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Abstract

Recent success of large language models
(LLMs) in diverse domains showcases their
potential to revolutionize scientific fields, in-
cluding drug editing. Traditional drug editing
relies on iterative conversations with domain
experts, refining the drug until the desired prop-
erty is achieved. This interactive and iterative
process mirrors the strengths of LLMs, mak-
ing them well-suited for drug editing. In ex-
isting works, LLMs edit each molecule inde-
pendently without leveraging knowledge from
past edits. However, human experts develop
intuition about effective modifications over
time through historical experience; accumulat-
ing past knowledge is pivotal for human ex-
perts, and so it is for LLMs. In this work, we
propose RL-Guider—a reinforcement-learning-
agent to provide suggestions to LLMs; it uses
the rich information provided from evaluat-
ing editing results made by the LLM based
on the recommendations to improve itself over
time. RL-Guider is the first work that leverages
both the comprehensive “world-level” knowl-
edge of LLMs and the knowledge accumu-
lated from historical feedback. As a result,
RL-Guider mitigates several shortcomings of
existing approaches and demonstrates supe-
rior performance. The code is available at
https://github.com/xufliu/RL-Guider.

1 Introduction

The remarkable performance of large language
models (LLMs) across various tasks has recently
sparked growing interest in their application to
scientific domains (Zhang et al., 2023), such as
drug editing, which is typically a complex, itera-
tive process that integrates expert knowledge and
refinement. Drug editing is a specialized task of
molecular optimization, aimed at refining drug-like
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molecules through small, localized structural modi-
fications. Typically, it begins with a conversation
with domain experts to gather suggestions on mod-
ifications. The molecule is then modified accord-
ingly and subjected to computational or experimen-
tal property testing. If the revised drug meets the
desired criteria, the process concludes; otherwise,
the testing results are provided to the domain ex-
pert to inform further refinements (Zheng et al.,
2024; Seidl et al., 2023; Cao et al., 2023; Wu et al.,
2024). This iterative refinement process in drug
editing perfectly aligns with the greatest strength
of LLMs—their ability to engage in interactive con-
versations and integrate suggestions.

The process of LLM-assisted drug editing oc-
curs in iterative rounds, where each cycle refines
the molecular structure based on suggestions or
guidance. These suggestions can range from sim-
ple responses, such as indicating whether the result
is incorrect, to more complex guidance incorpo-
rating detailed chemical knowledge and specific
modification suggestions. As a powerful genera-
tive tool with “world-level” knowledge, LLMs can
leverage their vast pre-trained knowledge to pro-
pose structurally valid and chemically meaningful
modifications. However, their effectiveness heavily
depends on the quality of the provided prompts,
suggestions, and guidance. Hence, the core of
LLM-assisted drug editing lies in the design of
valuable and knowledgeable suggestions to guide
the LLM to reason and plan (Liu et al., 2024b; Ye
et al., 2023; Wu et al., 2025; Ma et al., 2024).

Existing works mainly focus on leveraging
known domain knowledge, such as through a re-
trieval database (Liu et al., 2024b) or another
LLM (Sprueill et al., 2024), with the assumption
that LLMs store the chemical domain knowledge.
However, these approaches can introduce biases
that constrain the exploration of novel molecu-
lar structures. Over-reliance on existing knowl-
edge risks anchoring the drug editing process to
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Figure 1: An overview of various suggestion agents for LLM-assisted drug editing. LL.M-assisted drug editing is
an iterative process in which the LLM generates an edited drug, followed by an experimental or computational
evaluation. If the edited drug is unsatisfactory, the LLM is informed, and the process restarts. To effectively adapt
general-purpose LLMs with “world-level” knowledge for the drug editing task, providing proper suggestions or
guidance in the form of prompts is crucial. Various agents have been proposed to automate prompt generation.
ChatDrug (Liu et al., 2024b) is a Retrieval-Augmented Generation (RAG) based pipeline that retrieves the drug most
similar to the original drug among all drugs satisfying the target property. ChemReasoner (Sprueill et al., 2024) uses
another LLM as a planner to systematically generate suggestions, assuming it is knowledgeable about the chemical
domain. Existing approaches fail to leverage the rich feedback from evaluating edited drugs. Contrarily, we
propose RL-Guider, a reinforcement learning-based (RL-based) agent specifically designed to efficiently utilize this
feedback. As RL-Guider continuously interacts with the LLM to assist in the editing process, RL-Guider refines
its strategies by learning from historical decisions and feedback, much like human experts who accumulate

knowledge and expertise over time.

familiar patterns, potentially overlooking novel and
unseen molecular modifications that could lead to
breakthrough discoveries. Moreover, these meth-
ods can incur substantial computational costs;
for instance, retrieval-based inference requires iter-
ating over the entire database, significantly increas-
ing latency and resource consumption. Notably,
in existing methods, each editing task is treated
independently, overlooking the accumulation of
knowledge. Motivated by how expert chemists—
they accumulate intuition by learning from past
modifications, gradually improving their ability to
identify key substructures that require adjustment,
the accumulation of historical experience from past
edits is critical for both human experts and LLMs.

To overcome the aforementioned issues, we pro-
pose a reinforcement learning agent-enhanced drug
editing pipeline, referred to as RL-Guider, that
learns from the results of past edit actions gradually
as the LLM tackles more editing tasks. Unlike su-
pervised approaches, RL-Guider operates with-
out the need for re-training or fine-tuning of the

LLM, making it a lightweight and flexible solution
for delivering high-quality suggestions and guid-
ance in iterative drug editing. RL-Guider is the
first framework that leverages both the compre-
hensive “world-level”’ knowledge of LLMs and
the historical experience accumulated from past
edits by effectively utilizing the rich evaluation
feedback of candidate drugs. An overview of vari-
ous suggestion agents is provided in Fig. 1. Overall,
the contributions of this work can be summa-
rized: (1) We identify a rich source of information
that has been overlooked by existing works—the
evaluation feedback on candidate drugs; (2) We pro-
pose RL-Guider, an RL-based agent that leverages
this rich information without requiring retraining or
fine-tuning of LLMs; (3) RL-Guider does not rely
on predefined knowledge or a fixed retrieval dataset,
offering greater flexibility and adaptability in edit-
ing novel drugs; (4) We demonstrate through ex-
tensive experiments on various tasks and backbone
LLMs that RL-Guider is efficient and effective,
consistently improving drug editing performance.
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2 Related Work

Machine learning has achieved remarkable success
in molecular analysis (Schiitt et al., 2017; Brand-
stetter et al., 2021; Liu et al., 2020, 2022; Wang
et al., 2022, 2023; Yan et al., 2022; Subedi et al.,
2024; Liu et al., 2025; Qu et al., 2025), which
provides a powerful tool for drug discovery (Zeng
et al., 2022; Flam-Shepherd et al., 2022). More-
over, in recent years, LLMs (Team et al., 2023;
Achiam et al., 2023) have shown superior perfor-
mance across diverse NLP tasks including text
translation (Huang et al., 2023) and editing (Bi
et al., 2024). Consequently, several studies have ex-
plored the application of LLMs to drug discovery.
For example, pioneering research has employed
either fine-tuned LLMs (Cao et al., 2023) or LLMs
retrained on existing datasets (Liang et al., 2023)
to generate potential drug candidates.

