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Abstract
Theory-of-Mind (ToM), the ability to infer oth-
ers’ perceptions and mental states, is fundamen-
tal to human interaction but remains challeng-
ing for Large Language Models (LLMs). While
existing ToM reasoning methods show promise
with reasoning via perceptual perspective-
taking, they often rely excessively on off-the-
shelf LLMs, reducing their efficiency and lim-
iting their applicability to high-order ToM rea-
soning. To address these issues, we present
EnigmaToM, a novel neuro-symbolic frame-
work that enhances ToM reasoning by integrat-
ing a Neural Knowledge Base of entity states
(Enigma) for (1) a psychology-inspired iter-
ative masking mechanism that facilitates ac-
curate perspective-taking and (2) knowledge
injection that elicits key entity information.
Enigma generates structured knowledge of en-
tity states to build spatial scene graphs for belief
tracking across various ToM orders and enrich
events with fine-grained entity state details. Ex-
perimental results on ToMi, HiToM, and FAN-
ToM benchmarks show that EnigmaToM signif-
icantly improves ToM reasoning across LLMs
of varying sizes, particularly excelling in high-
order reasoning scenarios1.

1 Introduction

Theory-of-Mind (ToM), the ability to understand
that others have perceptions and mental states dif-
ferent from one’s own, is fundamental to effective
communication and social interaction (Premack
and Woodruff, 1978; Apperly, 2010). ToM reason-
ing can be first-order, involving the understanding
of another’s mental state, or higher-order, requiring
recursive thinking about others’ beliefs. Higher-
order ToM reasoning is particularly vital in real-
world contexts such as negotiation (De Weerd et al.,
2017). As Large Language Models (LLMs) be-
come increasingly sophisticated in imitating human

1The neural knowledge base Enigma can be downloaded
via https://huggingface.co/SeacowX/Enigma. Code
and data are available at https://github.com/seacowx/
EnigmaToM.
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Figure 1: Example use-case of EnigmaToM framework
in fourth-order ToM reasoning. An event ( 1⃝) is en-
riched by adding information about entity-of-interests
(italic text in 2⃝) derived from Enigma. Characters ( 3⃝)
are extracted using an off-the-shelf NER model. Spatial
scene graphs ( 4⃝ and 5⃝) are constructed for perspective-
taking through a masking mechanism ( 5⃝→ 6⃝). Event
nodes are retrieved to construct character-centric event
sequence ( 7⃝), which is used for the final QA ( 8⃝).

interactions, a plethora of studies have investigated
LLMs’ abilities to conduct ToM reasoning. While
early studies show that LLMs exhibit traces of ToM
capabilities (Bubeck et al., 2023; Kosinski, 2023),
follow-up works impugn the robustness of such ca-
pabilities by showing that LLMs’ ToM reasoning
is often superficial (Sap et al., 2022; Ullman, 2023;
Shapira et al., 2024).

A vital prerequisite for human ToM reasoning
is perceptual perspective-taking (referred to as
"perspective-taking" thereafter), which is the pro-
cess of inferring the perception of other characters
(Davis, 1983; Harwood and Farrar, 2006). In the
case of ToM reasoning with LLMs, perspective-
taking alleviates the reasoning burden of LLMs by
identifying events that are observable by a given
character and removing unobservable ones.

Centered around perspective-taking, numerous
methods have been proposed. SimulatedToM (Wilf
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et al., 2024) and Discrete World Models (DWM)
(Huang et al., 2024) perform perspective-taking
by directly prompting LLMs. While one may ap-
preciate these methods’ simplicity, the quality of
perspective-taking is largely dependent on the capa-
bility of LLMs. SymbolicToM, TimeToM, and Per-
ceptToM took a neuro-symbolic approach. Time-
ToM (Hou et al., 2024) and PerceptToM (Jung
et al., 2024) utilize temporal and perceptual infor-
mation of events to derive characters’ perception
by extracting common timestamps or perceived
characters. However, accurately extracting per-
ceived timestamps or perceivers becomes difficult
as the length or complexity of the event trajec-
tory increases. The most relevant work to ours
is SymbolicToM, where perspective-taking is con-
ducted by maintaining multiple belief graphs (Sclar
et al., 2023). However, SymbolicToM constructs
belief graphs using less powerful models including
WANLI (Liu et al., 2022) and OpenIE (Stanovsky
et al., 2018), limiting its generalizability to ToM
tasks that involve complicated events. Further, as
noted by Sclar et al. (2023), SymbolicToM lacks
efficiency as the depth of ToM reasoning increases
(see §3.4 for analysis).

Given the need for accurate and efficient
perspective-taking in ToM reasoning, we introduce
Entity-Guided Masking (EnigmaToM), a neuro-
symbolic framework enhancing LLMs’ ToM rea-
soning (Figure 1). Perspective-taking relies on
reasoning about event implications, where infor-
mation about the states of key entities is crucial
(Zhang et al., 2023). EnigmaToM employs a Neural
Knowledge Base (Enigma) to generate structured
entity-state information (§3.1). This entity-state in-
formation supports spatial scene graph construction
for perspective-taking (§3.3) and event elicitation
through knowledge injection (§3.2). Experiment
results show that EnigmaToM improves the ToM
reasoning capabilities of a range of LLMs. Further-
more, the iterative masking mechanism, grounded
by theories from psychology (Arslan et al., 2017),
guarantees the efficacy of EnigmaToM across ToM
reasoning of varying orders.

We summarize our contributions as follows:

1. We introduce EnigmaToM, a neuro-symbolic
framework for ToM reasoning that leverages
a Neural Knowledge Base of Entity States to
improve LLMs’ ToM reasoning capabilities.

2. Through the iterative masking mechanism,
EnigmaToM conducts effective perspective-
taking while greatly reducing the number of

character belief graphs that need to be tracked,
thereby improving the efficiency in high-order
ToM reasoning.

3. EnigmaToM improves LLMs’ ToM reasoning,
especially for higher-order cases. Analysis
show that EnigmaToM improves LLMs’ ToM
reasoning ability up to the fourth order.

2 Related Work

Knowledge Base of Commonsense Knowledge
in Natural Language Efforts to construct com-
monsense knowledge bases have a long history.
Early work includes CyC, ConceptNet, and DBPe-
dia (Lenat, 1995; Liu and Singh, 2004; Lehmann
et al., 2015). Rashkin et al. (2018) introduced
Event2Mind, an event-based knowledge graph that
captures characters’ intentions and reactions. Sub-
sequently, Sap et al. (2019) introduced ATOMIC, a
commonsense knowledge graph that models if-then
relationships for simple events. To explore more
complex events, Tandon et al. (2020) introduced
OpenPI, a dataset for entity state tracking in pro-
cedures. OpenPI was extended to OpenPI2.0 by
introducing entity saliency scores and entity canoni-
calization (Zhang et al., 2024). Parallel efforts have
developed neural models, including a GRU-based
encoder-decoder model for Event2Mind (Rashkin
et al., 2018), a decoder-only Transformer called
COMET for ConceptNet and ATOMIC (Bosselut
et al., 2019), and fine-tuned GPT-2 for OpenPI
(Tandon et al., 2020).

Benchmarking LLMs’ ToM Reasoning Capabil-
ities Many ToM benchmarks are inspired by the
False Beliefs test (Wimmer and Perner, 1983), in-
cluding event-based benchmarks such as ToMi (Le
et al., 2019), HiToM (Wu et al., 2023), BigToM
(Gandhi et al., 2024), and OpenToM (Xu et al.,
2024), and dialogue-based datasets such as FAN-
ToM (Kim et al., 2023). Based on the Smarties Test
(Gopnik and Astington, 1988), Adv-CSFB (Shapira
et al., 2024) and ToMChallenges (Ma et al., 2023)
assess LLMs’ ability to reason about unexpected
contents and unexpected transfers. ToMBench
(Chen et al., 2024) and EPITOME (Jones et al.,
2023) contain a suite of ToM tasks that go be-
yond False Beliefs and Smarties Test. MMToM-
QA extends ToM evaluation to multimodality (Jin
et al., 2024) and InformativeBench evaluates ToM
in multi-agent settings (Liu et al., 2024).

Improving LLMs’ ToM Reasoning Capabilities
Methods for improving LLMs’ ToM reasoning ca-

13599



G𝜀aug

Augmented Events 
(Emily’s Perspective of 

Abigail) 

1. Abigail entered pantry. 
2. Emily entered pantry.  

3. An apple is stored in a 

jar. Container of apple is 

now a jar. 

4. The jar is in the pantry.  

Location of apple is in a jar 

in the pantry. 

5. Abigail exited pantry. 

Awareness of Abigail is 

now unaware of things 

going on in the pantry. 

E
N

IG
M

A

1 2

3 4 5

Original Events 
(Omniscent-Perspective) 

ϵ1 Benjamin entered attic.  

ϵ2 Abigail entered pantry.  

ϵ3 Emily entered pantry.  

ϵ4 An apple is stored in a jar.  

ϵ5 The jar is in the pantry. 

ϵ6 Abigail exited pantry.  

ϵ7 Emily moved the apple to a crate. 

ϵ8 Emily exited pantry. 

……

ToM Questions 

Where will Emily look for the apple? 
Where will Abigail look for the apple?

pantry

Attic

ϵaug3

ℒ

6
G𝜀aug GAbigail

Container of Apple 
Awareness of Emily 
Awareness of Abigail 
Location of Apple 
Location of Emily 
Location of Abigail

E, A

ϵaug2

ϵaug4 ϵaug5 ϵaug6

ϵaug7

ϵaug1

pantry

Attic

ϵaug3

ϵaug2

ϵaug4 ϵaug5 ϵaug6

ϵaug7

ϵaug1

ϵ

⋯
3

Container of apple is a jar. 
Location of apple is in a jar. 
Awareness of Emily is aware 
that apple is stored in a jar. 
Awareness of Abigail is aware 
that apple is stored in a jar.

