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Abstract

Recent advancements in deep learning have sig-
nificantly enhanced the efficiency and accuracy
of natural language processing (NLP) tasks.
However, these models often require substan-
tial computational resources, which remains
a major drawback. Reducing the complexity
of deep learning architectures, and exploring
simpler yet effective approaches can lead to
cost-efficient NLP solutions. This is also a step
towards explainable Al i.e., uncovering how a
particular task is carried out. For this analysis,
we chose the task of hate speech detection. We
address hate speech detection by introducing
a model that employs a weighted sum of va-
lence, arousal, and dominance (VAD) scores
for classification. To determine the optimal
weights and classification strategies, we ana-
lyze hate speech and non-hate speech words
based on both their individual and summed
VAD-values. Our experimental results demon-
strate that this straightforward approach can
compete with state-of-the-art neural network
methods, including GPT-based models, in de-
tecting hate speech.

1 Introduction

Natural language processing is based on con-
cepts and studies in various fields such as com-
puter science, linguistics, and artificial intelligence,
and aims to give computer systems the ability
to understand, generate, and interpret human lan-
guage (Chowdhary, 2020). Tasks such as speech
recognition, text summarization, and question an-
swering greatly benefit from various NLP algo-
rithms (Kamath et al., 2019; Awasthi et al., 2021;
Gupta and Gupta, 2012). In recent years, signifi-
cant advancements have been made in natural lan-
guage processing thanks to the developments in the
field of deep learning (Khurana et al., 2023). In par-
ticular, the introduction of the transformer architec-
ture has led to improvements in text generation, ma-
chine translation, and text summarization (Vaswani

et al., 2017; Patwardhan et al., 2023). However, de-
spite their accuracy, deep learning models require
substantial computational resources and long train-
ing times. Although transfer learning can reduce
training costs, the high computational demands
remain a significant drawback (Yin and Zubiaga,
2021; Sharir et al., 2020).

We can avoid the high cost associated with
expensive hardware requirements and time-
consuming training procedures if a traditional algo-
rithm can achieve similar or even better results
while solving an NLP task. Motivated by this
idea, and recognizing the value of exploring simple
yet effective approaches alongside proposing new
methods to enhance existing techniques, we exam-
ine whether an existing concept can be modified to
outperform or compete with neural networks-based
strategies. For the analysis, we select the text clas-
sification task of hate speech detection since numer-
ous complex learning-based methods are present
in this field and it holds many challenges reflect-
ing problems encountered in other NLP tasks as
well (Zimmerman et al., 2018). One of the great
challenges of hate speech detection is the usage of
informal language (Reyes et al., 2012). Informal
language is more figurative which might be the rea-
son of preferring neural network models over tradi-
tional algorithms since neural networks-based mod-
els achieve high performance in understanding the
meaning of a word within its context. Another chal-
lenge is the fact that perceiving content as harmful
is a relatively subjective task. Exactly defining
hate speech is troublesome (Hietanen and Eddebo,
2023). Several studies classify a text as hate speech
if it negatively targets individuals or groups, and
hurts or degrades them because of the character-
istics of a group they belong to such as sexuality,
religion, or nationality, and thus spreads or shows
hate towards a certain group (Chiril et al., 2022;
Davidson et al., 2017; Cao et al., 2020). Based
on the idea that hate speech demonstrates negative
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sentiments, we present a simple learning-free al-
gorithm that uses a sum of valence, arousal, and
dominance values (Mohammad, 2018) to classify a
given text as hate speech or non-hate speech. Ac-
cording to our experiments, our simple yet effective
method can compete with neural networks-based
methods, including recent large language models.

The remainder of the paper is organized as fol-
lows. In Sec. 2, we give a brief summary of
methods utilized in our experiments. In Sec. 3,
we present the VAD algorithm, and in Sec. 4, we
demonstrate our experimental results. We conclude
with a summary and discussion of future directions
in Sec. 5 and address the limitations of our study
in Sec. 6.

2 Related Work

Before neural networks became widely used in
the field of hate speech detection, mostly tradi-
tional machine learning methods such as Naive
Bayes were used (Waseem and Hovy, 2016; Gitari
et al., 2015; Chatzakou et al., 2017). As described
by Cao et al. (2020), these early approaches typ-
ically rely on feature extraction methods such as
bag-of-words (Cambria and White, 2014). For in-
stance, the model introduced by Gitari et al. (2015)
applies rule-based sentiment analysis techniques to
detect hate speech.