Despite being a crucial task in drug discovery,
drug editing remains exceedingly underexplored.
Compared with discovery, drug editing has stricter
requirements for new drugs, including molecular
validity, structural similarity, and desired proper-
ties, as introduced in Sec. 3.1. To the best of our
knowledge, there exist only a few works in this line
of research. Notably, Sprueill et al. (2023); Liu
et al. (2024b) employ a domain-specific database to
provide similar known drugs that satisfy the desired
property as guidance. Ma et al. (2024); Sprueill
et al. (2024) utilize tools or trained models with
predefined domain knowledge to guide the LLMs.
Relation with Prior Works. Existing works pri-
marily focus on leveraging predefined knowledge,
such as retrieval databases (Liu et al., 2024b) or
pretrained knowledgeable LL.Ms (Sprueill et al.,
2024). The details of these methods are introduced
in Appendix A. While these methods can provide
domain-specific insights, they may suffer from sig-
nificant computational costs and potential biases
introduced by relying on predefined knowledge.
We discuss these shortcomings further in Sec. 4.2.
We observe that existing works overlook a crucial
source of knowledge, leaving it unused in the edit-
ing process. In particular, during the iterative edit-
ing process, the edited drugs are evaluated to as-
sess their suitability, providing valuable feedback
on key aspects such as validity, structural simi-
larity, and chemical properties of the LLM-edited
drug. This rich information can be used to refine
and improve the LLM’s editing performance over
time; however, existing works utilize this feedback

merely as a termination or continuation indicator
for the iterative process based on whether the re-
sults are satisfactory. In our proposed RL-Guider,
we explicitly utilize this rich information from
the feedback as a reward or penalty to train our
reinforcement learning agent, allowing it to ac-
cumulate knowledge from historical experience
and overcome limitations of existing works.

3 Preliminaries

3.1 LLMa-assisted Drug Editing

Drug editing modifies a molecule into another
one while maintaining structural similarity and
achieving desired properties (Chen et al., 2021).
Given a drug zj, and a text prompt x; describ-
ing the target or desired property, drug editing
is a conditional generation problem (Liu et al.,
2024b) in which the goal is to obtain an opti-
mized drug oy ~ P(x | Zin,x¢). In the con-
text of LLM-assisted drug editing, P is realized
as Toy = LLM(zin, z¢). However, unlike tradi-
tional deep generative models, which are explicitly
trained on large datasets to optimize an objective
function—such as maximizing the likelihood or
the evidence lower bound (ELBO)—LLMs oper-
ate primarily through in-context learning (Dong
et al., 2022) and rely heavily on the quality of pro-
vided prompts and suggestions (Liu et al., 2023).
Moreover, the utilization of the conversational po-
tentials in LL.Ms is preferred (Liu et al., 2024b;
Bubeck et al., 2023) and the editing can be an iter-
ative process using LLMs. Therefore, we formally
formulate LL.M-assisted drug editing as:

2 = LLM(in, 7, 7) (1)

for iteration rounds ¢ = 0,1,2,---, K, with
ZTout = Tx . Here, for clarity of notation, we break
the prompt into two parts: z; and zs. =z is the
textual description of the target or desired prop-
erty as defined previously, and z? is the suggestion
provided to LLMs by the agent in the i-th round,
analogous to the suggestions from expert chemists
in the iterative drug editing process. Following Liu
et al. (2024b), no suggestion will be provided in
the O-th round, i.e., x¥ is taken as an empty string.
As a natural input to LLMs, drugs are typically rep-
resented in text formats, such as SMILES strings.

3.2 Reinforcement Learning Agent

Reinforcement learning is a machine learning
method that enables an agent to learn optimal ac-
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tions by interacting with its environment through re-
wards and penalties. Following Kumar et al. (2020),
the RL framework is defined as (S, A, P, R,7),
where S represents the state space and A is the
action space. At time step ¢, the state and action
are denoted as s; and a;, respectively. The state
transition probability is given by P(siy1 | S¢, ar),
and the reward function R(s;, a;) evaluates the ac-
tion a, at state s;. The discount factor  determines
the weight of future rewards in decision-making.
The goal of training is to learn an optimal policy
() that determines an action based on the current
state, i.e., a; = 7(s;). The optimization objec-
tive of RL is to maximize the expected cumulative
reward as:

T
w4 arg max E g Y R(s¢,m(s))|, (@)
m(st)EA =0

where 7' is the maximum number of time steps.

4 RL-Guider: Guidance By Historical
Experience

In this section, we introduce RL-Guider, our pro-
posed method for providing more effective guid-
ance. In Sec. 4.1, we lay out the formulation of
RL-Guider and in Sec. 4.2, we discuss the merits
and significant potential it holds.

4.1 Formulation of RL-Guider

We first provide an overview of the RL-Guider
pipeline:

’

Overview. Given a molecule and the target,
RL-Guider provides suggestions (actions) on
the key components to be modified. Impor-
tantly, RL-Guider provides suggestions but
does not directly edit the drug; for instance, a
suggestion of adding a functional group may
result in an invalid drug. Instead, the LLM
leverages its extensive knowledge of chem-
istry to interpret the suggestion and modify
the drug accordingly. The edited candidate
drug will then be evaluated through compu-
tational or experimental testing to provide
feedback on the molecular validity, struc-
tural similarity compared with the input drug,
and the value of the desired chemical prop-
erty. This feedback, in turn, serves as the
reward/penalty for RL-Guider’s suggestions.
This process can be done interactively and it-
eratively for several rounds if the edited drug
is unsatisfactory.

Notably, our framework is the only method
that utilizes the rich information provided by
the testing feedback; all existing works only use
them as indicators to continue or terminate the
iterative process. Over time, as more interactions
with the LLMs occur and more editing are per-
formed, RL-Guider accumulates extensive histori-
cal experience in providing effective suggestions.

Specifically, RL-Guider is a reinforcement learn-
ing pipeline that learns to make suggestions to
maximize cumulative rewards; unlike supervised
learning, which relies on a training dataset with
predefined answers, RL-Guider involves learning
through experience by giving suggestions and re-
ceiving feedback on the qualities of the suggestions
made. As an RL-based learning pipeline, we sum-
marize the key components of RL-Guider:

* State: The LLM’s context that contains infor-
mation about the original drug, target, and the
string representation of the edited drug.

* Action: Giving suggestions in the form of a
prompt in order to improve the LLM’s context,
especially the edited drug.

* Reward: Determined by evaluation feedback
on the proposed edited drug.

* Policy: The strategy used by the RL agent to
propose modifications.

e Environment: The LLM.

The state and environment are straightforward
and defined immediately. The primary challenge
lies in designing an effective action space and for-
mulating an appropriate reward and penalty struc-
ture to ensure meaningful and optimal learning.
Once the action space and reward function are de-
termined, the policy follows a standard Q-learning
framework (Kumar et al., 2020). In the following,
we illustrate the modeling of the action space us-
ing small molecules as a representative example
for simplicity. However, this framework can be
seamlessly extended to larger molecules, such as
peptides and proteins, with minimal modifications.
Modeling the Action Space. We construct a
structured representation of possible modification
suggestions. Specifically, the action space is de-
signed to encompass three fundamental operations
on molecular structures: addition, deletion, and
replacement. These operations correspond to sug-
gestions for introducing, removing, or substituting
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specific atoms or functional groups in the input
drug that RL-Guider identifies as beneficial for
achieving the desired properties. A sample sug-
gestion prompt is provided below:

Edit the molecule O=C(C)OclccccclC(=0)0 by
following the suggestion: Replace ester group with
hydroxyl group. Give me results in SMILES only and
list them using bullet points.

