HumanEval Pro and MBPP Pro: Evaluating Large Language Models
on Self-invoking Code Generation

Zhaojian Yu!  Yilun Zhao?

'Tsinghua University

Arman Cohan?

Xiao-Ping Zhang' *

2Yale University

Q github.com/CodeEval-Pro/CodeEval-Pro

Abstract

We introduce self-invoking code generation,
a new task designed to evaluate the progres-
sive reasoning and problem-solving capabili-
ties of LLMs. In this task, models are pre-
sented with a base problem and a related, more
complex problem. They must solve the base
problem and then utilize its solution to ad-
dress the more complex one. This work fea-
tures three key contributions. First, we pro-
pose a general recipe for generating more chal-
lenging versions of existing benchmarks, re-
sulting in three new benchmarks: HumanEval
Pro, MBPP Pro, and BigCodeBench-Lite Pro,
specifically designed to assess LLMs on self-
invoking code generation. Second, our analysis
of more than twenty LLMs reveals two key
observations: (i) Most LLMs excel in tradi-
tional code generation benchmarks, but their
performance declines on self-invoking tasks.
For example, o1-mini achieves 96.2% pass@ 1
on HumanEval but only 76.2% on HumanEval
Pro. (ii) On self-invoking code generation task,
the instruction-tuned models demonstrate only
marginal improvements compared to the base
models. Third, we disclose the types of fail-
ure modes observed in current models. All
these results underscore the need for further
advancements in self-invoking code generation
tasks and provide a new direction for enhancing
LLMSs’ code reasoning capabilities.

1 Introduction

Large Language Models (LLMs) have demon-
strated significant progress in various code-related
tasks including code generation (Roziere et al.,
2023; Zhang et al., 2023; Ni et al., 2024), pro-
gram repair (Xia et al., 2022; Jin et al., 2023), and
code translation (Zhu et al., 2022), etc. Traditional
human-annotated benchmarks such as HumanEval

*Corresponding Author

Model Input

ﬂ Prompt

You are an exceptionally intelligent coding assistant that consistently delivers

accurate and reliable responses to user instructions.
Write a solution of python file to the following problems, the solution of the

second problem requires single or multiple calls to the first solution.

1,7) Base Problem
Write a function to replace characters in a string.

12 Self-invoking Problem
Write a function to replace multiple characters in a string with their

corresponding new characters. The function should take a string and a dictionary

where keys are characters to be replaced and values are the new characters.

v

[ [22] Language Model ]

»l/ Generate

Model Output

solution.py
def replace_char(str1, ch, newch
return strl replace(ch, newch
def replace_multiple_chars(str1, char_map
for ch, newch in char_map.items
strl = replace_char(strl, ch, newch
return strl

‘l’ Test

l assert replace_multiple_chars('python', ['p':'b', 'y': i'

== 'bithon' l

Figure 1: The overview of self-invoking code genera-
tion in HumanEval Pro and MBPP Pro. Given a base
problem and a related, more complex problem, they are
required to solve the base problem and use its solution
to address the complex problems.

(Chen et al., 2021) and MBPP (Austin et al., 2021)
have been widely adopted to evaluate the code
generation abilities of LLLMs, providing standard-
ized evaluation protocols for assessing their per-
formance on code-related tasks. However, these
existing benchmarks primarily focus on isolated,
single-function code generation, which represents
only a subset of the challenges encountered in real-
world software development scenarios.

To evaluate LLMs under more realistic problem-
solving scenarios, BigCodeBench (Zhuo et al.,
2024) presents a benchmark that comprises of com-
plex and practical problems requiring LLMs to
use multiple function calls from diverse libraries.
While BigCodeBench highlights the use of exter-
nal function calls, it falls short in assessing LLMs’

13253

Findings of the Association for Computational Linguistics: ACL 2025, pages 13253-13279
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics


https://github.com/CodeEval-Pro/CodeEval-Pro

reasoning ability to generate and invoke their own
generated functions in problem-solving. CRUX-
Eval (Gu et al., 2024) assesses LLMs’ code rea-
soning by predicting function inputs and outputs.
However, the direct input and output prediction
does not involve explicit code generation. In practi-
cal software engineering contexts, developers must
not only write code but also comprehend, moditfy,
and utilize existing code to solve more complex
problems. Hence, the ability to understand and
subsequently leverage one’s own generated code,
namely self-invoking code generation (Figure 1),
plays an important role for LLLMs to leverage their
reasoning capabilities to code generation that cur-
rent benchmarks fail to capture.

Therefore, we present HumanEval Pro and
MBPP Pro, two expanded versions of the tradi-
tional HumanEval and MBPP benchmarks to eval-
uate LLMs on self-invoking code generation task.
As illustrated in Figure 1, HumanEval Pro and
MBPP Pro extend beyond simple code generation
by introducing self-invoking problems which re-
quires LLMs to solve the base problem and invoke
their self-generated code to solve a more complex
problem. By evaluating LLMs on self-invoking
code generation task, HumanEval Pro and MBPP
Pro provide a useful and important probe to better
understand the programming capabilities of LLMs.
The capability of self-invoking code generation
also facilitates LLMs to tackle difficult tasks with
greater autonomy and effectiveness.

To obtain HumanEval Pro and MBPP Pro,
we propose a general recipe for constructing
self-invoking code generation benchmarks by
building upon existing datasets. First, we use
Deepseek-V2.5 (DeepSeek-Al, 2024) to generate
self-invoking problems based on the original prob-
lems in HumanEval and MBPP. These problems
are designed to be more complex than the base
problems and closely related to them, ensuring pro-
gressive reasoning and coherent code invocation.
Second, we generate the candidate solution and
test inputs for each problem. Third, we execute
the code of candidate solution to generate output
and use the assert command in Python to build
test cases. In the third stage, human experts are
assigned to manually review each problem and con-
tinuously modify and execute the code of solutions
to ensure that all canonical solutions could cor-
rectly solve the problem and cover the test cases.

Through extensive evaluation of various LLMs
on HumanEval Pro and MBPP Pro, we uncover a

significant disparity between traditional code gen-
eration and self-invoking code generation capa-
bilities. Our findings reveal that while frontier
LLMs excel at generating individual code snip-
pets, they often struggle to effectively utilizing
their own generated code for solving more com-
plex problems. For example, ol-mini achieves
96.2% pass@1 on HumanEval but only 76.2% on
HumanEval Pro, demonstrating the challenges in-
herent in self-invoking code generation. From the
comparison between instruction-tuned models and
their base models, we found that instruction-tuned
models are less efficient on self-invoking code gen-
eration than traditional code generation task. Fur-
thermore, our detailed statistics of failure cases
in HumanEval Pro and MBPP Pro also reflect the
shortcomings of LLMs in self-invoking code gen-
eration, thereby providing complementary insights
on real-world coding capabilities of LLMs.

2 Related Work

Benchmarks for Code Generation The evalua-
tion landscape for Code LLMs has evolved sig-
nificantly. HumanEval (Chen et al., 2021) and
MBPP (Austin et al., 2021) serve as fundamen-
tal benchmarks, focusing on Python function com-
pletion tasks with test-driven evaluation. Several
benchmarks have expanded code evaluation bench-
marks to encompass multiple programming lan-
guages (Zheng et al., 2023; Athiwaratkun et al.,
2022), complex tasks like program repair (Haque
et al., 2022; Jiang et al., 2023; Muennighoff et al.,
2024; Xia et al., 2024), dynamic problem sets (Jain
et al., 2024), and simulated execution (Gu et al.,
2024). PECC (Haller et al., 2024) delivers a two-
prompt benchmark derived from Advent Of Code
(AoC) challenges and Project Euler. To evaluate
LLMs in professional software engineering, bench-
marks like SWE-Bench (Jimenez et al., 2023),
EvoCodeBench (Li et al., 2024), RepoBench (Liu
et al., 2023), and GoogleCodeRepo (Shrivastava
et al., 2023) focus on real-world tasks, code evolu-
tion, and repository-level challenges. These bench-
marks collectively drive the advancement of LLMs,
providing valuable insights into their strengths and
limitations. Our benchmarks introduce novel self-
invoking code generation task, which addresses
gaps left by existing benchmarks. This addition
provides a more holistic framework to evaluate
LLMs on leveraging their reasoning capabilities to
code generation.

13254



Io Self-invoking Problem Generation I e Solution Generation

I e Test Cases Generation

g%lution

N e ¢

. - ~ Executor
__Manually Check _):3 (./ \9 Test Outputs

Self-invoking ~_,--=<--~c--o____
Problem

Base Problem

T O
O

Failed

Test Inputs

d Assertion
Test Cases

Passed

Figure 2: The overview of benchmark construction. An example is shown in Figure 8. We summarize the entire
benchmark construction process as follows: (1) Self-invoking problem Generation: We use Deepseek-V2.5 (we
discuss the impact of data generating model in Appendix A) to generate the self-invoking problems, as well as
their candidate solutions and test inputs. (2) Solutions Generation: We execute the generated solution with the
test inputs in a controlled Python environment to obtain ground truth outputs. (3) Test Cases Generation: We
employ an iterative method involving Python execution check and manual review to ensure that all test cases pass
successfully. The final execution results are then used to construct complete test cases with assert command.

LLMs for Code Generation The development
of LLMs for Code Generation has seen significant
progress. CodeX (Chen et al., 2021) pioneered
this direction by fine-tuning GPT models on code-
specific data. Subsequent models like CodeGeeX
(Zheng et al., 2023) and CodeLLaMA (Roziere
et al., 2023) further advanced the field by incor-
porating multilingual code understanding and gen-
eration capabilities. StarCoder (Li et al., 2023),
DeepseekCoder (Zhu et al., 2024) and Qwen?2.5-
Coder (Hui et al., 2024) demonstrated the impor-
tance of high-quality code data curation and special-
ized architecture designs. Building upon these mod-
els, researchers have explored instruction-tuning
approaches using GPT-4 or GPT-3.5 as teachers.
Notable examples include WizardCoder (Luo et al.,
2023), Magicoder (Wei et al., 2024), WaveCoder
(Yu et al., 2024), OpenCodelnterpreter (Zheng
et al., 2024). These models have achieved impres-
sive performance on code generation benchmarks
through well-desighed post-training recipe.

