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Abstract

Biomedical reasoning often requires travers-
ing interconnected relationships across enti-
ties such as drugs, diseases, and proteins. De-
spite the increasing prominence of large lan-
guage models (LLMs), existing benchmarks
lack the ability to evaluate multi-hop reason-
ing in the biomedical domain, particularly for
queries involving one-to-many and many-to-
many relationships. This gap leaves the criti-
cal challenges of biomedical multi-hop reason-
ing underexplored. To address this, we intro-
duce BioHopR, a novel benchmark designed to
evaluate multi-hop, multi-answer reasoning in
structured biomedical knowledge graphs. Built
from the comprehensive PrimeKG, BioHopR
includes 1-hop and 2-hop reasoning tasks that
reflect real-world biomedical complexities.

Evaluations of state-of-the-art models reveal
that O3-mini, a proprietary reasoning-focused
model, achieves 37.93% precision on 1-hop
tasks and 14.57% on 2-hop tasks, outperform-
ing proprietary models such as GPT4O and
open-source biomedical models including
HuatuoGPT-o1-70B and Llama-3.3-70B.
However, all models exhibit poor capabilities
in the multi-hop reasoning, underscoring the
challenges of resolving implicit reasoning steps
in the biomedical domain. By addressing the
lack of benchmarks for multi-hop reasoning
in biomedical domain, BioHopR sets a new
standard for evaluating reasoning capabil-
ities and highlights critical gaps between
proprietary and open-source models while
paving the way for future advancements in
biomedical LLMs. BioHopR is available
at https://huggingface.co/datasets/knowlab-
research/BioHopR.

1 Introduction

Recent advances in large language models (LLMs)
and Question Answering (QA) systems have
shifted the focus from simple factoid retrieval
tasks to more sophisticated reasoning capabilities

(Huang and Chang, 2022; Plaat et al., 2024; Ope-
nAI, 2025). Among these, multi-hop reasoning
has emerged as a critical area of research, where
answering a question requires traversing multiple
interconnected reasoning steps (Misra et al., 2023;
Yang et al., 2024; Schnitzler et al., 2024). For exam-
ple, to answer “Who is the wife of the president of
the United States?”, a LLM must first identify the
president (step 1) and then determine their spouse
(step 2). This type of reasoning, referred to as
multi-hop reasoning, is especially vital in domains
where information is highly interconnected, such
as the biomedical field.

In the biomedical domain, knowledge is often
structured in ontologies and knowledge graphs
(KGs), where entities like drugs, diseases, proteins,
and phenotypes are represented as nodes, and their
relationships as edges (Himmelstein et al., 2017;
Sung et al., 2021; Chandak et al., 2023). Biomed-
ical queries frequently demand multi-step reason-
ing over these graphs (Sung et al., 2021; Su et al.,
2024; Matsumoto et al., 2025). For instance, identi-
fying diseases associated with a drug might require
a single-hop relation, while determining proteins
targeted by that drug through its associated dis-
ease involves two reasoning steps. Furthermore,
biomedical reasoning often involves one-to-many
or many-to-many relationships. For example, a sin-
gle question might have several correct answers -
like a drug that works on multiple proteins (Liang
et al., 2019). This complexity highlights the need
for specialized benchmarks that rigorously evalu-
ate models’ ability to reason across multiple steps
while generating comprehensive, multi-answer re-
sponses.

Existing benchmarks for multi-hop reasoning,
such as Hetionet (Himmelstein et al., 2017) and
other biomedical QA datasets (Rao et al., 2022),
have laid the groundwork for evaluating multi-
hop capabilities in the biomedical domain. How-
ever, these benchmarks primarily focus on single-
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hop tasks or utilize pre-defined templates that fail
to fully capture the intricacies of multi-step rea-
soning. Similarly, general-domain benchmarks
like TWOHOPFACT (Yang et al., 2024) test mod-
els’ latent multi-hop reasoning ability but lack the
domain-specific challenges of biomedical reason-
ing, such as reasoning over structured relationships
and handling multi-answer outputs. As a result, the
unique challenges of biomedical multi-hop reason-
ing remain underexplored.

To address these limitations, we introduce Bio-
HopR, a new benchmark specifically designed to
test the multi-hop reasoning capabilities of LLMs
in the biomedical domain. Unlike general-domain
benchmarks that rely on reasoning across discon-
nected documents, BioHopR focuses on reason-
ing within a single, structured biomedical knowl-
edge graph. Our benchmark systematically con-
structs 1-hop (e.g., Drug–Disease) and 2-hop (e.g.,
Drug–Disease–Protein) question-answer pairs from
the PrimeKG knowledge graph (Chandak et al.,
2023). Questions are designed to evaluate models’
abilities to reason step-by-step, explicitly requiring
the inference of intermediate entities, and gener-
ate multi-answer responses reflective of real-world
biomedical complexity.

Contributions. Our main contributions are as
follows:

• A New Benchmark for Multi-Hop Reason-
ing: We propose BioHopR, the first pub-
licly available benchmark explicitly designed
to evaluate multi-hop, multi-answer reason-
ing within structured biomedical knowledge
graphs. We will release the dataset and the
code for evaluation.

• Multi-hop Knowledge Curated from a
Comprehensive Up-To-Date Knowledge
Graph: Leveraging the comprehensive and
up-to-date PrimeKG knowledge graph, we
systematically construct a dataset of 1-hop
and 2-hop biomedical questions and their an-
swers, ensuring real-world relevance.

