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Abstract

With the rapid development of Large Lan-
guage Models (LLMs), Parameter-Efficient
Fine-Tuning (PEFT) methods have gained sig-
nificant attention, which aims to achieve ef-
ficient fine-tuning of LLMs with fewer pa-
rameters. As a representative PEFT method,
Low-Rank Adaptation (LoRA) and its vari-
ants introduce low-rank matrices to approxi-
mate the incremental tuning parameters and
achieve impressive performance over multiple
scenarios. However, these methods either fo-
cus on single-task scenarios or separately train
multiple LoORA modules for multi-task scenar-
ios, limiting the efficiency and effectiveness of
LoRA in multi-task scenarios. To better adapt
to multi-task fine-tuning, in this paper, we pro-
pose a novel Mixture of Low-Rank Experts
(MoRE) for multi-task PEFT. Specifically, in-
stead of using an individual LoRA for each
task, we align different ranks of LoRA module
with different tasks, which we named low-rank
experts. Moreover, we design a novel adaptive
rank selector to select the appropriate expert
for each task. By jointly training low-rank ex-
perts, MoRE can enhance the adaptability and
efficiency of LoRA in multi-task scenarios. Fi-
nally, we conduct extensive experiments over
multiple multi-task benchmarks along with dif-
ferent LLMs to verify model performance. Ex-
perimental results demonstrate that compared
to traditional LoRA and its variants, MoRE sig-
nificantly improves the performance of LLMs
in multi-task scenarios and incurs no additional
inference cost. We also release the model and
code to facilitate the community'.

1 Introduction

Recent advancements in Large Language Models
(LLMs) have revolutionized various domains, of-
fering unprecedented performance across numer-
ous tasks (Raffel et al., 2020; Brown et al., 2020;
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Task/Rank r=1 r=2 r=4 r=8 r=16 1r=32
MRPC 89.7 892 887 892 892 89.5
RTE 776 787 805 776 80.1 79.1
SST-2 944 94.6 948 945 944 945
CoLA 609 60.0 619 633 623 605

Table 1: LoRA-based Fine-tuning Performance of T5-
base with varying ranks on different tasks

Touvron et al., 2023). Plenty of tuning strate-
gies are designed to extend the application of
LLMs, such as Instruction Tuning (Wei et al., 2022;
Zhang et al., 2023b), Continual Pre-Training (Ke
et al., 2023), and Parameter-Efficient Fine-Tuning
(PEFT) (Houlsby et al., 2019; Liu et al., 2023b;
Lester et al., 2021; Hu et al., 2022). Among these
strategies, PEFT has drawn the most attention due
to its fewer parameter tuning and lower computa-
tional cost. As the representative PEFT method,
Low-Rank Adaptation (LoRA) (Hu et al., 2022)
introduces low-rank matrices to approximate the
incremental tuning parameters and demonstrate
good performance in many scenarios, which has
become a standard paradigm for LLM fine-tuning
and inspired many improvements (Liu et al., 2024;
Valipour et al., 2023; Ding et al., 2023).

Despite the achieved progress, LORA relies on
a fixed and unalterable intrinsic rank, making it
not flexible enough in multi-task scenarios. Taking
Table 1 as an example, when dealing with different
tasks, LoRA requires different ranks to achieve the
best performance (e.g., best ranks for MRPC and
CoLA tasks are 1 and 8). Considering the high com-
putational cost and storage cost of LLM fine-tuning,
training multiple LoRAs is sub-optimal for apply-
ing LLMs to multi-task scenarios. Meanwhile,
searching the best rank of LoORA during LLM fine-
tuning is also time-consuming and computationally
expensive (Valipour et al., 2023), which highlights
the limitations of a one-size-fits-all approach in
LoRA. This phenomenon also emphasizes the need
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for adaptive mechanisms that dynamically adjust
ranks based on task requirements.

To overcome the limitations of fixed ranks in
LoRA, one promising direction is to explore adap-
tive mechanisms. For example, DyLoRA (Valipour
et al., 2023) dynamically trained all ranks during
training to avoid separate rank tuning for each task.
AdaL.oRA (Zhang et al., 2023a) allocated the pa-
rameter budget based on the importance scores of
the weight matrices and pruned insignificant sin-
gular values to exclude unimportant rank spaces.
SoRA (Ding et al., 2023) introduced a trainable gat-
ing unit and used proximal gradient descent to op-
timize the sparsity of the update matrices, thereby
dynamically adjusting the intrinsic rank size dur-
ing training. While these improvements enable
dynamic adjustment of rank space, they are primar-
ily designed for single-task scenarios. They do not
consider the distinctions and connections among
different tasks in multi-task scenarios, prohibiting
the effectiveness of LoRA in multi-task scenarios.