Reward and Penalty. The reward function is
critical for guiding RL-Guider toward meaning-
ful suggestions. Instead of a simple binary reward
structure—whether the suggestion leads to a sat-
isfactory editing result or not, we design a multi-
faceted reward signal incorporating three main fac-
tors: @ Molecular Validity—Ensuring that the mod-
ified molecule remains chemically valid and syn-
thesizable; @ Structural Similarity—Encouraging
modifications that retain the core features of the
original drug while introducing beneficial changes;
® Target Property Optimization—Rewarding sug-
gestions that lead to improvements in desired chem-
ical properties, such as binding affinity and solubil-
ity. Mathematically, the reward function given the
state s; and action a; for the t-th round is:

- w(Ut;vapm)v (3)

where oy, S, and p,, quantify molecular valid-
ity, structural similarity, and the degree to which
the property value of the edited drug aligns with
that of the target, respectively, as numerical values.
1 is a reward aggregation function that combines
these quantities, e.g., through weighted addition or
multiplication, to produce a single scalar value that
quantifies the quality of the action. More details on
implementation of RL-Guider building and training
are provided in Appendix B.

R(St, at)

4.2 Merits of RL-Guider

In all existing works, editing tasks are treated in-
dependently, with no knowledge transfer to future
edits. Once an edit is completed, it offers no in-
sights for future tasks, leaving valuable feedback
from testing the edited drug unutilized. RL-Guider
utilizes this rich information as the reward/penalty
to improve itself. Over time, RL-Guider accumu-
lates knowledge and develops intuition, enabling it
to make more informed and efficient edit sugges-
tions. By doing so, RL-Guider not only provides
superior performance, as demonstrated in Sec. 5.1,
but also overcomes two significant drawbacks in
existing works: (1) computational efficiency; (2)
bias mitigation.

Computational Efficiency. Existing approaches
exhibit significant computational overhead—
retrieval-based approaches require iterating over
the entire database and LLM-based approaches
suffer from the computational costs of LLMs.
On the other hand, RL-Guider mitigates these
computational challenges by learning a policy
that generalizes from past editing tasks. Once
RL-Guider has become a knowledgeable agent,
a single inference is significantly more efficient.
As shown in the experimental results in Table 4
in Sec. 5, on average, it takes only 0.03 seconds
for RL-Guider to generate a suggestion prompt
while it takes 5.67 seconds and 5.15 seconds
for ChatDrug and ChemReasoner, respectively.
Additionally, even including the training time,
RL-Guider is still far more efficient than these two
methods—it takes 2.28 seconds for RL-Guider
to both generate a suggestion and learn (by
training) from the feedback from the resulting
edited drug, and it is still significantly faster than
both methods.

Similarity=0.15

[B8=3) Retrieval
T
Input A 7\ _ 5 DB Output A

Bifj
(((0

Similarity=0.11 ’\‘/% ~< Similarity=0.63
Retrieved \ —<
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Figure 2: Editing results from real experiments using
ChatDrug. It is evident that the outputs are biased to-
ward the retrieved drug—the outputs are highly similar
to the retrieved drug, resulting in high similarity be-
tween the outputs and low similarity between the input-
output pairs.

Bias Mitigation. Existing approaches often intro-
duce biases. For example, LLMs inherently re-
flect biases from their training data (Gallegos et al.,
2024), making them prone to generating modifi-
cations based on drugs they have seen. Similarly,
retrieval-based methods limit exploration to known
molecules within the database. As a result, these
biases cause the edited drug to closely resemble
the reference drug used as guidance, potentially
hindering the discovery of novel and structurally
diverse modifications. For different inputs A and
B, they may share the same retrieved reference
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LLaMA DeepSeek
Single Target Property A | Agent Chat Chem RL- Agent  Chat Chem RL-
Free Drug Reasoner Guider Free Drug Reasoner Guider

More soluble in water 0 45.50  45.00 51.50 60.00 81.00 63.50 81.00 82.00
0.5 | 33.50 45.50 31.50 52.50 68.50 68.50 66.00 75.50

Less soluble in water 0 55.00 54.00 57.00 58.50 89.00 85.00 87.50 92.00
0.5 | 51.50 56.50 51.00 55.50 80.50  80.50 81.00 83.00

More like a drug 0 30.00 43.50 32.00 43.00 34.00 64.00 53.00 78.00
0.1 5.50 24.00 5.00 9.50 5.50 34.00 10.50 10.00

Less like a drug 0 43,50  44.50 48.00 57.00 73.50  73.00 73.00 69.50
0.1 | 17.00 43.50 14.00 60.00 28.00 58.50 13.00 70.50

Higher permeability 0 26.00 44.00 44.00 62.00 38.00 72.50 64.50 78.00
10 11.00  46.50 34.00 44.50 23.50 71.50 50.50 57.00

Lower permeability 0 48.00  48.00 51.50 60.00 76.00  53.00 74.00 82.00
10 | 50.50 41.50 51.00 54.00 7450  52.50 74.50 77.50

More hydrogen bond acceptors 0 49.00 53.50 51.50 61.00 75.00 76.50 74.50 75.00
1 3550 38.50 13.50 46.00 30.00 64.50 19.00 65.00

More hydrogen bond donors 0 39.00 29.00 39.00 50.50 65.50 24.50 50.00 57.00
1 15.00 16.50 5.50 20.50 4.00 26.50 10.50 20.50

Table 1: Quantitative comparison of success rate (%) based on LLaMA and DeepSeek with multi-round interaction.

The best and second-best results are highlighted in red and

, respectively. Obviously, RL-Guider demonstrates

superior performance against baseline methods across a diverse set of tasks.

drug, as the reference drug needs to satisfy the tar-
get property, leading to limited selection. Even if A
and B are structurally very different, the retrieved
reference drug might still be the same. In Fig. 2, we
present real experimental results from ChatDrug.
It is clear that the reference drug introduces bias
as the editing results resemble the retrieved drug,
resulting in extremely low similarity between the
edited drug and the original drug.

In contrast, RL-Guider mitigates these biases
by learning directly from interactions and feedback
from past editing results with a reinforcement learn-
ing framework rather than predefined knowledge
(RAG or pretrained LLM). Notably, as a learning-
based agent, RL-Guider penalizes itself when
the edited drug deviates from the original drug,
as structural similarity from feedback provided
during the evaluation of edited drugs is inher-
ently considered in the reward function. This
allows RL-Guider to mitigate biases that often
arise from reliance on predefined knowledge-
based data.

5 Experiments

In this section, we demonstrate the effectiveness
and efficiency of RL-Guider through extensive ex-
periments. First, we compare the performance
of our RL-Guider against several baselines in
Sec. 5.1. Additionally, we conduct ablation studies
in Sec. 5.2 to evaluate the computational efficiency,
learning capability from accumulated historical ex-
perience, and hyperparameter sensitivity of RL-
Guider.