In the remainder of this section, we briefly re-
view only the models, and lexicons and datasets
which we utilize in our experiments. For more de-
tailed information about hate speech detection, we
kindly ask the reader to refer to comprehensive sur-
veys (Yin and Zubiaga, 2021; Fortuna and Nunes,
2018; MacAvaney et al., 2019; Alkomah and Ma,
2022).

2.1 Models

The study of Mathew et al. (2021) introduces differ-
ent methods for the task of hate speech detection,
including HateXplain which is based on the BERT
model (Devlin et al., 2019). Their work highlights
the importance of identifying which text passages
contribute to the classification decision, noting that
different models often focus on different tokens.
The study of Kralj Novak et al. (2022) argues that
the assumption of a so-called gold standard, i.e.,
exactly one correct solution exists, is inadequate as
it disregards the aspect of subjectivity and disagree-
ment in hate speech detection. Therefore, a BERT
model is trained for English texts on three so-called

diamond standard datasets that allow the consider-
ation of disagreement by specifying the percentage
of annotators that chose to label the text as hate
speech or not. The study of Antypas and Cama-
cho Collados (2023) investigates the generalization
of models on unseen data and discusses how dataset
formation can inadvertently bias models toward
certain types of hate speech, i.e., it points out the
tendency to focus on a certain type of hate speech
in datasets. To address this, they constructed an
ensemble of hate speech datasets, finding that train-
ing on such an ensemble improves classification
accuracy. The multilingual toolkit called pysen-
timiento (Pérez et al., 2021) has different models
for opinion mining and NLP tasks in social con-
texts, e.g., alongside hate speech detection there
are models for sentiment analysis and irony detec-
tion. The models are fine-tuned pre-trained models,
and the hate speech detection method uses the pre-
trained BERTweet model (Nguyen et al., 2020).

2.2 Lexicons and Datasets

The NRC-VAD Lexicon (Mohammad, 2018) con-
tains 2000 words of the English language with
their respective valence, arousal and dominance
values. These scores, originally in the range [0, 1],
are manually assigned by human annotators, with
values near 0.5 indicating neutrality. Values closer
to 1 indicate that there is an intense association
with the category the value belongs to, whereas
values closer to 0 represent a low degree of asso-
ciation. Since low associations indicate that the
word is more associated with the opposing cate-
gory, we shift the range of the values from [0, 1] to
[—0.5,0.5]. For a word w, f;(w) withi € V, A, D
denotes the corresponding VAD value from the
range [—0.5,0.5].

The Hurtlex Lexicon (Elisa Bassignanaand and
Patti, 2018) is a multilingual hate speech lexicon
that is based on the Italian hate speech lexicon Le
Parole per Ferire (De Mauro, 2016). Hurtlex ex-
tends Le Parole per Ferire and contains 8228 words
grouped into three main hate speech categories.
These categories are further divided into several
subcategories, i.e., the main category called nega-
tive stereotypes includes a subcategory for ethnic
curse words and another subcategory for degrading
terms related to jobs. We use the English lexicon
of Hurtlex in our study.

The HatEval2019 dataset (Basile et al., 2019)
is formed by using tweets. The tweets are gath-
ered by searching for keywords. These keywords
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Figure 1: Visualization of the percentage of hate speech words and non-hate speech words based on individual
VAD dimensions. The horizontal axis represents the individual value of a word in the given dimension, and the
vertical axis presents the percentage of non-hate speech words (orange) or hate speech words (blue). To compute the
percentage in the vertical axis, the words in the NRC-VAD Lexicon are sorted according to their V, A, and D values
into bins of length 0.02 in an interval of [—0.5, 0.5]. Then, for each dimension, all words in each bin are classified
according to the Hurtlex Lexicon to determine whether they are hate speech or not. To compute the percentage of
hate speech words (blue), for each bin, the number of hate speech words in that bin is divided by the total number of
all hate speech words. Similarly, for the percentage of non-hate speech words (orange), the number of non-hate
speech words in each bin is divided by the total number of all non-hate speech words.

