory, we show that logical consis-
tency and clarity of thought often serve as more
reliable indicators of model quality compared to
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merely using a single “correct” label.
Concretely, we require each model to produce:

(i) a direct answer, (ii) a structured, multi-step rea-
soning explanation, and (iii) supporting evidence.
We utilize our proposed semantic similarity-based
metric to assess and rank models’ reasoning ability,
then weight it with instruction-following ability to
get the raw “reasoner” scores. Finally, we intro-
duce TopK-ReRank, an adaptive method that gener-
ates a refined “consensus answer” through majority
agreement among the most reliable models. This
step mitigates the ambiguity arising from differ-
ent reasoning styles, making it easier to identify
and reward genuinely coherent and well-supported
arguments. Thorough experiments and ablation
studies demonstrate the effectiveness and robust-
ness of our framework in comparing LLMs without
relying on ground-truth labels.

2 Motivation

2.1 When Quick Evaluation Is Necessary

Obtaining labeled data is problematic in many real-
world scenarios, but evaluating LLMs is still neces-
sary. Because relying on manual annotations slows
the progress and creates bottlenecks, it is essential
to develop label-free evaluation methods. Several
key challenges highlight this need.
• Emerging or Zero-Shot Tasks: LLMs are fre-

quently applied to novel datasets and tasks where
ground-truth labels do not yet exist. Waiting for
manual annotations delays deployment.

• Subjective or Ambiguous Responses: Some
tasks, such as creative writing and legal inter-
pretations, involve responses that even domain
experts may debate. A single “correct” label is
neither feasible nor meaningful.

• Dynamic and Rapidly Changing Fields: In
fast-evolving domains like finance, cybersecu-
rity, or breaking news, information updates too
quickly for human annotators to keep pace. A
static ground-truth dataset quickly becomes ob-
solete, requiring adaptable evaluation methods.

2.2 From Snail-Paced Humans to
Hallucinating LLM Judges: Why Existing
Label-Free LLM Evaluations Are a Mess

LLM-as-a-judge A widely used shortcut in
LLM evaluation is the LLM-as-a-Judge approach,
where a supposedly stronger model is used to eval-
uate and rank the response of other models (Zheng
et al., 2024b). This seems efficient, but when the

task demands nuanced reasoning, the cracks begin
to show. LLM-as-a-judge is prone to hallucinations
that confidently justify incorrect responses with
elaborate yet fabricated reasoning. What’s more,
in settings like ours—where the optimal model is
unknown—this method becomes problematic. Se-
lecting a model to serve as the evaluator inherently
assumes that it is a reliable judge, thereby introduc-
ing unverified biases into the process.

Most Common Answer (MCA) The MCA
treats the most frequent response among LLMs
as the “ground truth,” assuming consensus implies
correctness (Mienye and Sun, 2022). This works
for simple factual queries but easily fails on com-
plex tasks, because models with shared biases tend
to amplify incorrect answers instead of correcting
them. MCA also suppresses diversity, penalizing
less common yet insightful responses while reward-
ing conformity over correctness (see Section 4.2.1).

Peer Review Peer review ranking framework,
such as PiCO (Ning et al., 2025), refine the
MCA/majority voting by weighting peer evalua-
tions and assigning greater influence to models
deemed more capable. While this improves ranking
stability, it assumes that stronger models make bet-
ter judges, which is fragile when biases are shared.
Instead of correcting errors, agreement amplifies
them, creating a self-reinforcing bias loop. This
method also faces a cold-start problem, where the
initial bias-weighted scores might influence future
rankings, reinforcing early misjudgments as well
as gradually reducing evaluation diversity.

Triplet Ranking Triplet Ranking (“SelfRank”
in the experiment) ranks the models through
triplet-based comparisons, iteratively identifying
the weakest performer (Dhurandhar et al., 2024).
However, if two models share biases, they can sys-
tematically overrule the third, leading to a “Triplet
Kangaroo Court” effect where rankings reinforce
errors rather than correct them. Like PiCO, this
method employs reputation-weighted influence,
amplifying early misjudgments and locking mod-
els into positions shaped more by perception than
capability (see Section 4.2.2).

2.3 Our Intuition

With ground truth, traditional evaluation metrics for
LLMs primarily focus on the correctness of the an-
swer using predefined ground-truth labels, without
considering the underlying reasoning process that
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Figure 1: Overview of the ReasonerRank Framework. Given a prompt, each LLM generates a structured response
consisting of an answer, multi-step reasoning, supporting evidence, and a conclusion. These components are then
evaluated for instruction-following and reasoning coherence to identify a subset of top-performing reasoners. The
pipeline then computes the agreement among the top-performing reasoners on each question to refine the rankings,
resulting in a consensus-based final ranking of LLMs without relying on ground-truth labels.

led to a response. In contrast, human judgment in
evaluating responses to questions inherently priori-
tizes logical consistency and semantic coherence.
That is, people do not merely ask, "What is your
answer?" but also, “Why? Why does this make
sense?”. It is our inherent human intuition that ex-
planation, justification, and logical structure serve
as key indicators of the credibility of a statement.

Extensive research in cognitive science already
provides strong evidence supporting this intuition.
Dual-process theories of reasoning (Evans and
Stanovich, 2013) argue that people use fast, in-
tuitive judgments and slow, analytical evaluations
when assessing arguments. Notably, when individ-
uals are motivated to evaluate or defend a position,
such as in debates or collaborative problem solv-
ing, they tend to rely more on reasoning, because
reasoning evolved primarily as a social tool for
persuasion (Mercier and Sperber, 2011).

