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Abstract

Large language models (LLMs) require im-
mense resources for training and inference.
Quantization, a technique that reduces the pre-
cision of model parameters, offers a promis-
ing solution for improving LLM efficiency and
sustainability. While post-training quantiza-
tion methods typically achieve 4-8 bits per pa-
rameter, recent research suggests that training
LLMs with 1.58 bits per weight parameter from
scratch can maintain model accuracy while
greatly reducing memory requirements and en-
ergy consumption at inference time. Here, we
investigate a training strategy for quantization-
aware pre-training, where the models are first
trained with 16-bit precision and then transi-
tion into 1.58-bit quantization-aware training.
Our results on 11 downstream tasks show that
this 16-to-1.58-bit training strategy is prefer-
able over full 1.58-bit training and leaves mod-
els closer to those which have undergone 16-bit
training. We further investigate the effects of re-
taining the optimizer state at the transition point
and gradually phasing in quantization strength
— finding that both techniques alleviate the mag-
nitude of loss spikes, but also that these effects
can be compensated through further training.

1 Introduction

Large Language Models (LLMs) have revolution-
ized natural language processing and are making a
strong entry into both related and unrelated indus-
tries. However, deployment of LLMs comes with a
series of obstacles such as memory-usage, latency,
and throughput. Environmental considerations re-
garding energy consumption of both training and
inference becomes an increasingly important as-
pect (Schwartz et al., 2020; Strubell et al., 2020).
Quantization-aware training of language models,
i.e. preparing the model for later quantization al-
ready during training and thereby preventing perfor-
mance degradation between training and inference,
has shown promising results (Wang et al., 2023;

Ma et al., 2024). However, the resulting models
tend to require more parameters to compensate for
the reduction in bit-precision per parameter (Kumar
et al., 2025; Nielsen and Schneider-Kamp, 2024).
Here, we investigate a strategy of first training with
standard precision in an initial phase, followed by a
second phase of 1.58-bit quantization-aware train-
ing with weights quantized to either -1, 0, or 1.

Reducing inference compute demands of lan-
guage models is particularly critical in the con-
text of recent advances in scaling test time com-
pute (Guo et al., 2025; Muennighoff et al., 2025;
Jaech et al., 2024). If the trend of scaling test-time
compute continues, we can assume that inference
will soon dominate the resource consumption in a
language model’s life cycle.

Recent works in 1-bit (Wang et al., 2023) and
1.58-bit quantization-aware training (Ma et al.,
2024; Nielsen and Schneider-Kamp, 2024; Nielsen
et al., 2024), demonstrate the potential of train-
ing in 1.58-bit precision while retaining most of
the performance, mitigating some of the drawback
of existing post-training quantization techniques,
such as performance degradation in both NLP and
computer vision (Frantar et al., 2023; Li and Gu,
2023). To achieve competitive model performance,
these quantization-aware training strategies keep
16-bit-precision weights at training time (‘“shadow
weights”), which are quantized on-the-fly to 1-
bit or 1.58-bit precision during forward passes.
Straight-through estimated gradients (Bengio et al.,
2013) are then used to update the shadow weights.

While such a training strategy initially requires
more memory and compute than pre-training a reg-
ular language model, its benefits can be harvested
after training. At inference time, the final shadow
weights can be quantized once and for all, after
which the shadow weights can be discarded, yield-
ing a model with 4-5 times reduced memory foot-
print, compared to 16-bit model. With tailored ker-
nels, this would allows us to replace costly matrix
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multiplications within linear layers with computa-
tionally more efficient integer addition operations.

Although these methods provide an exciting av-
enue for efficient inference on models trained with
1.58-bit quantization-aware training techniques, ex-
isting models are not eligible for efficient infer-
ence out of the box (Wang et al., 2023). This is
increasingly important as increasing model size
implies corresponding resource requirements, mak-
ing training from scratch both resource heavy and
environmentally challenging. This calls for an in-
vestigation of a resource efficient strategy.