include both neutral words as well as words with
high polarity. HatEval2019 is composed of several
sets formed for different subtasks. Due to compu-
tational constraints, we use only subtask A, which
includes 1000 tweets labeled as hate speech (427
tweets, label 1) or non-hate speech (573 tweets,
label 0). It is worth mentioning that due to the
formation aim of the dataset, tweets are labeled
as hate speech only if they target women or immi-
grants. Therefore, a hate speech detection model
designed to point out any kind of hate speech may
classify tweets from this dataset that are labeled as
0 as hate speech. The dataset by Davidson et al.
(2017) also contains tweets, with 24783 entries la-
beled as hate speech (19,790 tweets), offensive
but not hate speech (3,419 tweets), and neither
offensive nor hate speech (1,251 tweets). In our
study, we consider the texts classified as offensive
but not hate speech also as hate speech since it is
pointed out by Davidson et al. (Davidson et al.,
2017) that hate speech detection models achieve
better results when offensive but non-hate speech
texts are considered hate speech as well. The Mul-
tilingual and Multi-Aspect Hate Speech dataset
(MLMA) (Ousidhoum et al., 2019) is a dataset
of tweets with multiple labels. It includes tweets
in three languages, namely, Arabic, English and
French, with the aim of encouraging analysis of
shared hate speech patterns across languages. In
our experiments, we used only the English subset of
the dataset, which consists of 5, 647 tweets. Each
tweet is annotated with five different sets of labels:
directness, hostility type, target attribute, target
group, and the annotator’s sentiment. Tweets are

labeled with all applicable tags, thus a single tweet
may have more than one label within a category.
For the binary classification in our experiments, we
are only interested in the label set for the hostility
type which consists of the labels abusive, hate-
ful, offensive, disrespectful, fearful and normal. As
the directness label is only applied if the hostility
type includes a label other than the normal label,
we considered the 661 tweets solely labeled nor-
mal as non-hate speech and all other 4986 tweets as
hate speech. HateCheck (Rottger et al., 2020) is a
synthetic dataset consisting of 3, 728 English texts
that aims to facilitate the investigation of model
weaknesses by providing functional test suites that
target different potential weak points such as detect-
ing when profanities are used in non-hate speech
contexts. The dataset has a binary labeling with
2,563 texts labeled with hateful for hate speech
and 1, 165 texts labeled with non-hateful for non-
hate speech. The Dynamically Generated Hate
Speech (DynaHate) dataset (Vidgen et al., 2020)
is a synthetic dataset created dynamically through
four rounds of human-and-model interaction. In
the first round, annotators were tasked with creat-
ing texts that would challenge the weaknesses of
a RoBERTa model (Liu et al., 2019), using direct
feedback from the model during the process. In the
subsequent rounds, texts were modified to preserve
their structure as much as possible while flipping
the label from hate speech to non-hate speech. Dy-
naHate consists of 41, 144 texts, of which 32,924
texts are labeled as the training set. 4, 100 texts
of the data is assigned to the development set and
4,120 texts to the test set. For our experiments,
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we used only the test set, which contains 2,268
texts labeled as hate (hate speech) and 1, 852 texts
labeled as nothate (non-hate speech).

3 Proposed Approach

Our approach is based on the VAD model which
is also widely used in psychology to measure emo-
tions (Mohammad, 2018). The VAD model repre-
sents emotions in a three-dimensional space. The
first dimension, valence, quantifies the positivity
or negativity of an emotion. The second dimen-
sion, arousal, measures the activeness or passive-
ness of the emotion. The third dimension, dom-
inance, quantifies the degree of control one feels
over a situation. For instance, calmness can be
characterized by high valence, low arousal, and
high dominance, whereas anger is typically asso-
ciated with low valence, high arousal, and high
dominance.

In the remainder of this section, we first analyze
the VAD values of commonly used words in hate
speech, and then we introduce our method, called
VAD-Baseline.

3.1 Analysis of VAD values of Common
Words in Hate Speech

In our method, we use the NRC-VAD Lexicon (Mo-
hammad, 2018; Vishnubhotla and Mohammad,
2022). To classify the words as hate speech or
not, we first group the words in the NRC-VAD Lex-
icon according to their frequency of usage in hate
speech, while we consider a word as hate speech if
it is included in the Hurtlex Lexicon (Elisa Bassig-
nanaand and Patti, 2018). Figure 1 shows an anal-
ysis of the VAD values for the two groups, with
each dimension examined separately. As it can be
observed, the distribution of both groups is very
similar, particularly in terms of arousal and dom-
inance values. The difference is more noticeable
for the valence values which might be a result of
the fact that hate speech words are usually associ-
ated with negative emotions, while non-hate speech
words are more likely to be neutral or positive (Mo-
hammad, 2018; Chiril et al., 2022; Davidson et al.,
2017; Cao et al., 2020). Also, in Fig. 1, it is observ-
able that the valence and dominance values of hate
speech words are usually more negative than those
of non-hate speech words, and the arousal value
of hate speech words is more likely to be positive
than that of non-hate speech words.