3 Benchmark Construction

To facilitate a meaningful comparison between
self-invoking code generation and traditional code
generation, we have crafted two new benchmarks,
HumanEval Pro and MBPP Pro. These bench-
marks are extensions of the original HumanEval
and MBPP, requiring the model to solve both the
base problem and a more complex self-invoking
problem. In addressing the self-invoking problems,
LLMs are required to apply the solutions they have
independently generated for the base problem. This
evaluation of self-invoking code generation offers

deeper insights into the programming capabilities
of LLMs, extending beyond the scope of single-
problem code generation. The benchmark con-
struction process, illustrated in Figure 2, will be
discussed in detail in the following subsections.

3.1 Self-invoking Problem Generation

To ensure that all benchmarks are permissively
licensed, we employ one of the state-of-the-art
(SoTA) open-source models, DeepSeek-V2.5, to
create new problems and solutions derived from
the original HumanEval and MBPP datasets. Two
main guidelines is established for self-invoking
problems generation to rigorously evaluate LLMs.
1) Complexity Enhancement: The self-invoking
problems should introduce additional programming
challenges while preserving the core functionality
of the original problems. This ensures that suc-
cessful solutions require both understanding of the
original code and ability to extend it appropriately.
2) Semantic Relevance: The self-invoking prob-
lems should maintain sufficient semantic similar-
ity to their original counterparts to enable mean-
ingful self-invoking code generation process. Ap-
pendix H.1 presents the prompt for self-invoking
problem generation.

3.2 Solution Generation

In self-invoking problem generation process, the
candidate solution and test inputs are generated si-
multaneously with the self-invoking problem. How-
ever, when dealing with self-invoking problems,
these generated solutions are often flawed, which
can lead to execution errors during the verifica-

13255



Iteration \ HumanEval Pro (%) MBPP Pro (%)
Round 1 64.0 84.7
Round 2 98.8 99.7
Round 3 100.0 100.0

Table 1: Pass@1 (%) of candidate solutions across dif-
ferent iteration rounds for canonical solution and test
case generation with human manual review.

tion process, thereby highlighting a significant chal-
lenge in maintaining the accuracy and effectiveness
of these test cases. Therefore, as shown in Figure 2,
we propose a method to iteratively execute the solu-
tion code with test inputs and obtain expected out-
puts correctly. For the execution errors, the authors
manually analyze these errors and modify the solu-
tions to ensure that the final solution can cover all
the test cases comprehensively. The manual review
process involves (1) identifying the root causes of
the errors, (2) making necessary adjustments to the
code or algorithm, and (3) re-evaluating the solu-
tion against the entire set of test cases to confirm
its correctness and completeness. Table 1 shows
that our rigorous verification process ensures the
high quality of our benchmarks.

3.3 Test Cases Generation

After obtaining the self-invoking problem and its
candidates solution, a critical challenge is ensur-
ing the reliability of the test cases (with both test
inputs and expected execution outputs) to validate
the the generated solutions. Despite the apparent
simplicity of using the same LLM context to gener-
ate both problems and test cases, CRUXEval (Gu
et al., 2024) results show that even leading mod-
els like GPT-4 achieve only a 63.4% pass@1 rate
in test output prediction. This suggests that using
models like GPT-4 to directly generate test cases
for problems will lead to many inaccurate eval-
uation results. Our iterative verification method
effectively addresses this challenge. By combining
Python execution checks with manual reviews, we
ensure that all test cases accurately assess solution
correctness and achieves a 100% pass@1 under
correct implementation conditions. Furthermore,
we categorize the common execution errors that oc-
cur during test case generation into four main types:
variable type mismatches, index out of bounds, in-
valid input handling, and edge case failures. To
obtain the high-quality self-invoking problem solu-
tions, we adopt main remediation strategies includ-
ing: (1) implementing input validation, (2) adding

type checking, (3) handling edge cases explicitly,
and (4) refining problem specifications when nec-
essary. Beyond basic execution correctness, we
also verify the self-invoking problem and solutions
in the following aspects: (1) logical consistency
between problem statements and test cases, (2) cov-
erage of essential edge cases, and (3) alignment
with original problem objectives.

4 Experiment and Analysis

Following previous work (Chen et al., 2021), We
use the pass@k (Chen et al., 2021) score as the
evaluation metric of HumanEval Pro and MBPP
Pro. We use greedy decoding strategy to generate
solutions for all open-source models and set temper-
ature=0.2 for all API-models (model information
is shown in Appendix E). For all previous bench-
marks, we use the reported results whenever avail-
able; otherwise, we evaluate using the EvalPlus
codebase (Liu et al., 2024).

Table 2 presents the pass@]/ scores of Hu-
manEval Pro and MBPP Pro alongside those of
other relevant benchmarks, including HumanEval,
HumanEval+, MBPP, and MBPP+ (Liu et al.,
2024), highlighting the following salient observa-
tions: 1) Most LLMs have a 10% to 15% abso-
lute performance drop on self-invoking code gen-
eration benchmarks. 2) Large size open-source
LLMs have comparable performance with propri-
etary LLMs on self-invoking benchmarks. Notably,
DeepseekCoder-V2-instruct achieves 77.4% on Hu-
manEval Pro, surpassing the score of all propri-
etary LLMs. 3) Most instruction-tuned models
have less improvements on self-invoking code gen-
eration benchmarks (e.g., HumanEval Pro) than
traditional benchmarks (e.g.,HumanEval). For in-
stance, Qwen2.5Coder-32B-instruct have 26.8%
absolute improvement on HumanEval compared to
Qwen2.5Coder-32B-base (from 65.9% to 92.7%)
but only 8.5% on HumanEval Pro (from 61.6%
to 70.1%). Appendix C also presents the evalua-
tion results for different &k values with the sampling
generation strategy.

4.1 Base Model vs Instruct Model

Currently, the training of LLMs is typically divided
into two stages: a pre-training stage that relies
on self-supervised learning, and a subsequent su-
pervised fine-tuning stage based on <instruction,
response> pairs. Previous studies (Luo et al., 2023;
Hui et al., 2024; Wei et al., 2024) have shown that

13256



HumanEval Pro MBPP Pro

Model Params | HumanEval (+) (0-shot)  (1-shot) MBPP (+) (0-shot)  (1-shot)
Proprietary Models
ol-mini - 97.6 (90.2) 76.2 84.8 93.9 (78.3) 68.3 81.2
GPT-40 - 90.2 (86.0) 75.0 77.4 86.8 (72.5) 70.9 80.2
GPT-4-Turbo - 90.2 (86.6) 72.0 76.2 85.7 (73.3) 69.3 73.3
Claude-3.5-sonnet - 92.1 (86.0) 72.6 79.9 91.0 (74.6) 66.4 76.2
Open-source Models
Deepseek-V2.5 - 90.2 (83.5) 73.8 76.8 87.6 (74.1) 71.2 71.5
DeepseekCoder-V2-instruct 21/236B 90.2 (84.8) 77.4 82.3 89.4 (76.2) 71.4 76.5
Qwen2.5-Coder-1.5B-base 1.5B 43.9 (36.6) 37.2 39.6 69.2 (58.6) 48.4 51.3
Qwen2.5-Coder-1.5B-instruct 1.5B 70.7 (66.5) 335 37.8 69.2 (59.4) 42.1 43.7
DeepseekCoder-6.7B-base 6.7B 49.4 (39.6) 354 36.6 70.2 (51.6) 50.5 55.0
DeepseekCoder-6.7B-instruct 6.7B 78.6 (71.3) 55.5 61.6 74.9 (65.6) 57.1 58.2
Magicoder-S-DS-6.7B 6.7B 76.8 (70.7) 54.3 56.7 75.7 (64.4) 58.7 64.6
WaveCoder-Ultra-6.7B 6.7B 78.6 (69.5) 54.9 59.8 74.9 (63.5) 60.1 64.6
Qwen2.5-Coder-7B-base 7B 61.6 (53.0) 54.9 56.1 76.9 (62.9) 61.4 68.0
Qwen2.5-Coder-7B-instruct 7B 88.4 (84.1) 65.9 67.1 83.5(71.7) 64.8 69.8
OpenCoder-8B-base 8B 66.5 (63.4) 39.0 42.1 79.9 (70.4) 52.4 53.7
OpenCoder-8B-instruct 8B 83.5(78.7) 59.1 54.9 79.1 (69.0) 57.9 61.4
Yi-Coder-9B-base 9B 53.7 (46.3) 42.7 50.0 78.3 (64.6) 60.3 61.4
Yi-Coder-9B-chat 9B 85.4 (74.4) 59.8 64.0 81.5 (69.3) 64.8 71.7
Codestral-22B-v0.1 | 22B | 81.1(73.2) | 59.1 659 | 782(62.2) | 63.8 71.2
DeepseekCoder-33B-base 33B 56.1 (47.6) 494 494 74.2 (60.7) 59.0 65.1
DeepseekCoder-33B-instruct 33B 79.3 (75.0) 56.7 62.8 80.4 (70.1) 64.0 68.3
Qwen2.5-Coder-32B-base 32B 65.9 (60.4) 61.6 67.1 83.0 (68.2) 67.7 73.3
Qwen2.5-Coder-32B-instruct 32B 92.7 (87.2) 70.1 80.5 90.2 (75.1) 69.8 71.5
LLaMA3-70B-instruct | 70B | 81.7 (72.0) | 604 64.6 | 82.3(69.0) | 63.5 70.4

Table 2: Main result of different models on HumanEval Pro and MBPP Pro. More results is shown in Appendix C.

the instruction-based supervised fine-tuning stage
can significantly enhance the code generation capa-
bilities of base models on traditional benchmarks.
For example, as shown in Table 2, Qwen2.5-Coder-
instruct 7B started with the Qwen2.5-Coder-7B
base model and improved the HumanEval pass@ 1
score from 61.6% to 88.4%. There remains new cu-
riosity about whether these instruction-tuned mod-
els still show such significant improvements under
a new problem solving scenario. In this section, we
explore this through our new benchmarks.