5.1 RL-Guider Performance

Setup. We first conduct experiments to verify the
effectiveness of RL-Guider against the baseline
LLMs without any guidance (AgentFree), as well
as ChatDrug and ChemReasoner, following the
same drug editing tasks and setup as in Liu et al.
(2024b). Specifically, the editing process consists
of up to three rounds. In the first round, no method
incorporates an agent or planner, and the edited
drug is then evaluated. If the results are unsatisfac-
tory, a second round is performed with suggestions
provided to all methods. Similarly, a third round is
conducted if the results remain unsatisfactory. This
setup is referred to as multi-round interactions.
All methods are agnostic to the choice of LLM;
experiments are conducted with Llama-3.1-8B-
Instruct (Grattafiori et al., 2024) and DeepSeek-
V3 (Liu et al., 2024a). A detailed description of
the experimental setup and prompts is provided in
Appendix C and Appendix D, respectively.
Evaluation Metric. The performance is evaluated
with success rate, which is defined as the propor-
tion of generated molecules that are both valid and
meet the desired target. An edited drug meets the
target if its property value improves by at least A in
the desired direction (greater or smaller) compared
to the original drug. For example, if A = 10 and
the task is to have higher permeability, the perme-
ability of the edited drug must be greater than that
of the original by 10 to be considered a success.
Main Results. The success rates of all methods
under multi-round interactions are shown in Ta-
ble 1. Additionally, we provide the results under
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LLaMA DeepSeek
Single Target Property A | Agent  Chat Chem RL- Agent  Chat Chem RL-
Free Drug Reasoner Guider Free Drug Reasoner Guider

More soluble in water 0 47.50  27.50 35.00 49.50 65.00  74.00 80.00 80.00
0.5 | 22.50 23.00 24.00 44.00 45.00 70.00 36.50 76.00

Less soluble in water 0 48.00  21.00 46.00 68.00 67.00 83.50 67.50 69.00
0.5 | 33.50 22.00 26.50 46.50 3750 62.50 38.50 64.00

More like a drug 0 17.00 16.00 21.00 36.50 26.00  37.00 22.00 39.50
0.1 2.50 9.50 3.00 7.00 2.50 13.50 3.50 10.50

Less like a drug 0 41.00 33.50 30.00 65.00 35.00 51.00 42.00 72.50
0.1 2.50 19.00 11.00 52.50 2.00 19.00 23.50 68.00

Higher permeability 0 12.00 6.00 32.00 53.50 36.00 63.00 65.00 84.50
10 8.00 7.50 35.00 63.00 27.50  59.00 59.00 73.50

Lower permeability 0 40.00 13.50 41.50 54.00 65.00 54.50 62.00 78.50
10 | 38.00 11.50 37.50 50.50 66.50 47.00 67.00 80.50

More hydrogen bond acceptors 0 47.00 51.50 37.50 51.50 65.50  73.00 63.50 79.00
1 3.50  40.00 2.00 25.50 7.00 20.00 5.00 49.00

More hydrogen bond donors 0 28.00  41.50 38.50 67.00 46.50 68.00 75.00 39.50
1 2.50  37.50 3.50 22.50 3.50 19.50 1.00 3.50

Table 2: Quantitative comparison of success rate (%) based on LLaMA and DeepSeek with single-round interaction
to focus on the effect of different agents. The best and second-best results are highlighted in and ,
respectively. RL-Guider demonstrates even better performance compared to the multi-round setting; RL-Guider is
the best performer in more tasks. This result clearly once again demonstrates the effectiveness of RL-Guider.

the same setting but that need to satisfy multiple tar-
get properties in Table 8 in Appendix E.1. Clearly,
RL-Guider achieves superior performance, attain-
ing the highest success rates in most cases. RL-
Guider does not perform the best on only a few
tasks, and these results may stem from inherent
variations in the LLM itself. In certain cases, con-
flicts between the guidance provided by the agents
and the knowledge encoded within the LLM can af-
fect the generation process, leading to sub-optimal
suggestions despite RL-Guider’s overall effective-
ness. This phenomenon is also observed in other
methods, as the second-best method varies sig-
nificantly across different tasks. A general out-
performance trend across all tasks strongly indi-
cates the superiority and potential of RL-Guider.
Furthermore, we conduct experiments on peptide
editing tasks using MHCFlurry (O’Donnell et al.,
2020), with results presented in Appendix E.2. RL-
Guider consistently outperforms the baseline meth-
ods, demonstrating its potential in editing more
complex and larger molecular structures.

Isolating the Effect of Agents. In Table 2, we
conduct experiments to isolate the effect of various
agents for a more principled comparison between
different methods. The interaction with LLMs is re-
stricted to a single round, with suggestions by vari-
ous agents. RL-Guider consistently outperforms or
matches the best results in most cases. Despite the
absence of iterative feedback, the underlying RL-
based mechanism of our method still effectively
facilitates accurate drug editing.

Generalizability to the Chemical Foundation
Model. We also evaluate the generalizability of the
proposed method using ChemDFM-v1.5-8B (Zhao
et al., 2024), an open-source dialogue founda-
tion model for chemistry and molecular science.
ChemDFM is fine-tuned from LLaMA-13B us-
ing 3.9 million chemical papers and 1.4 thousand
books for domain pretraining, along with 1.7 mil-
lion molecule-related prompts and 1.0 million nat-
ural language prompts for instruction tuning. The
success rates of all methods on single-property edit-
ing tasks under multi-round interactions are shown
in Table 3. Compared to the results obtained with
the general-purpose LLaMA model (Table 1), all
methods show improved performance. Notably,
RL-Guider surpasses all baselines by an even larger
margin. It achieves the highest success rate on 15
out of 16 tasks and ranks second on the remaining
one, clearly demonstrating the strong generalizabil-
ity of our proposed RL-Guider.

Case Study of Similarity. Maintaining similarity
in drug editing is crucial to ensure that the mod-
ified drug retains the core structure and function-
ality of the original molecule. We provide visual-
izations and similarity calculations for a molecule
editing task performed by the three agent-based
methods in Fig. 3. In addition, while it is difficult
to provide visualizations for all the test examples,
we provide quantitative results in Table 10 in Ap-
pendix E.3. These results can be summarized as
follows: RL-Guider achieves the highest similar-
ity of 0.718 while ChemReasoner is the second
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Single Target Property A | Agent Free ChatDrug Chem Reasoner RL-Guider
More soluble in water 0 65.50 59.50 72.50 85.50
0.5 61.50 49.00 63.00 77.50
Less soluble in water 0 78.50 74.50 67.00 81.00
0.5 61.50 62.50 64.00 68.00
More like a drug 0 42.50 54.00 49.00 57.50
0.1 14.00 30.00 10.00 20.50
Less like a drug 0 75.50 66.00 73.50 83.50
0.1 55.00 59.00 48.00 80.50
Higher permeability 0 46.00 66.50 52.50 75.50
10 28.00 52.00 33.00 62.00
Lower permeability 0 54.00 64.50 59.00 84.00
10 40.50 55.50 56.00 71.00
0 64.50 64.00 61.00 81.00
More hydrogen bond acceptors 1 34.00 54.00 33.00 7950
0 54.50 56.00 66.00 69.50
More hydrogen bond donors 1 15.50 34.00 29.00 64.50

Table 3: Quantitative comparison of success rate (%) based on ChemDFM with multi-round interaction. The best
and second-best results are highlighted in and , respectively. Notably, for RL-Guider, we do not retrain the
agent; instead, we directly reuse the agent trained for the results in Table 1. This demonstrates its generalizability
and transferability across different backbone LLLMs without requiring additional training or fine-tuning. RL-Guider
can be easily extended to other LLMs and consistently delivers strong performance.