Afterwards, we analyze the weighted sums of

the valence-, arousal- and dominance-values by
assigning weights of either 1 or —1 to each dimen-
sion. We apply possible combinations of weights
to increase the differences between the groups. As
the distributions of the individual dimensions of the
groups are similar, it is not surprising that the dis-
tributions of the summed values are similar as well.
We obtain the most noticeable differences for the
weight combinations of [1, —1,1] and [—1, 1, —1]
for valence, arousal, and dominance, respectively.
While for the former combination, the summed val-
ues of hate speech words tend to be more negative
than those of non-hate speech words, for the latter
they tend to be more positive, which also coincides
with our observations on the individual dimensions
of each group.

Since it is more intuitive to associate hate speech
with negativity, our initial combination of weights,
i.e., [1,—1,1], is modified as described below, so
that VAD values indicating a higher ratio of hate
speech words have a greater impact on the weighted
sum. To derive these new modified weights, we
pass the associated VAD value of a word w through
a unit step function as follows:

0.6, if fy(w) <Oy and i =7V,

—1.6, if fa(w)>©O4 and i = A,
gi(w) = . .

1, if fp(w) < ©p and i = D,

0;, otherwise,

€]
where i € {V, A, D}, and f; and g; denote the
VAD-value and the result of the gate function, re-
spectively. The parameter ©; represents the thresh-
old value used to identify hate speech, while 6; de-
notes the weight assigned when a non-hate speech
word is processed.

Figure 2 illustrates the corresponding step func-
tions. Specifically, high V' and D values (beyond
certain thresholds) are suppressed by assigning
them weights below 1, while high arousal values
receive a negative weight. The procedure for se-
lecting the cut-off thresholds is detailed in Sec. 4.3.
The resulting summed word-level VAD values are
shown in Fig. 3.

3.2 A Word-Level Approach based on Joy and
Anger

We also explore a weighting strategy inspired
by Bilan et al. (2020), who demonstrated that the
most common base emotions in hate speech are joy
and anger. As suggested, we multiply the respec-
tive individual VAD values of joy (j) and anger (a)
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Figure 2: Word-level weight functions for different values.

VAD-weights: [1,1,1] VAD weights as in Fig. 2
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Figure 3: Visualization of the percentage of hate speech
words and non-hate speech words based on the summed
VAD values with different word-level weights. While
the plot on the left-hand side shows an unweighted sum-
mation, the right-hand side represents the change in
the distribution of hate speech/non-hate speech words
when the step functions in Fig. 2 are used. The horizon-
tal axis represents the summed VAD value of a word,
ie., fv(w) 4+ fa(w) + fp(w), while the vertical axis
presents the percentage of non-hate speech words (or-
ange) or hate speech words (blue) similar to Fig. 1.

to obtain a new vector F’ of individual VAD values
as follows:

F:[fjv'fava fjA'faA’ ij'faD]' (2)

Then, we use the step functions given in Fig. 2
to weight the components of F, and sum these new
VAD-values as follows:

B = gV(fjv 'fav) ) (fjv ’ fav)
+9A(fjA 'faA) ’ (fjA 'faA)
+9D(fjp 'faD) : (ij : faD)' (3)

As a result, we obtain a value 8 which is closer
to the mean of the summed word-level VAD value
of hate speech words compared to the mean of the
summed word-level VAD value of non-hate speech
words.

3.3 Formation of the VAD-Baseline

To form our VAD-Baseline, we introduce two dif-
ferent strategies on the summation of the VAD val-
ues of each word in a given text. We have two

stages to compute the summed VAD value of a
given text. Firstly, we obtain the accumulated VAD
value of each word in the corpus by summing the
VAD components per word. Secondly, we sum
these values for the entire text.

In order to determine the most effective weight-
ing strategy, we utilize different weight combina-
tions on the word-level and text-level. We use the
weights that we determined in Sec. 3.1 for the word-
level weights of each individual VAD value. On
the other hand, to determine the text-level weights,
we carry out practical experiments, which are ex-
plained in Sec. 4.3. As we demonstrate in Fig. 4,
we have 5 different functions ¢ that weight the texts
in a different manner. Our first function §g does
not affect any value in the summation on text-level,
thus sumyg, only applies word-level weighting. We
apply this function to have a simple starting point
that weights all emotional dimensions equally. Our
second function g; assigns higher weights to values
in the range R; = [—0.82, —0.72] and suppresses
other values. In other words, through §;, we in-
crease the weight if the word-level value is in a
range where the rate of hate speech words is higher
than that of non-hate speech words. In our third
function g2, we suppress word-level values in the
range Ry = [—0.28,0.5] where they are close to
zero. In this range, the distributions for hate speech
words and non-hate speech words are very simi-
lar or the rate of non-hate speech words is higher
than that of hate-speech words. Our fourth function
g3 combines the strategies of §; and g2 by apply-
ing weights as in g for values in R; and using
g1 for all other values. Our fifth function g4 is re-
lated to the anger and joy weighting approach. We
use the difference between the summed word-level
values (Fig. 3) and the summed word level VAD
value of anger and joy (Eqn. 3). g4 assigns weights
by suppressing values whose difference with the
summed word level VAD value of anger and joy
is greater than 0.03, which is approximately the
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Figure 4: Text-level weights. We consider 5 distinct functions which weight the texts in a different manner.