The instruction-tuned models demonstrate only
marginal improvements compared to the base
models on self-invoking code generation. In
Figure 3, we plot the previous reported HumanEval
(or MBPP) scores against the results on HumanEval
Pro and MBPP Pro (HumanEval+ and MBPP+).
From the Figure 3, we have an interesting find-
ing: When observing the correlation between
HumanEval (or MBPP) and HumanEval Pro (or
MBPP Pro), we see that the orange dot (indicates
base model) is always to the upper left of the blue
dot (indicates instruction-tuned model). However,

for the comparison between HumanEval (or MBPP)
and HumanEval+ (or MBPP+), the blue dot is al-
ways distributed to the upper of orange dot (even
in a line on HumanEval vs HumanEval+). Over-
all, this suggests that while instruction-based fine-
tuning significantly improves performance on sim-
pler benchmarks like HumanEval (+) (or MBPP
(+)), its efficiency diminishes for more complex
self-invoking code generation tasks. On the other
hand, base models like Qwen2.5-Coder-base and
Deepseek-Coder-base have a higher

_ pass@k on HumanEval Pro (or MBPP Pro)

Rati
ato pass@k on HumanEval (or MBPP)

€]

than instruct models, which indicates that they have
elevated training potential on self-invoking code
generation task.

4.2 Confusion Matrix Correlation for
Different Models

From Table 2, we observe that most LLMs have a
score gap between direct code generation and self-
invoking code generation tasks. To better under-
stand the correlation and overlap between these two

13257



HumanEval vs HumanEval+

HumanEval vs HumanEval Pro

901 e roprietar Ol-mini ° et Ol-ngini
proprietary Qwen2.5-Coder-32B-instruct proprietary
base base
e instruct QwenZ.5-Coaér-7B-instruct 0l ® instruct QwenZ.S-Codet—QE-instruct
801
o Qwen2.5-Coaer-7B-instruct
DeepseekCoder-33B-instruct Qwen2.5-Coder-32B-base
L 70 _DéepseckCoder-6.7B-instruct £ o0
E rQWénQé-C@der-l.SB-instruct = De.e:Et_sgkCoder-Z&SB-instruct
=] s >
= 4 3 Dé&pseekCoder-6.7B-instruct
€ . = 2.5-Coder-7B-b P
g 604 ‘Qiven2.5-Coder-32B-base E Quwen oder ase
5
T T 501 ‘DeepseekCoder-33B-base
| eQwen2.5-Coder-7B-base
50 1
_#DeepseekCoder-33B-base
40
Qwen2.5-Coder-1.5B-base
404 //'-Deepseek@ederf647bease
Qien2.5-Coder-1.5B-base DeepseekCoder-6.7B-base, 15 5 Coder-1.5B-instruct
50 60 70 50 90 100 50 60 70 80 90 100
HumanEval HumanEval
MBPP vs MBPP+ MBPP vs MBPP Pro
. Ol-rgini Qwen2.5-Coder-32B-instruct
e  proprietary 70 ®  proprietary *  Ol-mini
base base Qwen2.5-Ceder-32B-base °
75 4 ° instruct - .o ® instruct
Qwen?2.5-Coder-32B-instruct . ,’Qj\le 12.5-Coder.7B-instruct
eDeepseekCoder-33B-instruct
eQwen2.5-Coder-7B-instruct
70 eDeepseekCoder-33B-instruct Qwen2.5-Coder-7B-base
‘Qwen2.5-Coder-32B-base 601 ‘DeepseekCoder-33B-base
°
+ g .
E o oD kCoder-6.7B-instruct E eDeepseekCoder-6.7B-instruct
@ 551
= Qwen2.5-Coder-7B-base =
DeepseekCoder-33B-base
60 wen2.5-Coder-1.5B-instruct 5 -y _base
9/ o I, 504 ‘DeepseekCoder-6.7B-base
"Qrenz: qr-1.ob-base Qwen2.5-Coder-1.5B-base
551 45
DeepseekCoder-6.7B-base eQwen2.5-Coder-1.5B-instruct
70 75 80 85 90 95 70 75 80 8 90 95
MBPP MBPP

Figure 3: HumanEval (or MBPP) scores against the results on HumanEval Pro and MBPP Pro (HumanEval+ and
MBPP+). We presents the comparison between base model and instruct model.

kinds of tasks, we compare the number of problems
passed and failed in HumanEval Pro and MBPP
Pro with their corresponding base problems in Hu-
manEval and MBPP. Figure 4 presents an array of
confusion matrix over problems, highlighting the
following observation:

The instruction-tuned model does not signif-
icantly outperform the base model in self-
invoking code generation task. Although some
SoTA LLMs such as Qwen2.5-Coder-32B-instruct
successfully solve 90% of base problems on the
original HumanEval and MBPP benchmarks, over
25% of problems still fail on more challenging
HumanEval Pro and MBPP Pro benchmarks with
self-invoking code generation (as shown in the top
right of each subfigure in Figure 4). This suggests
that the drop in the model’s scores on HumanEval
Pro and MBPP Pro is largely due to its lower ac-
curacy in generating self-invoking code compared

13

to direct code generation. From the confusion ma-
trices of the base model and the instruct model in
Figure 4, we can observe a trend: the instruction-
tuned model typically has a significantly higher
number of (Passed, Passed) instances compared
to the base model. However, for samples that pass
the base problems but fail in HumanEval Pro and
MBPP Pro, i.e., (Failed, Passed), the instruct
model does not demonstrate notable improvement.
This observation underscores our argument in Sec-
tion 4.1: current instruction-based fine-tuning ap-
proaches are insufficiently effective for more com-
plex self-invoking code generation tasks.

4.3 The Impact of Problem Complexity

In appendix Appendix G, we use the line counts
of the canonical solution as the indicator of the
problem complexity. (More complex needs longer
solution code intuitively.) As shown in Figure 11,

258



Confusion Matrix Confusion Matrix

200
78 150 213 91 150
= (47.6%) (56.3%) (24.1%)
> -
ug:l 100 _,S, é 100 %
£ S = [$)
5 -50 O 50
Ty 12 31 3 19 55
& (7.3%) (18.9%) -0 81 (5.0%) (14.6%) -0
T " -50 . r -50
Passed Failed Passed Failed
HumanEval Pro MBPP Pro
(a) Qwen2.5-Coder-7B-base
Confusion Matrix Confusion Matrix
200 200
2 99 150 225 90 150
s (60.4%) (59.5%) (23.8%)
o 1002 o 100 £
H e 3
£ S o
]3: - 50 © - 50

12
(7.3%)

29
(7.7%)

34
(9.0%)

Failed
Failed
|

9
(55%) -0

Failed

Passed
HumanEval Pro

(c) Qwen2.5-Coder-7B-instruct

Passed Failed
MBPP Pro

Confusion Matrix Confusion Matrix

200
92 242 86 150
= (56.1%) (64.0%) (22.8%)
G 100 &
§ 3
§ 50 ©
T3] 9 20 14 36
& (5.5%) (12.2%) (3.7%) (9.5%) -0
] . -50 i ' -50
Passed Failed Passed Failed
HumanEval Pro MBPP Pro
(b) Qwen2.5-Coder-32B-base
Confusion Matrix Confusion Matrix
200 200
3 150 253 87 150
= 8 (66.9%) (23.0%)
o 100 =a 100 g
g a & Q
E 50 O = L5 ©
T3 6 8 i 27
51 (3.7%) (4.9%) -0 (2.9%) (7.1%) -0
; | -50 . . -50
Passed Failed Passed Failed
HumanEval Pro MBPP Pro

(d) Qwen2.5-Coder-32B-instruct

Figure 4: The confusion matrix of different models. We use (Failed, Passed) to indicate samples that fail in
HumanEval Pro (or MBPP Pro) but pass in HumanEval (or MBPP).

Average Pass@1 vs Solution Length

0.9
0.81
0.7 1
0.6

ass@1

o 0.5

o 0.41

erage

= 0.3
0.2
0.11

15 20 25 30 35 40

Solution Line Lenath

10
Figure 5: The Impact of Problem Difficulty.

most self-invoking problems have a higher com-
plexity than base problems. Furthermore, we ana-
lyzed the impact of the number of solution lines on
the pass rate. As shown in Figure 9, longer solution
lengths are associated with lower pass rates, which
highlights the challenges in long self-invoking code
generation.

4.4 Chain-of-Thought Prompting

To evaluate the impact of the model’s reasoning
ability, we evaluated the performance of GPT-4o,
Deepseek V2.5, Qwen2.5-Coder-instruct (7B and
32B) with and without Chain-of-Thought (CoT)
prompting (Wei et al., 2022) on HumanEval Pro
and MBPP Pro. The full prompt we use is shown

Model | CoT | HE Pro MBPP Pro
GPT-do vl wo e
DeepseekV2.5 : ;ii ;}42;
Qwen2.5-Coder-32B-ins 5 ;(2)(1) gg?
Qwen2.5-Coder-7B-ins 5 g?g gig

Table 3: The execution error types and their descriptions
in our evaluation results.

in Appendix H.2. For CoT prompting, we used the
greedy decoding strategy for generation to align
the results before. As shown in Table 3, after ap-
plying CoT, the pass@1 of the selected models on
HumanEval Pro witnesses a significant improve-
ment. Notably, the accuracy of GPT-40 increases
from 75.0% to 78.0%. On MBPP Pro, although
the model does not show a significant improve-
ment, it still maintains its original performance
level, indicating that CoT can enhance the accuracy
of model-generated code to a notable degree.

CoT could help Code LLMs to generate more
reliable code when scheduling across multiple
code-related problems. To further study which
aspects of code LLLM can be improved by CoT, we
use Python to run the code generated by GPT4o0
with and without CoT, and present the number of

13259



Error Type Description

| Examples

AssertionError  Failing to pass the test cases.
NameError The code includes undefined variables.
ValueError Unaware of the value of variables
IndexError Array out of bounds

TypeError Incorrect variable type usage.

Other Errors

KeyError, SyntaxError, ZeroDivisionError, IndentationError, etc.

Examples in Appendix I.1
Examples in Appendix 1.2
Examples in Appendix 1.3
Examples in Appendix 1.4
Examples in Appendix 1.5

Table 4: The execution error types and their descriptions in our evaluation results.

B CoT
Direct Answer

Error Count
-
&

ValueError IndexError

AssertionError NameError

Figure 6: Error types of GPT-40 with and without CoT
reasoning on HumanEval Pro.

all error types that occurred in Figure 6. We have
two main observations: (1) With CoT prompting,
the AssertionError number decreases from 28 to
24. This indicates that CoT prompting enables
the model to generate code that more frequently
passes test cases. (2) The NameError number de-
creases, which indicates that CoT prompting helps
the model produce more self-contained code snip-
pets and reduces the use of undefined variables.
These findings highlight that CoT prompting could
help LLMs to generate more accurate and reliable
solution on self-invoking code generation task.