• Evaluation and Analysis of LLMs in
Biomedical Multi-hop Reasoning: We eval-
uate state-of-the-art LLMs on our benchmark,
highlighting their strengths and, more im-
portantly, limitations in handling biomedical
multi-hop reasoning tasks.

By introducing BioHopR, we aim to fill a crit-
ical gap in multi-hop QA research and advance
the development of LLMs capable of robust and

interpretable reasoning in structured, high-stakes
domains like biomedical research and healthcare.

2 Related Works

Biomedical Question Answering. Research in
medical LLMs has been facilitated by the devel-
opment of question-answering (QA) datasets that
benchmark models’ understanding of medical do-
main knowledge (Hendrycks et al., 2020; Jin et al.,
2021; Pal et al., 2022). These datasets typically
consist of multiple-choice questions (MCQs) fo-
cused on single-hop reasoning tasks, providing a
straightforward way to evaluate LLMs’ ability to
comprehend and respond to diverse medical in-
quiries. While these benchmarks have driven sig-
nificant progress, they primarily measure classifi-
cation accuracy, which is insufficient for capturing
the nuanced reasoning required for medical exper-
tise.

Medical QA often involves interconnected con-
cepts where reasoning over multiple steps is crucial.
However, current benchmarks rarely go beyond
single-hop tasks and do not evaluate models’ abil-
ity to provide explanations for their answers or jus-
tify their reasoning process. Recently, MedExQA
introduced an evaluation framework with detailed
explanations for assessing the reasoning capabili-
ties of LLMs (Kim et al., 2024). While this is a
step forward, it remains constrained to single-hop
reasoning and does not address the need for multi-
hop reasoning or the generation of multiple valid
answers—a common requirement in biomedical
inquiries.

Knowledge Graph Question Answering.
Knowledge Graph Question Answering (KGQA)
systems leverage structured knowledge graphs
to answer questions that require reasoning over
graph-based relationships. In the biomedical
domain, Hetionet (Himmelstein et al., 2017)
introduced a knowledge graph containing entities
like genes, drugs, and diseases, enabling structured
reasoning. Extensions of Hetionet have been used
for multi-hop QA tasks (Rao et al., 2022), but
these datasets often rely on fixed templates and
predefined reasoning paths, limiting their ability to
evaluate the nuanced multi-hop reasoning required
in real-world biomedical applications. This work
explored techniques such as knowledge graph
embeddings and graph neural networks (Kipf
and Welling, 2016; Hamilton et al., 2018), and
transformer-based models like BioBERT (Lee
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Dataset Domain Reasoning Answer-Level
MedQA (Jin et al., 2021) Biomedical No Single Answer
Hetionet QA (Himmelstein et al.,
2017)

Biomedical Graph-based Reasoning (MH) Single Answer

MedExQA (Kim et al., 2024) Biomedical Explanation Generation Single Answer
TWOHOPFACT (Yang et al., 2024) General Implicit Reasoning (MH) Single Answer
BioHopR (Ours) Biomedical Implicit Reasoning (MH) Multi Answers

Table 1: Comparison of BioHopR with existing datasets. Key differentiators include domain focus, reasoning type
(MH is tagged for multi-hop reasoning supported dataset), and answer-level, such as multi-answer capability.

et al., 2020) to extract and utilize graph-based
knowledge. However, this dataset tests the model’s
performance in a classification task to a single
answer. Also, this dataset is not publicly available,
limiting its role in facilitating biomedical large
language model research.

In domains like biomedical science, many ques-
tions inherently involve multiple correct answers.
For instance, identifying all drugs that treat a spe-
cific disease or all proteins associated with a dis-
ease phenotype requires models to retrieve com-
prehensive sets of answers rather than a single re-
sponse.

Latent Multi-Hop Reasoning in Large Lan-
guage Models. Recent work has explored the
latent reasoning capabilities of LLMs, focusing
on whether models can implicitly infer intermedi-
ate entities and use them for multi-step reasoning.
The TWOHOPFACT dataset (Yang et al., 2024)
evaluates this capability by testing whether LLMs
can identify "bridge entities" in two-hop reasoning
tasks. While TWOHOPFACT demonstrates that
LLMs can perform latent multi-hop reasoning in
general domains, it does not address the unique
challenges of biomedical reasoning. Biomedical
queries often require explicit reasoning over struc-
tured data and demand comprehensive answers
involving one-to-many or many-to-many relation-
ships.

These gaps highlight the need for a benchmark
like BioHopR, which explicitly evaluates models’
ability to perform step-by-step reasoning and gener-
ate multi-answer outputs in the biomedical domain.

Multi-Answer Reasoning. Existing QA bench-
marks, both in general and biomedical domains,
typically assume a one-to-one mapping between
questions and answers, which oversimplifies the
complexity of real-world reasoning tasks. This as-
sumption is especially problematic in the biomed-

ical domain, where relationships between entities
are often one-to-many or many-to-many.

BioHopR BioHopR addresses this limitation by
introducing questions that require multi-answer rea-
soning, ensuring that the benchmark captures the
intricate relational structures and knowledge depen-
dencies present in biomedical science. The differ-
ences between our dataset and relevant datasets are
summarized in Table 1.