difference between the summed word-level VAD
values of anger and joy and the average of hate
speech words.

We combine the text-level weight functions with
the word-level weights as follows. For a given text,
we first determine its words that have a VAD value.
Then, for each of these words, we compute the
word-level summation wgy;,;, by using our word-
level weights shown in Fig. 2 as follows:

wsum(w) = gV(w) : fV(w) + gA(w) ’ fA(w)
+gp(w) - fo(w). (4)

Lastly, we apply a text-level weight function to
the word-level summation to obtain the text-level
summation ¢, as follows:

tsum text

== \

K
Z Wsum wk * Wsum (wk) )
k

)
where text is the given input text, and K is the
number of words having a VAD value in the given
text withk =1,2,3, ..., K.

After we compute the summed VAD values at
the text-level, we apply two different classification
operators, class, to decide whether a given text
should be classified as hate speech. The first ap-
proach, classi, categorizes a text as hate speech
if its summed VAD value is negative, whereas the
second approach, classs, classifies a text as hate
speech if the difference of its summed text-level
VAD value to the summed word-level VAD value of
anger and joy, (3, is smaller than a certain threshold
(practically determined as 0.1):

1, if tgum(text) < 0,
classq (text) = { ! bum(_ ext)
, otherwise,
1, if tgum(text) — 8 < 0.1,
classs (ext) :{ i bum(.ex) B
, otherwise.
(6)

4 Experiments

In this section, we first present our experimental
setup. Then, we provide our experimental results
and discuss the results. Lastly, we detail our param-
eter selection procedure.

4.1 Experimental Setup

We briefly introduce the evaluation and tokeniza-
tion strategies utilized in our experiments. To ana-
lyze the performance of our VAD-Baseline method,
we use three metrics, namely, precision, recall,
and F1-score (Jardine and van Rijsbergen, 1971;
Van Rijsbergen, 1974). While precision provides us
the score for the correctly predicted positive labels
among all the positive values, recall gives informa-
tion about the correctly classified actual positives,
and F1-score demonstrates the harmonic mean of
recall and precision.

The parameters we utilize in our method are
extracted from the validation set of the HatE-
val2019 (Basile et al., 2019) dataset. After ob-
taining these parameters, we conduct comprehen-
sive experiments to evaluate the method and as-
sess its generalizability. These experiments are
carried out on 5 datasets, namely, the evaluation
set of HatEval2019 (Basile et al., 2019), David-
son (Davidson et al., 2017), HateCheck (Rottger
et al., 2020), DynaHate (Vidgen et al., 2020), and
MLMA (Ousidhoum et al., 2019). To tokenize the
texts in these datasets, we cannot apply a simple
method such as tokenizing the words based on spac-
ing, since in some tweets spacing between words is
ignored. Therefore, we utilize the tokenizer from
the roBERTa model (Antypas and Camacho Colla-
dos, 2023; Zhuang et al., 2021), and apply a post-
processing step to discard special tokens (e.g., end-
of-string markers or symbols indicating preceding
spaces). Furthermore, we retain only those tokens
corresponding to words present in the NRC-VAD
Lexicon (Mohammad, 2018)
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4.2 Experimental Results and Discussion

We evaluate the performance of our VAD-Baseline
method against the pysentimiento (Pérez et al.,
2021), roBERTa Hate Speech (Antypas and Ca-
macho Collados, 2023; Camacho-Collados et al.,
2012), Hate Speech EN (Kralj Novak et al., 2022),
and HateXplain (Mathew et al., 2021) models.
These methods (described in Sec.2.1) are not fine-
tuned during our experiments. Moreover, we in-
vestigate the performance of current GPT mod-
els (OpenAl, 2024), i.e., gpt3.5-turbo, gpt4o-mini,
and gpt4o, on both benchmarks.