4.5 Error Analysis

In order to further understand the failure modes
across different LLMs, we analyze the errors en-
countered in code generated by different LLMs for
HumanEval Pro and MBPP Pro problems and cat-
egorize them by error type. The result is shown
in Figure 7. Primarily, AssertionErrors constitute
the primary source of errors for all models on self-
invoking code generation task, which suggests that
the majority of errors are still due to failing test
cases. Secondly, the NameErrors, which is often
caused by the undefined variable or function, con-
tribute significantly to the error rate. This suggests
that despite the function infomation being provided
in the prompt, many functions still fail to gener-
ate the correct function header. This may indicate
that the LLM has issues with understanding or cor-

AssertionError
NameError
ValueError
IndexError
TypeError
OtherError

DeepseekCoder-V2-instruct - W
GPT-40 |
DeepseekV2.5 N |
o1-mini - .
GPT-4-Turbo 1N
Qwen2.5-Coder-32B-instruct - |
Claude-3.5-sonnet - |||
Qwen2.5Coder-32B-base - )
Qwen2.5-Coder-7B-instruct - I
Yi-Coder-9B-Chat L
LLaMa-3-70B-instruct -
Codestral-22B i}
DeepseekCoder-33B-instruct n
Qwen2.5Coder-7B-base -
WaveCoder-Ultra-6.7B
OpenCoder-8B-instruct -
Magicoder-S-DS
DeepseekCoder-6.7B-instruct -
DeepseekCoder-33B-base -
Yi-Coder-9B -
OpenCoder-8B-base - ||
DeepseekCoder-6.7B-base - o |
Qwen2.5Coder-1.5B-base O

0 50 100 150 200 250 300

Figure 7: Statistics of error type across different LLMs
on HumanEval Pro and MBPP Pro. We sum up all
kinds of errors on the two benchmarks. Exact number
is shown in Appendix J.

rectly utilizing the provided information. Finally,
we also found that some TypeErrors and ValueEr-
rors accounted for a relatively small proportion of
errors, which shows that LLM still has some defi-
ciencies in handling variable types and usage when
generating self-invoking code.

5 Generalization Study of Self-invoking
Code Generation

5.1 BigCodeBench-Lite Pro Benchmark

To study self-invoking code generation on a wider
range of programming problems, we construct
BigCodeBench-Lite Pro, a small self-invoking
code generation benchmark derived from Big-
CodeBench (Zhuo et al., 2024). We first construct
the BigCodeBench-Lite benchmark by selecting
57 problems with solve rate between 50% and

13260



70% from BigCodeBench!. For each examples
in BigCodeBench-Lite, we then curate the cor-
responding self-invoking problem as well as test
cases, following the same procedure described in
Section 3. After further filtering by human experts,
BigCodeBench-Lite Pro contains 57 self-invoking
programming problems from different topics.

Model | BCB-Lite Pro (%)
GPT-40 64.9 52.6
GPT4-Turbo 614 52.6
Claude-3.5-sonnet 73.7 50.9
Deepseek V2.5 80.7 50.9
Qwen2.5Coder-1.5B-base 50.9 15.8
Qwen2.5Coder-1.5B-instruct 50.9 10.5

OpenCoder-8B-base 56.1 10.5
OpenCoder-8B-instruct 75.4 22.8

DeepseekCoder-6.7B-base 59.6 35.1
DeepseekCoder-6.7B-instruct 56.1 35.1

WaveCoder-Ultra-6.7B 61.4 26.3
Magicoder-S-DS-6.7B 50.9 333
Yi-Coder-9B 57.9 21.1
Yi-Coder-9B-Chat 66.7 31.6
Qwen2.5Coder-7B-base 59.6 38.6
Qwen2.5Coder-7B-instruct 64.9 35.1
DeepseekCoder-33B-base 71.9 38.6
DeepseekCoder-33B-instruct 80.7 43.9
Qwen2.5Coder-32B-base 68.4 49.1
Qwen2.5Coder-32B-instruct 80.7 52.6
Codestral-22B \ 78.9 54.4
QwQ-32B-preview | 860 59.6

Table 5: Passing rate (%) of LLMs on BigCodeBench
(BCB)-Lite and BCB-Lite-Pro. A dataset example of
BCB-Lite-Pro is shown in Appendix L.6.

5.2 Results Analysis

We evaluate a set of LLMs on BigCodeBench-Lite
Pro. Table 5 presents the results (pass@ 1) of vari-
ous Proprietary and Open-source LLMs, highlight-
ing the following observations: (1) Although the
base problems we selected has a solving rate of
between 50% and 70% on BigCodeBench, only a
small number of models in Table 5 have a passing
rate of more than 50% on BigCodeBench-Lite Pro.
This highlights the difficulty of the self-invoking
code generation task. (2) The instruction-tuned
models still demonstrate marginal improvements
(sometimes decrease) compared to base models,
which also reinforces our argument in Section 4.1.
(3) On Bigcodebench-Lite Pro, LLMs show consis-

'We use reported statistics in https://huggingface.co/
datasets/bigcode/bigcodebench-solve-rate.

tent performance trend with HumanEval Pro and
MBPP Pro, which emphasizes the generalizability
of our construction pipeline. Therefore, our bench-
mark construction approach can also be extended
to adapt other code generation benchmarks, par-
ticularly as the capabilities of LLMs advance and
older benchmarks become obsolete.

6 Conclusion

We present HumanEval Pro and MBPP Pro, a series
of benchmarks to evaluate LLMs on self-invoking
code generation task where the LLMs are employed
to solve the base problem and use its solution to
address more complex problems. Our evaluation of
over 20 LLMs reveals that, despite notable advance-
ments in traditional code generation, these models
still face challenges in self-invoking code genera-
tion. HumanEval Pro and MBPP Pro are positioned
to serve as valuable benchmarks for code-related
evaluations and to inspire future LLM development
by shedding light on current model shortcomings
and encouraging innovation in training recipe.

Limitations

In this paper, we present HumanEval Pro and
MBPP Pro, a series of benchmarks evaluate LLMs
on self-invoking code generation task. One lim-
itation is that the programming languages of our
benchmarks only includes Python due to the intrin-
sic limitation of original HumanEval and MBPP.
Secondly, although the models have shown short-
comings in the self-invoking problem, the diversity
of existing self-invoking problems in HumanEval
Pro and MBPP Pro is still subject to the con-
straints of the original problems. Hence, future
work should pay more attention to more diverse and
multi-lingual self-invoking problem benchmarks.

Acknowledgement

Zhaojian Yu and Xiao-Ping Zhang are with
the Shenzhen Key Laboratory of Ubiquitous
Data Enabling Laboratory, Shenzhen International
Graduate School, Tsinghua University, Shen-
zhen 518055, China and supported by Shenzhen
Ubiquitous Data Enabling Key Lab under grant
ZDSYS20220527171406015, and by Tsinghua
Shenzhen International Graduate School-Shenzhen
Pengrui Endowed Professor- ship Scheme of Shen-
zhen Pengrui Foundation.

13261


https://huggingface.co/datasets/bigcode/bigcodebench-solve-rate
https://huggingface.co/datasets/bigcode/bigcodebench-solve-rate

References

01.AL 2024. Meet yi-coder: A small but mighty 1lm for
code.

Anthropic. 2024. The claude 3 model family: Opus,
sonnet, haiku.

Ben Athiwaratkun, Sanjay Krishna Gouda, Zijian Wang,
Xiaopeng Li, Yuchen Tian, Ming Tan, Wasi Uddin
Ahmad, Shiqi Wang, Qing Sun, Mingyue Shang, et al.
2022. Multi-lingual evaluation of code generation
models. arXiv preprint arXiv:2210.14868.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

DeepSeek-Al. 2024. Deepseek-v2: A strong, economi-
cal, and efficient mixture-of-experts language model.
Preprint, arXiv:2405.04434.

Alex Gu, Baptiste Roziere, Hugh James Leather, Ar-
mando Solar-Lezama, Gabriel Synnaeve, and Sida
Wang. 2024. Cruxeval: A benchmark for code rea-
soning, understanding and execution. In Forty-first
International Conference on Machine Learning.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie,
Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Yu Wu, YK Li, et al. 2024. Deepseek-coder:
When the large language model meets programming—
the rise of code intelligence. arXiv preprint
arXiv:2401.14196.

Patrick Haller, Jonas Golde, and Alan Akbik. 2024.
Pecc: Problem extraction and coding challenges.
arXiv preprint arXiv:2404.18766.

Md Mahim Anjum Haque, Wasi Uddin Ahmad, Is-
mini Lourentzou, and Chris Brown. 2022. Fixeval:
Execution-based evaluation of program fixes for com-
petitive programming problems.

Siming Huang, Tianhao Cheng, Jason Klein Liu, Jiaran
Hao, Liuyihan Song, Yang Xu, J Yang, JH Liu,
Chenchen Zhang, Linzheng Chai, et al. 2024. Open-
coder: The open cookbook for top-tier code large
language models. arXiv preprint arXiv:2411.04905.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. 2024. Qwen2. 5-coder
technical report. arXiv preprint arXiv:2409.12186.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia
Yan, Tianjun Zhang, Sida Wang, Armando Solar-
Lezama, Koushik Sen, and Ion Stoica. 2024. Live-
codebench: Holistic and contamination free eval-
uation of large language models for code. arXiv
preprint.

Nan Jiang, Kevin Liu, Thibaud Lutellier, and Lin Tan.
2023. Impact of code language models on automated
program repair. arXiv preprint arXiv:2302.05020.

Carlos E Jimenez, John Yang, Alexander Wettig,
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. 2023. Swe-bench: Can language mod-
els resolve real-world github issues? arXiv preprint
arXiv:2310.06770.

Matthew Jin, Syed Shahriar, Michele Tufano, Xin
Shi, Shuai Lu, Neel Sundaresan, and Alexey Svy-
atkovskiy. 2023. Inferfix: End-to-end program repair
with llms. arXiv preprint arXiv:2303.07263.