3 BioHopR: Multi-hop Reasoning in
Biomedicine

One to many relationship
(Biomedical domain)

One to one relationship
(General domain)

One to many to many relationship
(Biomedical domain)

Query Node Target Nodes

Query Node

Query Node Bridge Nodes Target Nodes

Which genes are 
associated with 
type 2 diabetes?

Many to many relationship
(Biomedical domain)

Which proteins 
targeted by the 
following drugs?

Metformin
Insulin
Glipizide

1.
2.
3.

Metformin: AMPK, 
Mitochondrial 
Complex I, GLUT4

Insulin: 
Insulin receptor 
(INSR), IRS1, PI3K

Glipizide:
KATP channel 
(SUR1/Kir6.2), 
insulin granule 
machinery

What 
pathways or 
targets are 
affected by 
drugs are 

used to treat 
Diabetes?

Metformin
Insulin

Glipizide

Metformin: AMPK, 
Mitochondrial 
Complex I, GLUT4 
transporter

Insulin: IRS1, PI3K- 
Akt pathway, GLUT4 
translocation

Glipizide: KATP 
channel 
(SUR1/Kir6.2), Insulin 
granule exocytosis 
pathway

What is the 
capital 

of France?

Query Node Target Node
Paris Target Nodes

TCF7L2, PPARG, 
KCNJ11, 

SLC30A8, HHEX, 
CDKAL1

Figure 1: Illustration of the relationships observed in
this work using a biomedical knowledge graph. Each
subplot visualizes a different type of question–answer
relationship, highlighting the complexity and variability
inherent in biomedical data.

BioHopR is a benchmark specifically designed
to evaluate the ability of large language models
(LLMs) in performing multi-hop reasoning and
generating multi-answer outputs in the biomedi-
cal domain. Compared to other knowledge graphs
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such as Hetionet, PrimeKG provides a broader
coverage of biomedical entities, richer relational
structures, and up-to-date knowledge in the field
(Chandak et al., 2023). This allows for the genera-
tion of diverse, clinically relevant up-to-date multi-
hop queries. By carefully creating questions over
PrimeKG, the dataset is designed to follow a one-
to-many-to-many relationship structure, where
one question can have several correct answers. This
restriction ensures that queries reflect real-world
biomedical scenarios where entities like drugs, dis-
eases, and proteins exhibit hierarchical and com-
plex interconnected relationships.

3.1 Multi-hop, Multi-answer Knowledge
Formalization

Nodes and Relations. In our dataset, the entities
in PrimeKG are represented as nodes, and their
relationships are directed edges. For any query,
the node from which reasoning starts is defined as
the query node, and the node(s) forming the final
answers are the target nodes. In the case of 2-hop
reasoning, the intermediate node connecting the
query and target is defined as the bridge node. We
restrict node types to the following: Drug, Proteins,
Disease, Phenotype.

Relationship Structure. As seen in Figure 1, the
dataset is restricted to follow a one-to-many-to-
many relationship structure, where each question
has multiple correct answers and each answer may
relate to several different entities.

In 1-hop questions, a direct relationship connects
the query node to the target nodes. For example:

Query (Drug) treats−−−→ Target (Diseases). (1)

This setup reflects a single reasoning step where a
query node is linked to multiple target nodes.

In 2-hop questions, the query node connects to
the target nodes via an intermediate bridge node,
forming a two-step reasoning chain. For example:

Query (Phenotype) side_effects_of−−−−−−−−→ Bridge (Drug)
treats−−−→ Target (Diseases). (2)

Here, the bridge node (e.g., drug), used to query for
1-hop questions, serves as the intermediate entity
linking the query and target.

Answer Definition. The target nodes are the
final answers to the query. For 1-hop reasoning,
this corresponds to all nodes directly connected to

the query node. For 2-hop reasoning, the answers
are all nodes that are accessible through the graph
traversal via the bridge node, requiring models to
infer both the intermediate (bridge) and final (tar-
get) nodes.

3.2 Dataset Construction Pipeline

The dataset is constructed using the following sys-
tematic process:

1. Entity Sampling: Nodes representing drugs,
diseases, proteins, and phenotype entities are
extracted from PrimeKG.

2. 2-Hop Path Definition: For 2-hop questions,
valid paths are constructed by combining two
connected edges, ensuring the query-bridge-
target structure follows the one-to-many-to-
many relationship:

Query Relation1−−−−−→ Bridge Relation2−−−−−→ Target.
(3)

3. 1-Hop Relationship Extraction: For 1-hop
questions, all relationships connecting query
nodes (e.g., drugs) to their target nodes (e.g.,
diseases) are extracted. To maintain consis-
tency with 2-hop questions, 1-hop relation-
ships without a corresponding 2-hop path are
excluded.

4. Answer Extraction: For each question, all
target nodes accessible through the graph
traversal are extracted as answers. This en-
sures that the multi-answer nature of the
dataset is preserved.

3.3 1-Hop and 2-Hop Questions

1-Hop Questions. For a 1-hop question, the
model is required to directly link the query node
to the target node, which is populated using
a template "Name a Type({Query}) that is La-
bel({Relationship}) by {Query}". For example,

“Name a disease that is treated by Drug Dr?”
(4)

with the answer set defined as:

A = {D1, D2, . . . , Dn}, (5)

where Di represents disease linked to the query
drug Dr.