We provide the results in Table 1 where we
also analyze the effects of different weight combi-
nations and classification strategies on our VAD-
Baseline method. Overall, our simple yet effec-
tive approach competes with neural network-based
methods and GPT models, and in some cases, even
outperforms them. It is important to stress that we
do not aim to design an algorithm that outperforms
the state-of-the-art but to show that with simple
modifications existing methods can compete and
even outperform them. This is a step towards ex-
plainable Al The goal is to uncover the underlying
computations. Thus, it is desirable to investigate
and enhance existing techniques to obtain accurate
results with low-cost methods.

As already noted by Antypas and Camacho Col-
lados (2023), neural network-based models face
challenges on unseen data, i.e., models might not
be generalizable, and without fine-tuning they do
not necessarily generalize better than traditional
algorithms which can also be observed in Table 1.
Our VAD-Baseline method performs more accu-
rately than several of the neural networks-based
models in terms of different metrics. For instance,
on the HatEval2019 Evaluation Set, the combina-
tion of sumg, and classg, achieves the best per-
formance in terms of precision among all meth-
ods. Also, on both the HatEval2019 Evaluation and
Davidson datasets, the combination of sumg, and
classy, and sumg, and classy output the second-
best scores in terms of recall, while they present
the best F1-score on the Davidson dataset. Addi-
tionally, most of the combinations with class; are
among the 5 best-performing methods in terms of
recall and F1-score. Particularly, the combinations
that outperform the neural networks-based meth-
ods and even large language models might provide
new perspectives on how to improve these exist-
ing strategies with simple and explainable modifi-

cations. Furthermore, the combinations of differ-
ent weights and classes provide consistent results
across the datasets which demonstrates the general-
izablity of our method.

As we can see, through different weights and
classification strategies we obtain distinct statis-
tical results. Although one could select the best
combination for each dataset individually, an adap-
tive selection of weights, classification strategies,
and threshold ranges may further enhance the effi-
ciency of our VAD-Baseline algorithm (see Sec. 6).
Nonetheless, the current experiments show that a
simple yet effective approach can indeed be useful
for this task. Hence, the improvement of existing
traditional methods can benefit the field of natural
language processing, and the observations we make
while enhancing the classical algorithms can also
provide us new perspectives for the improvement of
neural networks-based algorithms including large
language models.

As a final note, it is worth mentioning that since
our approach depends on lexicons that list particu-
lar hate and non-hate speech terms, it may have
difficulty detecting implicit hate speech that re-
quires contextual interpretation. Thus, while our
approach provides an explainable method, modify-
ing it to capture implicit hate speech is a valuable
future direction. For instance, one can create a
hybrid model that uses the weights we proposed,
and neural networks to capture contextual infor-
mation. This might offer a straightforward path to
improving the effectiveness of our method.