These insights suggest that the credibility and
reliability of an answer depend not only on the
correctness but also on the reasoning process that
supports it. However, in many real-world scenarios,
including our setting, there is no definitive ground
truth against which responses can be evaluated.
This motivates a fundamental transition in eval-
uation: rather than relying on correctness rela-
tive to inaccessible ground truth, we prioritize
assessing logical consistency and semantic co-
herence of reasoning as more reliable indicators
of an LLM’s ability to generate well-founded
responses. Building on these principles, we pro-
pose a ranking approach that evaluates LLMs based
on their instruction following and reasoning qual-

ity. By measuring how well LLMs follow the in-
structions clear, logically structured, and semanti-
cally meaningful explanations, we obtain a more
generalizable ranking of models—one that priori-
tizes reasoning over mere answer correctness. This
approach reflects how humans naturally judge re-
sponses and provides a more robust framework for
ranking LLMs when ground-truth labels are absent.

In the following section, we formally define this
problem and present a framework to evaluate LLMs
without having access to the ground truth.

3 Proposed Method

3.1 Ground-Truth-Free Ranking Protocol
To address the challenge of ranking a set of LLM
candidates on a dataset without access to ground-
truth labels, we propose a ground-truth-free rank-
ing protocol called ReasonerRank. The overall
workflow of our framework is illustrated in Fig-
ure 1. In the following section, we detail each
component of the pipeline.

3.1.1 Instruction Following
To approximate the ideal ranking, we must first
ensure that model responses are evaluated based on
well-defined and structured criteria. Prior research
has demonstrated a strong correlation between a
model’s general performance and its instruction-
following ability. In Large Language Model In-
struction Following: A Survey of Progresses and
Challenges, the authors state:

“However, the performance of instruction
following highly relies on both model
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and task scale: A larger LLM (or pre-
training with more tokens) tuned on more
diverse tasks can achieve significantly
better few/zero-shot performances on the
downstream tasks.” (Lou et al., 2024)

This suggests that models with better general
capabilities—whether due to more diverse train-
ing data or improved instruction tuning—tend to
exhibit stronger instruction-following abilities.
Consequently, models that perform well on gen-
eral benchmarks also tend to follow instructions
more reliably, reinforcing the idea that instruction-
following ability is an integral aspect of overall
model competence. Therefore, rather than assess-
ing fluency or grammatical correctness, our first
step is to judge Instruction Following at the lan-
guage level, which verifies whether a model’s re-
sponse adheres to the prescribed structure given in
the prompt. Each question is accompanied by a
prompt template that instructs the LLM to generate
a response following a designated format, which
includes: (1) a direct answer, (2) a structured multi-
step reasoning process, (3) a set of supporting evi-
dence, and (4) a concise conclusion.

A model receives a score deduction of 1 for each
missing element in the designated format. To be
more specific, we verify whether the Answer and
Conclusion fields are nonempty, ensure that all in-
termediate reasoning steps requested in the prompt
are provided and non-empty, and check if we have
enough supporting evidence for the reasoning steps.
If fewer than three reasoning and evidence compo-
nents are present, such a model is considered a bad
instruction follower and will receive a penalty of
1 for each missing one. These penalties are aggre-
gated into a component score that reflects how well
the response follows the prescribed structure. Mod-
els with incomplete responses are strongly penal-
ized by this score in the ranking. This strict struc-
tural check ensures that only models with properly
formatted and complete responses are considered
in the top rank and benefit from a deeper reasoning
quality evaluation in our entire framework.

3.1.2 Reasoning Consistency

To evaluate the quality of reasoning in model-
generated responses, we introduce a reasoning
consistency metric, which captures the logical co-
herence between reasoning steps and the alignment
between reasoning and supporting evidence.

R1

R2

Rn

sim(R1, R2) = 0.51

sim(Rn-1, Rn) = 0.23

sim(R2, R3) = 0.95
Score

Figure 2: Internal Logical Coherence Computation. For
a given response, the semantic similarity between each
pair of consecutive reasoning steps is computed. These
similarity scores are then aggregated to produce an over-
all reasoning coherence score, reflecting the logical con-
sistency across the multi-step reasoning process.

Internal Logical Coherence. We define reason-
ing consistency as the degree to which consecu-
tive reasoning steps are semantically aligned (see
Figure 2). Given a sequence of reasoning steps
R = {r1, r2, . . . , rn}, we compute the consistency
score as:

Creasoning =
1

n− 1

n−1∑

i=1

sim(ri, ri+1), (1)

where sim(·, ·) represents an embedding-based
similarity function. A higher score indicates a logi-
cally connected reasoning process, while a lower
score suggests disjointed or inconsistent reasoning.

Reasoning-Evidence Consistency. To ensure
that reasoning steps are well-supported by factual
information, we assess the semantic alignment be-
tween each reasoning step and its most relevant
supporting evidence (see Figure 3). Given a set
of reasoning steps R = {r1, r2, ..., rn} and a set
of supporting evidence E = {e1, e2, ..., em}, we
define the reasoning-evidence consistency score as:

Cevidence =
1

n

n∑

i=1

max
j

sim(ri, ej), (2)

where each reasoning step ri is matched to its
most similar evidence ej based on the similarity
function sim(·, ·) (same as what we use in Cevidence,
details see Section A.1.6). A higher score indicates
that reasoning is well-grounded in evidence, while
a lower score suggests weak justification.

In general, the penalty score for each component
is numerically computed as discussed previously
and then directly summed to obtain an overall qual-
ity score for each model output. We do not incor-
porate any weight of each quality measurement.
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Figure 3: Reasoning-Evidence Consistency Computa-
tion. For each reasoning step, we compute its semantic
similarity with all evidence and select the one with the
highest similarity score. The score of all best-aligned
reasoning-evidence pairs is then aggregated to yield a fi-
nal consistency score, reflecting how well the reasoning
steps are grounded in the supporting evidence.

3.2 TopK-ReRank: The Collective Wisdom of
Top Reasoners Defines the Truth

While evaluating reasoning consistency ensures
that logically coherent and well-supported re-
sponses are ranked higher, it does not fully elimi-
nate uncertainty in the ranking process. In practice,
model responses may still vary due to different rea-
soning styles, uncertainty in factual grounding, or
even inconsistencies in evaluation metrics.