In the meantime, there also exist other strategies
that try to exploit the connections among different
tasks. However, they are still far from satisfied. For
example, HyperFormer (Mahabadi et al., 2021) en-
hanced adapter-based methods by utilizing a shared
hypernetwork to facilitate cross-task knowledge
sharing, while incorporating task-specific adapters
to tailor the model for individual tasks. However,
they face limitations due to their inherent perfor-
mance constraints and additional inference latency.
Prompt Tuning methods (Vu et al., 2022; Asai et al.,
2022; Wang et al., 2023b) are proposed to use
learned prompts on source tasks to initialize the
learning of target tasks. Despite the effectiveness,
these approaches typically require a two-stage train-
ing process (i.e., first on the source task and then on
the target task), which requires higher data quality
and results in training efficiency decrease. Mean-
while, parallel LoRA strategies (Wang et al., 2023a;
Lietal., 2024; Liu et al., 2023a; Huang et al., 2023)
can effectively address the above shortcoming, of-
fering a better adaptability in multi-task scenarios.
Nonetheless, the usage of parallel LoORA modules
increases the overall parameter count and resource
consumption, contradicting the original purpose of
LoRA to reduce the training parameters. Thus, one
important question should be considered: “How to
achieve efficient LLLM fine-tuning in multi-task
scenarios remains challenging?”

To this end, in this paper, we design a novel Mix-
ture of Low-Rank Experts (MoRE) for efficient

LLM fine-tuning in multi-task scenarios. Since dif-
ferent tasks require different ranks of LoRA, we
propose to build connections between the ranks
and the tasks in a Mixture-of-Expert (MoE) man-
ner. Specifically, we propose to treat each rank
in the LoRA module as an expert and design a
novel Adaptive Rank Selector. Thus, the different
experts corresponding to different tasks can share
common information and maintain distinctive in-
formation simultaneously (i.e., the ranks r; and 7;
can share some common parameters). Meanwhile,
our proposed selector uses a gating mechanism to
select the appropriate rank expert for each task.
Moreover, to fully exploit the distinctions and con-
nections among different tasks for accurate rank
selection, we develop a novel CL-based Task Em-
bedding module, which assigns a task embedding
to each task and uses a Contrastive Learning (CL)
optimization to ensure the quality of learned task
embeddings. Furthermore, we incorporate the Bal-
anced Dataset Sampling strategy to address the
severe dataset imbalance in multi-task scenarios.
Along this line, MoRE can fully exploit the poten-
tial of LoRA and realize efficient LLM fine-tuning
in multi-task scenarios. Finally, extensive experi-
ments on multi-task benchmarks demonstrate the
efficiency and effectiveness of MoRE.

2 Related Work

2.1 Parameter-Efficient Fine-Tuning (PEFT)

PEFT methods are designed to adapt LLMs to new
tasks with minimal additional parameters. Repre-
sentative works include BitFit (Zaken et al., 2021),
Adapters (Houlsby et al., 2019), Prompt Tun-
ing (Liu et al., 2023b), Prefix Tuning (Li and Liang,
2021) and Low-Rank Adaptation (LoRA) (Hu et al.,
2022). Among these methods, LoRA is the most
representative one. It introduces trainable low-
rank matrices to approximate weight updates, re-
alizing highly efficient fine-tuning with low cost,
which has led to various extensions (Kopiczko
et al., 2024; Liu et al., 2024; Valipour et al., 2023;
Zhang et al., 2023a; Ding et al., 2023). For exam-
ple, VeRA (Kopiczko et al., 2024) further reduced
the number of trainable parameters in LoRA by
employing shared low-rank matrices and trainable
scaling vectors. DoRA (Liu et al., 2024) enhanced
fine-tuning performance and stability by decom-
posing the pre-trained weights into magnitude and
direction components. For flexibility in LoRA’s
rank, DyLoRA (Valipour et al., 2023) dynami-

1312



cally trained all ranks during training to avoid sep-
arate rank tuning for each task. AdaLLoRA (Zhang
et al., 2023a) allocated the parameter budget based
on the importance scores of the weight matrices
and pruned insignificant singular values to exclude
unimportant rank spaces. SORA (Ding et al., 2023)
introduced a trainable gating unit and used proxi-
mal gradient descent to optimize the sparsity of the
update matrices, dynamically adjusting the intrin-
sic rank size during training.

However, LoRA’s fixed-rank constraint limits
its flexibility. Although recent works (Valipour
et al., 2023; Zhang et al., 2023a) have enhanced
LoRA’s adaptability, they predominantly address
single-task training scenarios. These approaches do
not consider multi-task scenarios, where selecting
the most suitable rank for different tasks remains
an open challenge. This gap underscores the need
for more flexible and adaptive methods capable of
efficiently handling diverse and concurrent tasks in
multi-task learning scenarios.

2.2 Multi-task learning

Multi-task learning (MTL) focuses on simultane-
ously solving multiple related tasks with a sin-
gle model, which has been studied extensively
and offers several advantages (Zhang and Yang,
2021; Vandenhende et al., 2022). When integrat-
ing with LLMs, new challenges are proposed in
MTL scenarios, such as task conflicts, balancing
task weights, and training resource demands (Chen
et al., 2021; Kollias et al., 2024). Many meth-
ods are developed to tackle these problems. E.g.,
HyperFormer (Mahabadi et al., 2021) enhanced
Adapter-based methods with a shared hypernet-
work for cross-task knowledge sharing; SPoT (Vu
et al., 2022) adapted learned prompts for target
tasks to improve performance; ATTEMPT (Asai
et al., 2022) merged source and target prompts us-
ing an attention mechanism; and MPT (Wang et al.,
2023b) used prompt decomposition and knowledge
distillation for creating transferable prompts with
low-rank modifications for task specificity.