ϵaug
5

ϵaug
6 ϵaug

7

ϵaug
4

GAbigail

pantry

Attic

ϵaug
3 ϵaug

4

ϵaug
2

ϵaug
5 ϵaug

6

ϵaug
7

ϵaug
1

pantry

Attic

ϵaug
3

ϵaug
4

ϵaug
2

ϵaug
5 ϵaug

6

ϵaug
7

ϵaug
8

ϵaug
1

pantry

Attic

ϵaug
3

ϵaug
4

ϵaug
2

ϵaug
5 ϵaug

6

ϵaug
7

ϵaug
8

ϵaug
1

GAbigail

pantry

ϵaug
3

ϵaug
4

ϵaug
2

ϵaug
5

ϵaug
6

Masked

4

LL
M

θ

Sϵ4
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pabilities have focused on perspective-taking. Sym-
bolicToM conducts perspective-taking via belief
graphs (Sclar et al., 2023). SimulatedToM (Wilf
et al., 2024) and DWM (Huang et al., 2024) con-
duct perspective-taking by prompting. DWM ad-
ditionally prompts LLMs to infer the world state
after a group of events. TimeToM utilizes the tem-
poral order of events to conduct perspective-taking
(Hou et al., 2024). PerceptToM does perspective-
taking by prompting LLMs to infer perceivers of
each event (Jung et al., 2024). For multimodal
ToM, methods like NIPE and BIP-ALM leverage
Bayesian Inverse Planning (Ying et al., 2023; Jin
et al., 2024), with environments (e.g. 2D grids or
videos) providing strong perspective-taking signals
through observable trajectories.

3 The EnigmaToM Framework

Before presenting the EnigmaToM framework, we
define the general setup of ToM reasoning tasks.

ToM Task Setup We focus on the widely studied
ToM task of reasoning about false beliefs (Wimmer
and Perner, 1983), which is typically formulated as
QA tasks. Formally, given a context consisting of
a sequence of events, E = {ϵi}ni=1, which involves
multiple characters, C = {cj}mj=1, and a query
regarding the belief of a particular character, qc, c ∈
C, the goal is to derive the most likely belief, bc,
from all potential beliefs, Bc:

b∗c = argmax
b∈Bc

P(b|E , qc, c ∈ C) (1)

Further, E can be concise events as seen in the
ToMi dataset (Le et al., 2019) or utterances as seen

in the FANToM dataset (Kim et al., 2023). Beyond
directly querying a character’s beliefs about the en-
vironment, one can also probe their beliefs regard-
ing other characters’ perceptions, thereby enabling
the assessment of higher-order ToM reasoning.

The EnigmaToM Framework Figure 2 pro-
vides an overview of our framework, we use circled
number ( N⃝) to refer to components in the figure.
At the core of EnigmaToM is a Neural Knowledge
Base (NKB) of Entity States (Enigma). Given a
sequence of events ( 1⃝.E) and the corresponding
questions ( 1⃝.Q), EnigmaToM first leverages a cho-
sen LLM ( 2⃝) to identify key entities (e.g., charac-
ters and important objects) and their attributes rele-
vant to ToM reasoning (Top left of 3⃝). Enigmathen
produces state information for these entities after
each event (Top right of 3⃝, §3.1). With the entity
state knowledge, EnigmaToM first conducts Knowl-
edge Injection (referred to as "KI" thereafter) to
enrich the original events by adding relevant fine-
grained entity state details (§3.2). Among the entity
state knowledge, spatial information of characters
is used to conduct perspective-taking through an
Iterative Masking mechanism (referred to as "IM"
thereafter. Bottom of 3⃝, §3.3). The modified
events are provided to the LLM for final answers
via zero-shot prompting ( 4⃝). By offloading much
of the ToM reasoning process to the symbolic IM
component via perspective-taking, EnigmaToM re-
duces LLMs’ reasoning burden.

3.1 The Enigma Neural Knowledge Base

NKBs such as COMET are trained on a large
corpus of structured knowledge in a sequence-
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to-sequence manner (Bosselut et al., 2019). Fol-
lowing this approach, we fine-tuned a Llama3.1-
8B (Dubey et al., 2024) model to function as our
NKB (Zheng et al., 2024).2 For training, we used
OpenPI2.0 (Zhang et al., 2024), which consists
of 25,600 human-annotated entity state changes
derived from WikiHow articles. OpenPI2.0 was
selected over ATOMIC and Event2Mind as it con-
tains more complex events and entity states. Al-
ternatively, as LLMs become increasingly adept
at commonsense reasoning, they can serve as an
NKB of entity states via prompting (Hwang et al.,
2021). We denote the trained (T) and prompt-based
(P) NKB as EnigmaT and EnigmaP, respectively.

To query the NKB, we adopt an entity-attribute-
guided approach which contains two steps. In Step
1, given a sequence of events, E , a set of ToM
questions, Q, and a chosen LLM parameterized
by θ, we obtain a set of entities of interest, E =
{e}ni=1, and their corresponding attributes, A =
{a}mj=1, by zero-shot prompting:

E,A = LLMθ

(
ρ(E ,Q)

)
(2)

where ρ denotes the prompt template (see Ap-
pendix D for details of the prompt). Then in Step
2, given an event, ϵ ∈ E , a set of entities of in-
terest E and their corresponding attributes A, we
query Enigma to retrieve the state of the entities
after event ϵ:

sϵ =
n⊕

i=1

m⊕

j=1

Enigma(ei, aj , ϵ)

∀ϵ ∈ E , ei ∈ E, aj ∈ A (3)

where ⊕ denotes concatenation.

3.2 Knowledge Injection (KI) with Enigma
In prior studies, perspective-taking was regarded as
filtering out events unobserved by a given character,
yielding a subset E ′

c ⊆ E . We argue that beyond
event filtering, perspective-taking should enhance
LLMs’ comprehension of events. Fine-grained en-
tity state knowledge is crucial for event reasoning
(Zhang et al., 2023) but often omitted due to re-
porting bias (Shwartz and Choi, 2020). To address
this, we propose a knowledge injection mechanism,
KI, that utilizes Enigma to enrich observable events
with fine-grained entity state information. In the
first step of KI, a chosen LLM is used to infer key
entities, E, and attributes, A, based on a given se-
quence of events, E , and a set of ToM questions, Q,

2See Appendix B for details of the fine-tuning process.

(Equation 2). We then query Enigma with the rec-
ognizied entities and their attributes to obtain their
state information at each event (Equation 3). We ex-
clude spatial information of characters, Sp

c , as this
will be handled in the subsequent masking process
(§3.3). Given a sequence of events, E = {ϵ}ni=1,
we augment it by injecting entity state knowledge,
resulting in the sequence Eaug:

Eaug =
n⊕

i=1

ϵi ⊕ ŝϵi , where ŝϵi = sϵi \ spc (4)

where ⊕ denotes concatenation. As fine-grained
entity state knowledge is often omitted in events
due to reporting bias (Shwartz and Choi, 2020), this
mechanism compensates for the lost information.
More importantly, by providing state information
of key entities, KI reinforces LLMs’ understanding
of the observed events.

3.3 Perspective-Taking (IM) with Enigma
Studies in psychology have shown that people’s
beliefs about others’ mental states rely only on in-
formation available to themselves3 (Arslan et al.,
2017). Building on this insight, we assume that
characters interpret others’ beliefs through the lens
of their own mental states, which allows us to em-
ploy Iterative Masking (IM) to facilitate efficient
and accurate ToM reasoning across various order.

Perspective-taking with Enigma is accomplished
by constructing spatial scene graphs and per-
forming Iterative Masking (IM) using constructed
graphs. Specifically, we obtain spatial informa-
tion, Sp

c , by querying Enigma about the location
(attr) of a specific character (ent), c, using Equa-
tion (3). Spatial scene graphs are constructed based
on spatial information to represent the detailed lo-
cations where each event takes place as perceived
by a given character. The nodes of the scene graph
represent events and locations, while the edges de-
note the "isin" relationship, specifying the loca-
tion where each event takes place.

During IM, we first construct a character-
oblivious spatial scene graph, GEaug , which doc-
uments the location of each augmented event from
an omniscient perspective. We then construct
character-centric spatial scene graphs, Gc, that cap-
ture event locations from the perspective of each
character. We introduce a null node, ∅, which
indicates that the location of the current event is

3For instance, "Anne’s belief about Sally’s mental state"
depends only on information available to Anne, i.e. events
witnessed by Anne herself.
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unknown to the character. During IM, the null
node serves as a "mask" to exclude the event nodes,
which are unobserved by the character, from GEaug

(see Figure 1 and Figure 2). For high-order ToM
reasoning, GEaug is masked sequentially by the or-
der of characters in the belief chain4:

Gmasked
c1:k

= GEaug

k⊗

j=1

Gcj (5)

where ⊗ represents the masking operation, and
k corresponds to the ToM-order. The observable
events of character c1:k with injected entity state
knowledge can be constructed as:

Eaug
c1:k

= V ϵ
Gmasked

c1:k

(6)

where V ϵ
Gmasked

c1:k

represents event nodes in Gmasked
c1:k

.

In the case of high-order Tom reasoning, Eaug
c1:k

is
obtained by iteratively applying the belief of char-
acters. As such, Eaug

c1:k
effectively encapsulates the

beliefs of all characters in the belief chain. This
allows us to transform the high-order ToM ques-
tion to that of first-order. For instance, reasoning
about “Sally’s belief about Anne’s belief” with-
out EnigmaToM requires first inferring Sally’s per-
ceived world state, which then serves as the basis
for modeling Anne’s belief. With EnigmaToM, such
nested dependencies and recursive reasoning are
handled by the IM mechanism. Consequently, un-
der Eaug

Sally,Anne, deriving Sally’s belief is sufficient to
answer the original second-order Theory of Mind
(ToM) question. Illustrative examples and further
details on ToM order reduction are provided in
Appendix C. We present illustrative examples and
details of ToM order reduction in Appendix C.

3.4 Efficiency of EnigmaToM
The IM mechanism of EnigmaToM addresses the
intractability of high-order ToM reasoning faced
by SymbolicToM (Sclar et al., 2023). Due to
the asymmetry of ToM modeling5, enumerating
all possible mental states for characters across
all ToM orders is a permutation problem. Sup-
pose a ToM reasoning question involves m char-
acters and the ToM order goes up to kth-order,
the worst-case complexity of constructing belief
graphs in SymbolicToM is O

(∑k
i=1

m!
(m−i)!