Jia Li, Ge Li, Xuanming Zhang, Yunfei Zhao, Yihong
Dong, Zhi Jin, Binhua Li, Fei Huang, and Yongbin
Li. 2024. Evocodebench: An evolving code genera-
tion benchmark with domain-specific evaluations. In
The Thirty-eight Conference on Neural Information
Processing Systems Datasets and Benchmarks Track.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.
2023. Starcoder: may the source be with you! arXiv
preprint arXiv:2305.06161.

Jiawei Liu, Chungqiu Steven Xia, Yuyao Wang, and Ling-
ming Zhang. 2024. Is your code generated by chatgpt
really correct? rigorous evaluation of large language
models for code generation. Advances in Neural
Information Processing Systems, 36.

Tianyang Liu, Canwen Xu, and Julian McAuley.
2023. Repobench: Benchmarking repository-level
code auto-completion systems. arXiv preprint
arXiv:2306.03091.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,
Qingwei Lin, and Daxin Jiang. 2023. Wizardcoder:
Empowering code large language models with evol-
instruct. arXiv preprint arXiv:2306.08568.

Mistral. 2024. Codestral.

Niklas Muennighoff, Qian Liu, Armel Randy Ze-
baze, Qinkai Zheng, Binyuan Hui, Terry Yue Zhuo,
Swayam Singh, Xiangru Tang, Leandro Von Werra,
and Shayne Longpre. 2024. Octopack: Instruction
tuning code large language models. In The Tivelfth
International Conference on Learning Representa-
tions.

Ansong Ni, Pengcheng Yin, Yilun Zhao, Martin Riddell,
Troy Feng, Rui Shen, Stephen Yin, Ye Liu, Semih
Yavuz, Caiming Xiong, Shafiq Joty, Yingbo Zhou,
Dragomir Radev, Arman Cohan, and Arman Cohan.

13262


https://api.semanticscholar.org/CorpusID:268232499
https://api.semanticscholar.org/CorpusID:268232499
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2405.04434
https://openreview.net/forum?id=kvjbFVHpny
https://openreview.net/forum?id=kvjbFVHpny
https://mistral.ai/news/codestral/
https://openreview.net/forum?id=mw1PWNSWZP
https://openreview.net/forum?id=mw1PWNSWZP

2024. L2CEval: Evaluating language-to-code gener-
ation capabilities of large language models. Transac-

tions of the Association for Computational Linguis-
tics, 12:1311-1329.

OpenAl. 2024a. Gpt-4o.
OpenAl. 2024b. Openai ol system card.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in neural in-
formation processing systems, 35:27730-27744.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Disha Shrivastava, Hugo Larochelle, and Daniel Tar-
low. 2023. Repository-level prompt generation for
large language models of code. In International Con-
ference on Machine Learning, pages 31693-31715.
PMLR.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824-24837.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and
Lingming Zhang. 2024. Magicoder: Empowering
code generation with oss-instruct. In Forty-first Inter-
national Conference on Machine Learning.

Chungiu Steven Xia, Yinlin Deng, and Lingming Zhang.
2024. Top leaderboard ranking = top coding pro-
ficiency, always? evoeval: Evolving coding bench-
marks via llm. arXiv preprint.

Chunqiu Steven Xia, Yuxiang Wei, and Lingming
Zhang. 2022. Practical program repair in the era
of large pre-trained language models. arXiv preprint
arXiv:2210.14179.

Zhaojian Yu, Xin Zhang, Ning Shang, Yangyu Huang,
Can Xu, Yishujie Zhao, Wenxiang Hu, and Qiufeng
Yin. 2024. Wavecoder: Widespread and versatile
enhancement for code large language models by in-
struction tuning. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 5140-5153.

Ziyin Zhang, Chaoyu Chen, Bingchang Liu, Cong Liao,
Zi Gong, Hang Yu, Jianguo Li, and Rui Wang. 2023.
A survey on language models for code.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan
Wang, Yufei Xue, Zihan Wang, Lei Shen, Andi Wang,
Yang Li, et al. 2023. Codegeex: A pre-trained model
for code generation with multilingual evaluations on
humaneval-x. arXiv preprint arXiv:2303.17568.

Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu,
Bill Yuchen Lin, Jie Fu, Wenhu Chen, and Xiang
Yue. 2024. Opencodeinterpreter: Integrating code
generation with execution and refinement. arXiv
preprint arXiv:2402.14658.

Ming Zhu, Aneesh Jain, Karthik Suresh, Roshan Ravin-
dran, Sindhu Tipirneni, and Chandan K Reddy. 2022.
Xlcost: A benchmark dataset for cross-lingual code
intelligence. arXiv preprint arXiv:2206.08474.

Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang,
Peiyi Wang, Runxin Xu, Y Wu, Yukun Li, Huazuo
Gao, Shirong Ma, et al. 2024. Deepseek-coder-v2:
Breaking the barrier of closed-source models in code
intelligence. arXiv preprint arXiv:2406.11931.

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu,
Wenhao Yu, Ratnadira Widyasari, Imam Nur Bani
Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al.
2024. Bigcodebench: Benchmarking code genera-
tion with diverse function calls and complex instruc-
tions. arXiv preprint arXiv:2406.15877.

13263


https://doi.org/10.1162/tacl_a_00705
https://doi.org/10.1162/tacl_a_00705
https://openai.com/index/hello-gpt-4o
https://api.semanticscholar.org/CorpusID:272648256
https://arxiv.org/abs/2311.07989

Appendix Contents

2 O a =

eS|

Impact of Data Generating Model
Example in Benchmark Construction
Detailed Results

Fine-tuning Experiments

Model Information

Comparison between HumanEval (Pro), MBPP (Pro) and BigCodeBench-Lite (Pro)

G Difficulty of Benchmark Samples

Prompts
H.1 Prompts for Benchmark Construction

H.2 Prompts for Evaluation . . . ... ..

Examples of Different Error Types

I.1 Examples of AssertionError . . . . .
12 Examples of NameError . . . .. ..
1.3 Examples of ValueError. . . . . . ..
1.4 Examples of IndexError . . . . . . ..
1.5 Examples of TypeError . . . . .. ..

1.6 An Example of BigCodeBench-LitePro . . . . ... ... ... .. .. .........

Error Statistics across Different Models

13264

13

13

14

14

15

16

17

18
18
18

18
18
19
20
22
23
24

27



A Impact of Data Generating Model

In the early phases of benchmark construction, we use the open-source model Deepseek V2.5 to gen-
erate self-invoking problems due to its license availability. However, we were concerned that using
Deepseek V2.5 to generate the benchmark would give the model an unfair advantage. Therefore, we
checked the performance of a few models when generating data with GPT-40. The results are shown in
Table 7. We compute the Pearson and Spearman correlation coefficients for two different data generating
models. From Table 6, we observe the strong correlations (>0.9) for both coefficients, suggesting the
robustness of our benchmarks across different data generating models. In addition, as shown in Table 7,
the evaluation results of GPT-40 under the data models of DeepseekV2.5 is higher than under itself. These
results provide some evidence that evaluating a model on its own generated data does not seem to provide
it a significant advantage.

Pearson Correlation Spearman Correlation

0.955 0.917

Table 6: Results Correlation of Different Data Generating Models.

Evaluating Model Data Model (DeepseekV2.5) Data Model (GPT-40)
GPT-40 75.0 73.8
Qwen2.5-Coder-7B-base 54.9 54.9
Qwen2.5-Coder-7B-instruct 65.9 65.9
Qwen2.5-Coder-32B-base 61.6 56.1
Qwen2.5-Coder-32B-instruct 70.1 76.8
Deepseek-Coder-6.7B-base 354 37.8
Deepseek-Coder-6.7B-instruct 55.5 60.4
Deepseek-Coder-33B-base 49.4 51.2
Deepseek-Coder-33B-instruct 56.7 58.5

Table 7: Impact of Data Generating Model.

B Example in Benchmark Construction

Base Problem Self-invoking Problem

# You are a farmer who needs to feed a group of hungry rabbits. Each rabbit has
a specific number of carrots it has already eaten and a specific number it still
needs to eat. You have a limited number of carrots in stock. Write a function that
takes in a list of rabbits, where each rabbit is represented by a tuple (number,
need), and the total number of carrots in stock. The function should return the
total number of carrots eaten by all rabbits and the number of carrots left in stock
after feeding all the rabbits.

def eatinumber, need, remaining

Canonical Solution

def feed_rabbits(rabbits, stock

total_eaten
remaining_carrots - stock

rabbit in rabbits

number, need - rabbit

eaten. remaining_carrots - eat'number, need. remaining_carrots
total_eaten - eaten - number

total_eaten, remaining_carrots:

Test Cases
need - remaining feed_rabbits|
number - need . remaining-need feed_rabbits|
feed_rabbits|
number - remaining feed_rabbits|

Figure 8: An example of self-invoking problems in HumanEval Pro

13265



C Detailed Results

Model | HumanEval Pro (0-shot) MBPP Pro (0-shot)
LLaMA-3.1-8B-base 25.0 36.5
LLaMA-3.1-8B-instruct 45.7 53.7
LLaMA-3.1-70B-base 40.9 57.4
LLaMA-3.1-70B-instruct 60.4 63.8
Qwen-2.5-72B-base 62.2 65.3
Qwen-2.5-72B-instruct 68.9 68.8
QwQ-32B-preview 72.0 67.5
LLaMA-3.3-70B-instruct 67.1 64.6
Mistral-Large-instruct-2411 75.0 69.3

Table 8: Results of Other LLMs on HumanEval Pro and MBPP Pro (greedy decoding).