4.3 Parameter Selection

We would like to briefly mention how we deter-
mined the most effective weights, ranges, and
thresholds. We carried out comprehensive grid
search experiments on the HatEval2019 Validation
Set (Basile et al., 2019), where we analyzed dif-
ferent combinations of parameters. First of all, we
examined the impact of different cut-off thresh-
olds on the word-level weight functions that are
mentioned in Sec. 3.1. We tested thresholds in a
range of [—0.3, 0.3] with a step size of 0.05, and
observed that the best results are obtained when the
cut-off thresholds shown in Fig. 2 are used. Fur-
thermore, we investigated different ranges, i.e., Ry
and Ry, to determine the text-level weight func-
tions given in Fig. 4. We first partitioned the in-
terval [—1.5, 1.5] into smaller segments of length
0.02. For each segment, we identified those where
hate speech words outnumbered non-hate speech
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HatEval2019 Val. Set HatEval2019 Eval. Set Davidson HateCheck DynaHate MLMA
Algorithms precision recall Fl-score  precision recall Fl-score  precision recall Fl-score  precision recall Flscore  precision recall Flscore  precision recall Fl-score
2pt3.5-turbo 0549 | 0.983  0.705 0.784 0983 0872 0.998  0.064  0.119 0.809  0.999  0.894 0639 0991 0778 0895  0.995 0942
5 gptdo-mini 0680  0.702  0.695 0781 0536 0635 0994 0667  0.798 0.900  0.998  0.946 0.833  0.897  0.864 0909  0.895 0902
£ opdo 0.663  0.750  0.704 0.785 0499  0.609 0.995 0496  0.662 0.889  0.997  0.941 0844 0911  0.876 0914 0836 0873
£ pysentimiento 0.710 0850  0.774 0810  0.831  0.821 098  0.605  0.749 0.820 0388 0527 0710 0327 0448 0.897  0.110  0.196
£ [OBERTaHate Specch ~ 0.820  0.853  0.841 0809 0549  0.654 0991 0701  0.821 0907 0618  0.735 0771 0431 0553 088 | 0997 0938
S Hate Speech EN 0569  0.658  0.610 0768  0.746  0.757 0.797 | 0.943  0.864 0772 0.870  0.818 0590  0.664  0.624 0901 0631  0.742
HateXplain 0.600  0.007  0.014 0750 0371 0499 0972 0589  0.733 0.730 0165 0270 0682 0284 0401 0901 0740 0812
T oumg,andclass; 0419 0468 0441 0750 0891 0831 0800 0315 0452 0679 0513 058 0533 0641 0581 0226 0532 0317
sumg, and class; 0448 0857  0.588 0778 0838  0.807 0871 0.849  0.860 0671 0572 0.618 0524 0.675 0590 0228 0732 0348
sumg, and classz 0457 0817 0.586 0780 0.891  0.831 0760  0.839  0.798 0.658  0.661  0.660 0548 0.798  0.650 0.875  0.684  0.768
2 sumy, and class; 0446 0876 0.591 0779 0853 0814 0848 0.874 0861 0.668 0579 0.620 0519 0688 0592 0885 0735  0.804
% sumy, and class 0351 0276 0.309 0812 0318 0457 0671 0.051  0.095 0680 0464 0552 0579 0445 0503 0877 0319 0468
S sumg, and class, 0446 0958  0.609 0.785 0942 0856 0843  0.901 0871 0671  0.654  0.662 0519 0789  0.626 0883 0.764 0819
£ sumy, and classy 0475 0.700  0.566 0811 0322 0461 0839 0633 0722 0681 0468  0.555 0579 0449 0506 0.877 0321 0470
sumg, and class, 0446 0.958  0.609 0.785 0941  0.856 0842 0.901 0871 0.671  0.654  0.662 0519 0789  0.626 0883 0.764  0.819
sumg, and classy 0454 0.541 0494 0776 0.805  0.791 0809 0121 0211 063 0512 0575 0524 0.648 0580 088  0.693 0.7
sumg, and class, 0456 0.649 0535 0768 0.624 0688 0858 0750  0.800 0.647 0406  0.499 0525 0464 0493 0888 0612 0.724

Table 1: Comparison of the performance of the variants of VAD-Baseline with learning-based strategies. The five

best results are highlighted using color coding as follows, first: purple, second:

fifth:

words (R7) and those where non-hate speech words
predominated (R2). Then, we examined all pos-
sible unions of these segments to find the short-
est continuous ranges where at least 90% of the
bins within the given range include a higher rate
of hate speech words for R; and at least 80% of
the bins within the given range include a higher
rate of non-hate speech words for Re. Conse-
quently, we determined R; = [—0.82, —0.72] and
Ry = [—0.28,0.5]. Lastly, we analyzed the im-
pact of different weight values at both the word
and text levels. For word-level weights, we tested
V- and D-values within the range [0.2, 2]. For A-
values, we applied different ranges based on the
threshold: values below the threshold were tested
in the range [0.2, 2], while values above the thresh-
old were tested in the range [—2, —0.2]. In both
cases, we used a step size of 0.2 across all con-
sidered threshold values. The best results were
achieved using a specific combination of weights
and thresholds, as illustrated in Fig. 2 and Eqn. 1.
For text-level weights, we investigated §; by test-
ing values in the range [1, 2] with a step size of 0.1
for values within R; and values in the range [0.1, 1]
with the same step size for values outside ;. Sim-
ilarly, for go, weights were explored within [0.1, 1]
for values in Ry and within [1, 2] for values outside
Ry, both with a step size of 0.1. For g4, weights in
the range [1, 2| with a step size of 0.1 were tested
for cases where the difference between the summed
word-level VAD values of anger and joy was below
0.03. Otherwise, weights in the range [0.1, 1] with
the same step size were used. Based on these exper-
iments, the optimal text-level weights are presented
in Fig. 4. It is worth mentioning that as we present
in Table 1, overall, the parameters generalize well

, third: , forth: ,and

on the HatEval2019 Evaluation Set, Davidson, Hat-
eCheck, DynaHate, and MLMA datasets.