Recent analysis have hinted at 7-8 bits being
compute optimal (Kumar et al., 2025). Pushing the
bit-representation even lower currently requires a
quantization-aware training strategy as proposed in
BitNet (Wang et al., 2023; Ma et al., 2024).

Concurrent work on quantization-aware training
has shown that it is generally possible to convert a
16-bit model and into a 1.58-bit model through con-
tinual pre-training (Mekkouri et al., 2024). How-
ever, the experiments reported upon only consider
the case of starting with an already pre-trained lan-
guage model and do not compare against training
with low precision from scratch. In related matter,
recent work has shown that “overtrained” networks,
such as fully-pre-trained language models, do not
represent an ideal starting point for quantization
(Kumar et al., 2025).

It is so far unclear which strategy to choose
when pre-training from scratch: Is it preferable
to train with 1.58-bit quantization-aware training
all the way, or is it preferable to start with stan-
dard 16-bit training and then transition into 1.58-bit
quantization-aware training (see Figure 1). And if
so, when should we switch from 16-bit to 1.58-bit
training? Is a it beneficial to gradually phase in
the quantization strength? And what role does the
retention of the optimizer state (if available) play?

In this work, we investigate these questions to
shed new light on the potential of continuing a
pre-training run in 1.58-bit. We aim to provide
insights into the potential of converting existing
pre-trained models to 1.58-bits and into developing
more efficient ways of pre-training new models.
Ultimately, this work contributes to a future with
more efficient, environmentally-friendly LLMs and
also allows to convert existing 16-bit models into
1.58-bit models, even in low-resource settings.

In order to answer these questions and achieve
our aims, we systematically perform a number of
experiments to identify a data-optimal transition
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1.58-bit quantization-aware pre-training

16-to-1.58-bit continual pre-training
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Figure 1: 16-to-1.58-bit continual pre-training. Blue
and yellow denotes batches processed under 16-bit and
1.58-bit training, respectively.

point from 16-bit to 1.58-bit training. We further
investigate whether it makes sense to phase in the
quantization strength and whether the optimizer
state is of importance, providing a basis for future
work on expand upon and for practitioners to re-
ceive guidance in converting existing models and
pre-training new models.

Challenging both conventional wisdom and
common-sense expectations, our systematic com-
parison reveals that models that are first trained
with 16-bit precision, and only later transition into
1.58-bit quantization-aware training, are more ulti-
mately effective than models that are fully trained
with 1.58-bit quantization-aware training.

In addition, we find that, while retaining the op-
timizer state indeed helps to alleviate a temporary
increase in training loss, continual pre-training with
a fresh optimizer state attains similar loss values
after a limited number of optimization steps.

Furthermore, we find that gradually introducing
quantization strength provides little to no bene-
fits. A continual pre-training with full quantization
strength temporarily increases training loss, but
attains similar loss values, and also downstream
performance, after a limited number of steps.

These results together indicate that the availabil-
ity of optimizer state is not an obstacle when contin-
uing pre-training from openly available language
models and that no new hyperparameters (regard-
ing phasing in quantization strength) are needed,
enabling an easier transition of existing pre-trained
models, with smaller amounts of data. In summary,
our contributions are as follows:

* Systematic investigation and comparison be-
tween 1.58-bit pre-training from scratch and
hybrid 16-bit training with 1.58-bit continual
pre-training.
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* Results from 11 downstream tasks showing
that 16-to-1.58-bit continual pre-training is
more effective than full 1.58-bit training.

* An analysis revealing limited effects of the
gradual phasing in of quantization strength
and the retention of optimizer states.

2 Related work

Early attempts of ternary-weight neural nets.
The exploration into ternary weights was motivated
by finding a better trade-off between accuracy and
complexity than binary neural networks, which had
suffered a substantial decrease in performance, ef-
fectively hindering the usability of such networks
(Chen et al., 2021). Earlier attempts of binary- and
ternary-weight neural networks showcased ternary
superiority over binary weights, while showing
promising results in the computer vision domain
employing a direct optimization of the quantization
(Liet al., 2016; Zhu et al., 2016).