2-Hop Questions. For a 2-hop question, the
model must infer both the bridge node and the
target node. The question template is "Name
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a Type({Query}) that is Label({Relationship2})
by {Bridge} that has a Label({Relationship1})
{Query}". An example query is:

“Name a disease that is treated by a drug

that has a side effect S?” (6)

The model needs to traverse the graph through an
intermediate bridge node (drug) before reaching
the final target node (disease):

A = {D1, D2, . . . , Dn}, (7)

where Di represents disease linked to the pheno-
type that is a side effect of drug Dr.

3.4 Dataset Statistics

Relation (Query:Target) Count
Protein:Disease 731
Protein:Drug 589
Disease:Drug 297
Drug:Phenotype 248
Drug:Disease 234
Drug:Protein 165
Disease:Protein 113
Disease:Phenotype 79
Phenotype:Drug 33
Phenotype:Disease 5

Table 2: Distribution of 1-hop relations in BioHopR.

The BioHopR dataset consists of 2,494 unique
1-hop questions and 7,633 unique 2-hop questions,
resulting in a total of 279,738 answers. On av-
erage, each question is associated with 36.65 an-
swers, reflecting the dataset’s complexity and the
many-to-many relationships inherent in biomedical
knowledge. The dataset includes 10 distinct 1-hop
relation types and 12 2-hop relation types, and the
breakdown of the number of questions for each
relation type is summarized in Tables 2 and 3.

The restriction to one-to-many-to-many relation-
ships ensures that the dataset mirrors real-world
biomedical reasoning scenarios, where single en-
tities often relate to multiple downstream entities.
This design makes the dataset uniquely suited for
evaluating large language models (LLMs) on tasks
requiring multi-step reasoning and comprehensive
answer generation.

3.5 Qualitative Analysis
To better understand the models’ reasoning capa-
bilities, we conducted a qualitative analysis on the

Relation (Query:Bridge:Target) Count
Drug:Protein:Disease 3029
Disease:Drug:Phenotype 949
Disease:Protein:Drug 899
Protein:Disease:Drug 577
Phenotype:Disease:Drug 546
Protein:Drug:Disease 462
Disease:Drug:Protein 381
Drug:Disease:Protein 321
Phenotype:Drug:Disease 215
Drug:Disease:Phenotype 213
Disease:Phenotype:Drug 36
Drug:Phenotype:Disease 5

Table 3: Distribution of 2-hop relations in BioHopR.

questions about Type II Diabetes, as it is one of the
widely studied diseases (Skyler et al., 2017).

3.6 Reasoning Benchmark

BioHopR presents significant reasoning chal-
lenges:

• Models must implicitly identify intermediate
bridge nodes in 2-hop questions while ensur-
ing the correctness of the final answers.

• The many-to-many nature of biomedical re-
lationships requires models to handle diverse
answer sets while preserving reasoning con-
sistency.

4 Experiments

We evaluate a range of LLMs on the BioHopR
benchmark to assess their ability to reason over one-
to-many-to-many relationships. The evaluation fo-
cuses on both single-answer and multi-answer rea-
soning for 1-hop and 2-hop questions, highlighting
the challenges posed by multi-step reasoning and
comprehensive answer generation.

4.1 Experimental Setup

Models Evaluated. We consider a diverse set
of LLMs, categorized into general-purpose pro-
prietary, reasoning proprietary, medical-specific,
and open-source models, as detailed in Table
4. General-purpose models include GPT4O and
smaller variants such as GPT4O-mini (Hurst et al.,
2024). We also added O3-mini as it was most
recent cost-effective reasoning proprietary model
(OpenAI, 2025). We also evaluate open-source
Llama models (Llama3.1 and Llama3.3) with
varying parameter scales (8B and 70B) (Dubey
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et al., 2024). We selected medical-specific mod-
els that are based on the baseline Llama3.1 ar-
chitectures: UltraMedical-8B, HuatuoGPT-o1-8B,
and HuatuoGPT-o1-70B (Zhang et al., 2024; Chen
et al., 2024). HuatuoGPT-o1 models are trained for
medical complex reasoning for medical problems.

Model Name Domain
GPT4O General
GPT4O-mini General
O3-mini Reasoning
Llama3.1 8B General
Llama3.1 70B General
Llama3.3 70B General
UltraMedical-8B Medical
HuatuoGPT-o1-8B Medical Reasoning
HuatuoGPT-o1-70B Medical Reasoning

Table 4: Models evaluated in the experiments.

4.2 Evaluation
The proprietary GPT models (GPT4O, GPT4O-
mini, and O3-mini) were accessed using OpenAI’s
API1. For open-source models, we used four A100
GPUs with 80GB memory per GPU for 70B pa-
rameter models and one A6000 GPU for 8B pa-
rameter models. The evaluation was conducted in
a zero-shot setting, with a batch size of 1 and a
temperature set to 0, except O3-mini model which
does not support temperature parameter, to ensure
deterministic responses. The evaluation code for
open-source models were implemented using the
HuggingFace Transformers library (Wolf, 2019).