Model Input Drug Higher Permeability Lower Permeability
ChatDrug \yp\ )Ln/ | C?’MSN’U'
Sim=0.643 ’ Sim=0.610
ChemReasoner )" /“ \\p\ N e
HN \\ - ot HN
Sim. 0422 Sim.=0.621
RL-Guider " =" \or / N\\N " Ne==N
Pelavs J? N AT
Sim.=0.816 Sim.=0.769

Figure 3: Visualization of a drug editing task performed by all agent-based models. RL-Guider is the only method that
consistently maintains high structural similarity while achieving the desired property changes. Other methods that are based on
predefined knowledge all suffer from inherent bias towards the predefined knowledge and often produce drugs unrelated to the
original input drug. Sim. is a value between 0 and 1 that measures the similarity between the input drug and the output edited
drug (the closer to 1, the better). The purple regions and blue regions correspond to the edited substructures with respect to

tasks of higher permeability and lower permeability, respectively.

best with a similarity of 0.661. Also, ChemRea-
soner produces significantly fewer successful ed-
its that satisfy the target property compared to
RL-Guider as shown in Tables 1, 2, and 3. Chat-
Drug has the lowest similarity, often producing
drugs that meet chemical property requirements
but are structurally unrelated to the original drug.
This highlights that baseline methods exhibit low
similarity due to inherent biases, as discussed in
Sec. 4.2, whereas RL-Guider overcomes this is-
sue by avoiding reliance on predefined knowledge,
instead learning to maintain similarity while achiev-
ing target properties through its reward function.

5.2 Ablation Study

In this ablation study, we demonstrate three key
properties of RL-Guider—® computational effi-
ciency, @ learning with historical experience, and
@ hyperparameter sensitivity.

Computational Efficiency. We conduct experi-
ments to assess the computational time required for
different agents to provide suggestions. The results
on the test dataset are presented in Table 4. Specif-
ically, as a reinforcement learning approach, RL-
Guider generates suggestions hundreds of times
faster than existing methods. Even when account-
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ing for the training time, it remains significantly
faster than existing approaches. Notably, the train-
ing phase can be eliminated once RL-Guider has
gained sufficient experience.

. Chem RL-Guider RL-Guider
Time (s) | ChatDrug Reasoner (Total) (Suggest)
Mean 5.674 5.147 2.283 0.034
Std. 0.636 7.447 0.385 0.018

Table 4: The comparison of suggestion generation time
between RL-Guider and the baselines. As RL-Guider
is a reinforcement learning agent that requires training,
we record both the inference time it takes to generate a
prompt (denoted as Suggest) and the time it takes to both
train and infer per round (denoted as Total). Obviously,
RL-Guider is much more efficient than baselines.

Learning with Historical Experience. We con-
duct experiments to study whether RL-Guider
learns to make more informed and effective de-
cisions as it witnesses and learns from more editing
tasks. As shown in Fig. 4, it is clear that as RL-
Guider gains more experience with these tasks, its
capability to provide valuable suggestions that ulti-
mately lead to successful drug editing by the LLM
improves significantly.

RL-Guider: Success Rate v.s. Experience
58
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Figure 4: A visualization of the increasing success rate
(%) as RL-Guider gains experience with more editing
tasks. Clearly, there is a positive trend between the suc-
cess rate and the number of tasks experienced, demon-
strating the effectiveness of RL-Guider and its ability to
continuously improve through historical experience.

Hyperparameter Sensitivity. We perform sensi-
tivity analysis to assess the impact of key hyperpa-
rameters and reward function components on the
performance of RL-Guider. This is because for
many machine learning models, the choice of hy-
perparameters significantly influences the model’s
performance. Table 5 presents the results of vary-
ing the parameter 7 on the “More soluble in water”
task using DeepSeek. RL-Guider remains robust
and performs strongly in all cases except when the
value is too extreme. In addition, we evaluate the

contribution of each component in the reward func-
tion through an ablation study, as shown in Table 6.
The results indicate that all components are impor-
tant, with the target property value being the most
significant.

0.005
75.50

0.01
73.50

0.02
69.00

0.05
12.00

Parameter
Success Rate (%)

Table 5: Hyperparameter sensitivity analysis of RL-
Guider with varying values of 7 on the “More soluble
in water” task, with A = 0.5 using DeepSeek. The best
result is bolded. The default setting for 7 is 0.005.

Reward Function Setting Success Rate (%)
Base (Full Reward) 75.50
w/o Validity 62.50
w/o Similarity 68.50
w/o Target Property 27.50

Table 6: Ablation study on the reward function compo-
nents of RL-Guider for the “More soluble in water” task,
A = 0.5 using DeepSeek. The full reward achieves the
highest success rate, and each component contributes
significantly, especially the target property term.

6 Conclusion and Future Work

In this work, we propose a novel framework, RL-
Guider, which leverages a reinforcement learning
agent to interact with LLMs and provide valu-
able suggestions for efficient and effective drug
editing. RL-Guider is the first work that learns
from the rich feedback obtained through the eval-
uation of candidate edited drugs; as more editing
tasks are performed, RL-Guider accumulates his-
torical experience and progressively improves its
recommendation-making capabilities. RL-Guider
mitigates several limitations of existing methods,
leading to superior performance demonstrated with
experiments across various tasks.

Future Work. RL-Guider represents a pioneer-
ing approach to reinforcement learning-enhanced
drug editing with LL.Ms, offering vast unexplored
potential. For example, exploring different ac-
tion space designs, including learnable action
spaces, could significantly enhance interactions
with LLMs. Moreover, RL-Guider can be seam-
lessly integrated with domain-specific models, such
as a “knowledge LLM”, where RL-Guider suggests
modifications, the LLM provides reasoning on why
these suggestions could lead to successful edits,
and the main LLM incorporates both the sugges-
tions and reasoning to perform the editing task.
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7 Limitations

One limitation is the reliance on predefined sub-
structures (e.g., atoms, functional groups) for ac-
tions, which can be vast and hard to design for com-
plex tasks. However, RL-Guider isn’t restricted to
static actions—it can dynamically expand its action
space using LLM-guided suggestions. By generat-
ing edits based on chemical knowledge, it allows
adaptive learning and refinement of action spaces,
though this remains a direction for future work.

Another limitation is the lack of thorough com-
parison with non-LLM deep learning methods,
which typically rely on training data, unlike our
LLM-based approach. Still, preliminary results in
Appendix E.4 show RL-Guider outperforms two
such methods, underscoring the strength of LLM-
based strategies. Future work will explore inte-
grating non-LLM advantages to further enhance
LLM-guided drug editing.

8 Ethical Considerations

This work advances drug editing with large lan-
guage models by introducing a novel reinforce-
ment learning agent framework. Although large
language models in general may have some ethical
considerations, there are limited potential societal
and ethical consequences of our work as it focuses
on advancing the field of drug discovery, and none
require specific highlighting at this time.
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A Detailed Descriptions of Existing
Works

To the best of our knowledge, there are very few
existing works focusing on LLM-assisted drug edit-
ing, including ChatDrug (Liu et al., 2024b), which
uses a retrieval database to produce guidance, and
ChemReasoner (Sprueill et al., 2024), which uses
another pretrained LLLM to provide guidance.
ChatDrug (Liu et al., 2024b) identifies the drug
most similar to the input drug from the retrieval
database that satisfies the desired properties. Sub-
sequently, a suggestion prompt is constructed based
on the identified drug to guide the editing.
ChemReasoner (Sprueill et al., 2024) employs
another LLM as a planner, assuming it possesses
chemical domain knowledge, to generate sugges-
tions that direct the LLM toward more effective
candidates. It is noted that the original ChemRea-
soner framework was designed for catalyst discov-
ery. In our work, we adapt the prompt to address
drug editing tasks without modifying its pipeline.