Moreover, LoRA-based enhancements like Mul-
tiLoRA (Wang et al., 2023a), MixLoRA (Li et al.,
2024), and MOELoRA (Liu et al., 2023a) employ
multiple parallel LORA modules or experts with
gating mechanisms to manage task-shared and spe-
cific knowledge. However, these methods often
increase trainable parameters, impacting training
efficiency, and do not always accommodate the
different rank needs of tasks.

3 Preliminary

3.1 Problem Definition

In multi-task learning scenarios, the objective is
to concurrently learn multiple tasks, each char-
acterized by potentially diverse data distributions
and goals. Formally, we consider a set of tasks
T ={T1,Ts,...,Tr}, where each task T; is asso-
ciated with a dataset D; = {(zf,y!)}2\*, compris-
ing V; input-output pairs. z! denotes the input data
and y! denotes the label or output for task 7;. The
target is to learn a shared model F' to satisfy the

requirements of different simultaneously.

3.2 LoRA: Low-Rank Adaptation

LoRA (Hu et al., 2022) is designed to reduce the
computational cost and memory footprint of adapt-
ing LLMs by introducing low-rank updates to the
weight matrices. Given the original weight matrix
W, € R™*, LoRA approximates the weight up-
date AW = BA, where A € R"*? and B €
R™*" are low-rank matrices, and » < min(m, d)
is the rank. The modified forward pass becomes:

h = Wyx + BAx. (D

However, this process highly depends on the pre-
defined rank 7, which is time-consuming and com-
putationally expensive to search. And this problem
will be amplified in multi-task scenarios, limiting
the potential of LoRA. Thus, How to use LoRA
to achieve efficient LLM fine-tuning in multi-task
scenarios is the main focus of our paper.

4 Mixture of Low-Rank Experts

To tackle the inefficient problem of LoRA in multi-
task scenarios, we propose a novel Mixture of Low-
Rank Experts (MoRE). The cores lie in how to
learn experts and how to select them. As illustrated
in Figure 1, we focus on parameters in attention
layer and FEN layer of the Transformer block. We
first assign a task embedding for each task to de-
scribe the abstract task characteristics. Then, based
on the task embedding, we design a novel adap-
tive rank selector to select the appropriate rank for
each task, term as the rank expert. Finally, we in-
corporate contrastive learning to ensure the quality
of learned task embedding and design a Balanced
Data Sampling strategy to stabilize the learning
process for better multi-task learning. Next, we
will introduce each part in detail.
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Figure 1: The overall framework of our proposed MoRE.

4.1 Task Embedding

Existing multi-task learning methods focus on min-
ing useful information from task data and trans-
ferring knowledge from one task to another. De-
spite the progress, they are still weak at sharing
common information among tasks and distinguish-
ing specific information aligning with each task.
This shortcoming will prohibit the efficiency of
PEFT methods when using them to tune LLMs in
multi-task scenarios. Therefore, we propose using
task embeddings to represent different tasks so that
task characteristics can be summarized comprehen-
sively. This operation is also the precondition of
our designed rank expert for measuring the connec-
tions and distinctions among different tasks.
Specifically, we use matrix E = {ej, e, ..., e;}
to denote all tasks, where e; represents the it task
in the multi-task scenarios. Then, we leverage
Kaiming Initialization to initialize them and learn
precise E during model training. Since there is no
supervised signal for E, we design a Contrastive
Learning (CL) based optimization target to learn
them, which will be introduced in Section 4.3.

4.2 Adaptive Rank Selector

As illustrated in Section 1, LoRA and its typical
variances usually have a pre-defined fixed rank 7.
However, different tasks may benefit from different
ranks depending on their complexity and data dis-
tributions (Valipour et al., 2023; Ding et al., 2023).
Searching the best rank is time-consuming and
computationally expensive. Meanwhile, training
parallel LoRA modules or multiple LoORAs when
applying LLMs to multi-task scenarios will amplify
the problem and prohibit the effectiveness, causing
high computational and storage costs. Therefore,

we employ Mixture-of-Experts (MoE) framework
and design a novel Adaptive Rank Selector.

Different from previous work that treated the
entire LORA module as an expert, we propose to
treat the rank 7 as the expert and use one LoRA to
realize LLLM fine-tuning in multi-task scenarios.
Assuming the selected rank of LoRA is 7, the rank
expert can be selected within the range [1, r]. Along
this line, different experts can share common infor-
mation at the overlap part in the learned metrics
(i.e., A and B) and align specific information cor-
responding to each task at the non-overlap part.
Formally, we use the learned task embedding e; to
select the appropriate rank from the LoRA module
and leverage a gating network G(-) to guarantee
the quality of the selection. Let {1,2,...,r} be
the set of experts’ ranks. For task Tz, G(-) takes e;
as input and outputs a probability distribution over
rank experts as follows:

p: = G(e;) = softmax(Wge; + by),  (2)

where {W,, by} are learnable parameters. The
probability distribution p; € R" indicates the rele-
vance of each rank to task 7;. During the forward
pass, we select the rank with the highest probability
and use the selected rank to truncate LORA module
for rank expert construction. Then, MoRE uses
LoRA paradigm to realize the fine-tuning:

T = arg max py,
h = W()l‘ + BtAt(L', (3)
A =Alry,:], By=B[,:r).
One step further, during backward pass, the

arg max in Eq.(2) is non-differentiable, causing
G(+) unable to be learned. Thus, we incorporate
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Straight-Through Estimator (STE) (Bengio et al.,
2013) technique to address this issue. We use STE
to calculate the approximate gradient to allow the
gradient to propagate back to G(-) correctly:

Ste(pt) = Pt + sglone_hot(ps) — pt), (4)

where one_hot(-) is used to convert a vector into
its one-hot version. sg(-) stands for stop gradient.
Then, we modify the forward process in Eq.(3) as:

h =Wgx + Ste(pt)[rt} -BiAgz. ®))

Thus, Adaptive Rank Selector module can real-
ize a precise selection of rank experts. Furthermore,
since MoRE uses the overlap part among LoRA
metrics to share the common information across
different tasks, the lower part will be updated more
frequently during fine-tuning. Thus, its learning
rate should be small for a slow and stable updating.
To realize this goal, we perform a linear scaling on
its weights for the balance:

Tt

h = Wz + Ste(p¢)[r] 7]

BiAtx, (6)

where |T'| is the total number of tasks. To verify
the effectiveness of this design, we also conducted
an ablation study on this operation in Section 5.4.
We have to note that MoRE is largely different
from training multiple LoRA with » = 1. The
latter still use the parallel paradigm and does not
consider the connections and distinctions among
different tasks. In contrast, MoRE uses adaptive
rank selector to dynamically assign suitable rank
for different tasks (i.e., The more similar the tasks
are, the closer the expert rank is and vice versa).

4.3 Balanced Data Sampling and CL-based
Optimization

Balanced Data Sampling. In multi-task scenarios,
data distributions of different tasks are also essen-
tial for LLM fine-tuning. For instance, in GLUE
benchmark (Wang et al., 2018), MNLI and RTE
datasets have proportionally disparate data distri-
butions (i.e., 392,000 v.s. 2, 500 examples). If this
attribute is not considered when fine-tuning LLMs
in multi-task scenarios, it is obvious that fine-tuned
LLMs will underfit the task with smaller datasets.

In response, we propose a simple but effective
Balanced Dataset Sampling strategy to ensure each
dataset contributes proportionally during the fine-
tuning process, regardless of its size. Specifically,

we assign a sampling weight ¢; to each dataset Dy,
which is inversely proportional to its size:

_ T
¢)7[¢17¢27"'7¢T}7 (;Stexp(zg*_l |DZ|> ) (7)

D, = Sampling(D, ®),

where Sampling(D, ®) denotes sampling a subset
from all datasets D with the distribution ®. |D;| is
the size of dataset D;. This dynamic sampling strat-
egy helps to balance the contributions of different
datasets, thereby reducing the risk of underfitting
smaller datasets and improving the overall perfor-
mance of the multi-task training.

CL-based Optimization. As mentioned in Sec-
tion 4.1, there is no supervised signal for task em-
bedding learning. Thus, one important question
should be considered: “How to ensure the task
characteristics and task distinguishability of the
learned task embedding without annotation require-
ments?” In response, we propose to leverage CL
to ensure the quality of learned task embeddings.
Consider a batch B of samples, where all samples
in B3 belong to the same task 7. Let {x;}} ; be the
set of IV samples in B, and let h; be the represen-
tation of sample x; obtained from the model. The
task embedding for task 7; is denoted as e;. The
optimization target can be formulated as follows:

®

N exp [ fm(hiet) )

1 p (2

Leon = — log - ,
¥ | S o (0]

where sim(-, -) denotes a similarity measure, such
as the dot product or cosine similarity, and 7T is
the total number of tasks. 7 is the temperature. e,
and ey, are the t'* and k'" tasks (t # k). By using
Eq.(8), we can measure the connection between
task embedding e; and its data samples {x;}Y ;.
Since each data sample is close to the correspond-
ing task embedding, we can conclude the learned
task embeddings can be used to describe task char-
acteristics, which is also supported by experimental
results in Section 5.3.

Besides using contrastive loss to learn task em-
beddings, we also select generation loss Lg,, to
measure the discrepancy between the generated se-
quences and target sequences. Let y and y be target
sequence and generation, L., can be formulated
with the cross-entropy loss:

T
ﬁgen = - Z Yt 10g ﬁt' (9)
t=1
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Methods params/task MNLI QQP QNLI SST-2 STS-B MRPC RTE CoLA AVG
Finetuning 28M 85.7 91.1 92.0 92.5 88.8 90.2 75.4 54.9 83.8
Adapters 1.8M 86.3 90.5 93.2 93.0 89.9 90.2 70.3 61.5 84.4
PT 9.6k 85.6 90.6 93.2 93.9 89.9 86.3 67.6 55.3 82.8
LoRA,—g 0.39M 85.8 89.2 93.1 932 90.4 89.9 76.3 62.8 85.1
LoRA,—16 0.78M 84.9 89.6 93.0 93.7 90.4 88.7 80.6 63.9 85.6
HyperFomer 638K 85.7 90.0 93.0 94.0 89.7 87.2 75.4 63.7 84.8
MPT 10.5K 84.3 90.0 93.0 93.3 90.4 89.2 82.7 63.5 85.8
MultiLoRA 1.56M 85.9 89.7 92.8 94.5 89.8 88.2 80.6 66.9 86.0
MixLoRA 1.49M 85.8 90.0 92.9 93.7 90.3 89.2 78.4 67.2 85.9
MOELoRA 0.78M 86.3 90.1 932 94.2 90.0 89.7 81.3 68.4 86.7
MoRE 0.78M 86.2 90.0 93.4 93.7 90.7 91.2 83.5 69.9 87.3
LLaMA2-LoRA 2.5M 86.9 88.6 93.5 96.2 90.2 92.6 89.2 65.0 87.8
LLaMA2-MultiLoRA 10M 87.6 85.0 93.4 96.7 92.2 88.7 87.8 724 88.0
LLaMA2-MixLoRA 12.2M 86.8 88.1 93.6 96.0 91.3 88.2 87.1 732 88.0
LLaMA2-MOELoRA 5M 87.0 87.6 91.4 96.3 92.4 91.2 87.8 64.4 87.3
LLaMA2-MoRE 5M 89.4 89.0 94.4 96.9 922 89.2 92.1 66.9 88.8

Table 2: Performance on GLUE benchmark. For STS-B, we report Pearson correlation coefficients. For CoLA, we
report Matthews correlation. For all other tasks, we report Accuracy. Bold and underlined fonts indicate the best

and the second-best results.

Methods params/task BoolQ PIQA OBQA ARC-E ARC-C AVG

LoRA 2.5M 809 717 719.0 83.7 769 79.6
MultiLoRA 10M 765 729 682 81.6 619 722
MixLoRA 12.2M 843 795 826 86.8 763 819

MOELoRA 4.5M 84.0 799 818 86.8 713  82.0

MoRE 4.5M 87.2 823 83.0 86.7 742 827

Table 3: Accuracy of all methods on Commonsense
Reasoning tasks. The backbone is Llama2-7B.

Then, we leverage a hyperparameter A to balance
the contributions of the generation loss and the con-
trastive loss, and formulate the overall optimization
target of MoRE as follows:

L= Lgen + A'Ccon- (10)

Discussion. Compared with existing methods,
MOoRE has the following properties. 1) We pro-
pose to treat different rank r in one LoRA as ex-
perts, and design an adaptive rank selector to select
suitable rank experts for different tasks, which can
effectively measure the connections and distinc-
tions among different tasks; 2) We use task embed-
dings to accurately describe the task characteristics
with a CL optimization; 3) We also consider task
data distributions and design a simple but effec-
tive Balanced Data Sampling strategy to ensure the
capability of fine-tuned LLMs on different tasks.

5 Expertments

5.1 Experimental Setup

Datasets. We evaluated the model using GLUE
benchmark (Wang et al., 2018) to assess various
natural language understanding tasks. Addition-
ally, we included datasets like BoolQ (Clark et al.,

2019), PIQA (Bisk et al., 2020), OBQA (Mihaylov
et al., 2018), and ARC (Clark et al., 2018) to test
commonsense reasoning abilities. Moreover, we se-
lect SciTail (Khot et al., 2018), BoolQ (Clark et al.,
2019), and CB (de Marneffe et al., 2019) datasets
to evaluate model robustness and generalization in
few-shot learning scenarios. We also report perfor-
mance on generation tasks in Appendix A.
Baselines. The following baselines are selected: 1)
Full fine-tuning (FT), 2) Vanilla Adapter,3) Vanilla
prompt tuning (PT),4) Vanilla LoORA.We also se-
lect the following advanced multi-task PEFT base-
lines: 1) HyperFomer,2) MPT,3) MultiLoRA 4)
MixLoRA,5) MOELoRA.All methods are tuned
based on reported settings for a fair comparison.
Implementation. We utilized LLaMA2-7B and
T5-base as backbones with the AdamW optimizer.
The learning rate was set to 3 x 10~4, applying a lin-
ear decay with a warm-up phase over the first 500
steps. The training was conducted over 5 epochs
with a batch size of 32 and a maximum input se-
quence length of 128 tokens. Parameter \ was set
to 0.1 and the softmax temperature 7 to 0.05. For
few-shot domain transfer, we initialized with the
best checkpoint from GLUE task training, shar-
ing task embeddings for similar tasks. T5-base
was trained on two NVIDIA RTX 4090 GPUs, and
LLaMAZ2-7B on four NVIDIA Tesla A100 GPUs.

5.2 Opverall Performance

Performance on GLUE Benchmark and Com-
monsense Reasoning. Tables 2 and 3 show that
MoRE excels in multi-task scenarios with few
fine-tuned parameters, outperforming LoRA im-
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Task k-shot Finetuning LoRA HyperFomer MPT MultiLoRA MixLoRA MOELoRA MoRE
4 50.5 64.2 48.0 62.2 65.2 62.8 64.0 64.6
BoolQ 16 56.5 66.1 50.2 63.3 65.8 64.4 64.8 66.2
32 584 67.4 583 68.9 67.6 66.2 65.7 67.9
4 57.7 843 60.7 73.6 85.0 86.6 854 85.7
CB 16 71.0 85.7 76.3 78.6 85.7 86.4 86.3 86.4
32 80.0 87.1 81.4 82.1 86.6 89.3 88.3 88.6
4 79.6 80.8 82.0 80.2 78.1 71.5 80.4 83.8
SciTail 16 80.0 84.0 86.5 87.3 81.7 82.4 83.1 86.7
32 81.9 85.3 85.8 86.3 83.6 833 84.5 87.4

Table 4: Few-shot domain transfer results (Accuracy) of T5-base models fine-tuned on GLUE averaged across 5
seeds. Bold and underlined fonts indicate the best and the second-best results.