Post-training quantization. The most common
approaches for quantization fall under the cate-
gory of post-training quantization. Those include
approaches such as Generative Pre-trained Trans-
former Quantization (GPTQ) (Frantar et al., 2023)
and Activation-aware Weight Quantization (AWQ)
(Lin et al., 2024). A similar proposal for the vision
transformer (Li and Gu, 2023) represents one of
many efforts in the computer vision domain. Post-
training quantization approaches come with an in-
herent decrease in performance, trading increased
latency and throughput and decrease memory for
precision (Kumar et al., 2025).

Quantization-aware training. Quantization-
aware training was already proposed in earlier
work on post-training such as LLM-QAT (Liu
et al., 2023) and QA-LoRA (Xu et al., 2023).
These methods directly optimize the quantized
weights with respect to an objective function such
that there is no decrease in performance when the
model is used for inference.

Recently, we have seen a number of works on
1-bit (Wang et al., 2023) and 1.58-bit (Ma et al.,
2024) quantization-aware techniques demonstrat-
ing strong performance in LLM performance, yield-
ing a small or no loss in precision depending on
model sizes. Other works have demonstrated strong
potential for multi-modal architectures (Sundaram
and lyer, 2024) and spiking language models (Bal
et al., 2024). Lastly, we have seen an investigation

into the potential of 1.58-bit in small language and
vision models and the definition of a scaling law
for decoder-only models for reintroducing capac-
ity (Nielsen and Schneider-Kamp, 2024). Similar
scaling laws hold for encoder-only models while
encoder-decoder models seem to be less predictable
(Nielsen et al., 2024). This latest work further
shows that also non-transformer models, such as
plain multi-layer perceptions and graph neural net-
works can attain similar performance as their 16/32-
bit counterparts, even without increasing the num-
ber of parameters.

Summary. Research on language model quan-
tization shows promising results but is also lim-
ited by the effectiveness of the final models com-
pared to standard precision models. There is a
strict distinction between post-training methods
and quantization-aware training. So far, it remains
unexplored whether an initial phase of standard 16-
bit precision training would improve or worsen the
performance of the final model when continuing
with 1.58-bit quantization-aware pre-training.

3 Methods

We first recapitulate the basics of quantization-
aware training (Section 3.1) before describing the
proposed strategy of continual 1.58-bit pre-training
(Section 3.2) and discussing critical considerations
concerning optimizer states (Section 3.3) and grad-
ually phasing in quantization strength (Section 3.4).

3.1 Background on 1.58-bit training

Recent work has focused on specifically on 1.58-
bit quantization-aware training techniques (Wang
et al., 2023; Nielsen and Schneider-Kamp, 2024;
Nielsen et al., 2024). Specifically, these works in-
vestigate ternary networks, where the weights only
can take on the values -1, 0 and 1. The quantization
is guided by 16-bit precision “shadow weights”,
which are quantized during the forward passes and
rely on a straight-through estimator for optimiza-
tion. Activations are also commonly quantized in
a given range ()p, which is then multiplied with
the quantized weight-matrix. Intuitively, the the
weight-matrix then either is adding, ignoring, or
subtracting the previous layer’s activations using
-1, 0, or 1, respectively.

The key idea of 1.58-bit training is to maintain
16-bit precision “shadow weights” and quantize
them on-the-fly. We follow the basic formulation of
BitNet (Wang et al., 2023) for replacing activations
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and weights in all linear layers of a language model
as follows:

W quant = max(—1, min(1, round(W - wscale))

Xquant = max(—Qp, min(Qp — 1, round(i - Tscale))

where W denotes the weight parameters of the
linear layers (‘“shadow weights”) and I denotes the
normalized input. () defines the integer range of
the activations, which defaults to 8 bits, i.e., 256
possible values. The scaling factors wgcale and
Zscale are derived from the respective means of the
weight matrix W and the layer’s input I.