Model HumanEval Pro MBPP Pro
pass@1 pass@5 pass@10 | pass@1 pass@5 pass@10

DeepseekCoder-6.7B-base 38.0 50.9 54.7 51.6 60.4 63.1
DeepseekCoder-6.7B-instruct 55.9 64.1 66.5 55.2 62.6 64.9
Magicoder-S-DS-6.7B 55.1 62.7 65.1 57.7 64.9 67.2
WaveCoder-Ultra-6.7B 55.7 61.4 63.0 58.2 64.4 66.3
DeepseekCoder-33B-base 494 60.8 65.2 59.1 67.2 69.3
DeepseekCoder-33B-instruct 59.1 68.6 71.3 63.4 70.6 72.9
Qwen2.5-Coder-7B-base 51.8 62.1 66.2 61.3 69.9 72.3
Qwen2.5-Coder-7B-instruct 65.7 72.5 75.0 64.2 70.5 72.6
OpenCoder-9B-base 44.5 56.2 59.9 54.8 62.9 65.0
OpenCoder-9B-instruct 59.8 68.5 70.8 58.1 63.7 65.1
Yi-Coder-9B-base 479 59.0 61.9 59.6 67.7 69.7
Yi-Coder-9B-chat 59.7 66.4 67.9 65.0 69.8 71.2
Codestral-22B | 595 66.2 677 | 632 67.7 68.9
Qwen2.5-Coder-32B-base 62.4 70.3 72.2 67.6 75.0 76.9
Qwen2.5-Coder-32B-instruct 69.2 72.3 733 70.6 74.7 76.0
QwQ-32B-preview 70.9 77.7 79.5 67.0 73.0 74.5

Table 9: The results of different models on HumanEval Pro and MBPP Pro . We generate 20 samples for each
problems with random sampling strategy where temperature is set to 0.2 and top_p is set to 0.95.

D Fine-tuning Experiments

In order to analyze the impact of specifically fine-tuning on self-invoking problems. We use GPT4o to
generate a dataset containing 20K self-invoking problems and solutions and fine-tune Qwen2.5-Coder-7B-
Base (Hui et al., 2024). Compared to Qwen2.5-Coder-7B-Base in Figure 4 (a), who has 26.2% (Failed,
Pass) (i.e., samples that pass the base problems but fail in HumanEval Pro and MBPP Pro ) samples on
HumanEval Pro and 24.1% on MBPP Pro, the fine-tuned model didn’t show significant advantages on
HumanEval Pro (23.8% (Failed, Pass) samples) and MBPP Pro (28.0% (Failed, Pass) samples).

13266



Confusion Matrix

Confusion Matrix

3 98 39 B0 3 187 105 150
il (59.8%) (23.8%) K (49.5%) (27.8%)
T 100 100
g I €
£ g 8
2 50 50
3 19 8 3 37 49
g (11.6%) (4.9%) -0 g (9.8%) (13.0%) -0

0 i
Passed Failed
MBPP Pro

l :
Passed Failed
HumanEval Pro

Figure 9: The confusion matrix of fine-tuned model on self-invoking problems.

E Model Information

We present results of proprietary models and open-source models on HumanEval Pro and MBPP Pro:
Qwen-2.5-Coder (Base and Instruct, 1.5B, 7B, 33B) (Hui et al., 2024), DeepseekCoder (Base and
Instruct) (Guo et al., 2024), DeepseekCoder-V2 (DeepSeek-Al, 2024), Yi-Coder-9B (Base and In-
struct) (01.Al, 2024), OpenCoder (Base and instruct) (Huang et al., 2024), Magicoder-S-DS-6,7B (Wei
et al., 2024), WaveCoder-Ultra-6.7B (Yu et al., 2024), Codestral-22B (Mistral, 2024), GPT-3.5 (Ouyang
et al., 2022), GPT-40 (OpenAl, 2024a), Claude-3.5-sonnet (Anthropic, 2024) and ol-mini (OpenAl,
2024b). To facilitate reproducibility, the HuggingFace checkpoints of all open-source models and API
name of proprietary models are provided in Appendix E. Our prompts for evaluation is shown in Ap-
pendix H.2.

Model Name API Name

O1-mini 01-mini-2024-09-12
GPT-40 gpt-40-2024-08-06
GPT-4-Turbo gpt-4-turbo-2024-04-09

Claude-3.5-sonnet
Deepseek-V2.5

claude-3-5-sonnet-20241022
deepseek-chat

Model Name HuggingFace URL

DeepseekCoder-V2-instruct https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Instruct
Qwen2.5-Coder-1.5B-base https://huggingface.co/Qwen/Qwen2.5-Coder-1.5B
Qwen2.5-Coder-1.5B-instruct  https://huggingface.co/Qwen/Qwen2.5-Coder-1.5B-Instruct
DeepseekCoder-6.7B-base https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
DeepseekCoder-6.7B-instruct  https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct
Magicoder-S-DS-6.7B https://huggingface.co/ise-uiuc/Magicoder-S-DS-6.7B
WaveCoder-Ultra-6.7B https://huggingface.co/microsoft/wavecoder-ultra-6.7b
Qwen?2.5-Coder-7B-base https://huggingface.co/Qwen/Qwen2.5-Coder-7B
Qwen2.5-Coder-7B-instruct https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct
OpenCoder-8B-base https://huggingface.co/infly/OpenCoder-8B-Base
OpenCoder-8B-instruct https://huggingface.co/infly/OpenCoder-8B-Instruct
Yi-Coder-9B-base https://huggingface.co/01-ai/Yi-Coder-9B

Yi-Coder-9B-chat https://huggingface.co/@1-ai/Yi-Coder-9B-Chat
Codestral-22B-v0.1 https://huggingface.co/mistralai/Codestral-22B-v@.1
DeepseekCoder-33B-base https://huggingface.co/deepseek-ai/deepseek-coder-33b-base
DeepseekCoder-33B-instruct https://huggingface.co/deepseek-ai/deepseek-coder-33b-instruct
Qwen2.5-Coder-32B-base https://huggingface.co/Qwen/Qwen2.5-Coder-32B
Qwen2.5-Coder-32B-instruct ~ https://huggingface.co/Qwen/Qwen2.5-Coder-32B-Instruct
LLaMAZ3-70B-instruct https://huggingface.co/meta-1lama/Meta-Llama-3-70B-Instruct
QwQ-32B-Preview https://huggingface.co/Qwen/QwQ-32B-Preview

LLaMA3.1-8B-base https://huggingface.co/meta-1lama/Llama-3.1-8B
LLaMA3.1-8B-instruct https://huggingface.co/meta-1lama/Llama-3.1-8B-Instruct
LLaMA3.1-70B-base https://huggingface.co/meta-1lama/Llama-3.1-70B
LLaMA3.1-70B-instruct https://huggingface.co/meta-1lama/Llama-3.1-70B-Instruct
Qwen2.5-72B-base https://huggingface.co/Qwen/Qwen2.5-728B

Qwen2.5-72B-instruct https://huggingface.co/Qwen/Qwen2.5-72B-Instruct

Table 10: The corresponding API names and HuggingFace model URLs for the evaluated models are listed in
Table 2.

13267


https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Instruct
https://huggingface.co/Qwen/Qwen2.5-Coder-1.5B
https://huggingface.co/Qwen/Qwen2.5-Coder-1.5B-Instruct
https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct
https://huggingface.co/ise-uiuc/Magicoder-S-DS-6.7B
https://huggingface.co/microsoft/wavecoder-ultra-6.7b
https://huggingface.co/Qwen/Qwen2.5-Coder-7B
https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct
https://huggingface.co/infly/OpenCoder-8B-Base
https://huggingface.co/infly/OpenCoder-8B-Instruct
https://huggingface.co/01-ai/Yi-Coder-9B
https://huggingface.co/01-ai/Yi-Coder-9B-Chat
https://huggingface.co/mistralai/Codestral-22B-v0.1
https://huggingface.co/deepseek-ai/deepseek-coder-33b-base
https://huggingface.co/deepseek-ai/deepseek-coder-33b-instruct
https://huggingface.co/Qwen/Qwen2.5-Coder-32B
https://huggingface.co/Qwen/Qwen2.5-Coder-32B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct
https://huggingface.co/Qwen/QwQ-32B-Preview
https://huggingface.co/meta-llama/Llama-3.1-8B
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/meta-llama/Llama-3.1-70B
https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct
https://huggingface.co/Qwen/Qwen2.5-72B
https://huggingface.co/Qwen/Qwen2.5-72B-Instruct

F Comparison between HumanEval (Pro), MBPP (Pro) and BigCodeBench-Lite (Pro)

Model Performance on HumanEval and HumanEval Pro (0-shot)
10 -~ HumanEval Pro Distribution
—:— HumanEval Distribution
=m HumanEval

80 = = HumanEval Pro 0-shot
I 60
9
g
= w0
20 I
0
& &
& &80 & ;13' 4 & \6 o;ﬁ § & §F & S
r\'” & & s & CANN 9& P AN b «§f
= E q&’z vﬁ’“ & S «.f“"b s \9"& < o“’b 9"?’@‘ w&é 4
s G TE IS TS
¢ ;
e & o &
Model Performance on MBPP vs. MBPP Pro (0-shot)
80
— 60
s
g
K
A~ 40
~=~ MBPP Pro Distribution
20 —.— MBPP Distribution
s MBPP
== MBPP Pro
N —— - - -
& a2 P & & «‘b &~ & &
& \5’0@‘_‘@6’ “" ‘6&& é"&& 4;& & qu;ﬁ sy -<»~ b«t"\j #-0&
< s g&«%@' q@z"g,@"é\»ﬁs&"ﬁ"&%’
R fﬁ’ﬂ#‘fﬁ@%&#fﬁz‘bf& <
& s A A S T Ve
; & &
& & o o & TS
Model Performance on BigCodeBench-Lite and BigCodeBench-Lite Pro (0-shot)
7= - BigCodeBench-Lite
80 - BigCodeBench-Lite Pro
= 60
B
%
<
~

=~
~ S,
40
ZD I I
0

&P & &
& \7 ‘0
& I é”& V& o & nﬁ,& 5: 41: & & &5: o"b @9 &@ \& & y Q,'»“%
AN & & & a 8
& & N @03’ @0 &’ & co" ECAE A
&@C @“ @C l &% & & & & e
& @Q & S
S &‘f’& cs" o S &
Model Performance on Various Benchmarks
100
N g:?;ﬁ?; == Kﬁﬂ’mﬂ e HumanEval . MBPP
- HumanEval Pro == HumanEval Pro WSS MBPP Pro
80 . : L ~ Distribution

S
§
£ 40
20
0
&S
,Cob 3
¢ £ IS :
<« & o
o &
Iy L& g, 8 S o

Figure 10: Comparison between HumanEval Family, MBPP Family and BigCodeBench-Lite Family.