To further refine model rankings, we introduce
TopK-ReRank, a method that leverages the col-
lective wisdom of the most reliable reasoners to
define the truth. Rather than relying on predefined
correctness labels, TopK-ReRank constructs a con-
sensus answer by identifying the most frequently
agreed-upon response among the top-ranked mod-
els. This adaptive reference answer serves as
a stable evaluation target, allowing us to measure
how well each model aligns with the best reasoners.

3.2.1 Formal Definition of TopK-ReRank
Given an initial ranking π0 obtained via reasoning
consistency scores, we define the TopK-ReRank
process as follows:
1. Select the top K models from π0 based on their

performance on instruction following and rea-
soning consistency.

2. Construct a Consensus Answer Aconsensus by
majority voting over the final answers of the top
K models.

3. Rank models based on their agreement with this
consensus answer.
Mathematically, the consensus answer is deter-

mined as follows:

Aconsensus = argmax
A

K∑

i=1

1(Ai = A), (3)

where 1 is an indicator function that equals 1
when its condition is true and 0 otherwise, and Ai

is the final answer of model Mi, and the consensus
answer is the most frequent one among the top K
models. Each model is then ranked based on its
agreement with the consensus answer.

By leveraging the most reliable reasoning out-
puts, TopK-ReRank enhances ranking stability
and reduces noise introduced by model inconsis-
tencies. Unlike traditional evaluation methods that
rely on external correctness labels, this approach
allows truth to emerge dynamically from the
best available reasoning patterns. This ensures
that models producing answers that align with the
strongest reasoning outputs are consistently ranked
higher, reinforcing the connection between reason-
ing quality and general model performance.

4 Experiments

4.1 Experiment Coverage
4.1.1 Datasets and Candidate LLMs
We conduct experiments on three benchmark
datasets: MMLU (Massive Multitask Language
Understanding) (Hendrycks et al., 2021), BBH
(Big Bench Hard) (Srivastava et al., 2023), and
GSM8K (Cobbe et al., 2021) (further details see
Section A.1.1). Although our ranking method does
not rely on ground-truth labels, we evaluate it on
labeled datasets to quantitatively assess its effec-
tiveness by comparing its output rankings against
performance-based rankings derived from known
answers. This allows us to benchmark our ground-
truth-free approach against other ground-truth-free
methods while using accuracy-aligned rankings as
a proxy gold standard. We also select diverse sets
of LLMs from leading research organizations, en-
suring a comprehensive comparison between archi-
tectures, parameter scales, and training methodolo-
gies (Section A.1.2).

4.1.2 Evaluation Metrics
In this section, we define the metrics used to evalu-
ate ranking alignment, focusing on overall agree-
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ment and top-ranked items. We use Rank-Biased
Overlap (RBO) and Set Precision at K (SP@K). For
simplicity, we define rankings S and T to be the
estimated ranking and target (ground-truth) rank-
ing. Due to the space limit, here we provide an
example of our benchmarked LLMs’ performance
and the resulting golden ranking we use to evaluate
ground-truth-free ranking methods. More results
will be released in our official repository.

Table 1: Golden Ranking of LLMs we use on MMLU
Dataset (by accuracy).

Rank Model Accuracy (%)

1 Qwen2.5-72B-Instruct-Turbo 81.62
2 Llama-3.1-70B-Instruct-Turbo 80.31
3 Llama-3.3-70B-Instruct-Turbo 79.93
4 GPT-4o-Mini 75.59
5 Gemma-2-27B-IT 74.97
6 Mixtral-8x22B-Instruct-v0.1 73.58
7 Qwen2.5-7B-Instruct-Turbo 71.22
8 Mixtral-8x7B-Instruct-v0.1 67.67
9 Llama-3.1-8B-Instruct-Turbo 66.54

10 GPT-3.5-Turbo 64.63
11 Llama-3-8B-Instruct-Lite 61.61
12 Mistral-7B-Instruct-v0.2 58.97
13 Mistral-7B-Instruct-v0.3 58.94
14 Llama-3.2-3B-Instruct-Turbo 58.60
15 Llama-2-7B-Chat-HF 42.36
16 Gemma-2B-IT 39.59

Rank-Biased Overlap (RBO) RBO (Webber
et al., 2010) Given rankings S and T , it is defined
as:

RBO(S, T ) =
1

|S|

|S|∑

d=1

Ad (4)

where Ad is the agreement at depth d (see sec-
tion A.2.1 for more details).

Set Precision at K (SP@K) SP@K evaluates the
overlap between the top-K models from two rank-
ings, focusing on model selection rather than exact
order. Given rankings S, T and hyperparameter K,
it is defined as:

SP@K(S, T ) =
|S[1:K] ∩ T[1:K]|

K
, (5)

where S[1:K] and T[1:K] are the top-K elements
in their respective rankings. This metric captures
agreement in identifying top-performing models
(see Section A.2.2 for more details). We set K = 3
in our experiments.

4.2 Baseline Ground-Truth-Free Ranking
Methods

4.2.1 Majority Voting: MCA
In our implementation, we count the frequency
of each answer in all participating models for a
given input. The answer that receives the highest
frequency is then designated as the ground-truth
or consensus answer. Formally, given n candidate
LLMs and their respective predictions for a specific
question instance, the Majority Voting approach
computes:

amajority_vote = argmax
a∈A

n∑

i=1

1(ai = a), (6)

This method is robust in scenarios where indi-
vidual model errors are uncorrelated, and thus the
majority consensus is more likely to be accurate
than any single model prediction. However, its ef-
fectiveness can be limited if only a small group
of models are the “top reasoner”. In our multiple-
choice question setting in the table of our experi-
ment, the majority vote strategy is referred to as
the Most Common Answer (MCA, see Table 2).