3.2 Continual 1.58-bit Pre-training

We hypothesize that, to obtain the best possible
1.58-bit model given a fixed amount of data, the
model needs to first find a good set of 16-bit pa-
rameters before those can be quantized to 1.58-bit.
As such, we hypothesize that there exists a point ¢*
during training, at which one can switch from 16-
bit training to 1.58-bit training in order to achieve
an ultimately better 1.58-bit model, than one would
obtain by complete quantization-aware training on
the same data.

Formally, given a training set {x;},_,. we hy-
pothesize that there exists a specific point in train-
ing t*, such that a model first trained with 16 bit on
X0, X1, ...,Xt« and then trained with 1.58 bit on
Xgx41,Xex+2 - - -, XN—1 Ultimately performs bet-
ter than a model pre-trained with 1.58-bits on the
full training set xg, X7 . ..xN—1. See Figure 1. At
the transition point ¢*, the 16-bit weights turn into
“shadow weights” for quantization-aware training.

3.3 Optimizer State Retention

A key consideration in investigating continual 1.58-
bit pre-training is the availability of optimizer
states. If the optimizer states are available, we
expect a smooth transition from pre-training to con-
tinued pre-training. In our strictly controlled ex-
perimental setup, the optimizer states are available.
However, in practice, optimizer states cannot be
assumed to be available, when one would seek con-
tinuing pre-training on arbitrary base models. We
take the opportunity to investigate the effect of opti-
mizer states being available vs. assuming that they
were not available.

3.4 Phasing in Quantization Strength

We further investigate a recently proposed tech-
nique to gradually increase quantization strength.

In this formulation, we would train a model
on Xg, X1, ...,Xs with 16-bit training, and then
gradually introduce quantization strength on the
data xg11,Xs12,...X¢+ (Mekkouri et al., 2024).
Specifically, we consider an extra hyperparame-
ter \ integrated into the calculation of Xquant and
Wquant denoting the activations and weight quan-
tization respectively. We formulate the gradual
quantization strength as:

Xsoftquant = X + A - detach (Xquant — x)
Wsoflquanl =W + )\ . detach (unant — W)

where A\ is a hyperparameter that controls the
quantization strength, and detach(-) prevents gra-
dient flow by detaching the operations from the
computation graph. Reflecting on previous work
(Mekkouri et al., 2024) and experimenting with
different schedules, we observed that the main ef-
fect of using a gradual phasing in of quantization
strength seems to happen in the transition from
near-full quantization to full quantization, i.e., for
high values of A. In our experiments, the value for
the hyperparameter A at each optimization step is
therefore determined by the following schedule:

0, ift<s
At) = 203022y 1, ifs<t <t
1, otherwise

Here, o is the logistic sigmoid function:

This schedule is based on the shifted and scaled
part of the sigmoid function for non-negative .

4 Experimental Setup

We conducted experiments investigating the poten-
tial of continuing the pretraining in 1.58-bits from
(partially) pre-trained 16-bit models, initializing
the 1.58-bit model’s “shadow-weights” with the
pre-trained 16-bit weights. Furthermore, we inves-
tigate the impact of optimizer state retention and
phasing in quantization strength.

Architecture Specifically, we employ the model
architecture of Open Language Models (Groen-
eveld et al., 2024) in their official 1B parame-
ters configuration. We use the BitLinear pack-
age' to all replace all nn.Linear layers within an

"https://pypi.org/project/bitlinear/
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OLMo model by BitLinear layers (as described
in Section 3), which includes both projection layers
within the attention and feed-forward modules.

Training We train all models on the Dolma
dataset (Soldaini et al., 2024), with OLMo’s stan-
dard hyperparameters?. In particular, optimization
is carried out by the AdamW optimizer (Kingma
and Ba, 2015) with a cosine learning rate scheduler
with warmup. We employ the same learning rates
for both the 16 and 1.58-bit baselines in accordance
with observations in our prior work (Nielsen and
Schneider-Kamp, 2024; Nielsen et al., 2024). We
employ a sequence length of 2048 and a batch size
of 2048, totaling to a batch size of 4M tokens. Each
experiment is run for a total of 10,000 optimizer
steps.