B RL Architecture and Training Details

In this section, we introduce the architecture of
RL-Guider and the components of a reward func-
tion. It is worth noting that RL-Guider can be
trained without a pre-obtained dataset in an on-
line learning setting. However, to improve train-
ing efficiency, we adopt the offline setting, experi-
ence replay (Lin, 1992), with a pre-collected train-
ing dataset introduced in Appendix C.1.

B.1 RL Architecture

RL-Guider adopts an actor-critic framework with
policy optimization based on the soft actor-critic
(SAC) approach (Haarnoja et al., 2018), integrating
conservative Q-learning (CQL) for offline learning.
The model consists of three sub-networks:

* Actor Network: The actor network is a mul-
tilayer perceptron (MLP) designed for policy
learning. It comprises four fully connected
layers with ReL.U activation functions, map-
ping input states to probability distributions
over actions. Finally, a linear layer is applied
to determine the action sampled from the dis-
tribution.

* Critic Network: We design two critic net-
works to estimate state-action values Q(s, a)
to mitigate overestimation bias. Each critic
network shares the same MLP architecture

as the actor. The critic networks are updated
using the Bellman backup equation with a
soft Q-value function, where v controls the
weights of future expected rewards.

» Target Network: The target network decou-
ples the target from the rapidly changing critic
network. It helps prevent the feedback loop
of self-amplifying errors. In practice, it is ini-
tialized as copies of the main critic networks
and the target weights at different steps are
balanced with the parameter 7.

The output of the network will be fed into the re-
ward function, which is introduced in Sec. 4.1. The
resulting rewards and penalties are backpropagated
to optimize the model.

B.2 Factors in RL-Guider’s Reward Function

To calculate the reward for RL-Guider, we focus
on three main factors provided by evaluation feed-
back: molecular validity (o;), structural similar-
ity (s;,), and target property (p,,).

Validity determines whether a molecular struc-
ture adheres to the fundamental chemical rules,
such as:

* Valency Rules: Atoms must comply with their
standard valency constraints.

* Bond Types: Bonds must belong to chemi-
cally valid types.

* Connectivity: Atoms must form a connected
structure; no disconnected fragments should
be present.

In our work, the validity is defined as a binary
variable: oy € {0, 1}.

Molecular similarity measures how similar two
molecules are based on their structural or chemi-
cal properties. Before comparing the similarity of
molecules, they must be converted into a numerical
representation (e.g., molecular fingerprints). Then,
the Tanimoto Similarity (Tanimoto, 1958) can be
used to calculate the numerical score between 0
and 1. The Tanimoto Coefficient is defined as:

_|ANnB|
- JAu B/’

S(4,B) @
where A and B are two binary fingerprint vectors,
|A N B| is the number of common bits set to 1 in
both fingerprints, and |A U B| is the number of bits
to 1 in either fingerprint. S(A, B) € [0, 1].
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Target property indicates the change in chemi-
cal properties toward the desired direction defined
in the task prompt.

After obtaining the output SMILES string, all
components of the reward function are computed
using the cheminformatics tool RDKit (Landrum
et al., 2013). In general, an evaluation method
should always be available as part of the drug edit-
ing pipeline to assess whether the edited drug meets
the requirements and can be of use. In this work,
we use RDKit for this purpose. RDKit is a widely
adopted and lightweight cheminformatics toolkit
that introduces minimal computational overhead,
making it efficient and scalable for molecule evalu-
ation tasks. Since evaluation is already an integral
part of the drug editing process, we do not consider
the additional computational complexity and cost
introduced by RDKit in our experiments.

C Experimental Setting

C.1 Dataset

ZINC (Irwin et al., 2012) is a publicly accessible
database that consolidates commercially available,
annotated chemical compounds. Those compounds
can be represented in SMILES strings or 3D coor-
dinates. In this work, we only consider SMILES
strings as the molecular representation. Follow-
ing the setting of (Liu et al., 2024b), we randomly
extract 200 compounds for evaluation.

The training data of RL-Guider is constructed
as a tuple (input SMILES string, action, out-
put SMILES string). Specifically, we extract 100
chemical compounds from the ZINC dataset as
the set of input SMILES strings. Subsequently,
we identify the most common functional groups
(the MCFGQG), as described in Ertl et al. (2020), and
define the action set based on the three kinds of
actions (introduced in Sec. 4.1) applied to MCFG
and atoms. The input SMILES string and action
are then incorporated into the prompt (introduced
in Appendix D) to generate the output SMILES
string. Following this process, we obtain 80, 000
edited samples as the training dataset of RL-Guider.

C.2 Baselines and Backbone Models

We evaluate our proposed method against diverse
approaches for multi-round conversations with
LLMs for drug editing. These include @ Agent-
free: only relies on the intrinsic capabilities of
LLMs through iterative multi-round conversations,
@ ChatDrug (Liu et al., 2024b): utilizes a database

to provide similar and desirable molecules as guid-
ance, and ® ChemReasoner (Sprueill et al., 2024):
incorporates another LLM to generate suggestions
during iterative conversations with the drug editing
LLM. To evaluate the generalization ability of our
RL-Guider, we conduct experiments on two main-
stream LL.Ms as the backbone models: Llama-3.1-
8B-Instruct (Grattafiori et al., 2024) and DeepSeek-
V3 (Liu et al., 2024a). Both are parameterized with
the officially provided weights.

C.3 Training Settings

In the RL-Guider training, the ChemBERTa-zinc-
base-vl is first employed to convert the SMILES
strings into embeddings. The model is then opti-
mized using the Adam optimizer with learning rate
set to 3 x 1073, and scheduled using cosine an-
nealing. Moreover, an entropy coefficient « = —1
is set on the conservative loss to penalize unseen
actions, thereby balancing the exploration and ex-
ploitation in RL. The hyperparameters 7 and -y are
set to 0.005 and 0.99, respectively. The model is
trained for 10 epochs, sampling 51, 200 tuples per
epoch from the training dataset. Additionally, we
limit each conversation iteration to a maximum of
30 actions to better learn transition probabilities.
For the drug editing tasks, we assess five molec-
ular properties: logP (Octanol-Water Partition Co-
efficient), QED (Quantitative Estimation of Drug-
likeness), tPSA (Topological Polar Surface Area),
HBA (Number of Hydrogen Bond Acceptors),
and HBD (Number of Hydrogen Bond Donors).
All tasks are tested on a computational platform
equipped with NVIDIA RTX A6000 GPUs.

D Prompt List

In this section, we introduce the prompts used to
interact with LLMs in RL training data acquisition,
drug editing, and comparison methods. First, the
working environment of LLM is set with the system
prompt:

System Prompt

You are a helpful chemistry expert with ex-
tensive knowledge of drug design.

D.1 RL Training Data Acquisition Prompt

To obtain the training data for RL-Guider, we sam-
pled some edited molecules from LLMs using pre-
defined action sets. The prompt is designed as:
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Prompt for RL Data Acquisition

Edit the molecule {mol} by following the
suggestion: {suggestion}. Please provide
five molecules in SMILES format only and
list them using bullet points.