4.2.2 Triplet Ranking: SelfRank
Greedy Triplet Ranking (GTR) Greedy Triplet
Ranking begins with an arbitrary triplet of models.
For each triplet of models, {A,B,C} for example,
one of the third model, like {C}, serves as a judge
by comparing the outputs of the other two, like
{A,B}, and selecting the preferred one. In each
iteration, the model that loses the most pairwise
comparisons within the triplet is eliminated and re-
placed by the next unranked model. Finally, one of
the top two models is randomly selected to serve as
the judge to evaluate the responses of the remaining
models and produce the final ranking (Dhurandhar
et al., 2024).

Full Triplet Ranking (FTR) Different from
Greedy Triplet Ranking, FTR examines all pos-
sible combinations of three models, assigning each
a reputation score determined by how frequently
it outperforms the others in these triplet compar-
isons (Dhurandhar et al., 2024).

4.3 Main Results
We present abbreviated evaluation results for rank-
ing 14 LLM candidates on MMLU, BBH, and
GSM8K. The performance metrics are averaged
across all included subsets within each dataset.
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From Table 2, we conclude that out method con-
sistently demonstrates SOTA performance across
all three datasets, which span diverse domains and
difficulty levels. Among the baselines, MCA out-
performs both Greedy Triplet Ranking and Full
Triplet Ranking on MMLU and BBH in terms of
both RBO and SP@3, with a particularly large per-
formance gap observed on the BBH dataset.

For GSM8K, Full Triplet Ranking achieves the
best performance among the baselines; however, its
RBO value is only 0.6078 (close to 0.5), suggest-
ing that its ranking agreement is only marginally
better than random guessing. This raises concerns
about the overall reliability of the Full Triplet Rank-
ing method, even when it appears stronger on this
dataset (full results in Section A.3.2).

Why Does TopK-ReRank Hold Up Better? Ta-
ble 2 shows that SelfRank experiences a substan-
tial performance drop from MMLU to BBH and
GSM8K comparing to other methods. This abrupt
decline suggests that SelfRank’s triplet-based rank-
ing approach struggles when there is a wide per-
formance disparities between models. While it
performs reasonably well in MMLU, where mod-
els exhibit relatively comparable performance, its
stability deteriorates in BBH, where some models
fail entirely while others perform significantly bet-
ter. This suggests that SelfRank is more vulnerable
to extreme performance variation, and thus leads
to inconsistent rankings in more challenging tasks.

Despite the challenges from GSM8K and BBH,
ReasonerRank remains robust and consistently out-
performs or matches baselines. Its resilience to
performance divergence enables accurate ranking
even with large gaps between strong and weak mod-
els. Unlike SelfRank, which relies on triplet-based
pairwise comparisons and is prone to noise, Rea-
sonerRank refines rankings through a structured
re-ranking mechanism, and this mechanism makes
our method adapt more effectively across different
datasets of varying difficulty and domain.

4.4 Ablation Study

4.4.1 Different Prompt Instruction
To assess the impact of prompt instructions on rank-
ing stability, we compare two reasoning step gener-
ation strategies: (1) a fixed-step approach, where
models generate exactly three reasoning steps (our
primary method), and (2) a dynamic-step approach,
where step count varies based on question com-
plexity (see Section A.1.3). As shown in Table 3,

Table 2: Abbreviated Results of Ranking 14 LLMs on
MMLU, BBH Datasets, 10 LLMs on GSM8K Dataset,
Averaged Across All Included Subsets.

Dataset Method RBO SP@3

MMLU

MCA 0.7974 0.6082
SelfRank-FTR 0.7817 0.5263
SelfRank-GTR 0.7663 0.4737
ReasonerRank (ours) 0.8311 0.7018

BBH

MCA 0.7208 0.5238
SelfRank-FTR 0.5307 0.2857
SelfRank-GTR 0.5847 0.4762
ReasonerRank (ours) 0.7672 0.5714

GSM8K

MCA 0.5147 0.3333
SelfRank-FTR 0.6078 0.3333
SelfRank-GTR 0.5578 0.3333
ReasonerRank (ours) 0.8314 1.0000

the fixed-step approach yields a higher RBO score
(0.8787), suggesting that enforcing a uniform rea-
soning structure stabilizes rankings by reducing
variation in model responses. In contrast, the
dynamic-step approach achieves a perfect SP@3
score (1.0000) but introduces more variability, as
models adapt reasoning length to task complexity,
slightly altering ranking order.

These results highlight a trade-off: fixed-step
reasoning enhances ranking consistency, while dy-
namic reasoning better aligns with natural model
behaviors but increases variability.

Table 3: Ablation study of using two different reasoning
generation prompts on 5 subsets of MMLU dataset.

Prompt Type RBO SP@3

3-Steps Reasoning 0.8787 0.9370

Dynamic-Steps Reasoning 0.8538 1.0000

4.4.2 Impact of Re-Ranking
We evaluate the effect of TopK re-ranking by com-
paring rankings with and without it across different
candidate LLM set sizes. As shown in Table 4,
re-ranking consistently improves both RBO and
SP@3 scores. Improvements are most pronounced
in SP@3, which means that re-ranking significantly
stabilizes the top-ranked models. While the initial
ranking separates stronger and weaker models, re-
ranking ensures precise alignment with the refer-
ence by filtering minor inconsistencies.

Unlike rigid ranking mechanisms, our approach
treats the initial ranking as a flexible filtering mech-
anism rather than an absolute performance measure.
This adaptability allows it to remain robust across
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varying candidate sets and task difficulties, refin-
ing model distributions instead of relying on fixed
performance thresholds.

Table 4: Ablation study of ReasonerRank w/wo Top K
rerank.