Experimental Conditions
compare various conditions:

In this setting, we

* We vary the point in training, where we tran-
sition from 16 bit to 1.58 bit precision: either
at 2K, 4K, or 6K steps.

* We control the retention of optimizer states:
keeping the optimizer state alive vs. resetting
the optimizer.

* We compare a sharp transition from 16-bit
training to 1.58-bit training against a soft tran-
sition by gradually phasing-in quantization
strength.

Baselines As our baselines, we consider train-
ing the model entirely under 1.58-bit quantization-
aware training (for brevity: full 1.58-bit training)
and entirely under standard 16-bit training (full
16-bit training). The expectation is that the perfor-
mance of continually pre-trained 1.58-bit models
will land between those two baselines, with full
16-bit training being expected to perform best.

Evaluation For downstream evaluation, we
employ ARC-easy (reasoning Clark et al.,
2018), CommitmentBank (De Marneffe et al.,
2019), COPA (Roemmele et al.,, 2011), Hel-
laSwag (Zellers et al., 2019), MRPC (Dolan and
Brockett, 2005), OpenBookQA (Mihaylov et al.,
2018), PIQA (Bisk et al., 2020), RTE (Dagan
et al., 2005), SciQ (Johannes Welbl, 2017), SST-
2 (Socher et al., 2013), and WinoGrande (Sak-

Zhttps://github.com/allenai/OLMo/blob/main/configs/official-

0724/OLMo-1B.yaml

aguchi et al., 2021). All downstream task eval-
uations are carried out via zero-shot inference,
i.e., without fine-tuning and relying solely on pre-
trained knowledge and generalization capabilities.

5 Results

We first present the results regarding 16-to-1.58-
bit quantization-aware training in Section 5.1, fol-
lowed by results comparing effects of and optimizer
state retention (Section 5.2) and of phasing in of
quantization strength (Section 5.3). Lastly, we re-
port the results of the evaluation on downstream
tasks in Section 5.4.

5.1 Results for Continual 1.58-bit Pre-training

We conduct experiments investigating the poten-
tial in continuing the pre-training in 1.58-bits
from a 16-bit models, initializing the 1.58-bit
model’s “shadow weights” with the pre-trained 16-
bit weights. Further, we investigate the impact of
gradually phasing in the quantization strength, and,
lastly, continuing the 1.58-bit pre-training with the
16-bit pre-training optimizer.

We show that the best regime encountered in
these pre-trainings consists of 2K 16-bit steps,
demonstrating a gradually decrease in performance
for both 4K and 6K 16-bit steps starting-points.
Even more importantly, all three continual 1.58-bit
training runs achieve a better performance than the
full 1.58-bit training, demonstrating that training
1.58-bit models from scratch is suboptimal.

In Figure 2a, we observe that training a 16-bit
model from scratch for 10K steps yields a loss
value at 2.95 (red), whereas a fully 1.58-bit training
achieves a loss around 3.15 (purple) after equally
many steps. Continuing the pre-training from 2K
16-bit steps yields the best of the continued pre-
training variants, with a resulting loss value around
3.088 (green). We observe that transitioning early
yields a spike in the loss for around 100 steps be-
fore the model is able to catch up. Continuing from
4K 16-bit steps (light green) exhibits a smaller
curve-spike, yielding a loss value at 3.097 after
10K steps. Last, continuing from 6K 16-bit steps
(dark blue) exhibits an even smaller curve-spike
yielding a loss value of around 3.12.

Overall, it is clear that training 1.58-bit from
scratch is suboptimal. Furthermore, the training
loss curves indicate that 16-bit training for more
steps is likely detrimental to the overall training
loss. The choice of 2K 16-bit steps seems to be
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(a) Comparing the 16-bit training with different stages of
1.58-bit continued pretraining and investigating the impact
of transferring the optimizer-states. Training runs marked
with the “-opt” suffix have their optimizer state retained.
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(b) Comparing the 16-bit training with different stages of
1.58-bit continued pretraining and investigating the impact
of phasing in quantization. Training runs marked with the
“-nowarm” suffix do not employ phasing in.