4.3 Evaluation Metrics
Embedding-Based Precision. The precision
(Prec) is computed using the cosine similarity
between the predicted response and the ground
truth answer list, leveraging BioLORD-2023-C
embeddings (Remy et al., 2023). Let p denote
the embedding of the predicted response and
{a1, a2, . . . , an} denote the embeddings of the
ground truth answers. The cosine similarity for
a prediction p and an answer ai is defined as:

cos(p, ai) =
p · ai

∥p∥∥ai∥
. (8)

If the maximum cosine similarity across all
ground truth answers satisfies:

max
i∈{1,...,n}

cos(p, ai) > τ, (9)

1https://platform.openai.com/docs/models

then the prediction is considered a true positive.
The precision (Prec) is then calculated as:

Prec =
|True Positives|

|Predicted Responses| (10)

.
We use τ = 0.9 for BioLORD-2023-C embed-

dings after a grid search of threshold values from
0.5 to 0.9, which led an optimal setting with 0.9.
Please refer to more details in the Appendix Figure
4. This threshold prioritizes precision, ensuring
that only highly confident predictions are accepted
as correct. By setting a high threshold, we align
with the strict requirements of biomedical applica-
tions, minimizing false positives while maintaining
robust handling of biomedical definition-level sim-
ilarity and ambiguous synonyms.

5 Results and Discussion

5.1 Proprietary Models Demonstrate Robust
Multi-Hop Reasoning

Proprietary models (GPT4O, GPT4O-mini, and
O3-mini) demonstrate consistently strong per-
formance across all metrics. For 1-hop tasks
(Prec_HOP1), O3-mini achieves the highest pre-
cision (37.93%), followed by GPT4O (32.88%)
and GPT4O-mini (28.11%). Interestingly, all pro-
prietary models achieve identical performance on
2-hop tasks (Prec_HOP2: 14.57%), suggesting a
possible shared capabilities for implicit reasoning
or complex reasoning.

These results reflect the impact of the reason-
ing step before answering. O3-mini’s higher
Prec_HOP1 indicates the reasoning capability of
the model allowed it to reason well on single-step
queries.

5.2 Open-Source Biomedical Models Face
Significant Challenges

Open-source biomedical models struggle to match
the performance of proprietary models, particularly
on multi-hop tasks. HuatuoGPT-o1 models per-
form the worst, achieving near-zero precision for
both 1-hop (Prec_HOP1: 0.20% for HuatuoGPT-
o1-8B) and 2-hop (Prec_HOP2: 0.00% for
HuatuoGPT-o1-70B). In contrast, UltraMedical-
8B performs better (Prec_HOP1: 13.75%,
Prec_HOP2: 5.21%).

These results suggest that although HuatuoGPT-
1 was trained for medical complex reasoning,
it’s generalizability is far less than UltraMedical.
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Model Prec_HOP1 (%) Prec_HOP2 (%) BOTH_COR (%) BOTH_WR (%) ↓
Llama-3.1-8B 0.12 0.05 0.00 99.76
HuatuoGPT-o1-70B 0.16 0.00 0.00 99.93
HuatuoGPT-o1-8B 0.20 0.04 0.00 99.54
UltraMedical-8B 13.75 5.21 2.28 82.33
Llama-3.3-70B 25.58 9.58 4.94 68.33
Llama-3.1-70B 26.38 9.47 4.93 65.64
GPT4O-mini 28.11 14.57 6.54 64.69
GPT4O 32.88 14.57 7.86 57.96
O3-mini 37.93 14.57 8.93 52.14

Table 5: Performance metrics (in percentages) for various models. Prec_HOP1 and Prec_HOP2 represent the
precision on 1-hop and 2-hop tasks, respectively. BOTH_COR indicates cases where both hops are correct, and
BOTH_WR indicates cases where both hops are incorrect (the lower the better).

The reasoning demands of BioHopR is far differ-
ent from medical license examination based QA
datasets such as MedQA, which HuatuoGPT-o1
used for training. Still UltraMedical-8B’s perfor-
mance, when compared to a larger general domain
open-source models such as Llama3.1-70B and
Llama3.3-70B, is far behind, suggesting persistent
challenges in resolving bridge nodes for multi-hop
queries.

Error Patterns. The BOTH_WR metric reveals
systemic challenges in multi-hop reasoning for all
models. Open-source models like HuatuoGPT-o1-
70B exhibit the highest BOTH_WR rates (>99%),
reflecting widespread failure in both reasoning
hops. Proprietary models demonstrate significantly
lower failure rates, with O3-mini achieving the best
performance (BOTH_WR: 52.14%). However,
even the best-performing models show substantial
error rates in both hops, indicating that multi-step
inference remains a bottleneck.

5.3 Multi-Hop Reasoning Remains a
Bottleneck

Across all models, performance declines sharply
from 1-hop to 2-hop tasks. For example, GPT4O’s
precision drops from Prec_HOP1: 32.88% to
Prec_HOP2: 14.57%, while open-source models
like Llama-3.1-8B exhibit near-complete failure
(Prec_HOP2: 0.05%).

This decline highlights the inherent complexity
of multi-hop reasoning. Resolving 2-hop queries
requires implicit inference of intermediate entities
(e.g., bridge nodes) and alignment of reasoning
chains across multiple steps.

5.4 Qualitative Analysis - Case Studies

Our qualitative analysis on various diseases, includ-
ing Type II Diabetes and Schizophrenia aligns well
with the evaluation result in Table 5. We highlight
the diabetes-related questions in Figure 2.

Questions

Hop1: "...a side effect of drug Troglitazone."
Hop2: "...a side effect of a drug ... treat type 2 diabetes."

Model Hop1 Prediction Hop2 Prediction

HuatuoGPT-
o1-70B

"Alright, let’s
think about
Troglitazone..."