Conditions GLUE Avg.
MoRE 87.3
w/o Linear Scaling 87.0
w/o Task Embeddings 86.1
w/o CL optimization 86.3
w/o STE 86.4
w/ Subset Experts 86.2
w/ Random Sample 86.2

Table 5: Ablation study results (Average Results on
GLUE benchmark) of MoRE.

plementations. By using task-specific embeddings,
MOoRE efficiently manages task information, en-
hancing performance without excessive parameter
tuning. This efficiency extends to large models like
LLaMAZ2-7B, significantly boosting performance.
In contrast, PEFT baselines struggle with small
datasets due to a lack of shared knowledge integra-
tion and higher data demands for training, leading
to suboptimal results. Multi-task baselines, while
considering shared knowledge, fail to appropriately
differentiate task nuances, resulting in inferior per-
formance compared to MoRE. Approaches like
MultiLoRA and MixLoRA improve performance
but lack task-aware mechanisms and specific rank
allocations, limiting their effectiveness. Addition-
ally, they tend to have more trainable parameters.
In commonsense reasoning tasks, MoRE also
leads with the highest accuracy, proving its robust-
ness across different scenarios. This suggests that
MOoRE can effectively handle the nuanced require-
ments of commonsense reasoning than simpler en-
semble approaches like MixLoRA or MoELoRA.

Performance on Few-shot Domain Transfer.
We conducted few-shot domain transfer experi-
ments to test the efficiency of MoRE, with results
detailed in Table 4. MoRE consistently performs
well across various datasets and few-shot settings,
demonstrating its capability to efficiently share and
distinguish task-specific information for effective

transfer learning. Traditional fine-tuning methods,
including HyperFormer and MPT, require more
training data to achieve better results. LoRA-based
multi-task methods, in contrast, do not outperform
standard LoRA implementations in these settings,
likely due to difficulties in rank allocation and pa-
rameter adaptation with few samples. This under-
scores the challenges of few-shot learning and high-
lights the effectiveness of MoRE in achieving bet-
ter generalization across different domains.

5.3 Detailed Analysis

Low-Rank Expert Allocation. We analyzed the
expert distribution across all layers for each task
after fine-tuning, as illustrated in Figure 2(a). Most
tasks predominantly utilized experts ranked 1, 2,
or 3, suggesting parameter redundancy in higher
ranks within LoRA modules during fine-tuning.
This aligns with our design where MoRE leverages
lower-rank experts to share common information
across tasks. To further clarify task dependencies
on different ranks, we scaled down the influence of
experts 1-3, as shown in Figure 2(b). The analysis
revealed specific dependencies, such as MRPC on
expert 4, confirming MoRE’s ability to effectively
assign appropriate experts to tasks, thereby enhanc-
ing performance in multi-task environments.

Visualization of Task Embeddings. In Sec-
tion 4.1, we discuss the crucial role of task em-
beddings in selecting rank experts for MoRE. We
visualized these embeddings using PCA from the
self-attention module’s final layer, as shown in Fig-
ure 2(c). The results reveal clear clustering patterns
among similar tasks, like MRPC and QNLI, and
significant separations for distinct tasks, particu-
larly STSB and CoLA. This clustering aligns with
the nature of the tasks, with STSB focusing on sim-
ilarity computation, differing fundamentally from
classification tasks. These insights confirm the ef-
fectiveness of MoRE in using task embeddings to

1317



xpert 1
pert 2

Distribution Counts
s s =
Distribution Counts

cola mnli mrpc qnli qap rte sst2 stsb : cola
(2)

mnli mrpc  qnli

encoder_query encoder_key encoder_value
. .

. o
e o . «®

] °
decoder_query

decoder_key decoder_value
-

4

. . .
® cola ® mnli ® mrpc ® qgnli ® qgp ® rte sst2 e stsb

©

q@p e sst2  stsb

Figure 2: (a)-(b) The distribution of expert allocation. (c) Visualization of the task embeddings.
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Figure 4: Parameter Sensitivity Test on A in Eq.(10) and
hidden dimension of task embedding.

differentiate and link tasks, enhancing expert se-
lection and the overall performance of MoRE. We
also provide more examples in Appendix C.
Training Speed Analysis. Figure 3 shows the
training time per step, normalised to the LoRA
baseline (1x). Our proposed MoRE, is only
~1.6x slower than LoRA. Mixture-style adapters
are much slower. MultiLoRA and MoELoRA need
about 2.9 and 3.6 x more time because they must
manage several experts. MixLoRA is the slow-
est at roughly 4.2x; its gated routing increases
GPU control-flow divergence. These results con-
firm that simpler designs run faster. MoRE delivers
the best overall trade-off: high accuracy with mini-
mal speed cost.