Figure 2: Training loss curves comparing the effect of different variants of 1.58-bit continual pre-training of 1B
OLMo models from 16-bit into 1.58-bit models. Our baseline is full 1.58-bit quantization-aware pre-training
(cpt-1.58-10K; blue). Standard 16-bit training without quantization (cpt-16-10K) is displayed in red. Continual
pre-trainings, i.e., transitioning from 16-bit into 1.58-bit training, are marked according to the transition points at
2K, 4K, and 6K optimizer steps, respectively. All models have been trained for 10K steps in total. All training loss
curves have been smoothed with an exponential filter with window size 64.

optimal within the four regimes considered.

5.2 Effect of Optimizer State Retention

We investigate the impact of retaining the optimizer
from the 16-bit pre-training, a warm optimizer, in-
stead of constructing a newly initialized optimizer.
We observe that spikes in loss curves in Figure
2a can be dampened by employing the optimizer
states from the 16-bit training, demonstrated by the
experiments with yellow, pink, and teal loss curves,
yielding a lower and smoother spike-curve across
all transfers. However, we observe the smoothen-
ing in the transition is gradually having a smaller
effect, when transitioning at later stages (4K and
6K steps) of the training. More importantly, the
warm-optimizer runs resulted in comparable loss
values to their corresponding cold-optimizer runs.

5.3 Effect of Phasing in Quantization Strength

Figure 2b shows the impact of phasing in quanti-
zation strength. In the “nowarm” case, the training
loss exhibits large spikes, which are however re-
covered relatively soon. After 10K total steps, the
training loss is again at the same level compared
to gradually phasing in quantization strength. This
suggests that phasing in quantization strength is not

having a lasting impact when pre-training language
models, and that there is sufficient time to recover
from any disturbance imposed by the abrupt quan-
tization. It seems that quantization may as well be
introduced at one point in time, alleviating the need
for tuning extra hyperparameters and schedules de-
termining the quantization strength.

5.4 Results of the Downstream Evaluation

We evaluated the downstream performance on all
downstream tasks after each 1K optimizer steps.
We report the results of the final downstream
evaluation after 10K steps in Table 1. Figure 3
shows the trajectories of downstream task perfor-
mance over the course of the training runs. No-
tably, full 16-bit training only achieves the best
result on the HellaSwag dataset. Full 1.58-bit train-
ing achieves the best result on the SciQ dataset.
On all other datasets, one of the continually pre-
trained models transitioning into 1.58-bit training
at 2K, 4K or 6K steps attains the best downstream
evaluation result. That said, the margin between
the downstream results are small and, as expected,
the performance of the 16-bit model is on average
higher than any specific configuration of the 1.58-
bit models. Given the relative volatility of some
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Model ARC-easy CommitB COPA HellaSwag MRPC OpenBookQA PIQA RTE SciQ SST-2 WinoGrande
full 1.58-bit training 0.4561 0.4107 0.6300 0.3212 0.8122 0.2760 0.6425 05343 0.6840  0.5803 0.5185
full 16-bit training 0.4596 0.4107 0.6500 0.3607 0.8122 0.2760 0.6589 05379  0.6780  0.5447 0.5170
cpt-16-2K-1.58-10K 0.4526 0.4464 0.6900 0.3375 0.8105 0.2700 0.6621 0.4874 0.6760 0.5539 0.5146
cpt-16-2K-1.58-10K-nowarm 0.4456 0.4107 0.6300 0.3342 0.8134 0.2700 0.6480 0.5487 0.6760 0.6101 0.4988
cpt-16-2K-1.58-10K-opt 0.4632 0.5179 0.6300 0.3376 0.7951 0.2620 0.6420 0.4946 0.6830 0.4989 0.5264
cpt-16-4K-1.58-10K 0.4544 0.4286 0.6500 0.3328 0.8122 0.2680 0.6458 0.5235 0.6520 0.5229 0.5146
cpt-16-4K-1.58-10K-nowarm 0.4491 0.4286 0.6300 0.3329 0.8122 0.2560 0.6415 0.5668 0.6660 0.5745 0.5107
cpt-16-4K-1.58-10K-opt 0.4439 0.4107 0.6200 0.3339 0.8122 0.2780 0.6491 0.5451 0.6600 0.5092 0.4996
cpt-16-6K-1.58-10K 0.4351 0.3929 0.6000 0.3262 0.8122 0.2560 0.6366 0.5451 0.6790 0.5791 0.4838
cpt-16-6K-1.58-10K-nowarm 0.4491 0.4286 0.6100 0.3240 0.8122 0.2640 0.6398 0.5487 0.6700 0.5183 0.4988
cpt-16-6K-1.58-10K-opt 0.4333 0.3750 0.6100 0.3291 0.8122 0.2760 0.6360 0.5090 0.6810 0.5493 0.5107