13268



G Difficulty of Benchmark Samples

We analyze the complexity comparison between a base problem and its self-invoking counterpart by
examining the line counts of their canonical solutions. The line count serves as a proxy for the complexity
of each problem. By comparing the number of lines required to solve the base problem with those
needed for the self-invoking version, we gain insight into how the introduction of self-invocation affects
the overall complexity. Generally, self-invoking problems, which often involve recursion or similar
constructs, may require more lines of code to handle additional logic and edge cases, thereby increasing
the complexity. This comparison helps in understanding the additional computational and conceptual
challenges introduced by self-invocation.

Complexity Comparison between Base Problem and Self-invoking Problem

Base Problem
Self-invoking Problem

N w w N
a ) o )

Complexity
N
o

T T T T T T T T T
0 20 40 60 80 100 120 140 160
HumanEval Problem ID

Complexity Comparison between Base Problem and Self-invoking Problem

Base Problem
80 1 Self-invoking Problem

Complexity
w IS o
o o o

N
(S)

=
=)

o

0 50 100 150 200 250 300 350
MBPP Problem ID

Figure 11: Complexity comparison between base problem and self-invoking problem. We use the line count of
the canonical solution for both the base problem and the self-invoking problem as a measure of the problem’s
complexity.

13269



H Prompts

H.1 Prompts for Benchmark Construction

We set the prompt in our benchmark construction as follows:

Prompt for benchmark construction:

I’'ll give you a raw programming question and its solution, please generate a new problem that
requires multiple calls to the raw question to solve, and generate the solution in new_solution.
Please return with json format including 3 keys: *new_problem’, new_solution’, ’test_input; Il
use json.loads() to transform it to dict type.

To solve new_problems, new_solution should include the multiple function calls of raw question.
So new_problems will be not only a related problem but also a more complex problem than raw
problem.

raw problem:

{raw problem }

raw solution:

{raw solution }

H.2 Prompts for Evaluation

We set the prompt in our evaluation as follows:

Prompt of 0-shot: You are an exceptionally intelligent coding assistant that consistently delivers
accurate and reliable responses to user instructions. Write a solution of python file to the following
problems, the solution of the second problem requires single or multiple calls to the first

@ @ Instruction

{base problem }

{self-invoking problem }

@ @ Response

Prompt of 1-shot: You are an exceptionally intelligent coding assistant that consistently delivers
accurate and reliable responses to user instructions. Write a solution of python file to the following
problems, the solution of the second problem requires single or multiple calls to the first solution
@ @ Instruction

{base problem }

{ self-invoking problem }

{example}

@ @ Response

Prompt with Chain-of-Thought:

You are an exceptionally intelligent coding assistant that consistently delivers accurate and reliable
responses to user instructions. Write a solution of python file to the following problems, the
solution of the second problem requires single or multiple calls to the first

@ @ Instruction

{base problem }

{self-invoking problem }

@ @ Response

Let’s think step by step.

|

Examples of Different Error Types

I.1 Examples of AssertionError

13270




20

21

22

23

24

25

26

27

28

Listing 1: AssertionError in HumanEval/24-generated by Qwen2.5Coder-7B-base

Status: AssertionError
Traceback: assert largest_common_divisor ([15, 30, 45]) == 15
Explanation: expected 15 but got 5.

def largest_divisor(n: int) -> int:
""" For a given number n, find the largest number that divides n
evenly, smaller than n
>>> largest_divisor (15)
5
for i in range(n-1, 0, -1):
if n % i == 0:
return i
return 1

def largest_common_divisor (numbers: list) -> int:

""" For a given list of integers, find the largest number that
divides each of the numbers in the list evenly, smaller than
the smallest number in the list

>>> largest_common_divisor ([15, 30, 451)

15
smallest = min(numbers)
for i in range(smallest-1, @, -1):
if all(n % i == @ for n in numbers):
return i
return 1

assert largest_common_divisor ([15, 3@, 45]) == 15
assert largest_common_divisor ([15, 30, 45]) == 15
assert largest_common_divisor ([10, 20, 30]) == 10
assert largest_common_divisor ([7, 14, 21]) == 7
assert largest_common_divisor ([16, 32, 64]) == 16
assert largest_common_divisor ([9, 18, 27]1) == 9

1.2 Examples of NameError

Listing 2: NameError in HumanEval/14-generated by Qwen2.5Coder-7B-instruct

Status: NameError
Traceback: assert all_prefixes_for_list([’abc’, ’def’]) == [[’a’, ’ab
o abce’], [’d’, ’de’, ’def’]]
Explanation: The expected function name is ’all_prefixes_for_list’,
but ’all_prefixes_of_strings’ is generated though this information
is given in prompt.

from typing import List
def all_prefixes(string: str) -> List[str]:
""" Return list of all prefixes from shortest to longest of the
input string

13271




20

21

22

>>> all_prefixes(’abc’)
[yay, ’ab,, ’abC’]

nnn

return [string[:i] for i in range(1, len(string) + 1)]

def all_prefixes_of_strings(strings: List[str]) -> List[List[str]]:
""" Return list of lists where each sublist contains all prefixes
of the corresponding string in the input list, sorted from
shortest to longest. If the input list is empty, return an
empty list.
>>> all_prefixes_of_strings([’abc’, ’def’, ’ghi’])
[[’a’, ’ab’, ’abc’]1, [’d’, ’de’, ’def’], [’g’, ’'gh’, ’ghi’1]

return [all_prefixes(s) for s in strings]

assert all_prefixes_for_list([’abc’, ’def’]1) == [[’a’, ’ab’, ’abc’],
[’d’, ’de’, ’def’]]

assert all_prefixes_for_list([’’]1) == [[]1]

assert all_prefixes_for_list([]) == []

assert all_prefixes_for_list([’single’]) == [[’s’, ’'si’, ’sin’, ’sing

’

, 'singl’, ’single’]]

1.3 Examples of ValueError

Listing 3: ValueError in HumanEval/153-generated by O1-mini

Status: ValueError

Traceback:
>>> assert Strongest_Extensions({’Slices’: [’SErviNGSliCes’, ’Cheese’
, 'StuFfed’], ’my_class’: ['AA’, ’'Be’, ’CC’]}) == [’Slices.

SErviNGSliCes’, ’my_class.AA’]
>>> for class_name, extensions in classes_with_extensions
Explanation: ValueError: too many values to unpack (expected 2)

def Strongest_Extension(class_name, extensions):

nnn

Determines the strongest extension for a given class based on the
strength calculation.

The strength of an extension is calculated as the number of
uppercase letters
minus the number of lowercase letters in the extension’s name.

If multiple extensions have the same strength, the first one in
the list is chosen.

Parameters:
- class_name (str): The name of the class.

13272




20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

def

- extensions (List[str]): A list of extension names.

Returns:

- str: A string in the format "ClassName.StrongestExtensionName".

Example:
>>> Strongest_Extension(’my_class’, [’AA’, ’Be’, ’CC’1)
"my_class.AA’
if not extensions:
return f"{class_name?}.None"

def calculate_strength(extension):
cap = sum(1 for char in extension if char.isupper())
sm = sum(1 for char in extension if char.islower())
return cap - sm

strongest_extension = extensions[0]
max_strength = calculate_strength(strongest_extension)

for ext in extensions[1:]:
strength = calculate_strength(ext)
if strength > max_strength:
strongest_extension = ext
max_strength = strength
return f"{class_name}.{strongest_extension}"”

Strongest_Extensions(classes_with_extensions):

nnn

Determines the strongest extensions for a list of classes.

For each class, it finds the strongest extension based on the
strength calculation.

If a class has no extensions, it is represented as "ClassName.
None".

Parameters:
- classes_with_extensions (List[Tuple[str, List[str]]1):
A list where each element is a tuple containing a class name
and a list of its extensions.

Returns:
- List[str]l: A list of strings in the format "ClassName.
StrongestExtensionName".

Example:
>>> Strongest_Extensions ([
(’my_class’, [’AA’, ’Be’, ’CC’1),
(’Slices’, [’SErviNGSliCes’, ’'Cheese’, ’StuFfed’]),
(’EmptyClass’, [1)
iD)
[’my_class.AA’, ’'Slices.SErviNGSliCes’, ’EmptyClass.None’]

13273

]




61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

nnn

result = []
for class_name, extensions in classes_with_extensions:
if extensions:
strongest
else:
strongest = f"{class_name}.None"”
result.append(strongest)
return result

Strongest_Extension(class_name, extensions)

assert Strongest_Extensions({’Slices’: [’SErviNGSliCes’, ’Cheese’, ’
StuFfed’], ’my_class’: [’AA’, ’'Be’, ’CC’]}) == [’Slices.
SErviNGSliCes’, ’my_class.AA’]

assert Strongest_Extensions({’Empty’: [], ’Single’: [’A’1}) == [’
Empty.None’, ’Single.A’]

assert Strongest_Extensions({’Mixed’: [’aA’, ’Bb’, ’'Cc’], ’AllCaps’:
[’AA’, ’BB’, ’CC’1}) == [’Mixed.aA’, ’AllCaps.AA’]

assert Strongest_Extensions({’NoExtensions’: []}) == [’NoExtensions.
None’ ]

assert Strongest_Extensions({}) == [] # Check for empty input

1.4 Examples of IndexError

Listing 4: IndexError in HumanEval/73-generated by GPT-40

Status: IndexError

Traceback:

>>> assert smallest_change_2d([[1,2,3,5,4,7,9,6]1, [1,2,3,4,3,2,2],
[1,2,3,2,111) == 7

>>> column = [arr[row][col] for row in range(rows)]

Explanation: IndexError: list index out of range

def smallest_change(arr):
Given an array arr of integers, find the minimum number of
elements that
need to be changed to make the array palindromic. A palindromic
array is an array that
is read the same backwards and forwards. In one change, you can
change one element to any other element.

nnn

n = len(arr)
changes = 0
for i in range(n // 2):
if arr[i]l != arr[n - i - 1]:

changes += 1
return changes

def smallest_change_2d(arr):

nnn

13274




20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Given a 2D array of integers, find the minimum number of elements
that need to be changed to make each row
and each column of the array palindromic. A palindromic row or
column is a row or column that is read the same
backwards and forwards. In one change, you can change one element
to any other element.
if not arr or not arr[0Q]:
return 0

rows len(arr)
cols = len(arr[0])