)
. In

4For instance, the masked spatial scene graph for "Sally’s
belief of Anne’s mental state" is GEaug ⊗GSally ⊗GAnne.

5For example, in second-order ToM, Anne’s belief of
Sally’s mental state is not equivalent to Sally’s belief of Anne’s
mental state.

Dataset O Unit #Units #Qs
ToMi6 (Le et al., 2019) 2 E 9.85 114

HiToM (Wu et al., 2023) 4 E 26.49 614
FANToM (Kim et al., 2023) 2 U 23.14 577

Table 1: Summary of datasets. O: highest ToM order
tested. Unit: type of event sequence. "E" for event and
"U" for utterance. #Units: avg. units per sequence. #Qs:
avg. number of questions per sampled subset. Examples
from each dataset can be found in Appendix A.

contrast, EnigmaToM constructs one spatial scene
graph, GEaug , which encapsulates omniscient spa-
tial information, and m character-centric spatial
scene graphs. Hence, the worst-case complexity for
constructing spatial scene graphs in EnigmaToM is
T̃ (m, k) = O(m), which is linear with respect to
the number of characters and independent of the
ToM order k. We illustrate the difference in com-
plexity in Appendix E.

4 Experiments

EnigmaToM is evaluated on three widely used ToM
benchmarks (Table 1) and compared against the
following generic and ToM-specific methods:

CoT (Wei et al., 2022) boosts LLMs’ reasoning
capabilities by prompting LLMs to explicitly list
out their reasoning process.
SimToM (Wilf et al., 2024) conducts perspective-
taking by directly querying the LLMs about the
mental states of characters.
TimeToM† (Hou et al., 2024) leverage the tempo-
ral information of events to conduct perspective-
taking. The final answer is obtained using a multi-
perspective belief-solving prompt.
DWM (Huang et al., 2024) conducts perspective-
taking by partitioning the events into chunks
and querying the LLMs about characters’ men-
tal states after each chunk.
PerceptToM† (Jung et al., 2024) conducts
perspective-taking by querying the LLMs about
the characters’ awareness of the events.

To ensure a fair comparison with established meth-
ods, we conduct controlled experiments by con-
trolling the format and answer space of all ToM
questions. In addition, we follow a realistic set-
ting of ToM reasoning by using only the sequence
of events and ToM questions from each dataset.

6We use the disambiguated ToMi (Sclar et al., 2023) from
https://github.com/msclar/symbolictom.

†Official implementation is not available at the time of
experiments (Sept-Dec, 2024). We implemented this method
using prompts from the corresponding paper.
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Qwen2.5-7B Llama3.1-8B Gemma2-9B Gemma2-27B Llama3.3-70B4bit Qwen2.5-72B4bit GPT-4o
To

M
i

Vanilla 0.722±0.045 0.647±0.011 0.741±0.037 0.715±0.048 0.767±0.015 0.717±0.034 0.767±0.041

CoT 0.724±0.026 0.739±0.025 0.676±0.035 0.537±0.056 0.741±0.032 0.767±0.033 0.769±0.029

SimToM 0.642±0.022 0.600±0.020 0.710±0.034 0.684±0.015 0.712±0.018 0.749±0.020 0.749±0.018

TimeToM 0.567±0.024 0.630±0.019 0.681±0.028 0.587±0.036 0.739±0.021 0.865±0.018 0.723±0.016

DWM 0.686±0.023 0.644±0.033 0.718±0.028 0.707±0.045 0.735±0.016 0.762±0.051 0.739±0.049

PerceptToM 0.720±0.038 0.695±0.025 0.676±0.029 0.749±0.017 0.738±0.032 0.809±0.033 0.790±0.023

EnigmaP 0.706±0.044 0.738±0.056 0.865±0.031 0.833±0.018 0.828±0.012 0.839±0.014 0.847±0.030

EnigmaT 0.825±0.030 0.796±0.023 0.814±0.020 0.804±0.050 0.787±0.024 0.837±0.024 0.795±0.036

H
iT

oM

Vanilla 0.378±0.013 0.333±0.015 0.471±0.009 0.527±0.018 0.534±0.008 0.456±0.012 0.521±0.006

CoT 0.441±0.007 0.304±0.021 0.474±0.008 0.535±0.018 0.537±0.011 0.481±0.011 0.527±0.005

SimToM 0.402±0.009 0.368±0.024 0.473±0.012 0.549±0.018 0.569±0.005 0.536±0.018 0.571±0.003

TimeToM 0.316±0.010 0.462±0.013 0.302±0.012 0.302±0.013 0.623±0.006 0.415±0.013 0.633±0.008

DWM 0.444±0.020 0.367±0.019 0.485±0.012 0.488±0.018 0.564±0.010 0.560±0.009 0.580±0.018

PerceptToM 0.393±0.019 0.342±0.011 0.440±0.009 0.562±0.007 0.588±0.010 0.548±0.016 0.580±0.018

EnigmaP 0.508±0.012 0.477±0.005 0.555±0.010 0.576±0.004 0.696±0.007 0.605±0.007 0.733±0.017

EnigmaT 0.457±0.005 0.431±0.010 0.446±0.008 0.478±0.004 0.518±0.011 0.473±0.010 0.626±0.020

FA
N

To
M

Vanilla 0.400±0.015 0.429±0.022 0.485±0.016 0.553±0.011 0.486±0.022 0.532±0.025 0.476±0.020

CoT 0.398±0.014 0.438±0.014 0.470±0.019 0.556±0.007 0.494±0.028 0.521±0.024 0.453±0.014

SimToM 0.413±0.012 0.440±0.015 0.427±0.009 0.574±0.010 0.620±0.025 0.516±0.014 0.502±0.016

TimeToM 0.252±0.020 0.260±0.012 0.299±0.011 0.300±0.021 0.580±0.017 0.409±0.026 0.404±0.016

DWM 0.429±0.013 0.470±0.027 0.433±0.023 0.562±0.017 0.473±0.021 0.543±0.014 0.465±0.028

PerceptToM 0.408±0.023 0.407±0.026 0.504±0.006 0.611±0.009 0.527±0.011 0.573±0.016 0.521±0.006

EnigmaP 0.445±0.026 0.442±0.018 0.439±0.023 0.462±0.014 0.515±0.020 0.450±0.013 0.531±0.015

EnigmaT 0.487±0.018 0.545±0.036 0.530±0.012 0.582±0.028 0.610±0.021 0.574±0.031 0.553±0.011

Table 2: Main results of EnigmaToM in comparison with existing methods on ToMi, HiToM, and FANToM datasets.
Accuracy means and variances are calculated based on 5 runs, which used 5 different subsets of the corresponding
dataset. The best and second best results are highlighted in bold and underline respectively.

Auxiliary information such as character names is
obtained using an off-the-shelf NER model8.

Question Formatting We formulate ToMi as a
free-form generation task where the model is in-
structed to choose between two possible answers.
We formulate HiToM as a multiple-choice task as
in the original paper (Wu et al., 2023). FANToM
contains both free-form generation and multiple-
choice questions. We follow the question format-
ting instructions in the original paper (Kim et al.,
2023). For efficient and accurate parsing of LLM
responses, we follow the convention of (Huang
et al., 2024), instructing LLMs to wrap answers
within the special <answer> and </answer> to-
kens. As introduced in §3.3, the recursive modeling
of mental states in high-order ToM questions has
been addressed by the IM mechanism, which allows
us to transform high-order ToM questions into first-
order questions. Similarly, TimeToM leverages
temporal information to conduct symbolic mod-
eling of high-order ToM (Hou et al., 2024). We
apply such transformation when evaluating with
TimeToM and EnigmaToM (Appendix C).

8https://huggingface.co/dslim/bert-large-NER

Towards Robust Evaluation To ensure robust
evaluation, we construct 5 subsets for each dataset
by sampling data points using commonly used
random seeds‡. Each subset of ToMi and HiToM
contains 100 event sequences, whereas each
subset of FANToM contains 50 multi-round
dialogues. The number of QA pairs in each
subset is shown in Table 1. We report both the
mean accuracy and its variance based on the 5 runs.

We evaluate each method using various instruction-
tuned LLMs, including Llama3.1-8B, Llama3.3-
70B‡, Qwen2.5-7B, Qwen2.5-72B‡, Gemma2-9B,
Gemma2-27B, and GPT-4o (Dubey et al., 2024;
Yang et al., 2024; Gemma, 2024; OpenAI, 2024).
To ensure reproducibility, all experiments are done
using zero-shot prompting with greedy decoding
and a temperature of 0. LLM inference is car-
ried out using on 2 NVIDIA A10080GB GPUs
(Kwon et al., 2023).

Table 2 shows the main results of EnigmaToM in
comparison with existing methods on ToMi,

‡We use 12, 42, 96, 2012, and 2024 as random seeds.
‡Loaded in 4bit using BitsandBytes (Dettmers et al.) with

weights from https://huggingface.co/unsloth.
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HiToM, and FANToM datasets. In general, we
see that EnigmaToM brings improvements in accu-
racy across all datasets and most LLMs. Specif-
ically, EnigmaP outperforms other methods on
ToMi and HiToM, while EnigmaT achieves superior
performance on FANToM. EnigmaToM is particu-
larly effective with smaller LLMs. For instance,
EnigmaT boosts Qwen2.5-7B to exceed the zero-
shot performance of Qwen2.5-72B4bit. Further,
results from the HiToM dataset demonstrate that
EnigmaToM is particularly effective in high-order
ToM reasoning. We analyze the effectiveness of
EnigmaToM in tackling high-order ToM reasoning
in §5.1. Moreover, results from Table 2 show that
EnigmaP performs better on event-based datasets
(ToMi and HiToM) while EnigmaT is more effec-
tive on a dialogue-based dataset (FANToM). We
investigate such a discrepancy in §5.2 and §5.3.