Rank Setting Re-Rank RBO SP@3

10 Models
No 0.4734 0.3041
Yes 0.8053 0.8538

11 Models
No 0.4755 0.2982
Yes 0.7850 0.6667

12 Models
No 0.4875 0.3509
Yes 0.7730 0.6082

13 Models
No 0.4686 0.2515
Yes 0.8302 0.7310

14 Models
No 0.4652 0.2515
Yes 0.8311 0.7018

15 Models
No 0.4559 0.2398
Yes 0.8118 0.5673

16 Models
No 0.4548 0.2398
Yes 0.8178 0.5673

4.4.3 Hyperparameter K for TopK-ReRank
In our ranking algorithm, the parameter K deter-
mines how many of the estimated “top reasoners”
are used to establish the consensus answer for pro-
ducing the final ranking of LLMs. Although we
fix the value of K in our main experiments, we
conduct an ablation study to assess the sensitivity
of TopK-ReRank mechanism of ReasonerRank to
different choices of K by benchmarking its perfor-
mance across varying values (see Table 5 for re-
sults, and see detailed discussion in Section A.1.7).

4.4.4 Effect on Different LLMs Set Size
We assess ranking stability by varying the number
of candidate models from 10 to 16. The results
for MMLU and BBH are shown in Tables 8 and 9,
with trends visualized in Figures 4 and 5.

RBO remains stable across candidate set sizes,
while SP@3 declines as the number of ranked
models increases, particularly in BBH. This sug-
gests that maintaining a stable top-ranked subset
becomes more challenging with a larger candidate
pool, aligning with our earlier observations in Sec-
tion 4.3 that complex reasoning tasks introduce
greater variance in model performance.

Despite these variations, ReasonerRank consis-
tently achieves the highest RBO and SP@3, demon-
strating that the initial ranking step provides a flex-

Table 5: Ablation study results for K ∈ [1, 15] on the
MMLU dataset, where the bold one is the best result,
and the blue one is our reported result (see discussion
in Section A.1.7 for details).

ReasonerRank’s K RBO SP@3

K = 1 0.7831 0.4386

K = 2 0.7906 0.5322

K = 3 0.7378 0.2573

K = 4 0.7109 0.1813

K = 5 0.7458 0.3626

K = 6 0.8178 0.5673

K = 7 0.8230 0.6433

K = 8 0.8067 0.5906

K = 9 0.7918 0.5439

K = 10 0.7635 0.4971

K = 11 0.7739 0.4854

K = 12 0.7878 0.5556

K = 13 0.7979 0.5673

K = 14 0.8048 0.5789

K = 15 0.7949 0.5614

ible foundation adaptable to different performance
distributions. Instead of rigid ranking rules, our
method enables dynamic ranking refinement, en-
hancing robustness across candidate sets.

Figure 4: Performance curve of ReasonerRank as the
number of LLMs to rank increases from 10 to 16 on the
MMLU dataset.

5 Related Works

Evaluating LLM reasoning remains a key challenge.
Prior works explore structured evaluation frame-
works, ranking-based methods, and consensus-
driven approaches. Several studies propose frame-
works for assessing LLM reasoning, focusing on
detecting inconsistencies (Liu et al., 2024), step-by-
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Figure 5: Performance curve of ReasonerRank as the
number of LLMs to rank increases from 10 to 16 on the
BBH dataset.

step reasoning evaluation (Hao et al., 2024), and
correctness assessment (Prasad et al., 2023). Multi-
agent debate has also been explored as a way to
improve factuality and reasoning (Du et al., 2023).
Challenges in LLM-based NLG evaluation have
been extensively discussed (Gao et al., 2024; Xu
et al., 2024b; Li et al., 2024a). What’s more, the
efficiency of LLM reasoning is becoming an im-
portant topic recently (Sui et al., 2025; Zhang et al.,
2025b; Liu et al., 2025; Zhang et al., 2025a).

Ranking-based approaches assess models with-
out ground truth labels, using triplet ranking (Dhu-
randhar et al., 2024), reputation-based consen-
sus (Ning et al., 2025), peer discussion rank-
ing (Li et al., 2023), and multi-agent debate frame-
works (Chan et al., 2024). Reference-free scor-
ing mechanisms have also been proposed (Zheng
et al., 2024a; Kenton et al., 2025), along with stud-
ies analyzing NLG evaluation metrics (Xiao et al.,
2023). Consensus-based methods aggregate multi-
ple model outputs for evaluation, addressing biases
in ranking and improving stability (Li et al., 2024b;
Wan et al., 2024; Xu et al., 2024a). Unlike prior
work, our method integrates instruction adherence,
reasoning coherence, and reasoning-evidence con-
sistency into a unified ranking framework, ensuring
stability across tasks and model distributions.

6 Conclusions

Our paper highlights the challenges of ranking
large language models in increasingly complex
tasks. As dataset difficulty increases, traditional
triplet-based ranking methods like SelfRank be-
come less reliable, particularly when the perfor-
mance gap between models widens. In contrast,
our proposed ReasonerRank method remains sta-
ble under these conditions.

Beyond ranking accuracy, our findings empha-
size the need for alternative evaluation criteria
when assessing foundational language models, es-
pecially in scenarios where ground truth is unavail-
able or incomplete. Even in cases where ground
truth exists, these aspects may still be extremely
critical in evaluating a model’s ability to generalize
and maintain consistency across diverse tasks.

Future work can explore integrating such quali-
tative evaluation factors into ranking frameworks,
moving toward a more holistic assessment of lan-
guage models. By expanding the scope of evalua-
tion beyond purely performance-driven measures,
we can develop more comprehensive frameworks
for assessing the effectiveness of large language
models in real-world applications.