{mol}: Input molecule for LLM to edit.
{suggestion}: Sampled action from a prede-
fined action set.

D.2 Drug Editing Prompt

Our drug editing experiments consist of two sce-

narios: @ single-round editing, which involves a

single interaction with the LLM, and @ multi-round

editing, which involves multiple interactions. The

prompt for each scenario is introduced as follows.
Single-round Editing Prompt

Prompt for Single-round Editing

Can you make molecule {root_mol}
{task_objective} and
{threshold_specific_prompt}? The
output molecule should be similar to the
input molecule. {suggestion}. Please
provide five molecules in SMILES format
only and list them using bullet points.
{reasoning_instruction}.

Multi-round Editing Prompt

Prompt for Round 1 Editing

Can you make molecule {root_mol}
{task_objective} and
{threshold_specific_prompt}? The
output molecule should be similar to the
input molecule. Please provide five
molecules in SMILES format only and list
them using bullet points.
{reasoning_instruction}.

Prompt for Round X Editing (X > 2)

Your provided sequence
{prev_wrong_mol} could not achieve the
goal. {suggestion}. Can you give me
new molecules?

{root_mol}: Input molecule for LLM to edit.
{task_objective}: As shown in Table 7.

{threshold_specific_prompt}: As shown in
Table 7.

{suggestion}: Suggestion for LLM to conduct
drug editing and can be filled with different formats
under different methods. In the Agent-free method,
this field is empty. For ChemReasoner, the sug-
gestion is parsed from planner LLM’s result. For
Chatdrug, we utilize part of its ReDF prompt (Liu
et al., 2024b) to serve as the suggestion. For RL-
Guider, the suggestion is predicted by the actor
network. An example suggestion is displayed in
Appendix. D.1.

{prev_wrong_mol}: Previously
molecule that could not satisfy the query.

{reasoning_instruction}: Specific require-
ment for LLMs, including options like “no expla-
nation is needed” and “let’s think step by step”.

edited

D.3 LLM Planner (ChemReasoner) Prompt

Since ChemReasoner (Sprueill et al., 2024) was
originally designed for catalyst discovery tasks, we
adapt its core methodology and apply it to the field
of drug editing, with modifications tailored to our
specific task.

Prompt for LLM Planning Suggestion

$root_question: {root_prompt}
$root_property: {root_property}
$threshold: {threshold}
{previous_prompt_answer}

Consider the {current_conditions}.
Your task is to suggest possible actions that
could achieve the intent of $root_question.
$search_state: Molecule to be optimized, as
specified in the message.

$action_space: Add, delete, or replace an
atom or functional group.

{guidelines}

{final_task}

{root_prompt}: Root query including input
molecule, task objective, and instruction.

{root_property}: The quantitative property of
the input molecule.

{threshold}: Specifies the amount by which
the input molecule needs to be optimized.

{previous_prompt_answer}: Empty in a
single-round conversation or in round 1. Filled
with the latest conversation history.

{current_conditions}: Specifies the factors
the LLM needs to consider. Changes based on the
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{task_objective} Threshold {threshold_specific_prompt}
1 se logP leas
More soluble in water oose decrease logP by at least 0
strict decrease logP by at least 0.5
Less soluble in water loose increase logP by at least 0
strict increase logP by at least 0.5
More like a drug loose increase QED by at least 0
strict increase QED by at least 0.1
Less like a drug loose decrease QED by at least 0
strict decrease QED by at least 0.5
1 d tPSA by at least 0
Higher Permeability oose eerease v at feas
strict decrease tPSA by at least 0.5
- 1 i tPSA by at least 0
Lower Permeability 00se increase y at leas
strict increase tPSA by at least 10
1 i se HBA by at least 0
More hydrogen bond acceptors 0ose terease y ot feas
strict increase HBA by at least 1
1 i HBD by at least 0
More hydrogen bond donors 0ose mnerease y at eas
strict increase HBD by at least 1
More soluble in water loose decr@ase logP by at least 0
and increase HBA by at least 0
and more hydrogen bond acceptors
strict decrease logP by at least 0.5
and increase HBA by at least 1
Less soluble in water loose incrf;ase logP by at least 0
and increase HBA by at least 0
and more hydrogen bond acceptors
strict decrease logP by at least 0.5
and increase HBA by at least 1
More soluble in water loose decrf:ase logP by at least 0
and increase HBD by at least 0
and more hydrogen bond donors
strict decrease logP by at least 0.5
and increase HBA by at least 1
Less soluble in water loose incrs;ase logP by at least 0
and increase HBD by at least 0
and more hydrogen bond donors
strict increase logP by at least 0.5
and increase HBD by at least 1
More soluble in water loose decrease logP by at least 0
and higher permeability and decrease tPSA by at least 0
strict decrease logP by at least 0.5
and decrease tPSA by at least 10
More soluble in water loose decrgase logP by at least 0
and lower permeability and increase tPSA by at least 0
strict decrease logP by at least 0.5

and increase tPSA by at least 10

Table 7: Detailed information on {task_objective} and {threshold_specific_prompt} in prompt template.

content in {previous_prompt_answer}.

erate a reasonable and parsable answer.

{guidelines?}: Hint for the LLM to consider

when reasoning about its suggestions.
{final_task}: Instruction for the LLM to gen-
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Below is an example of an LLM Planner Prompt:
$root_question:  Can you make molecule

CICC[C@@H](CCc2nc([C@@H]3CSCCO3)no2)-



LLaMA DeepSeek
Multiple Target Property A Agent Chat Chem RL- Agent Chat Chem RL-
Free Drug Reasoner Guider | Free Drug Reasoner Guider
More soluble in water 0,0 43.00 44.00 37.00 50.00 | 65.50 53.00 75.00 77.00
More hydrogen bond acceptors 0.5, 1 8.50 34.00 8.00 37.50 | 43.50 41.00 28.50 63.00
Less soluble in water 0,0 12.50 34.00 21.00 37.50 56.00 50.50 27.00 63.00
More hydrogen bond acceptors 0.5, 1 6.00 31.00 7.00 24.00 4.00 39.50 3.00 6.00
More soluble in water 0,0 40.50 22.50 43.00 45.00 | 72.50 76.50 72.00 71.50
More hydrogen bond donors 0.5,1 | 15.00 12.50 11.50 20.00 | 44.00 60.00 23.50 68.50
Less soluble in water 0,0 17.50 14.00 22.00 23.00 1450 10.50 16.00 9.50
More hydrogen bond donors 0.5,1 6.00 8.00 5.00 8.50 1.50 6.50 1.50 10.50
More soluble in water 0,0 4.00 23.50 3.00 8.00 6.00 20.50 5.50 8.00
Higher permeability 0.5,10 | 050 17.50 2.00 3.00 250  3.00 4.50 5.50
More soluble in water 0,0 44.50  46.00 51.50 44.00 | 71.50 54.50 74.50 79.00
Lower permeability 0.5,10 | 28.00 30.50 33.50 38.50 | 57.00 43.00 52.50 73.00

Table 8: Quantitative comparison of the success rate (%) based on LLaMA and DeepSeek for multi-round interactions
in multi-property editing tasks, where multiple desired property changes are achieved simultaneously. The best

and second-best results are highlighted in red and

methods in most scenarios.