5 Analysis

5.1 High-Order ToM Reasoning
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Figure 3: Relative advantage of EnigmaToM on HiToM
dataset with respect to ToM order.

To assess the effectiveness of EnigmaToM in high
order ToM reasoning, we analyze its performance
on the HiToM dataset, which consists of ToM
questions requiring reasoning up to the fourth or-
der. We compute the relative advantage of Enig-
maToM with EnigmaP over the zero-shot vanilla
prompting baseline. From Figure 3, we observe
that EnigmaToM improves mean accuracy across
all orders of ToM reasoning, with notable effec-
tiveness in higher-order ToM reasoning. Specifi-
cally, results from the Qwen2.5 and Llama3 fam-
ilies demonstrate that EnigmaToM has an increas-
ing advantage as the order of ToM reasoning in-
creases. For the third- and fourth-order ToM rea-
soning, EnigmaToM achieves an average improve-
ment of 0.160±0.003 and 0.148±0.004 respectively,
across all models compared to the baseline. We ob-
serve similar trends on ToMi and FANToM albeit
they only contain ToM questions up to the second

Llama3.3-70B4bit Qwen2.5-72B4bit GPT-4o

To
M

i

EnigmaP 0.828±0.012 0.839±0.014 0.847±0.030

EnigmaT 0.787±0.024 0.837±0.024 0.795±0.036

w/o KI 0.834±0.067 0.845±0.026 0.811±0.028

w/o IM 0.693±0.014 0.655±0.039 0.674±0.002

Eniw/o KI,IM 0.767±0.015 0.717±0.034 0.767±0.041

H
iT

oM

EnigmaP 0.696±0.007 0.605±0.007 0.733±0.017

EnigmaT 0.518±0.011 0.473±0.010 0.626±0.020

w/o KI 0.726±0.004 0.632±0.003 0.751±0.004

w/o IM 0.460±0.013 0.423±0.008 0.442±0.006

Eniw/o KI,IM 0.534±0.008 0.456±0.012 0.521±0.006

FA
N

To
M

EnigmaP 0.515±0.020 0.450±0.013 0.531±0.015

EnigmaT 0.610±0.021 0.574±0.031 0.553±0.011

w/o KI 0.607±0.018 0.542±0.036 0.539±0.012

w/o IM 0.500±0.021 0.477±0.017 0.470±0.013

Eniw/o KI,IM 0.486±0.002 0.532±0.025 0.476±0.020

Table 3: Ablation study of EnigmaToM on ToMi,
HiToM, and FANToM datasets. "w/o KI" indicates with-
out entity state knowledge injection. "w/o IM" denotes
without perspective-taking via iterative masking.
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decreased results are highlighted.

order. See Appendix F for complete results and
analysis on all three datasets.

5.2 Ablation Study

To understand the effectiveness of each component
of EnigmaToM, we conduct an ablation study by
(1) keeping the injected knowledge but removing
the masking-based perspective-taking mechanism
(directly using Eaug as context); and (2) conduct-
ing perspective-taking without knowledge injection
(applying Equation 5 with GE instead of GEaug).

Enigma for Perspective Taking As shown in Ta-
ble 3, removing the IM mechanism results in an av-
erage accuracy drop of −0.165 on ToMi, −0.172
on HiToM, and −0.103 on FANToM. This suggests
that the iterative masking mechanism is effective
in perspective-taking and crucial for EnigmaToM to
achieve boosted performance in ToM reasoning
(See Table A2 for complete results).

Enigma for Knowledge Injection Compared to
IM for perspective-taking, entity state knowledge
injection is less critical. On ToMi and HiToM, its
removal slightly reduces Gemma2-27B’s perfor-
mance on ToMi but improves performance for all
other LLMs on both benchmarks, further highlight-
ing IM’s effectiveness in perspective-taking. How-
ever, for FANToM, entity state knowledge is in-
dispensable, as excluding it results in performance
drops across all LLMs. For ToMi and HiToM, we
hypothesize that larger LLMs are better at handling
reporting bias. This aligns with the results shown in
Table 2, where EnigmaP surpasses EnigmaT as LLM
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Dataset Model Precision Recall F1-Score

TMi Llama3.3-70B4bit 0.859 0.968 0.910

FTM Llama3.3-70B4bit 0.880 0.970 0.923

Table 4: Performance analysis of key entity recogni-
tion in ToMi (TMi) and FANToM (FTM) datasets using
Llama3.3-70B4bit. See Appendix J for detailed descrip-
tion of the evaluation process.

Model Relevance Accuracy Avg. #Token

T
M

i EnigmaT
8B 0.847 0.807 7.665

EnigmaT
70B 0.870 0.860 9.740

FT
M EnigmaT

8B 0.880 0.773 8.973
EnigmaT

70B 0.880 0.700 30.517

Table 5: Performance analysis of EnigmaT on ToMi
(TMi) and FANToM (FTM) datasets. See Appendix J
for detailed description of the evaluation process.

size increases, meaning that the fine-grained infor-
mation about the state of the entity and its causal
relationships with events are encapsulated more ef-
fectively in the larger LLMs. In such cases, poten-
tial inaccuracies in injected entity-state knowledge
outweigh its benefits in addressing reporting bias,
leading to decreased performance. In the case of
FANToM, the dialogue-based nature of the dataset
makes useful information sparser than in event-
based datasets. Here, knowledge injection serves
a different role: rather than primarily addressing
reporting bias, it compresses important information
from utterances into entity-state representation, ef-
fectively reducing LLMs’ workload in identifying
crucial information. See Appendix H for examples.

5.3 Effectiveness of LLMs and Enigma

7B 14B 32B 72B 7B 14B 32B 72B 7B 14B 32B 72B

Vanilla

CoT

SimToM

TimeToM

DWM

PerceptToM

    ToMi                      HiToM                 FANToM

0.1

0.0

0.1

0.2

Figure 4: Relative advantage of EnigmaToM on ToMi,
HiToM, and FANToM datasets. We use EnigmaP as
the pivot method for ToMi and HiToM and EnigmaT for
FANToM. Exact mean accuracies are shown in Table A1.
Model sizes shown in x-axis are Qwen2.5 models.

The effectiveness of EnigmaToM is contingent
upon the capabilities of both the Enigma neural
knowledge base and the LLM deployed in the
framework. In this section, we conduct analysis

of EnigmaToM with an aim to explore the follow-
ing two questions: (1) Does EnigmaToM benefit
LLMs of larger size? and (2) How effective is our
Enigmaneural knowledge base and does scaling
Enigmalead to increased performance?

We raise the first question by hypothesizing that
perspective-taking, albeit the challenges posed by
its multi-hop nature, could become solvable by
more capable LLMs. Empirically speaking, the
capability of LLMs positively correlates to their
number of parameters. To eliminate potential con-
founding factors, we analyze the effectiveness of
LLMs from the Qwen2.5 family with sizes ranging
from 7B to 72B (Yang et al., 2024).

In the second question, we aim to examine
the effectiveness of EnigmaT. Trained using data
from OpenPI2.0, we wish to investigate how well
can the knowledge encapsulated in EnigmaT be
transferred to aid ToM reasoning. Aside from
the performance of EnigmaT, we also explore the
effectiveness of scaling of EnigmaT. In addi-
tion to the EnigmaT used in previous experiments,
which is trained using a Llama3.1-8B model, we
trained another EnigmaT based on Llama3.3-70B,
which we denote as EnigmaT

70B. Experiments with
EnigmaT

70B are carried out following the same pro-
cedure described in §4.

Scaling of Base LLMs We compute the relative
advantage of EnigmaToM by calculating the differ-
ence in mean accuracy between EnigmaToM and the
most performant baseline methods (see Table 2).
We use EnigmaP as the pivot method for ToMi and
HiToM and EnigmaT for FANToM. Figure 4 shows
two trends: (1) a slight diminishment in advantage
on ToMi and (2) a gradual increase in advantage
on FANToM. We attribute this to the differing diffi-
culty levels of these two datasets. ToMi, which con-
sists of short sequences of concise events, becomes
easier to solve with large-scale LLMs. Conversely,
FANToM, featuring long sequences of lengthy dia-
logues, remains challenging even for larger LLMs.
HiToM, positioned between these two extremes
with long sequences of concise events, shows that
EnigmaToM has a consistent advantage regardless
of the LLM sizes. This discrepancy in performance
and model scaling effect between ToMi and FAN-
ToM aligns with the analysis in §4 and §5.3. These
findings suggest that while prompting large-scale
LLMs can potentially tackle ToM reasoning involv-
ing short event sequences (as in ToMi), ToM rea-
soning about lengthy event or dialogue sequences
(as in HiToM and FANToM) can benefit from the
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Qwen2.5-7B Llama3.1-8B Gemma2-9B Gemma2-27B Llama3.3-70B4bit Qwen2.5-72B4bit GPT-4o
To

M
i EnigmaP 0.706±0.044 0.738±0.056 0.865±0.031 0.833±0.018 0.828±0.012 0.839±0.014 0.847±0.030

EnigmaT
8B 0.825±0.030 0.796±0.023 0.814±0.020 0.804±0.050 0.787±0.024 0.837±0.024 0.795±0.036

EnigmaT
70B 0.837±0.017 0.835±0.026 0.847±0.008 0.854±0.023 0.844±0.018 0.860±0.015 0.872±0.026

H
iT

oM

EnigmaP 0.508±0.012 0.477±0.005 0.555±0.010 0.576±0.004 0.696±0.007 0.605±0.007 0.733±0.017

EnigmaT
8B 0.457±0.005 0.431±0.010 0.446±0.008 0.478±0.004 0.518±0.011 0.473±0.010 0.626±0.020

EnigmaT
70B 0.456±0.007 0.444±0.012 0.481±0.006 0.489±0.012 0.517±0.010 0.467±0.009 0.733±0.010

FA
N

To
M EnigmaP 0.445±0.026 0.442±0.018 0.439±0.023 0.462±0.014 0.515±0.020 0.450±0.013 0.531±0.015

EnigmaT
8B 0.487±0.018 0.545±0.036 0.530±0.012 0.582±0.028 0.610±0.021 0.574±0.031 0.553±0.011

EnigmaT
70B 0.479±0.032 0.517±0.041 0.491±0.039 0.529±0.028 0.537±0.011 0.494±0.023 0.539±0.012

Table 6: Results of scaling EnigmaT from Llama3.1-8B to Llama3.3-70B.
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decreased results are highlighted in the corresponding color.

fine-grained entity state knowledge as well as the
symbolic masking mechanism of EnigmaToM.