7 Limitations

While our study provides valuable insights into
ranking large language models, several limitations
warrant further exploration. While our method re-
lies on structured output to measure instruction-
following ability as a proxy for general LLM ca-
pability, we do not explore cases where a model
exhibits strong reasoning ability but fails to adhere
to the prescribed output format. Additionally, our
approach relies on text embeddings as semantic
representations to approximate LLMs’ reasoning
quality, so more effective metrics or evaluation
frameworks could be explored in future work to
provide a more accurate assessment. Despite these
limitations, our work lays a foundation for advanc-
ing LLM ranking research and encourages further
developments in evaluation methodologies.
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A Appendix

A.1 Experiment Detail
A.1.1 Dataset Selection
We selected three benchmark datasets: MMLU,
GSM8K, and a subset of BBH. These datasets
were chosen to comprehensively evaluate models
on both broad knowledge and complex reasoning
tasks.

MMLU consists of a diverse collection of sub-
jects spanning multiple disciplines, covering both
general knowledge and specialized domains. We
used all subjects from MMLU to ensure a com-
prehensive assessment of a model’s general under-
standing and factual recall capabilities.

GSM8K consists of high-quality math problems
specifically designed to require multi-step reason-
ing, and this makes it well-suited for our evaluation
game.

For BBH, we curated a subset of tasks that focus
on logical reasoning and error detection. Specifi-
cally, we include the following categories:

• Boolean Expressions: Evaluates the model’s
ability to understand and manipulate boolean
logic.

• Formal Fallacies: Assesses the model’s ca-
pacity to recognize logical errors in reasoning.

• Logical Deduction (Three, Five, and Seven
Objects): Tests the model’s ability to infer
logical conclusions from given premises under
different levels of complexity.

• Temporal Sequences: Measures the model’s
understanding of ordered events and their re-
lationships.

• Salient Translation Error Detection: Exam-
ines the model’s ability to identify errors in
translations that significantly alter meaning.

This selection ensures that our evaluation frame-
work balances general knowledge comprehension
and reasoning-intensive tasks, and this helps pro-
vide a robust comparison of model performance
across different cognitive and reasoning challenges.

A.1.2 Model Access and Selection
To conduct a comprehensive evaluation, we access
model inference through APIs provided by Togeth-
erAI and OpenAI. These APIs enabled us to in-
teract with a wide range of models, covering both

open-source and proprietary variants. Using API-
based access ensured consistency across models, as
we could evaluate them under a unified framework
without requiring individual deployments.

Our model selection is designed to capture a
broad spectrum of model characteristics, ensuring
a diverse set of candidate models for evaluation.
One key factor was size coverage, particularly for
open-source models, ranging from smaller-scale
models such as Gemma-2B-It to larger models
such as Qwen2.5-72B-Instruct-Turbo. In addition
to size, we consider architectural and implemen-
tation diversity, selecting models from different
research labs and organizations, including Meta’s
LLaMA, Google’s Gemma, Mistral’s Mixtral, and
Alibaba’s Qwen. Beyond individual architectures,
we included both single-expert models and mixture-
of-experts (MoE) architectures to explore their re-
spective performance characteristics. Finally, we
considered model accessibility, which make sure
that our selection encompasses both open-source
and closed-source models. Open models, such as
LLaMA, Gemma, and Qwen, were evaluated along-
side proprietary models like GPT-3.5-Turbo and
GPT-4o-Mini.

By selecting models based on these factors–
size, architecture, implementation diversity, and
accessibility–we creat a diverse candidate set that
allows us to rigorously test the effectiveness of
different label-free ranking methods in correctly
ranking models across a wide range of capabilities.
This selection ensures that our evaluation method
generalizes well as it can capture meaningful dis-
tinctions in model reasoning performance.

A.1.3 Prompt Templates for Reasoning
Generation

We use two different prompts to generate struc-
tured reasoning steps in the ablation study: (1) a
fixed-step reasoning prompt that limits the reason-
ing process to three steps, and (2) a dynamic-step
reasoning prompt that allows models to generate
reasoning steps adaptively based on question com-
plexity.
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Fixed 3-Step Reasoning Prompt

You are tasked with answering a question and explaining your reasoning in a clear and logical
format.

Use the following structure to organize your response:

1. Start with the direct answer.
2. Provide a step-by-step reasoning process that leads to your answer,

and please limit your reasoning in 3 steps.
3. Support your reasoning with evidence, examples, or observations.

Here is the template you should follow:

Answer: [Provide the direct answer.]

Reasoning:
Step 1: [Explain the initial step or assumption.]
Step 2: [Show how this step connects to the next.]
Step 3: [Continue until the reasoning is complete.]

Supporting Evidence:
- [List relevant evidence, facts, or examples.]

Conclusion:
- [One sentence summary of your conclusion.]

Please respond to this question in the specified format: "<question>".

Response:

Dynamic-Step Reasoning Prompt

You are tasked with answering a question and explaining your reasoning in a clear and logical
format.

Use the following structure to organize your response:

1. Start with the direct answer.
2. Provide a step-by-step reasoning process that leads to your answer.
3. Support your reasoning with evidence, examples, or observations.

Here is the template you should follow:

Answer: [Provide the direct answer.]

Reasoning:
- [List reasoning steps.]

Supporting Evidence:
- [List relevant evidence, facts, or examples.]

Conclusion:
- [One sentence summary of your conclusion.]

Please respond to this question in the specified format: "<question>".

Response:
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A.1.4 Design of Structured Response: A Brief
Discussion

Requiring a specific structured format not only falls
well within the capabilities of modern LLMs but
also provides a clear measure of their instruction-
following ability, which is an essential factor in
ground-truth-free tasks. Empirically, those models
that constantly and easily adhere to the required
structure and provide reasoning steps have good
performance. Only a small minority fail to follow
the instructions, leading to poorer performance on
the main task.

Although in the real-world scenario, it is pos-
sible that a well-performing model may not fully
comply with the “Structured Response” format,
leading to a potentially suboptimal ranking, our
goal here is not to perfectly measure each model’s
absolute problem-solving ability. Instead, the struc-
tured response serves as a practical mechanism to
identify a group of strong reasoners whose outputs
can be compared and aggregated to define an esti-
mated ground truth. Such a “structured response”
design emphasizes collaborative alignment among
top-performing models rather than rigidly enforc-
ing formatting as a proxy for LLMs’ capability of
solving problems.