[NH2+ ]C1 more soluble in water and increase the
number of hydrogen bond donors, decrease logP
by at least 0.5, and increase HBD by at least 1?
The output molecule should be similar to the input
molecule. Please provide five molecules in SMILES
format only and list them using bullet points. No
explanation is needed. $root_property: The logP
of the root molecule is 0.9226. The HBD of the root
molecule is 1. $threshold: You should decrease
the logP by more than 0.5 and increase the HBD
by more than 1. Consider the $root_question,
Sroot_property, S$threshold.  Your task is to
suggest possible actions that could achieve
the intent of the $root_question. $search_state:

CICC[C@@H](CCc2nc([C@@H]3CSCCO3)no2)-

[NH2+]C1 . $action_space: Add, delete, replace
an atom or functional group. Your answers should
use the following guidelines: 1. You should
return a python list named final_suggestion, which
contains the top-1 suggestion based on the previous
information. 2. You should learn from the previous
experience, especially the substructural changes in
molecules. 3. Your suggestion should not repeat
the previous suggestion in $previous_prompt. 4. In
your suggestion, please do not use any abbrevia-
tion of an atom or functional group. For example,
when you need to show “hydroxyl group”, do not
show “(OH)” in your suggestion! 5. Each of your
suggestions should be a sentence of modification
instruction rather than a SMILES string. 6. Please
note that your suggestion should also consider
the similarity before and after modification. Take
a deep breath and let’s think about the goal and
guidelines step by step. Remember, you should
give your reasoning process first and finally return

, respectively. Clearly, our RL-Guider outperforms baseline

a Python list named final_suggestion!

E Additional Experimental Results

E.1 Multi-property Tasks

In addition to single-property drug editing, we
also conduct experiments on multi-property editing
tasks, which require the edited drug to simulta-
neously satisfy multiple properties, which makes
them more challenging tasks. The results are pre-
sented in Table 8. Clearly, RL-Guider demonstrates
superior performance compared to baseline mod-
els.

Source Target
Allele Type Allele Type ChatDrug RL-Guider
HLA-C*16:01 HLA-B*44:02 38.50 59.00
HLA-C*12:02 HLA-B*40:01 32.50 36.50

Table 9: Quantitative comparison of success rate (%)
using LLaMA with multi-round interactions on pep-
tide editing tasks. The best results are shown in bold.
Obviously, RL-Guider outperforms ChatDrug on the
challenging peptide editing tasks.

ChatDrug ReCahsfcb)rrrller RL-Guider
Similarity 0.518 0.661 0.718

Table 10: A comparison of the similarity between the
input drug and output edited drug by various methods.
The mean value of similarity is reported (the closer to 1,
the better).

E.2 Performance on Peptides

To evaluate the effectiveness of our RL-Guider
on larger and more complex molecular structures,
we have additionally performed experiments using
MHCFlurry (O’Donnell et al., 2020), a benchmark
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5 JT-VAE RL-Guider
Imp. Similarity  Success Rate (%) Imp. Similarity Success Rate (%)
0.0 | 1.91 £2.04 0.30£0.18 81.50 1.89+2.30 0.52+0.29 91.53
0.2 |1.644+1.85 0.35+£0.17 79.88 1.70+2.09 0.59 +0.26 89.82
0.4 ] 0.55+1.21 0.62+0.21 55.00 1.33+2.07 0.71+0.21 84.80
0.6 | 0.10£0.50 0.86+0.16 30.00 0.66 +1.50 0.83+0.15 72.81

Table 11: Comparison with Junction Tree (JT-VAE) on the ZINC dataset using the logP property. All results follow
JT-VAE’s original evaluation protocol. The result for RL-Guider is generated using DeepSeek as the LLM. § denotes
the minimum required similarity between the input and output molecules. “Imp.” refers to the improvement in
property value. For both “Imp.” and “Similarity”, we report the mean * standard deviation, while “Success Rate” is
reported as a percentage. The best results in each row are bolded. Notably, our RL-Guider achieves the highest
success rate across all evaluation settings when compared with Junction Tree.

focused on immunogenic peptide binding optimiza-
tion. In this setting, a successful edit must satisfy
the following three criteria: (1) The resulting pep-
tide must be valid; (2) The output peptide should
exhibit a higher binding affinity with the target al-
lele than the input peptide; (3) The binding affinity
between the output peptide and the target allele
must be above a certain threshold, which is set to
be one-half of the average binding affinity of ex-
perimental data on the target allele, following the
same setting as in Liu et al. (2024b). The suc-
cess rates of RL-Guider and ChatDrug, both using
LLaMA-3.1-8B-Instruct (Grattafiori et al., 2024),
under multi-round interactions are reported in Ta-
ble 9. Other baselines perform particularly poorly
on this task, with a success rate below 5%, likely
due to the difficulty of the task. Therefore, we
do not include them here. RL-Guider outperforms
ChatDrug on this task, demonstrating its capability
in peptide editing tasks. These results highlight
the potential of RL-Guider for handling more com-
plex drug editing tasks. Further exploration in this
direction is left for future work.

E.3 Case Study of Similarity

In addition to the visualizations in Fig. 3 in the
main paper, the average similarity across the entire
testing dataset achieved by different methods is pre-
sented in Table 10. RL-Guider achieves the highest
similarity among all methods. This is because RL-
Guider does not suffer from the inherent bias from
predefined knowledge as discussed in Sec. 4.2 in
the main paper.

E.4 Comparison with Non-LLM Approaches

A preliminary study is conducted to evaluate our
method against non-LLM-based approaches. A
key distinction between our work and non-LLM
models is that non-LLM models require a train-
ing dataset, while our method does not require any

RL-Guider
75.00

Prompt-MolOpt
50.00

Success Rate (%)

Table 12: Comparison with Prompt-MolOpt on a subset
of the original dataset. The result for RL-Guider is gen-
erated using DeepSeek. In Prompt-MolOpt, the editing
site must be predefined by human experts or external
models. We evaluate only on the subset with available
editing sites due to time constraints. The best result
is bolded. Obviously, RL-Guider outperforms Prompt-
MolOpt.

training data beforehand. However, our work lever-
ages the “world-level” knowledge of LLMs and
an agent that accumulates knowledge through his-
torical decisions. Meanwhile, non-LLM methods
are typically trained on a specific dataset, such as
ZINC, and then used to make inferences on the sim-
ilar data. This practice could introduce bias into the
trained model, artificially improving performance
on that dataset. In contrast, our method uses the
dataset solely as a benchmark for evaluation and
comparison with baselines. Our method can gener-
alize to other datasets, whereas non-LLM methods
often require retraining.

We provide comparisons with two representa-
tive methods: Junction Tree (Jin et al., 2018) and
Prompt-MolOpt (Wu et al., 2024). Junction Tree
is an end-to-end generative model, and Prompt-
MolOpt is a language model (non-LLM) trained
on drug-editing data. As shown in Table 11, RL-
Guider achieves the highest success rate across all
evaluation settings when compared with Junction
Tree. Notably, under high similarity constraints,
RL-Guider significantly outperforms Junction Tree
(72.81% vs. 30.00% success rate). Similarly, in
the comparison with Prompt-MolOpt presented in
Table 12, RL-Guider demonstrates superior perfor-
mance (75.00% vs. 50.00% success rate). These
results clearly demonstrate the effectiveness and
potential of our approaches over traditional models.
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