Effectiveness of LLMs in Recognizing Key
Entity-Attributes Recognizing entities and their
attributes (Equation 2) that are indispensable for
answering the ToM questions posed is a critical
pre-requisite for the effectiveness of EnigmaToM.
On the one hand, failing to recognize a key entity
will disable EnigmaToM to properly augment the
events with critical information. On the other hand,
erroneously identify an extraneous entity will lead
to inclusion of redundant information, which will
prolong the context and increase the reasoning bur-
den of the LLM. To evaluate the quality of key
entities and attributes extracted by LLMs, we man-
ually labeled 300 entities and attributes identified
using Llama3.3-70B4bit. Evaluation results from
Table 4 suggests that LLMs are more than compe-
tent in identifying key entities and attributes. With
a F1-score of 0.910 on the ToMi dataset and 0.923
on the FANToM dataset, it is safe to conclude that
the vast majority of entities identified by LLMs are
indeed vital to answering the ToM questions posed.

Effectiveness of Enigma in Generating En-
tity State Information To understand the ef-
fectiveness of scaling Enigma, we trained two
EnigmaT models using the same OpenPI2.0 dataset.
With Llama3.1-8B as the base model, we trained
EnigmaT

8B. Further, with Llama3.3-70B, we
trained EnigmaT

70B
11. Table 6 shows that there is

an obvious discrepancy between the scaling effect
of EnigmaT: EnigmaT

70B consistently outperforms
EnigmaT

8B in ToMi and HiToM while underper-
forming EnigmaT

8B in FANToM.

• Relevance: whether the entity and attribute con-
tribute to answering the ToM question. This eval-
uates the same aspects of EnigmaToM as the pre-
cision scores shown in Table 4
11Training details are provided in Appendix B.

• Accuracy: whether the entity state can be in-
ferred from the given context.

From Table 5, we see that the relevance scores
of both ToMi and FANToM exceed 80%, indicat-
ing that Llama3.3-70B is capable of identifying
entities and attributes useful for ToM reasoning.
Entity state length and accuracy are closely cor-
related. EnigmaT

70B produces a more articulated
response compared to its counterpart. Specifically,
scaling EnigmaT brings 5.3% improvement in ac-
curacy on ToMi while increasing response length
by only 2.075 tokens. In contrast, FANToM expe-
riences a significant 21.544 token increase in re-
sponse length, which reduces EnigmaT’s efficiency
as an information compressor and leads to greater
hallucination, resulting in a 7.3% drop in accuracy.
We provide demonstration examples in Appendix I.

6 Conclusion

In this work, we introduced EnigmaToM, a neuro-
symbolic framework designed to enhance the ToM
reasoning capabilities of LLMs. By leveraging a
Neural Knowledge Base of Entity States through an
iterative masking mechanism and knowledge injec-
tion, EnigmaToM accomplishes the bulk of ToM rea-
soning via perspective-taking through symbolic rea-
soning, which alleviates LLMs’ reasoning burden.
Experimental results across multiple benchmarks
demonstrate that EnigmaToM outperforms existing
methods, particularly excelling in high-order ToM
reasoning scenarios. Our analysis highlights the
effectiveness of the iterative masking mechanism
in maintaining strong performance across varying
depths of ToM reasoning, as well as the critical role
of fine-grained entity state knowledge in compress-
ing key information in complex event sequences
(as in FANToM). Furthermore, the framework’s
efficiency and scalability make it a promising so-
lution for addressing the computational challenges
associated with high-order ToM reasoning tasks.
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Limitations

ToM Reasoning Beyond Character Perception
EnigmaToM tackles ToM reasoning of characters’
beliefs based on their perceptions. While we be-
lieve that reasoning about characters’ perceptions
serve as a cornerstone for all types of ToM rea-
soning, future work may explore methods to facil-
itate real-world ToM reasoning about characters’
emotions, intentions, desires, and their inherent
subjectivity (Zhou et al., 2025).

Neural Knowledge Base EnigmaToM relies on
access to a Neural Knowledge Base (NKB) to re-
trieve entity-state information for answering ToM
questions. While Table 5 shows that Enigma is
capable of producing accurate entity-state informa-
tion, it can be further improved (e.g. full-parameter
fine-tuning instead of LoRA). Further, expanding
the NKB to incorporate richer entity-state details,
including emotional, temporal, and causal relation-
ships, would be beneficial for ToM reasoning about
high-level information.

Error Propogation While experiments demon-
strate the effectiveness of the IM mechanism, it is
prone to error propagation. In the case of high-
order ToM reasoning, applying a wrong mask in
the iterative masking process will lead to the event
being erroneously excluded and vice versa. Ad-
ditionally, in cases requiring complex reasoning
about non-linear or intertwined event dependencies,
the symbolic Iterative Masking (IM) mechanism
may need to be enhanced.

Ethics Statement

This study aims to enhance LLMs’ ToM reasoning
by improving the accuracy and efficiency of percep-
tual perspective-taking, ultimately optimizing their
effectiveness in communication. ToM reasoning is
essential for enhancing LLMs’ ability to interact
with humans (e.g., in chatbots) or other LLMs (e.g.,
in multi-agent systems). The evaluation datasets
used in this study have been peer-reviewed and
widely adopted in previous research. However,
these datasets may introduce issues such as cul-
tural bias and often lack demographic information.
Future research could incorporate auxiliary data,
such as demographic and personality traits, to im-
prove representativeness across diverse ethnic and
cultural backgrounds.
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A Data Examples

See below for examples of event sequences/dia-
logues and ToM questions from ToMi (Box A),
HiToM (Box A), and FANToM (Box A) datasets.

ToMi Example
Benjamin entered the crawlspace.
Abigail entered the crawlspace.
Emily entered the crawlspace.
The t-shirt is in the cupboard.
The cupboard is in the crawlspace.
Abigail exited the crawlspace.
Emily moved the t-shirt to the basket.
The basket is in the crawlspace.
Benjamin hates the coat.
Emily exited the crawlspace.
Abigail entered the crawlspace.

<0th-Order (Factual) Question>
Where is the t-shirt in the begining?

<1st-Order ToM Question>
Where will Abigail search for the t-shirt?

<2nd-Order ToM Question>
Where does Benjamin think that Abigail
search for the t-shirt?

HiToM Example
William, Lily, Aiden, Emma and Isla en-
tered the porch.
The melon is in the green bathtub.
William made no movements and stayed in
the porch for 1 minute.
William exited the porch.
Lily made no movements and stayed in the
porch for 1 minute.
Lily exited the porch.
Aiden moved the melon to the blue pantry.
Lily likes the green bucket.
Aiden exited the porch.
Emma moved the melon to the green bucket.
Emma exited the porch.
Isla moved the melon to the green bathtub.
Isla exited the porch.
William, Lily, Aiden, Emma and Isla en-
tered the waiting room. Emma, Isla and
Aiden entered the basement.
The watermelon is in the blue suitcase.
Emma made no movements and stayed in
the basement for 1 minute. Emma exited

the basement.
Isla moved the watermelon to the blue bot-
tle.
Isla exited the basement.
Aiden made no movements and stayed in
the basement for 1 minute.
Aiden exited the basement.
Emma, Isla and Aiden entered the waiting
room.
Aiden likes the red pantry.
William, Isla, Aiden and Lily entered the
front yard.
The beans is in the red bottle.
William made no movements and stayed in
the front yard for 1 minute.
Isla likes the green cupboard.
William exited the front yard.
Isla moved the beans to the green bottle.
Isla exited the front yard.
Aiden made no movements and stayed in
the front yard for 1 minute.
Aiden exited the front yard.
Lily made no movements and stayed in the
front yard for 1 minute.
Lily exited the front yard.
William, Isla, Aiden and Lily entered the
waiting room.

<0th-Order (Factual) Question>
Where is the melon really?

<1st-Order ToM Question>
Where does William really think the melon
is?

<2nd-Order ToM Question>
Where does Lily think William thinks the
melon is?

<3rd-Order ToM Question>
Where does Emma think Lily thinks
William thinks the melon is?

<4th-Order ToM Question>
Where does Isla think Emaa thinks Lily
thinks William thinks the melon is?

FANToM Example
Armani: Hi Troy, it’s nice to meet you.
What’s been your experience in maintaining
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good mental health while in a relationship?

Troy: Hey Armani! I’ve found that the most
important thing for me is understanding that
I need to take care of my own mental health
first. I look at it like the whole oxygen mask
in an airplane situation- you have to se-
cure your own before helping someone else.

Armani: That’s an interesting perspective,
it’s all about maintaining individual well-
ness before being able to fully contribute to
a relationship. I’ve always subscribed to the
idea of communication being an integral
part of it too. Being open about my mental
health issues with my partner has always
helped to build understanding.

Troy: I definitely see the merit in that too.
It can be hard to open up about these things
sometimes, especially if the other person
doesn’t fully understand.

Armani: Absolutely, I think it’s important
for both partners to constantly educate
themselves on each other’s mental health
issues. It not only encourages empathy
but also helps in mitigating unnecessary
tensions.

Troy: You’re right. From my experience,
I’ve found that maintaining a healthy
work-life balance is also essential. Stress
from work can really take a toll on my
mental health, and it’s hard to keep that
stress from affecting my relationships.

Armani: I completely agree, Troy. Ignoring
the effects of work-related stress on our
mental wellbeing can have dire conse-
quences on our relationships. Just as we
wouldn’t like to bring home a flu virus, we
shouldn’t be infecting our home with stress
either. It’s all about creating boundaries.

Troy: Absolutely. It’s great to find someone
else who understands the importance
of maintaining mental health while in a
relationship. It’s definitely a balance, but
it’s worth it in the long run.