Moreover, the ability of LLMs to generate struc-
tured outputs has emerged as a key indicator of
model quality in recent research. Structured output
formats, such as JSON and templated reasoning
steps (our case), are now widely used across do-
mains, including code generation, data extraction,
and tool use. Several benchmarks have been pro-
posed to systematically evaluate LLMs under such
constraints (Shorten et al., 2024; Geng et al., 2025;
Cao et al., 2024).

A.1.5 Efficiency Analysis
We acknowledge the importance of evaluating
the computational efficiency of our framework.
While our method may incur slightly higher eval-
uation costs due to generating more structured re-
sponses and computing text embeddings compared
to merely generating a single answer, these over-
heads are negligible compared to the extensive hu-
man labor required to manually craft large-scale
ground-truth labels.

Though compared with methods like
MCA (Mienye and Sun, 2022) and Triplet
Ranking (Dhurandhar et al., 2024), our method
needs 100 more tokens generated by LLM and
11 overhead of generating embeddings for each

question. Empirically, the entire evaluation
pipeline will cost 2 to 4 hours (depending on the
size of the dataset), which is acceptable and can be
considered as an “online evaluation”.

In addition, other baseline methods often suffer
performance degradation and ranking biases. Such
inaccuracies can lead to greater long-term costs and
effort for enterprises, as they may need to rerank
models or retrain systems to correct these errors.
In this context, “slow is fast” - investing in a more
rigorous evaluation upfront can save substantial
time and resources in the long run by ensuring
better initial rankings.

A.1.6 Semantic Similarity
To evaluate reasoning consistency and reasoning-
evidence alignment, we compute the semantic simi-
larity between sentences using an embedding-based
approach.

Embedding Our approach utilizes a sentence
embedding model trained to capture semantic re-
lationships between texts, specifically employing
Alibaba-NLP/gte-large-en-v1.5 (Zhang et al.,
2024). While embedding models may vary in per-
formance, our method does not rely on a specific
one – stronger models may enhance reasoning con-
sistency evaluation, but even smaller, accessible
models can still provide meaningful rankings.

Similarity Computation Given two sentences
s1 and s2, we first encode them into vector repre-
sentations:

v1 = Enc(s1), v2 = Enc(s2) (7)

where Enc(·) denotes the embedding model. We
then compute cosine similarity:

sim(s1, s2) =
v1 · v2

∥v1∥∥v2∥
(8)

where a higher score indicates stronger semantic
alignment.

Effect of Embedding Choice While different
embedding models may yield slight variations in
similarity scores, the overall ranking framework
remains robust. Our selected model is neither the
most powerful nor the weakest but offers a strong
balance between performance and accessibility.

A.1.7 Selection of K in TopK-ReRank
We report results with fixed K = 4 in the GSM8K
dataset and K = 6 in the MMLU and BBH
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datasets. These choices balance two objectives:
(1) ensuring a stable and meaningful consensus
without overfitting to any specific ranking config-
uration, and (2) maintaining comparability across
different model set sizes. Beyond this, we conduct
an ablation study on evaluating the performance
of ReasonerRank under different K input, and the
result shows that the effect of varying K within
the examined range is somewhat limited when
comparing with other baseline methods, and this
further underscore the reliability of our method in
diverse scenarios. Table 6 below summarizes the
ablation results.

Table 6: Ablation study results for K ∈ [1, 15] (with
K = 16 corresponding to Majority Vote) on the MMLU
dataset, where 16 LLMs are evaluated - the most chal-
lenging setting in our experimental setup. The bold one
is the best result, and the blue one is our reported re-
sult. The overall closeness to stable performance across
different K values demonstrates the robustness of our
evaluation method.

!

TopK-ReRank RBO SP@3

K = 1 0.7831 0.4386

K = 2 0.7906 0.5322

K = 3 0.7378 0.2573

K = 4 0.7109 0.1813

K = 5 0.7458 0.3626

K = 6 0.8178 0.5673

K = 7 0.8230 0.6433

K = 8 0.8067 0.5906

K = 9 0.7918 0.5439

K = 10 0.7635 0.4971

K = 11 0.7739 0.4854

K = 12 0.7878 0.5556

K = 13 0.7979 0.5673

K = 14 0.8048 0.5789

K = 15 0.7949 0.5614

A.2 Extended Evaluation Metrics

A.2.1 Rank-Biased Overlap (RBO)
Given that S and T (estimated rank and target rank)
are two lists of equal size (|S| = |T |), and let
d ∈ [1, |S|] denote the depth of both lists, the size

of the intersection of lists S and T up to depth d is
defined as:

XS,T,d = |IS,T,d| = |S:d ∩ T:d| (9)

The agreement of S and T at depth d is the propor-
tion of overlap, given by:

AS,T,d =
|IS,T,d|

d
→ Ad (10)

To control the contribution of each item at depth d
to the RBO value, a weight for Ad is introduced:

RBO(S, T, w) =
∑

d

wd ·Ad (11)

Let wd = (1 − p) · pd−1, where
∑

dwd = 1, the
rank-biased overlap becomes:

RBO(S, T, p) = (1− p)
∑

d

pd−1 ·Ad (12)

In our setting, we treat each depth equally, so the
RBO function returns the average overlap across
all depths:

RBO(S, T ) =
1

|S|

|S|∑

d=1

Ad (13)

A.2.2 Set Precision at K (SP@K)
Set Precision at K (SP@K) is a ranking evalua-
tion metric that measures the extent of agreement
between two ranked lists by focusing specifically
on the top-K elements from each list. Unlike tra-
ditional ranking metrics that emphasize exact or-
dering or pairwise positional comparisons, SP@K
evaluates the consistency in identifying the most
relevant or highest-performing subset of items. In
the context of model rankings, SP@K is particu-
larly useful when exact ordering is less critical than
accurately selecting the set of best models.