5 Conclusion

Natural language processing has greatly benefited
from learning-based approaches, particularly trans-
former models, which have enabled highly accurate
performance in tasks such as question answering
and text summarization. However, these come with
high computational costs, mainly due to their train-
ing processes, which often require expensive hard-
ware and a significant amount of time. On the other
hand, traditional algorithms do not require any
training phase, making them generally more com-
putationally efficient than neural networks-based
models. Motivated by this fact and taking into ac-
count that it is important to explore explainable
simple yet effective approaches to improve existing
techniques alongside developing new methods, in
this paper, we investigate whether low-cost tradi-
tional algorithms can compete or even outperform
neural networks-based models in the field of nat-
ural language processing. We chose hate speech
detection for our investigation because it reflects
challenges common to many NLP tasks, includ-
ing informal language use and subjectivity, and
has been the focus of numerous complex learning-
based models. Since hate speech is characterized
by negative sentiments, we propose a learning-free
method that leverages valence, arousal, and dom-
inance values to classify texts as hate speech or
not. In the experiments, our VAD-Baseline algo-
rithm demonstrates that simple yet effective meth-
ods can compete with recent neural networks-based
models. Hence, we argue that further analysis of
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low-cost explainable methods can help us to ob-
tain robust algorithms while avoiding the compu-
tational burden of extensive training. Furthermore,
neural networks-based models can benefit from the
observations we obtain from improving classical
methods.

As future work, we plan to refine the VAD-
Baseline algorithm by making the selection of
weights and classification strategies adaptive, as
well as enhancing it to address implicit hate speech.
Also, we will investigate different natural language
processing tasks and existing traditional methods
to analyze whether we can obtain accurate results
without high computational costs.

6 Limitations

During our investigation, we observed that our
method may sometimes label non-hate speech texts
as hate speech. The reason for this could be that
increasing the weights for words with negative val-
ues not only increases the impact of hate speech
terms but also causes words with negative polarity
in general to have larger weights. Thus, non-hate
speech texts that convey a negative sentiment such
as sadness or frustration can be falsely classified
as hate speech. Also, for both word-level and text-
level summation there are various ways to obtain
the same value through summation which may be a
reason for the similar distributions of the summed
VAD-values for hate speech words and non-hate
speech words. For instance, on word-level, there
may be non-hate speech words that do not have sim-
ilar individual VAD-values as hate speech words,
yet have a negative summed VAD-value.

As shown in Table 1, different combinations of
weights and classification methods result in dis-
tinct outcomes. Selecting the weight combinations
and classification approaches adaptively would en-
hance the effectiveness of our algorithm which we
consider as future work.

Hitherto, our method was evaluated only on En-
glish texts because it relies on the NRC-VAD Lex-
icon. Adapting the approach for other languages
may require modifications to use different VAD
lexicons. Furthermore, even for English texts it is
important to keep the lexicons up-to-date since in-
formal language is dynamic and evolves over time.
Thus, hate speech patterns, styles, and frequently
used words also change. As future work, we will
explore the usability of our method in another lan-
guage by utilizing a lexicon in that language.

Also, since our method relies on lexicons, in-
cluding specific hate speech and non-hate speech
words, it may struggle with implicit hate speech
messages that require contextual understanding. To
address this issue, future work could explore in-
cluding additional linguistic or contextual cues be-
yond lexicon-based features. Similarly, while our
method provides an interpretable framework, fur-
ther research could enhance its ability to capture
implicit hate speech through external knowledge
sources or contextual embeddings.

Additionally, our method is not robust against
intentionally obscured text, such as deliberate ty-
pos or other changes in syntax, that is a widely
known challenge in this field for both traditional
and learning-based models (Gitari et al., 2015;
Grondahl et al., 2018). The VAD-Baseline could be
extended with additional lexicons to address these
issues, as well as challenges posed by the use of
irony and emojis.

Ethics Statement

In this study, we do not use private data or non-
public information. We rely exclusively on publicly
available datasets and models, each released under
specific licenses. Hurtlex is distributed under the
CC BY-NC-SA 4.0 license, while HatEval2019 and
HateCheck are available under CC BY-NC 4.0. The
Davidson dataset, Hate Speech EN, MLMA and the
TweetNLP package are provided under the MIT Li-
cense. HateXplain is released under the Apache 2.0
license. Additionally, we use NRC-VAD and Dyna-
Hate, which do not have an explicitly stated license
but permit usage in research when the associated
papers are cited. pysentimiento is an open-source
library available for non-commercial and scientific
research purposes, with models trained on third-
party datasets that are subject to their respective
licenses.

Note that as the topic is hate speech detection, of-
fensive content is part of the research question and
therefore a part of the datasets. In the HatEval2019,
Davidson and MLMA datasets user information is
either obscured or removed entirely, while the Dy-
naHate und HateCheck datasets are synthetically
formed and do not contain any user information.
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