"Alright, let’s
think about
this..."

HuatuoGPT-
o1-8B

"Hepatotoxicity" "Hypoglycemia"

UltraMedical-
8B

"Hepatotoxicity" "Lactic acidosis,
Hypoglycemia,
Hyperkalemia"

GPT4O "Hepatotoxicity" "Weight gain"

O3-mini "Hepatotoxicity" "Weight gain"

Figure 2: Qualitative analysis of model responses to
diabetes-related questions. Red-colored text shows the
wrong answer. Orange-colored text shows the answer
that is not in the answer list, but is plausible. Blue-
colored text shows the correct answer.

Diabetes-related questions for drug Troglitazone,
which has 202 side effects listed from PrimeKG,
highlighted mixed performance among models. For
instance, HuatuoGPT-o1-8B correctly predicted an-
swers but diverged from the task constraints by
elaborating on its reasoning instead of adhering to
the prompt. Similarly, UltraMedical produced mul-
tiple answers when a single response was requested,
with only some of the predictions being correct. In
contrast, proprietary models such as GPT-4 reliably
adhered to prompted task, consistently including
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Relation Type
1-Hop 2-Hop

GPT4O GPT4O-mini GPT4O GPT4O-mini
(Single/Multi) (Single/Multi) (Single/Multi) (Single/Multi)

Same Query and Bridge
Disease:Drug:Phenotype 47.47 / 36.49 43.77 / 26.56 25.08 / 4.71 25.08 / 4.01
Disease:Drug:Protein 47.47 / 36.49 43.77 / 26.56 3.67 / 1.13 3.67 / 1.29
Drug:Disease:Phenotype 55.13 / 13.67 50.85 / 14.75 22.07 / 6.77 22.07 / 7.12
Drug:Disease:Protein 55.13 / 13.67 50.85 / 14.75 4.67 / 0.27 4.67 / 0.43

Same Query and Target
Disease:Phenotype:Drug 20.25 / 8.48 22.78 / 7.14 16.67 / 2.38 16.67 / 1.50
Disease:Protein:Drug 35.40 / 7.8 26.55 / 2.93 8.12 / 4.60 8.12 / 2.81
Drug:Phenotype:Disease 23.39 / 4.94 31.05 / 3.70 0.00 / 0.00 0.00 / 1.01
Drug:Protein:Disease 20.61 / 5.77 20.00 / 44.00 20.14 / 1.84 20.14 / 2.82

Others
Phenotype:Disease:Drug 0.00 / 8.08 0.00 / 3.03 14.47 / 17.24 14.47 / 6.86
Phenotype:Drug:Disease 15.15 / 10.00 24.24 / 2.43 3.72 / 3.26 3.72 / 2.40
Protein:Disease:Drug 35.29 / 7.20 27.50 / 5.26 2.95 / 1.89 2.95 / 0.48
Protein:Drug:Disease 23.60 / 20.00 14.43 / 9.35 1.08 / 1.40 1.08 / 1.40
Overall 32.88 / 8.09 28.11 / 6.11 14.57 / 3.46 14.57 / 3.18

Table 6: Comparison of Single-Answer prompting and Multi-Answer prompting for GPT4O and GPT4O-mini
across 1-hop and 2-hop relation types. Precision (Prec) is reported.

relevant responses such as hepatotoxicity, even if
these were not explicitly part of the predefined an-
swer set. This behavior suggests that proprietary
models may apply broader medical reasoning com-
pared to open-source models. Proprietary models
generally outperform open-source models in both
task adherence and reasoning accuracy.

5.5 Ablation Study: Prompting Strategy

Prompting Setup. The dataset can also support
multi-answer prompting, making two prompting
strategies designed to evaluate different aspects of
model reasoning:

• Single-Answer Prompting: The model is
prompted to provide one correct answer (e.g.,

“Name a gene associated with Disease X.”).
This evaluates the model’s ability to identify
the most probable answer using implicit rea-
soning.

• Multi-Answer Prompting: The model is
prompted to provide all correct answers (e.g.,

“Name all genes associated with Disease X.”).
This evaluates the model’s ability to generate
exhaustive, comprehensive outputs, which is
inherently more challenging.

While both strategies are valuable for un-
derstanding model performance, Multi-Answer
Prompting poses significant challenges. On aver-

age, each question in the dataset has 36.65 correct
answers, making it computationally expensive and
cognitively demanding for large language models
to generate a complete answer set.

5.5.1 Evaluation Metric for Multi-Answer
Precision for Multi-Answer Prompting. For
Multi-Answer Prompting, precision is computed
using cosine similarity-based matching. Let P =
{p1, p2, . . . , pm} denote the embeddings of the pre-
dicted responses and A = {a1, a2, . . . , an} denote
the embeddings of the ground truth answers. A
predicted response pj is considered a true positive
if:

max
i∈{1,...,n}

cos(pj , ai) > τ, (11)

where we set τ = 0.9 for high-confidence matches.
Then the precision is computed in the same way as
the Single-Answer Prompting.

5.5.2 Analysis and Results.
To analyze the feasibility of Multi-Answer Prompt-
ing, we conducted an ablation study using GPT4O
and GPT4O-mini, the proprietary models. Ta-
ble 6 presents the performance metrics for Single-
Answer and Multi-Answer prompting across 1-hop
and 2-hop tasks.