Formally, given two rankings S and T , SP@K
for a specific hyperparameter K is calculated as:

SP@K(S, T ) =
|S[1:K] ∩ T[1:K]|

K
, (14)

where S[1:K] and T[1:K] represent the sets of the
top-K elements from rankings S and T , respec-
tively. The numerator, |S[1:K] ∩ T[1:K]|, counts the
number of elements shared between these top-K
subsets. The division by K normalizes the score so
that the value of SP@K ranges from 0 to 1. A score
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of 1 indicates perfect agreement, that both rankings
agree completely on the top-K elements, irrespec-
tive of their exact order. A score of 0 indicates
complete disagreement, with no overlap between
the top-K elements identified by each ranking.

Such a characteristic of SP@K is especially valu-
able in scenarios where prioritizing a group of top
candidates is more important than precisely deter-
mining their ranking order. Additionally, SP@K
can be extended by varying the hyperparameter
K to explore how agreement changes as we con-
sider larger or smaller subsets of the rankings, and
this flexibility allows researchers to identify stable
subsets of highly performing models and to ana-
lyze the robustness of the ranking methodologies
employed.

A.3 Full Experiment Table
A.3.1 Benchmark Performance of LLMs on

MMLU
To provide additional context for model evaluation,
we benchmark the performance of all candidate
LLMs on the MMLU dataset. Each model is eval-
uated using an identical prompt under a zero-shot
setting, ensuring a fair comparison without task-
specific fine-tuning.

Table 7: Benchmark performance of LLMs on MMLU
(averaged over all subsets). The bolded model and
values indicate the best-performing model within each
family.

Model Family Model Accuracy (%)

Gemma
Gemma-2B-IT 39.59
Gemma-2-27B-IT 74.97

Llama

Llama-2-7B-Chat-HF 42.36
Llama-3.2-3B-Instruct-Turbo 58.60
Llama-3-8B-Instruct-Lite 61.61
Llama-3.1-8B-Instruct-Turbo 66.54
Llama-3.3-70B-Instruct-Turbo 79.93
Llama-3.1-70B-Instruct-Turbo 80.31

Mistral

Mistral-7B-Instruct-v0.3 58.94
Mistral-7B-Instruct-v0.2 58.97
Mixtral-8x7B-Instruct-v0.1 67.67
Mixtral-8x22B-Instruct-v0.1 73.58

Qwen
Qwen2.5-7B-Instruct-Turbo 71.22
Qwen2.5-72B-Instruct-Turbo 81.62

GPT
GPT-3.5-Turbo 64.63
GPT-4o-Mini 75.59

A.3.2 Full Ranking Experiments

Table 8: Results for Ranking Models (10 to 16 Can-
didates) on the MMLU Dataset (Averaged Across All
Subjects)

Rank Setting Method RBO SP@3

10 Models

MCA 0.7998 0.8187
SelfRank-FTR 0.7746 0.6725
SelfRank-GTR 0.7722 0.5965
ReasonerRank 0.8053 0.8480

11 Models

MCA 0.8165 0.7778
SelfRank-FTR 0.7907 0.6374
SelfRank-GTR 0.7890 0.6199
ReasonerRank 0.7850 0.6667

12 Models

MCA 0.7965 0.6725
SelfRank-FTR 0.7848 0.6082
SelfRank-GTR 0.7646 0.5205
ReasonerRank 0.7730 0.6082

13 Models

MCA 0.7986 0.6549
SelfRank-FTR 0.7866 0.5497
SelfRank-GTR 0.7828 0.5439
ReasonerRank 0.8302 0.7310

14 Models

MCA 0.7974 0.6082
SelfRank-FTR 0.7817 0.5263
SelfRank-GTR 0.7663 0.4737
ReasonerRank 0.8311 0.7018

15 Models

MCA 0.7979 0.5497
SelfRank-FTR 0.7812 0.4561
SelfRank-GTR 0.7812 0.4561
ReasonerRank 0.8118 0.5673

16 Models

MCA 0.8026 0.5614
SelfRank-FTR 0.7748 0.4444
SelfRank-GTR 0.7748 0.4444
ReasonerRank 0.8178 0.5673
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Table 9: Results for Ranking Models (10 to 16 Candi-
dates) on the BBH Dataset (Averaged Across All In-
cluded Subsets)

Rank Setting Method RBO SP@3

10 Models

MCA 0.6909 0.5714
SelfRank-FTR 0.5208 0.2857
SelfRank-GTR 0.5768 0.4762
ReasonerRank 0.7603 0.6667

11 Models

MCA 0.7112 0.5238
SelfRank-FTR 0.5036 0.2857
SelfRank-GTR 0.5946 0.3333
ReasonerRank 0.7613 0.6190

12 Models

MCA 0.7202 0.5238
SelfRank-FTR 0.5015 0.2857
SelfRank-GTR 0.5829 0.2857
ReasonerRank 0.7608 0.5714

13 Models

MCA 0.7390 0.5714
SelfRank-FTR 0.5221 0.2857
SelfRank-GTR 0.5616 0.3810
ReasonerRank 0.7699 0.5714

14 Models

MCA 0.7208 0.5238
SelfRank-FTR 0.5307 0.2857
SelfRank-GTR 0.5847 0.4762
ReasonerRank 0.7672 0.5714

15 Models

MCA 0.7269 0.4286
SelfRank-FTR 0.5212 0.2857
SelfRank-GTR 0.6095 0.2857
ReasonerRank 0.7548 0.4762

16 Models

MCA 0.7412 0.4762
SelfRank-FTR 0.4922 0.0476
SelfRank-GTR 0.5939 0.3333
ReasonerRank 0.7529 0.5238
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