Armani: Couldn’t agree more Troy. I’m
glad we could have this open conversation
about such an important topic. The more
we talk, the more we can break the stigma
surrounding mental health issues.

Cynthia: Hello Troy, Armani. The two
of you have been engaged in quite a
meaningful conversation, it seems.

Armani: Hi Cynthia, yes indeed. We’ve
been discussing the importance of good
mental health maintenance in a relationship.

Cynthia: Such a crucial topic! In my
experience, clear actionable boundaries
have played a very big role in mental
wellness. Making sure me and my partner
are on the same page about our needs
and wants can genuinely de-stress the
environment.

Troy: Couldn’t agree more, Cynthia. The
clear establishment of boundaries helps a
lot in maintaining a harmonious balance.

Armani: Definitely, Cynthia. It’s such a
simple concept yet so often overlooked.
People sometimes shy away from setting
boundaries, afraid it might upset the other
person. But it’s needed for mutual respect
and understanding.

Cynthia: Yes, Armani. And it’s these
boundaries that create stronger communica-
tion channels. So, when I’m experiencing a
difficult time with my mental health, I find
it easier to express to my partner.

Troy: That really hits home, Cynthia. It’s
incredibly liberating to be able to express
ourselves without fear of judgement.

Armani: Absolutely, Troy! And the thing is,
this whole conversation really highlights the
importance of communication. Everything,
from understanding personal mental health,
setting boundaries, to dealing with stress,
involves communicating effectively.
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Cynthia: Here’s to hoping that more people
can learn and implement these practices in
their relationships. Good mental health is
so important, and talking about it openly
like this is a great step in the right direction.

<0th-Order (Factual) Question>
What did Armani and Troy discuss as a
preventative measure against work-related
stress affecting their re lationships?

<1st-Order ToM Question>
What does Cynthia believe are the neces-
sary steps suggested by Armani and Troy
for dealing with mental health issues in a
relationship?

<2nd-Order ToM Question>
What does Armani believe about Cynthia’s
belief regarding the necessary steps
suggested by Armani and Troy for dealing
with mental health issues in a relationship?
Where does Benjamin think that Abigail
search for the t-shirt?

B Training of EnigmaT

We train EnigmaT based on Llama3.1-8B and
Llama3.3-70B using OpenPI2.0 dataset. The
training of Llama3.1-8B is done using Low-Rank
Adaptation (Hu et al., 2022) and the training of
Llama3.3-70B is done using Quantized Low-Rank
Adaptation (Dettmers et al., 2024). The rank of
the decomposed matrix is set to LoRA-Rank = 32.
We use a batch size of 64 and a gradient accumu-
lation of 2 steps, leading to an effective batch size
of 128. The learning rate is initially set to 5e-5 and
adjusted using a Cosine Annealing with a warm-up
ratio of 0.01. Each model is trained for 3 epoches.
The training is done on 2 NVIDIA A10080GB GPUs
using LlamaFactory (Zheng et al., 2024).

We modified the formatting convention used in
OpenPI (Tandon et al., 2020). In the original for-
matting, the output is formatted as

[Attribute] of [Entity] is [Previous State]

before and [Current State] afterwards.

In this formulation, the model is tasked to predict
both the previous state as well as the current
state after the event has taken place. We modify
this formulation by removing the previous state

and only asking the model to predict the current
state:

[Attribute] of [Entity] becomes [State]

this modification is made to alleviate model’s rea-
soning burden and to focus on deriving the effect
the the event.

The events are provided to the model in a cu-
mulative fashion. For instance, when generating
entity state knowledge for the i-th event, the model
is provided with the events from the first event to
the i-th event.

C Transforming High-order ToM
Question to First-order

As discussed in Hou et al. (2024), perspective-
taking reduces the reasoning depth of high-order
ToM questions. Therefore, we can transform high-
order ToM questions into first-order questions af-
ter perspective-taking. We first justify how Enig-
maToM enables reduction in ToM reasoning order
and then provide a description of the question trans-
formation process.

C.1 ToM Order Reduction
ToM order reduction is possible thanks to the IM
mechanism, which carries out the high-order, multi-
hop ToM reasoning process symbolically using spa-
tial scene graphs. We use an example to elicit the
necessity of IM mechanism.

Consider the following event sequence:

• William, Lily, Aiden, Emma and Isla en-
tered the porch.

• The melon is in the green bathtub.
• Aiden moved the melon to the blue pantry.
• Lily likes the green bucket.
• Aiden exited the porch.
• Lily made no movements and stayed in the

porch for 1 minute.
• Lily exited the porch.
• Emma moved the melon to the green

bucket.
• Emma exited the porch.
• Isla moved the melon to the green bathtub.
• Isla exited the porch.
• William moved the melon to the red bucket.
• William exited the porch.
• William, Lily, Aiden, Emma, and Isla en-

tered the waiting room.

Consider the following third-order ToM ques-
tion:
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Where does Emma think Lily thinks William thinks
the melon is?
Answer: blue pantry

The above question can be reduced to the follow-
ing first-order ToM question:
Where does William think the melon is?
Answer: red bucket

Notice that the answers to the third-order and
first-order ToM question are different. This is
because answering the original question requires
three reasoning hops:

Step 1 Infer Emma’s belief about the environ-
ment.

Step 2 Given Emma’s belief, infer Lily’s belief
about the environment.

Step 3 Given Emma’s belief of Lily’s belief, infer
William’s belief about the environment.

In contrast, a first-order ToM question only requires
a single reasoning hop:

Step 1 Infer William’s belief about the environ-
ment.

To alleviate the multi-hop reasoning burden from
LLMs, we utilize the spatial scene graphs with
the IM mechanism. Each character’s spatial scene
graph can be treated as a reasoning hop. The ag-
gregates of the scene graphs through IM effectively
performs multi-hop reasoning symbolically. This
allows us to transform a high-order ToM question
into a simpler one while preserving accuracy.

For example, after IM, irrelevant events are
masked (striked through), leaving only those repre-
senting Emma’s belief of Lily’s belief of William’s
belief:

• William, Lily, Aiden, Emma and Isla en-
tered the porch.

• The melon is in the green bathtub.
• Aiden moved the melon to the blue pantry.
• Lily likes the green bucket.
• Aiden exited the porch.
• Lily made no movements and stayed in the

porch for 1 minute.
• Lily exited the porch.
• Emma moved the melon to the green

bucket.
• Emma exited the porch.
• Isla moved the melon to the green bathtub.
• Isla exited the porch.
• William moved the melon to the red bucket.

• William exited the porch.
• William, Lily, Aiden, Emma, and Isla en-

tered the waiting room.

By reducing the original third-order ToM ques-
tion into that of first-order, we are able to obtain
the correct answer:

Original Third-order ToM Question
Where does Emma think Lily thinks William thinks
the melon is?
Reduced First-order ToM Question
Where does William think the melon is?
Answer: blue pantry

C.2 Question Transformation
We transform the original high-order ToM ques-
tions to first-order by prompting LLMs with 5-shot
demonstrations for each dataset. The transformed
questions are used for QA with EnigmaToM as well
as TimeToM. See below for an illustrative example
of transforming a third-order ToM question into a
first-order question:

3rd-Order → 1st-Order ToM Question:
TEST Where does Emma think Lily thinks William
thinks the melon is?
TESTTESTTESTTEST=⇒
TEST Where does William think the melon is?

D Prompts

The following prompt is used to infer key entities
and attributes from an event sequence and ToM
question as described in §3.1 and Equation 2.

Infer Key Entities and Attributes
<Events>
{{indexed narrative}}

<Questions>
{{question list}}

Based on the list of <questions>, extract at
most five entities and their attributs that are
needed for answering the questions. Note
that one entity could corresponds to mul-
tiple attributes. List the entities and their
attributes. For instance, if the "location of
tie", "placement of tie", and "color of crate"
are important for answering the questions,
the response should be formatted as follows:

<entities>
- location of tie
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- placement of tie
- color of crate
</entities>

You must include at least one entity that is
not a person. Only extract entities directly
mentioned in the questions, do not make
any further inference. Do not include any
entities that indicate a time or point in time.
First briefly reason about the content of the
events and the questions and then provide a
comprehensive list of at most five entities
and their attributes with the following
format:

<entities>
- attribute of entity
- attribute of entity
...
</entities>

We use the following prompt to identify loca-
tions appeared in the event sequence. The location
information is used as anchor when constructing
the spatial scene graphs to map the locations pro-
duced by Enigma to a common location space.

Extract Locations from Events
<Events>
{{indexed narrative}}

What are the rooms mentioned in these
events? List all the rooms in the following
format:
- Room1
- Room2
...

Please exclude entities in which people can-
not enter. Each narrative must contain at
least one room and your answer must in-
clude at least one room. Provide your an-
swer as bullet points without any explana-
tion.

The following prompt is used to acquire
the entity state knowledge by prompting LLMs
(EnigmaP).

Generate Entity State Knowledge
<Events>
{{indexed narrative}}

<Entity-of-Interest>
{{eoi list}}
Given the list of events and entities-of-
interest, track the state of the attribute of
entities throughout the events. Generate
state of each attribute of entities as a list in
the following format:
- [Event Index]: [Entity Attribute] becomes
[State]
- [Event Index]: [Entity Attribute] becomes
[State]
...

Determine spatial information according to
the following instructions:
- All of the location changes, if exist, are
explicitly stated in the events.
- If the event does not state that a character
left a room, assume that the character
remains in the previous location.

Generate the answers exactly as instructed
without any explanation or note. Only gen-
erate the event indices where there is a entity
state change, omit other events.