Single-Answer Prompting Outperforms Multi-
Answer Prompting: GPT4O achieves an av-
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erage Prec of 32.88% in 1-hop tasks, signif-
icantly higher than its Multi-Answer score of
8.09%. The gap is even more pronounced in 2-
hop tasks, where GPT4O achieves 14.57% Prec
compared to just 3.46%. A similar pattern holds
for GPT4O-mini, showing 28.11% vs. 6.11%
in 1-hop and 14.57% vs. 3.18% in 2-hop re-
spectively. Relations with abstract or less struc-
tured targets (e.g., Disease:Drug:Protein and
Drug:Phenotype:Disease) exhibit particularly
poor precision scores under Multi-Answer prompt-
ing, with both models achieving below 2% in 2-hop
tasks. These results highlight the difficulty of gen-
erating comprehensive answer sets, especially for
complex reasoning paths.

Cases Where Multi-Answer Prompting Per-
forms Competitively. Despite the overall trend,
there are a few relation types where Multi-Answer
prompting yields surprisingly competitive or even
stronger results. For example, in the 2-hop rela-
tion Phenotype:Disease:Drug, GPT4O achieves
17.24% precision under Multi-Answer prompt-
ing—exceeding its Single-Answer precision of
14.47%. Similarly, in 1-hop tasks such as
Phenotype:Disease and Protein:Drug, GPT4O-
mini achieves 44.00% with Multi-Answer prompt-
ing compared to 20.00% under Single-Answer
prompting. These cases suggest that for certain
structured relations with high overlap between
bridge and target entities, models may benefit from
listing multiple answers rather than specifying a
specific answer.

Based on these findings, we restricted our evalu-
ation of all other models to Single-Answer Prompt-
ing. This decision is motivated by higher robust-
ness and computational overhead of multi-answer
prompting. Also in many real-world scenarios,
users typically seek the most probable or relevant
answer, aligning more closely with Single-Answer
prompting.

While Multi-Answer prompting offers valuable
insights into a model’s ability to generate exhaus-
tive outputs, it remains a challenging evaluation
paradigm. Future work could focus on improving
model training and prompting strategies to better
support comprehensive answer generation.

6 Conclusion

We introduced BioHopR, a benchmark for eval-
uating multi-hop, multi-answer reasoning in the
biomedical domain. Built on the PrimeKG knowl-

edge graph, BioHopR captures the complexity
of real-world biomedical queries through one-to-
many and many-to-many relationships, rigorously
assessing reasoning over 1-hop and 2-hop tasks.

Evaluation results highlight that O3-mini, a pro-
prietary model with a reasoning step, outperforms
open-source models including biomedical models
like HuatuoGPT-o1. Across all models, the perfor-
mance drop from 1-hop to 2-hop tasks underscores
the difficulty of aligning intermediate reasoning
steps, especially in bridging entities.

By addressing the lack of benchmarks for multi-
hop reasoning in biomedical domain, BioHopR sets
a new standard for evaluating reasoning capabilities
and provides a critical step toward more robust and
interpretable LLMs for biomedical research and
real-world applications. Future directions include
expanding the dataset to other knowledge sources
and domains, such as chemistry.

Limitation

While BioHopR provides a rigorous benchmark
for evaluating multi-hop reasoning in the biomed-
ical domain, several limitations exist. BioHopR
is currently focused on 4 major entities only: Pro-
tein, Phenotype, Drug, Disease. Also, it relies ex-
clusively on a single knowledge graph, PrimeKG,
which, while comprehensive, may not fully cap-
ture the diversity of biomedical knowledge or its
real-world dynamics. This lack of diversity could
bias model evaluation toward the structure and con-
tent of 4 major node types and PrimeKG, poten-
tially under-representing a model’s ability to gen-
eralize to other knowledge and sources. While
human evaluation was not the primary focus of this
work, future efforts could include more extensive
and diverse human evaluations to validate model-
generated outputs.

Broader Impacts and Ethics Statement

Our work raises no major ethical concerns. All eval-
uations and experiments were conducted strictly for
research purposes.

We will release BioHopR. License and copy-
right information, along with Terms of Use, will
be made available upon release of the dataset and
associated materials. While BioHopR facilitates ad-
vancements in biomedical reasoning tasks, it is not
designed for use in real-world clinical applications.
Consequently, models evaluated or trained on Bio-
HopR should not be used for clinical decision-
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making without rigorous validation and regulatory
approvals.

This restriction aims to mitigate potential risks
associated with incorrect reasoning or hallucinated
outputs, which could lead to harmful clinical out-
comes. Additionally, while BioHopR supports re-
search into biomedical reasoning, it is critical that
researchers use the benchmark responsibly, with
appropriate safeguards in place to ensure the ethical
use of derived insights and outputs.
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Appendix

The Figure 3 illustrates the frequency distribu-
tion of target and bridge entities within the Bio-
HopR dataset, highlighting key patterns. The left
panel demonstrates the prevalence of proteins (e.g.,
CYP3A4), phenotypes (e.g., Nausea), drugs (e.g.,
Olanzapine), and diseases (e.g., Schizophrenia) as
target nodes in multi-hop queries. Meanwhile, the
right panel showcases the distribution of bridge
entities, which frequently include proteins (e.g.,
CDK2), phenotypes (e.g., Neoplasm of the skin),
drugs (e.g., Fostamatinib), and diseases. These pat-
terns reflect the diversity and real-world complexity
of biomedical entities, emphasizing the challenges
of reasoning over structured knowledge graphs for
multi-hop queries.