Table 1: Final downstream evaluation with the best results marked in bold and the runner-ups in ifalics. All model

variants have been trained for 10K steps in total.

of the downstream evaluation results and the small
differences, it remains unclear to what degree these
differences are statistically significant.

6 Discussion

Through a comprehensive set of experiments where
we have full control over the pre-training data
and regimen, we have shown that, counterintu-
itively, quantization-aware training of 1.58-bit mod-
els from scratch is neither ideal nor most efficient
for obtaining the best possible 1.58-bit models. In
addition, we find that previously proposed strate-
gies of gradually phasing in quantization strength
are not needed as long as there are sufficient opti-
mization steps to catch up. Furthermore, we make
similar observations for the optimizer states: Reset-
ting the optimizer results in a spike in training loss,
but the loss can be recovered after relatively few
further optimization steps. Crucially, our experi-
ments on downstream tasks indicate that contin-
ual 16-to-1.58-bit pre-training is a highly effective
training strategy, consistently outperforming full
1.58-bit training, and sometimes even exceeding
downstream performance of 16-bit models.

Our results show that a period of standard train-
ing at higher precision (16-bit), and then continuing
the pre-training with quantization-aware 1.58-bit
training constitutes a preferable training regimen.

We hypothesize that this is because of particular
challenges that 1.58-bit quantization-aware training
imposes on optimization. Adjusting the weights is
more difficult under 1.58-bit training, because the
quantized weight may very well remain stable even
though the “shadow weights” change and their gra-
dient is estimated straight-through. Thus, starting
from random parameters, as opposed to a set of
parameters obtained through 16-bit training, seems
to be more challenging to optimize. Interestingly,
the continual pre-training variants with an initial
period of standard training have led to lower over-

all training loss compared to 1.58-bit training from
the start, even when being restricted to the same
amount of data and number of steps.

Re-initializing the optimizer when transitioning
to 1.58 bit training yields spikes in the loss-curves
caused by the loss of the momentum terms — both
with and without quantization phase-in. Retain-
ing the optimizer states or phasing in quantization
strength dampens this effect substantially. Notably,
without phased-in quantization strength, the spikes
have a much higher magnitude. However, these
effects are dampened after a few optimization steps
and the tweaks to mitigate the spikes do not yield
a gain in final performance. We hypothesize that
when retaining the optimizer state, the optimizer
still needs to react to the coarseness of the 1.58 bit
representations as well as the new type of feedback
though the straight-through estimator, giving a sim-
ilar yet shorter lasting spikes. In the end, if there is
sufficient data available for a moderate amount of
optimization steps, then it is not necessary to avoid
the loss spikes.

This finding has important implications: If one
aims for the best possible, most efficiently trained,
1.58-bit model given a fixed amount of data, one
should still first train a 16-bit model on a pro-
portion of the data (e.g., between 20 and 40%)
and only then introduce quantization into the train-
ing. Keeping the optimizer state is beneficial to
avoid loss spikes, but if the optimizer state is not
available, sufficient further optimization steps en-
able the model to recover, eliminating the need
for optimizer checkpoints — which is crucial for
continual 1.58-bit pre-training of existing mod-
els. Alleviating inference compute demands comes
with immediate gains for democratization of Al
research (Xiao et al., 2023) and for advances in
scaling test-time compute.