# Calculate changes needed for each row
row_changes = sum(smallest_change(row) for row in arr)

# Calculate changes needed for each column

col_changes = 0
for col in range(cols):
column = [arr[row][col] for row in range(rows)]

col_changes += smallest_change(column)
return row_changes + col_changes

assert smallest_change_2d([[1,2,3,5,4,7,9,6], [1,2,3,4,3,2,2],
[1,2,3,2,11]) == 7

assert smallest_change_2d([[1,2,3,4]1, [4,3,2,1], [1,2,2,1],
[1,2,3,4]1]1) == 8

assert smallest_change_2d([[1,2,3,2,1]1, [1,2,3,2,1]1, [1,2,3,2,1],
[1,2,3,2,111) ==

LI.5 Examples of TypeError

Listing 5: TypeError in MBPP/164-generated by DeepseekCoder-V2-instruct

Status: TypeError

Traceback:

>>> assert total_and_average_volume ([{’radius’: 3, ’height’: 5}, {’
radius’: 4, ’height’: 6}]) == (147.6548547187203,
73.82742735936014)

>>> total_volume += volume_cone(r, h)

>>> return (math.pi * r*x2 x h) / 3

Explanation: TypeError: unsupported operand type(s) for ** or pow():
str’ and ’int’

# Write a function to find the volume of a cone.
import math
def volume_cone(r,h):

return (math.pi * rxx2 % h) / 3

13275




# Given a list of cones with their respective radii and heights,
write a function to calculate the total volume of all cones and
the average volume per cone.

def total_and_average_volume(cones):

total_volume = 0
for cone in cones:

r, h = cone

total_volume += volume_cone(r, h)
average_volume = total_volume / len(cones)

return total_volume, average_volume

assert total_and_average_volume ([{’radius’: 3, ’height’: 53}, {’radius
’: 4, ’height’: 63}1) == (147.6548547187203, 73.82742735936014)
assert total_and_average_volume ([{’radius’: 1, ’height’: 23}]1) ==

(2.0943951023931953, 2.0943951023931953)

1.6 An Example of BigCodeBench-Lite Pro

Listing 6: The outputs of GPT-40 on BigCodeBench-Lite Pro (BigCodeBench/355).

Traceback (most recent call last):
File "evalpro/result/GPT-40/bigcodebench_lite_pro/log/
santized_results/case_20/gen_0.py", line 76, in <module>
new_solution(points)
File "evalpro/result/GPT-40/bigcodebench_lite_pro/log/
santized_results/case_20/gen_0.py", line 65, in new_solution
voronoi_plot_2d(Voronoi(subset), ax=ax, show_vertices=False,
line_colors=f’C{i}’, point_size=2)
File "_qhull.pyx"”, line 2677, in scipy.spatial._qghull.Voronoi.
__init__
File "_qghull.pyx"”, line 352, in scipy.spatial._qghull._Qhull.
__init__
scipy.spatial._qhull.QhullError: QH6214 qghull input error: not enough
points(1) to construct initial simplex (need 4)

import numpy as np
from scipy.spatial import Voronoi, voronoi_plot_2d
import matplotlib.pyplot as plt
def task_func(points, seed=0):
Calculate the Voronoi diagram for a number of points in 2D and
plot it.
Note: this function will raise errors when input is invalid, for
example wrong type or shape.
Jittering is applied prior to plotting.

Parameters:

- points (np.ndarray): A numpy ndarray of shape (n_points, 2)
with the coordinates of the points.

- seed (int): Random seed for reproducibility. Defaults to 0.

13276




21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

45

46

47

48

49

50

51

52

53

54

55

56

57

def

Returns:
tuple (vor, ax): A tuple containing:
- vor (Voronoi): A Voronoi object representing the Voronoi
diagram of the points.
- ax (Axes): The axes of the plotted Voronoi diagram.

nnn

if points.shapel[1] != 2:
raise ValueError("Input_points.should_have_shape._.(n_points, .
2)”)

np.random. seed(seed)
jittered_points = points + np.random.normal(scale=0.01, size=
points.shape)

vor = Voronoi(jittered_points)

fig, ax = plt.subplots()

voronoi_plot_2d(vor, ax=ax, show_vertices=False, line_colors=’
blue’, point_size=2)

plt.show()

return vor, ax

new_solution(points):

Given a set of points in 2D space, calculate and plot the Voronoi
diagram for each subset of points obtained

by dividing the original set into three equal parts. Additionally
, overlay the Voronoi diagrams of these subsets

on a single plot to visualize their combined effect.

Parameters:
- points (np.ndarray): A numpy ndarray of shape (n_points, 2)
with the coordinates of the points.

Returns:
None
if len(points) < 3:
raise ValueError("Need_.at_least_3_points_to_divide_into_three
_Subsets")

# Sort points array for reproducibility
points = np.array(sorted(points, key=lambda x: (x[@]1, x[11)))

# Divide the points into three equal subsets

n_points = len(points)
part_size = n_points // 3
subsets = [points[ixpart_size:(i+1)*part_size] for i in range(3)]

# Create a plot for overlay
13277




58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

71

78

fig, ax = plt.subplots()

# Plot the Voronoi for each subset
for i, subset in enumerate(subsets):
# Note: Here ‘task_func‘ is assumed to return the ‘ax‘, which
will be reused for plotting
voronoi_plot_2d(Voronoi(subset), ax=ax, show_vertices=False,
line_colors=f’C{i}’, point_size=2)

plt.title("Overlay._.of_Voronoi_Diagrams_for_the_Three_Subsets”)
plt.show()

# Test case 1: Basic test with 9 points

points = np.array([[0, o1, [e, 1], [1, @1, [1, 11, [2, 21, [2, 31,
(3, 31, [3, 41, [4, 4711)

new_solution(points)

# Test case 2: Test with exactly 3 points
points = np.array([[o, o], [1, 11, [2, 21D)
new_solution(points)

# Test case 3: Test with random points ensuring at least 9 points
points = np.random.rand(9, 2)
new_solution(points)

13278




J Error Statistics across Different Models

g Error type
Model ‘ Dataset ‘ AssertionError NameError ValueError IndexError TypeError OtherError All
O1-mini HumanEval Pro 27 8 3 1 0 0 39
MBPP Pro 89 15 6 2 4 4 120
All 116 23 9 3 4 4 159
GPT-40 HumanEval Pro 28 11 2 1 0 0 41
MBPP Pro 82 17 4 1 5 1 110
All 110 28 6 2 5 1 151
DeepseekCoder-V2-instruct HumanEval Pro 26 7 1 1 1 1 37
MBPP Pro 79 12 4 3 7 3 108
All 105 19 5 4 8 4 145
DeepseekV2.5 HumanEval Pro 30 8 2 1 2 0 43
MBPP Pro 82 18 1 3 4 1 109
All 112 26 3 4 6 1 152
Qwen2.5-Coder-32B-instruct HumanEval Pro 32 12 2 2 1 1 50
MBPP Pro 89 16 3 1 4 1 114
All 121 28 5 3 5 2 164
Qwen2.5-Coder-7B-instruct HumanEval Pro 36 8 3 2 6 1 56
MBPP Pro 93 14 3 3 18 2 133
All 129 22 6 5 24 3 189
Claude-3.5-sonnet HumanEval Pro 30 11 1 1 0 2 45
MBPP Pro 87 28 3 1 6 2 127
All 117 39 4 2 6 4 172
LLaMa-3-70B-instruct HumanEval Pro 44 10 3 2 2 4 65
MBPP Pro 100 12 2 2 14 8 138
All 144 22 5 4 16 12 203
Codestral-22B HumanEval Pro 45 13 3 3 2 1 67
MBPP Pro 102 16 3 1 12 3 137
All 147 29 6 4 14 4 204
OpenCoder-8B-base HumanEval Pro 47 43 0 3 5 2 100
MBPP Pro 114 43 2 2 14 6 181
All 161 86 2 5 19 8 281
OpenCoder-8B-instruct HumanEval Pro 42 15 2 1 5 2 67
MBPP Pro 118 22 3 1 11 4 159
All 160 37 5 2 16 6 226
Qwen2.5Coder-1.5B-base HumanEval Pro 56 25 7 1 9 5 103
MBPP Pro 117 37 3 4 14 21 196
All 173 62 10 5 23 26 299
Qwen2.5Coder-7B-base HumanEval Pro 45 15 3 4 5 2 74
MBPP Pro 99 21 1 3 16 6 146
All 144 36 4 7 21 8 220
Qwen2.5Coder-32B-base HumanEval Pro 39 15 3 3 1 2 63
MBPP Pro 90 17 2 2 7 4 122
All 129 32 5 5 8 6 185
Yi-Coder-9B HumanEval Pro 48 31 2 5 3 5 94
MBPP Pro 92 37 1 3 12 5 150
All 140 68 3 8 15 10 244
Yi-Coder-9B-Chat HumanEval Pro 47 12 1 3 3 0 66
MBPP Pro 96 19 1 2 11 4 133
All 143 31 2 5 14 4 199
GPT-4-Turbo HumanEval Pro 33 8 3 1 1 0 46
MBPP Pro 91 18 1 1 5 0 116
All 124 26 4 2 6 0 162
DeepseekCoder-33B-base HumanEval Pro 55 16 2 2 3 5 83
MBPP Pro 108 23 5 1 8 10 155
All 163 39 7 3 11 15 238
DeepseekCoder-33B-instruct HumanEval Pro 49 14 2 2 4 0 71
MBPP Pro 101 16 2 1 10 6 136
All 150 30 4 3 14 6 207
DeepseekCoder-6.7B-base HumanEval Pro 59 24 4 4 6 9 106
MBPP Pro 128 25 3 3 14 14 187
All 187 49 7 7 20 23 293
DeepseekCoder-6.7B-instruct HumanEval Pro 46 15 4 4 2 2 73
MBPP Pro 107 30 4 2 17 2 162
All 153 45 8 6 19 4 235
Magicoder-S-DS HumanEval Pro 49 11 6 4 5 0 75
MBPP Pro 107 21 2 2 20 4 156
All 156 32 8 6 25 4 231
WaveCoder-Ultra-6.7B HumanEval Pro 51 12 2 3 4 2 74
MBPP Pro 113 20 2 4 8 4 151
All 164 32 4 7 12 6 225

Table 11: Error type of Different Models on HumanEval Pro and MBPP Pro.

13279