5.4 Ablation Study and Parameter Analysis

Ablation Study. We conducted an ablation study
for MoRE, with results detailed in Table 5. The
study highlights significant performance declines

Method Parameter

LoRA 6Lr(m + d)
MultiLoRA 6nLr(m + d) + 6Ld
MixLoRA 2nLr(m + d) + 2Lnm

MOELoRA 6Lr(m + d) + 6Lh(n + T)
MoRE 6Lr(m +d) + 6Lh(r +T)

Table 6: Parameter sizes of different methods based on
model layers (L), LoRA rank (r), model dimensions
(m and d), number of parallel LoRA modules (n), task
numbers (77), and task embedding dimension (h).

when task-specific embeddings or contrastive opti-
mization are omitted, confirming their crucial roles.
Removing STE and using soft expert selection also
drastically reduces performance. Using random
sampling reduced the results, supporting the effec-
tiveness of our balanced sampling strategy. Flexi-
ble rank selection by allowing any subset as experts
led to worse outcomes, likely because foundational
ranks typically harbor broader, shareable knowl-
edge crucial for task performance. Minor drops in
performance without linear scaling indicate its role
in preventing overfitting.

Parameter Sensitivity Test. We analyzed the
impact of two key hyperparameters on model per-
formance: the A value and the dimension of task
embeddings, with results shown in Figure 4. We
observed that increasing A initially lowers model
performance due to oscillations in contrastive loss
across diverse datasets, stabilizing at A = 0.1 for
optimal performance. Regarding task embedding
dimensions, performance improves with dimension
increases up to a point before declining. Smaller di-
mensions fail to capture complex task details, while
larger dimensions require excessive data for effec-
tive training and are cuambersome when calculating
sample similarities. Consequently, we selected a
task embedding dimension of 768.

Parameter Efficiency. To analyze the model com-
plexity, we count the number of tuning parameters
of different LoRA-based methods and report re-
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sults in Table 6. Compared with LoRA, the added
parameter number of MoRE is 6Lh(r + T'), in-
cluding extra task embeddings (T'h for a single
LoRA module) and adaptive rank selector (rh for
a single LoORA module). Compared with multi-task
baselines, MoRE is more efficient. Moreover, once
MOoRE are trained, we can construct a mapping
from tasks to experts during inference, thereby re-
ducing the parameter count to be consistent with
LoRA. We also provide detailed model complexity
analysis in Appendix B.

6 Conclusion

In this paper, we addressed the inefficiencies
of existing PEFT methods that often require
too many tuning parameters for multi-task fine-
tuning. We introduced a novel approach, MoRE,
which optimizes the use of low-rank parameters in
LoRA modules by treating each as a specialized
expert. This strategy allows for sharing common
information through lower ranks while emphasiz-
ing task-specific details through higher ranks. We
enhanced the selection of these expert ranks using
task embeddings and supported fine-tuning with
techniques like CL-based optimization and Bal-
anced Dataset Sampling. Our extensive testing on
the GLUE benchmark shows substantial improve-
ments and promising transfer learning capabilities.

7 Limitations

Despite the achieved progress, our proposed
MOoRE still has some limitations. First, due to GPU
device limitations, we do not apply MoRE to larger
LLMs, such as 13B, 75B, etc; Second, though we
have made an early attempt on generation tasks in
Appendix A, detailed experiments are needed to
better verify the effectiveness of MoRE. Finally,
since our approach is based on the MoE structure,
which cannot be merged with the original model,
it results in latency during inference. Although
MOoRE has significantly improved efficiency com-
pared to traditional MoE approaches, further im-
provement is still worth exploring.
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A Datasets and Additional Experiments
on NLG

Datasets. We utilized GLUE benchmark (Wang
et al., 2018) to evaluate the model performance.
GLUE covers multiple tasks of paraphrase de-
tection (MRPC, QQP), sentiment classification
(SST-2), natural language inference (MNLI, RTE,
QNLI), and linguistic acceptability (CoLA). Fol-
lowing previous work (Zhang et al., 2021), for
those datasets with fewer than 10, 000 samples (i.e.,
RTE, MRPC, STS-B, CoLA), we split the origi-
nal validation set into new validation and test sets
equally. For others, we randomly select 1, 000 ex-
amples from training set as the validation set, and
use original validation sets as test sets. Addition-
ally, we included the BoolQ (Clark et al., 2019),
PIQA (Bisk et al., 2020), OBQA (Mihaylov et al.,
2018), and ARC (Clark et al., 2018) datasets to
assess the model’s performance in commonsense
reasoning tasks. These datasets provide a variety of
challenges that require understanding of everyday
scenarios and logical reasoning. Moreover, we se-
lect SciTail (Khot et al., 2018), BoolQ (Clark et al.,
2019), and CB (de Marneffe et al., 2019) datasets
to evaluate model robustness and generalization
capabilities in few-shot learning scenarios.