E Visualization of Complexity

In §3.4, we provide a general analysis of the com-
plexity of SymbolicToM and EnigmaToM with re-
spect to the number of belief graphs need to be
constructed. Here, we provide a visualization
to better demonstrate the efficiency of the IM-
based perspective-taking method of EnigmaToM.
Figure A1 shows the number of belief graphs
need to be constructed for SymbolicToM and Enig-
maToM with respect to the number of characters
(Part a) or the order of ToM reasoning (Part b).
When plotting against the number of character, we
fix the ToM reasoning order to be k = 2, which
requires a minimum of 2 characters. When plotting
against the Tom reasoning order, we fix the number
of characters to be m = 5, which supports up to
5th-order acyclic ToM reasoning.
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Qwen2.5-7B Qwen2.5-14B Qwen2.5-32B Qwen2.5-72B4bit

To
M

i

VNL 0.722±0.045 0.747±0.053 0.720±0.036 0.717±0.034

CoT 0.724±0.026 0.773±0.030 0.769±0.029 0.767±0.033

SToM 0.642±0.022 0.686±0.042 0.721±0.029 0.749±0.020

TToM 0.567±0.024 0.699±0.027 0.758±0.019 0.865±0.018

DWM 0.686±0.023 0.732±0.033 0.723±0.053 0.762±0.051

PToM 0.720±0.038 0.743±0.050 0.783±0.021 0.809±0.033

EnigmaP 0.706±0.044 0.736±0.019 0.828±0.009 0.839±0.014

EnigmaT 0.825±0.030 0.826±0.027 0.809±0.027 0.837±0.024

H
iT

oM

VNL 0.378±0.013 0.389±0.014 0.524±0.007 0.456±0.012

CoT 0.441±0.007 0.330±0.020 0.523±0.009 0.481±0.011

SToM 0.402±0.009 0.389±0.025 0.520±0.007 0.536±0.018

TToM 0.316±0.010 0.397±0.017 0.473±0.011 0.415±0.013

DWM 0.444±0.020 0.436±0.019 0.566±0.011 0.560±0.009

PToM 0.393±0.018 0.446±0.017 0.500±0.011 0.548±0.016

EnigmaP 0.508±0.012 0.554±0.013 0.674±0.011 0.605±0.007

EnigmaT 0.457±0.005 0.414±0.013 0.504±0.013 0.473±0.010

FA
N

To
M

VNL 0.400±0.015 0.522±0.004 0.496±0.022 0.532±0.025

CoT 0.398±0.014 0.516±0.011 0.482±0.030 0.521±0.024

SToM 0.413±0.012 0.537±0.027 0.379±0.024 0.516±0.014

TToM 0.252±0.020 0.476±0.019 0.419±0.018 0.409±0.026

DWM 0.429±0.013 0.558±0.012 0.519±0.022 0.543±0.014

PToM 0.408±0.023 0.579±0.014 0.542±0.019 0.573±0.016

EnigmaP 0.445±0.026 0.474±0.020 0.407±0.025 0.450±0.013

EnigmaT 0.487±0.018 0.560±0.030 0.405±0.026 0.574±0.031

Table A1: Results of the scaling experiments. This table shows the exact mean accuracy of each method on ToMi,
HiToM, and FANToM with base LLMs of different sizes. The results shown in this table are used to generate
Figure 4.
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Figure A1: Visualization of the complexity of Symbol-
icToM and EnigmaToM with respect to the number of
belief graphs need to be constructed.

F Detailed Results of High-Order ToM
Reasoning with EnigmaToM

Complete Results As discussed in §5.1, we ob-
serve that EnigmaToM improves LLMs’ capabil-
ity of conducting high-order ToM reasoning us-
ing the HiToM dataset. Although the ToM rea-
soning order of ToMi and FANToM are limited
to second-order, we observe a similar trend where
EnigmaToM brings consirable improvements in the
case of second-order ToM reasoning. See Fig-

ure A2 for detailed results.

Ablation Study In §5.2, we analyzed the efficacy
of the IM and KI components of EnigmaToM. Here,
we conduct analysis on the impact of IM and KI
with respect to the ToM reasoning order. Specifi-
cally, we compute the advantage of removing the
IM or KI component from EnigmaToM as

Adv = Accw/o component − Accw/ component (7)

where a positive advantage score means that the
model performed better without the component
and vice versa. Table A3, Table A4, and Table A5
shows the result of the ablation study. Aligning
with our findings in §5.2, IM is indispensable to
all ToM reasoning tasks, reiterating the importance
of perspective-taking in ToM reasoning. On the
other hand, KI is critical for the dialogue-based
FANToM dataset while less effective for the event-
based ToMi and HiToM datasets. This finding illus-
trates that Enigma’s functionality as an information
compressor by compressing key information as en-
tity state knowledge is substantial when tackling
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Figure A2: The complete results of the advantage of EnigmaToM with respect the ToM order on ToMi, HiToM, and
FANToM datasets.

Qwen2.5-7B Llama3.1-8B Gemma2-9B Gemma2-27B Llama3.3-70B4bit Qwen2.5-72B4bit GPT-4o

To
M

i

EnigmaP 0.706±0.044 0.738±0.056 0.865±0.031 0.833±0.018 0.828±0.012 0.839±0.014 0.847±0.030

EnigmaT 0.825±0.030 0.796±0.023 0.814±0.020 0.804±0.050 0.787±0.024 0.837±0.024 0.795±0.036

w/o KI 0.805±0.018 0.799±0.022 0.842±0.023 0.825±0.031 0.834±0.067 0.845±0.026 0.811±0.028

w/o IM 0.623±0.021 0.597±0.040 0.686±0.019 0.658±0.027 0.693±0.014 0.655±0.039 0.674±0.002

H
iT

oM

EnigmaP 0.508±0.012 0.477±0.005 0.555±0.010 0.576±0.004 0.696±0.007 0.605±0.007 0.733±0.017

EnigmaT 0.457±0.005 0.431±0.010 0.446±0.008 0.478±0.004 0.518±0.011 0.473±0.010 0.626±0.020

w/o KI 0.511±0.007 0.463±0.006 0.571±0.012 0.614±0.007 0.726±0.004 0.632±0.003 0.751±0.004

w/o IM 0.380±0.004 0.341±0.015 0.406±0.006 0.408±0.013 0.460±0.013 0.423±0.008 0.442±0.006

FA
N

To
M

EnigmaP 0.445±0.026 0.442±0.018 0.439±0.023 0.462±0.014 0.515±0.020 0.450±0.013 0.531±0.015

EnigmaT 0.487±0.018 0.545±0.036 0.530±0.012 0.582±0.028 0.610±0.021 0.574±0.031 0.553±0.011

w/o KI 0.487±0.022 0.544±0.033 0.530±0.017 0.579±0.021 0.607±0.018 0.542±0.036 0.539±0.012

w/o IM 0.436±0.028 0.448±0.024 0.426±0.011 0.478±0.008 0.500±0.021 0.477±0.017 0.470±0.013

Table A2: Results of the ablation study of EnigmaToM on ToMi, HiToM, and FANToM datasets. "w/o KI" indicates
without entity state knowledge injection. "w/o IM" denotes without perspective-taking via iterative masking.

ToM reasoning with sparse information (as in daily
dialogue). Further, removing KI leads to larger
performance degradation in LLMs of smaller size,
further highlighting that small LLMs are less capa-
ble of dealing with reporting bias and prefer to have
explicit state information regarding key entities in
events.

G Detailed Results of Scaling Experiment

The exact mean accuracies of EnigmaToM and base-
line methods on ToMi, HiToM, and FANToM
datasets using LLMs of varying sizes are shown in
Table A1.
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ToM Order Qwen2.5-7B Llama3.1-8B Gemma2-9B Gemma2-27B Llama3.3-70B4bit Qwen2.5-72B4bit GPT-4o
w

/o
KI

Zeroth +0.008 +0.016 +0.008 −0.000 +0.008 −0.000 −0.000

First −0.019 −0.019 −0.000 +0.005 +0.014 −0.000 −0.060

Second −0.004 −0.004 −0.039 −0.022 +0.017 −0.025 −0.030

w
/o

IM

Zeroth +0.008 −0.024 −0.000 −0.000 +0.008 −0.000 +0.000

First −0.127 −0.226 −0.161 −0.283 −0.273 −0.025 −0.164

Second −0.025 −0.124 −0.253 −0.224 −0.206 −0.218 −0.269

Table A3: Results of the ablation study of EnigmaToM on ToMi with respect to ToM order. We display the
advantage scores computed using Equation 7. "w/o KI" indicates without entity state knowledge injection. "w/o IM"
denotes without perspective-taking via iterative masking.

ToM Order Qwen2.5-7B Llama3.1-8B Gemma2-9B Gemma2-27B Llama3.3-70B4bit Qwen2.5-72B4bit GPT-4o

w
/o

KI

Zeroth −0.017 +0.075 +0.058 +0.005 +0.058 +0.042 +0.075

First −0.008 −0.017 +0.008 −0.017 +0.016 −0.017 +0.023

Second +0.045 +0.039 +0.026 +0.013 +0.019 +0.006 +0.002

Third −0.018 +0.018 +0.018 +0.065 +0.054 +0.030 0.009

Fourth +0.040 +0.040 +0.017 +0.046 +0.040 +0.029 +0.008

w
/o

IM

Zeroth −0.000 −0.000 −0.000 −0.000 −0.000 −0.008 +0.016

First −0.019 −0.100 −0.092 −0.150 −0.259 −0.175 −0.229

Second −0.142 −0.084 −0.207 −0.193 −0.323 −0.271 −0.403

Third −0.214 −0.143 −0.238 −0.232 −0.268 −0.261 −0.365

Fourth −0.125 −0.103 −0.211 −0.205 −0.257 −0.177 −0.316

Table A4: Results of the ablation study of EnigmaToM on HiToM with respect to ToM order. We display the
advantage scores computed using Equation 7. "w/o KI" indicates without entity state knowledge injection. "w/o IM"
denotes without perspective-taking via iterative masking.