From a different perspective, our results further
support the idea of 1.58 continual pre-training be-
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Figure 3: Downstream evaluation of full 16-bit, continually pre-trained 1.58-bit, and full 1.58 trainings. The y axes
are not scaled such that relative differences are more visible.
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ing applied to fully pre-trained base models — open-
ing avenues of research to convert arbitrary 16-
bit pre-trained models into corresponding 1.58-bit
models. Determining the minimum amount of data
required for this conversion is an interesting di-
rection for future work. Unlike post-quantization
methods, quantization-aware training schemes en-
able lossless quantization (considering the differ-
ence training and inference performance). This
is particularly important in safety-critical domains
(e.g., medical), where “blind” post-training quan-
tization could lead to an unexpected degradation
of performance. The deployment of 1.58 mod-
els requires less memory, due to the fact that 5
ternary weights and be packed into one 8-bit inte-
ger (Couture-Harpin, 2024). Naturally, this will
also speed up the hardware load-times with a small
overhead of unpacking the weights online, during
inference. The computational load is also reduced
by the replacement of multiplication and subse-
quent addition with addition alone. However, fully
realizing these benefits in practice requires more
specialized hardware implementation, which is al-
ready an activate area (Microsoft, 2024). Future
hardware generations designed to include support
for this scheme will further enhance efficiency
We further demonstrate that continually pre-
trained 1.58-bit models are competitive on a broad
range of downstream tasks, showcasing the capa-
bilities of these inference-efficient models. No-
tably, the number of parameters was kept fixed
between conditions in all our experiments, indicat-
ing that those continual 1.58-bit pre-training goes
beyond recently proposed scaling laws for quan-
tized networks in general (Kumar et al., 2025) and
BitNet-style quantization-aware training (Nielsen
and Schneider-Kamp, 2024) in particular. However,
an analysis of the scaling behavior of our proposed
continual quantization-aware pre-training strategy
is left for future work. A further promising direc-
tion for future work would be to study the effect
of 1.58-bit instruction finetuning, e.g., whether in-
struction tuning data might be sufficient for con-
verting existing base models from 16 to 1.58 bits.

7 Conclusion

We conducted a systematic comparison between
language models trained from scratch with 1.58-bit
precision and 16-to-1.58-bit continual pre-training
paradigms. Our results show the existence of a
data-optimal transition point for switching from 16-

bit to 1.58-bit training, providing insights into effi-
cient low-bit training strategies. We evaluated the
downstream performance of 1.58-bit models, high-
lighting their viability for real-world applications.
These findings contribute to the broader discussion
on low-bit training efficiency and its implications
for scalable Al model development. Future work
may determine the minimal amount of data needed
to successfully convert a 16-bit model into a 1.58-
bit model through continual pre-training.

8 Limitations

The performance on downstream tasks are expected
to be further increased when the models undergo
supervised instruction fine-tuning and preference
optimization before evaluation. We expect that
all models benefit similarly from instruction fine-
tuning. However, at this point in time, it cannot
be excluded that 16-bit models benefit more from
instruction fine-tuning and preference optimizaiton
than 1.58-bit models. Future work may specifi-
cally investigate the effects of 1.58-bit quantization-
aware training during instruction fine-tuning and
preference alignment.

9 Ethical Considerations

Our work aims at improving the inference compute
demands of langauge models. It may contribute
to the democratization of Al, alleviating privacy
concerns, and to reduce the environmental foot-
print of LLMs. In particular, our findings suggest
that large language models may be converted into
lower bit-precision through continual pre-training.
We acknowledge that this may come with ethical
challenges that govern all research on making pow-
erful models more accessible (Bengio et al., 2025).
However, this work is purely scientific and does
not promote easier access to an actual pool of very
powerful models. Using our proposed training strat-
egy would require a similar compute budget as it is
needed for standard pre-training.
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