To further validate the effectiveness of our
method, we conducted experiments on natural lan-
guage generation (NLG) tasks using three datasets:
DART, E2E, and WebNLG. DART focuses on gen-
erating text from structured data, E2E involves gen-
erating restaurant descriptions from key attributes,
and WebNLG is designed for generating text from
knowledge graph triples. As shown in Table 7,
none of the methods outperform fine-tuning (FT)
on NLG tasks, and LoRA shows a significant per-
formance drop. This indicates that using a fixed
rank for training all tasks is suboptimal. In contrast,
our method achieves performance comparable to
FT. This is attributed to our method’s ability to
allocate an appropriate rank for different tasks effi-
ciently.

Evaluation Setup. For GLUE benchmark and
commonsense reasoning tasks, we selected the
checkpoint with the highest average performance
on validation set. For few-shot learning, we per-
formed training and testing under each shot setting
using 5 random seeds. Then, we reported the av-
erage performance for a fair and robust estimation
and comparison.

Method DART E2E WebNLG AVG

FT 46.1 614 442 50.6
LoRA,_g 432 606 438 49.2
LoRA, -4 44.6 608 443 49.9
MultiLoRA 44.0 61.3 449 50.1
MixLoRA 443 609 453 50.2
MoRE 450 61.5  45.1 50.5

Table 7: Model performance on NLG tasks

B Detailed Calculation of Parameter
Counts

Parameter Efficiency. To analyze the model com-
plexity, we give the number of tuning parameters
of different LoRA-based methods and report re-
sults in Table 6. The notation explanations are as
follows: {L,r, (m,d),n, T, h} refer to model lay-
ers, LoORA rank, model dimensions, paralle]l LoRA
module number, task number, and task embedding
dimension. Compared with tuning parameter size
of LoRA, the added parameter number of MoRE is
6Lh(r 4+ T), including the extra task embeddings
(Th for a single LoORA module) and adaptive rank
selector (rh for a single LoRA module). Com-
pared with MultiLoRA and MixLoRA which use
parallel module design to tackle multi-task learning,
MOoRE is more efficient. Moreover, once our task
embedding and gate modules are trained, we can
construct a mapping from tasks to experts, which
allows us to avoid the repeated computation of
the task embedding and gate modules during in-
ference, thereby reducing the parameter count to
be consistent with LoRA. This is also the reason
why MoRE achieves impressive performance in
multi-task scenarios without too many fine-tuning
parameters.

LoRA parameters: LoRA employs matraix A
and B to introduce low-rank adaptations in both the
attention layers (q, k, v, 0) and the feed-forward net-
work (FFN) layers (w;, w,) of the T5-base model.
Each LoRA layer has r(m + d) paramters. The
total number of parameters for LoORA with L trans-
former layers is 6 Lr(m + d).

MultiLoRA parameters: MultiLoRA employs
parallel LoRA models for training, so its parame-
ter count is n times that of vanilla LoRA, where
n is the number of parallel LoRA modules. Addi-
tionally, MultiLoRA modifies the scaling factors
to be learnable parameters (with parameter count
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d). Therefore, the total number of parameters is
6nLr(m + d) + 6Ld.

MixLoRA parameters: MixLoRA only em-
ploys parallel expert LoORA modules in the FFN
layers and uses a gating module (with parame-
ter count nm) to select the appropriate LoRA ex-
pert. Therefore, the total number of parameters is
2nLr(m + d) + 2Lnm.

MOELoORA Parameters: MOELoRA utilizes
parallel LoRA models with a rank of r/n and in-
corporates a task embedding module to represent
each task (with a parameter count of T°h). Addi-
tionally, it employs a gating module (with a param-
eter count of nh) to compute the weights for each
LoRA. Therefore, the total number of parameters
is given by 6Lr(m + d) + 6Lh(n+T).

MOoRE parameters: Our proposed MoRE em-
ploys the same LoRA modules as vanilla LoRA,
but treats LoRA modules with different ranks as
experts, thereby introducing an additional gating
module (with parameter count 7h). To better adapt
to different tasks, we also introduce a task embed-
ding module (with parameter count T'h, where h is
the hidden dimension). Therefore, the total num-
ber of parameters is 6Lr(m + d) + 6Lh(r + T).
In the GLUE dataset, 7" = 8 is consistent with
r = 8. If the hidden dimension is set to be the
same as d, then the parameter count is 12 Lr(m+d),
which is exactly the same as the parameter count
with LoRA,—16. Compared to MultiLoRA and
MixLoRA, we do not use a parallel module design,
so there is no parameter n that leads to a parameter
count far exceeding that of LoRA. Furthermore,
once our task embedding and gate modules are
trained, we can construct a mapping from tasks to
experts. This allows us to avoid the repeated com-
putation of the task embedding and gate modules
during inference, thereby reducing the parameter
count to be consistent with LoRA,—_g.

C Additional Visualization of Task
Embeddings

Further analysis of task embeddings is presented in
Figures 5-7. These figures reveal that the patterns
observed in other layers and modules of the model
are consistent with those reported in the main text.
Notably, stronger clustering is observed in the w;
and w, layers. This enhanced clustering may be at-
tributed to the feed-forward network (FFN) layers’

ability to capture shared information underlying
different tasks more effectively.
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Figure 5: Visualization of Task Embeddings in Layer 1.
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Figure 6: Visualization of Task Embeddings in Layer 6.
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Figure 7: Visualization of Task Embeddings in Layer 12.
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