ToM Order Qwen2.5-7B Llama3.1-8B Gemma2-9B Gemma2-27B Llama3.3-70B4bit Qwen2.5-72B4bit GPT-4o

w
/o

KI

Zeroth −0.032 −0.054 −0.031 −0.044 −0.053 −0.058 −0.010

First −0.308 −0.255 −0.265 −0.392 −0.237 −0.205 +0.005

Second −0.162 −0.212 −0.113 −0.230 −0.128 −0.119 −0.005

w
/o

IM

Zeroth −0.012 −0.003 −0.025 −0.027 −0.041 −0.035 −0.025

First −0.335 −0.367 −0.343 −0.370 −0.327 −0.418 −0.348

Second −0.178 −0.215 −0.126 −0.218 −0.144 −0.073 +0.000

Table A5: Results of the ablation study of EnigmaToM on FANToM with respect to ToM order. We display the
advantage scores computed using Equation 7. "w/o KI" indicates without entity state knowledge injection. "w/o IM"
denotes without perspective-taking via iterative masking.

H Examples of Knowledge Injection

We demonstrate how KI is accomplished with an
event sequence from ToMi. The important enti-
ties and attributes are generated using Llama3.3-
70B4bit and the entity state knowledge is generated
by EnigmaT

8B.

Events from ToMi
1: Benjamin entered the crawlspace.
2: Abigail entered the crawlspace.
3: Emily entered the crawlspace.
4: The t-shirt is in the cupboard.
5: The cupboard is in the crawlspace.
6: Abigail exited the crawlspace.

7: Emily moved the t-shirt to the basket.
8: The basket is in the crawlspace.
9: Benjamin hates the coat.
10: Emily exited the crawlspace.
11: Abigail entered the crawlspace.

Entity State Generated by EnigmaT
8B

Event1:
- Location of Benjamin is in the crawlspace.

Event2:
- Location of Abigial is in the crawlspace.
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Event3:
- Location of Emily is in the crawlspace.

Event4:
- Location of T-shirt is in cupboard.

Event5:
- Location of cupboard is in crawlspace.

Event6:
- Location of Abigail is outside the
crawlspace.

Event7:
- Location of T-shirt is in basket.
- Content of basket is T-shirt.
- Content of cupboard is empty.

Event8:
- Location of basket is in the crawlspace.

Event9:
None
Event10:
- Location of Emily is outside the
crawlspace.

Event11:
- Location of Abigail is in the crawlspace.

Augmented ToMi Events
1: Benjamin entered the crawlspace.

2: Abigail entered the crawlspace.

3: Emily entered the crawlspace.

4: The t-shirt is in the cupboard.
- Location of T-shirt is in the cupboard.

5: The cupboard is in the crawlspace.
- Location of cupboard is in the crawlspace.

6: Abigail exited the crawlspace.

7: Emily moved the t-shirt to the basket.
- Location of T-shirt is in basket. - Content
of basket is T-shirt.
- Content of cupboard is empty.

8: The basket is in the crawlspace.
- Location of basket is in the crawlspace.

9: Benjamin hates the coat.

10: Emily exited the crawlspace.

11: Abigail entered the crawlspace.

I Examples of Entity State Knowledge
Generated by EnigmaT

8B and EnigmaT
70B

Entity states generated by EnigmaT
70B is more in-

formative compared to EnigmaT
8B. From the an-

notated entity states generated by EnigmaT
8B and

EnigmaT
70B in both ToMi and FANToM, we ob-

serve that EnigmaT
70B is much more eloquent com-

pared to its counterparts. Such eloquence makes
the entity state knowledge more informative in
ToMi:

Entity State for ToMi
Example Event 1
Amelia moved the belt to the pantry.

EnigmaT
8B

Amelia’s knowledge of the belt’s location
is known

EnigmaT
70B

Amelia’s knowledge of the belt’s location is
that the belt is in the pantry

Example Event 2
Lucas exited the living room.

EnigmaT
8B

Location of Lucas as known to Charlotte is
absent
EnigmaT

70B

Location of Lucas as known to Charlotte is
outside the living room

However, in FANToM, the increased eloquence
of EnigmaT

70B leads to more hallucination, result-
ing in more erroneous information and reducing its
functionality as an information compressor (con-
tents that can be entailed from the utterance is
marked in

Augmented Events 
(Abigail-Centric) 

1. Abigail entered the pantry. 
2. Emily entered the pantry.  

3. An apple is stored in a jar. Container of 

apple is now a jar. 

4. Abigail exited the pantry. Awareness of 

Abigail is now unaware of things going on in 

the pantry. 
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Original Events 
(Omniscent-Perspective) 

1. Benjamin entered the pantry.  

2. Abigail entered the pantry.  

3. Emily entered the pantry.  

4. An apple is stored in a jar.  

5. The jar is in the pantry. 

6. Abigail exited the pantry.  

7. Emily moved the apple to a crate. 

8. The crate is in the pantry. 

……

Q1: Where will Emily look for the apple? 
Q2: Where will Abigail look for the apple? 
……

Omniscent  Scene Graph (G𝜀 )aug

Entity State Knowledge (S𝜀)
C
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green whereas the irrelevant contents
are marked in

Augmented Events 
(Abigail-Centric) 

1. Abigail entered the pantry. 
2. Emily entered the pantry.  

3. An apple is stored in a jar. Container of 

apple is now a jar. 

4. Abigail exited the pantry. Awareness of 

Abigail is now unaware of things going on in 

the pantry. 
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Original Events 
(Omniscent-Perspective) 

1. Benjamin entered the pantry.  

2. Abigail entered the pantry.  

3. Emily entered the pantry.  

4. An apple is stored in a jar.  

5. The jar is in the pantry. 

6. Abigail exited the pantry.  

7. Emily moved the apple to a crate. 

8. The crate is in the pantry. 

……

Q1: Where will Emily look for the apple? 
Q2: Where will Abigail look for the apple? 
……

Omniscent  Scene Graph (G𝜀 )aug

Entity State Knowledge (S𝜀)
C

A

red):
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Entity State for FANToM
Example Event 1
Breanna: Long-distance, yes, but not for as
long as you both. It was a few months, and
things didn’t work out for us. But talking
about relationships, it brings back memories
of my first crush.
EnigmaT

8B

Breanna’s knowledge of longdistance rela-
tionship methods is known.
EnigmaT

70B

Breanna’s knowledge of longdistance re-
lationship methods is limited to her past
personal experience of a few months, with
an unsuccessful outcome, and she has been
exposed to Nickolas and Raelynn’s meth-
ods, including the importance of trust, un-
derstanding, commitment, and regular com-
munication, such as scheduling regular talks
and quick calls.

Example Event 2
Shayla: It was. But I made it through. It
was a journey that brought me face-to-face
with my own strength. It made me realize
the importance of mental health and
inspired me to help others who are going
through something similar.

EnigmaT
8B

Significance of nurturing mental wellbeing
is important.
EnigmaT

70B

Significance of nurturing mental wellbeing
is heightened, as it is recognized as a cru-
cial aspect of overall health, particularly in
the aftermath of traumatic experiences like
abusive relationships, and is seen as a key
factor in building resilience and facilitating
recovery.

J Evaluation of Enigma
As discussed in §5.3 and Table 5, we manually
labeled 300 instances of entity state information
from ToMi and FANToM datasets. The annotation
was carried out by three graduate students (100
annotations each) majoring in computer science at
a prestigious university. Since the annotation was
conducted for entity state information, which only
contains commonsense knowledge, no training was
provided to the annotators. An annotation guide-

line was provided to the annotators containing a
description of the annotation task and examples
that cover all possible label combinations.

The data provided to the annotators are identi-
cal to the ones used in EnigmaToM. The set of key
entities (E) and their attributes (A) are generated
using Llama3.3-70B4bit. Hence, the relevance
score reflects Llama3.3-70B4bit’s capability of
generating entities and attributes that are important
to answering the corresponding ToM questions. Al-
though it is not shown in the example, we provide
the complete set of questions and cumulative events
for each data point. In other words, given an event
sequence {ϵ}i=1,n and a set of ToM questions Q,
we provided ϵ1:k and Q when annotating the kth

event and its entity states.
The detailed annotation guideline is shown in

the following pages.
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Annotation Guideline for Evaluation of
Neural Knowledge Base

Task Formulation

In this task, you will be responsible for evaluating the quality of entity state information generated by
two Neural Knowledge Base. You will be given a set of Questions in the question column, an event or
utterance in the event column and a entity state information generated from a neural knowledge bank
in the XXX_states column.

You will be annotating the following two aspects of the generated entity state information:

1. Relevance: whether the generated entity state knowledge is helpful with answering the questions.

2. Accuracy: whether the entity state can be entailed from the given event/utterance.

For both tasks, choose Yes if you believe that the entity state is relevant/accurate and choose No
otherwise.

Note that all of the entity state follows a semi-structured formulation:

- [Attribute] of [Entity] is [Current State]

In the Relevance annotation task, you only need to pay attention to the [Attribute] of [Entity].
In the Accuracy annotation task, you need to consider the complete entity state description.

Examples

Question: Where does Abigail think that Benjamin searches for the pumpkin?
Event: Abigail moved the pumpkin to the bathtub.
State: location of the pumpkin is in bathtub

In this example, we see that the Location of the Pumpkin is important in answering the question.
Therefore, we mark the relevance as Yes. We see that there exists an entailment relationship between
Event and State. Therefore, we mark the accuracy as Yes.

Question: Where does Abigail think that Benjamin searches for the pumpkin?
Event: Chloe entered the workshop.
State: location of Chloe is in workshop

In this example, we see that the Location of the Chloe is not related to the question. Therefore, we
mark the relevance as No.

We see that there exists an entailment relationship between Event and State. Therefore, we mark the
accuracy as Yes.

Question: Where does Abigail think that Benjamin searches for the pumpkin?
Event: Abigail moved the pumpkin to the bathtub.
State: location of Abigail is in bathtub
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In this example, we see that the Location of the Abigail is important in answering the question.
Therefore, we mark the relevance as Yes.

However, it is unlikely that Abigail needs to enter the bathtub to place the pumpkin. Therefore,
there does not exist an entailment relationship between Event and State. Therefore, we mark the
accuracy as No.

Question: Where does Abigail think that Benjamin searches for the pumpkin?
Event: Chloe entered the workshop.
State: location of Chloe is in kitchen

In this example, we see that the Location of the Chloe is not related to the question. Therefore, we
mark the relevance as No.

We see that there does not exist an entailment relationship between Event and State. Therefore, we
mark the accuracy as No.
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