Figure 4 illustrates the results of a grid search for
determining the optimal cosine similarity thresh-
old for BioLORD-2023-C embeddings. The x-axis
represents the threshold values, ranging from 0.1 to
0.9, while the y-axis shows the accuracy for "Both
Correct" predictions. A sharp decline in accuracy is
observed as the threshold increases, with accuracy
plateauing beyond 0.8. The chosen threshold of
0.9 ensures high precision by accepting only highly
confident predictions, aligning with the strict re-
quirements of biomedical reasoning tasks.

A Detailed Qualitative Analysis

We further included other diseases: Vitamin A
Deficiency, Lung Cancer, Alzheimer’s Disease,
Schizophrenia. We selected these medical con-
ditions because they represent a range of domains
within the biomedical field, which include nutri-
tional deficiencies, metabolic disorders, chronic
diseases and neurodegenerative conditions. This
selection allows for a more comprehensive assess-
ment of the models’ ability to reason across differ-
ent medical contexts and complexities. Addition-
ally, for conditions such as Type II diabetes and
Vitamin A deficiency, the answers may seem quite
straightforward, making them useful for assess-
ing whether the models can correctly identify and
reason over well-established medical knowledge.
Whereas, for complex conditions such as Lung
Cancer and Alzheimer’s Disease, we can evaluate
the models ability to reason through more intricate,
multi-factorial diseases.

Our qualitative analysis showed several key find-
ings regarding the models’ reasoning capabilities
across different diseases. Interestingly, none of the
models generated questions for Alzheimer’s Dis-
ease, which was unexpected given its significant
global impact and strong presence in the Knowl-
edge Graph. In contrast, the models seemed to rea-
son well over diabetes-related questions, although
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Figure 3: Common target and bridge entities for each node type in BioHopR.
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Figure 4: Grid search results showing the relationship between cosine similarity threshold and accuracy for "Both
Correct" predictions. The chosen threshold of 0.9 is marked, reflecting the strict precision requirements in the
biomedical domain.

it would often provide multiple correct answers,
even when prompted for a single response. This
could suggest an alignment with well-established
medical knowledge in this domain. For cancer-
related questions, the models tended to select the
most straightforward and common answers, though
the Knowledge Graph contained a broader mix of
more complex phenotypes. This seems to indi-
cate a preference for simplicity in model-generated
reasoning, potentially overlooking more nuanced
aspects of the disease.

When comparing open-source models against
proprietary models, the qualitiative analysis shows
that proprietary models generally performed bet-
ter than open-source models in terms of providing
structured and direct responses. proprietary mod-
els demonstrated a better adherence to the prompt
constraints, whilst the open source models seem
to show more explanatory or multi-component an-
swers. For example, the HuatuoGPT-70B open
source model, consistently responded with "think-
ing" before elaborating on its reasoning instead of
directly providing a single answer for both 1-hop
and 2 hop prediction as prompted. This suggests
that the model prioritises explaining its reasoning
than strictly following the prompt’s format. In con-

strast, however, proprietary models such as GPT-4
more reliably adhered to the prompt constraints,.
When prompted to give a single answer for one hop
and two hop questions, GPT-4 consistently did so,
and this was present across the closed-source GPT
family, suggesting that these proprietary models
may be better optimised for tasks requring direct
and efficient responses. Among the open source
models tested, LLaMA Ultra Medical, a medical
open source LLM, tended to provide multiple an-
swers when prompted for one single answer, and of
those multiple answers, apart from Type II diabetes,
most answers were incorrect.

Taking an look into responses related to dia-
betes, responses were quite mixed. For instance,
HuatuoGPT-01-8B performed outside the con-
straints of the task, correctly predicting the answer
before proceeding to provide its reasoning. On the
other hand, LLaMA 8B Instruct struggled with both
Hop 2 and Hop 1 predictions, failing to generate the
correct responses. Similarly, LLaMA Ultra Medi-
cal did not fully adhere to the prompt’s instructions
— when asked to provide a single answer for Hop
2, it instead generated a list of multiple possible an-
swers. While the listed responses were correct, this
deviation indicates a challenge in following explicit
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task constraints. Moreover, for Hop 1, the model’s
response was incorrect, further highlighting incon-
sistencies in its performance. Interestingly, GPT-4
did not correctly predict the Hop 2 or Hop 1 an-
swers in a strict sense. However, the model con-
sistently included hepatotoxicity as a response—a
condition that, while not explicitly listed among
the correct answers, is still a relevant and justifi-
able finding. This pattern was observed across the
GPT model family, suggesting that these models
might apply broader medical reasoning even when
their direct predictions do not align with predefined
correct answers.

Schizophrenia, as seen in our figure, appeared
frequently in the data. For GPT-4, in one-hop pre-
dictions, the model frequently guessed Clozapine
as a treatment for schizophrenia. While this answer
is medically correct, it was not explicitly part of the
datasets predefined answer set. This suggests that
the model is leveraging broader clinical knowledge
rather than strictly adhering to the dataset’s con-
straints. This trend was also consistent across the
other GPT-family models, GPT-4o mini. However,
for the o3 models, the one-hop predictions were
correct and within our predefined list of answers.
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