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Abstract

A person’s demonstration often serves as a
key reference for others learning the same task.
However, RGB video, the dominant medium
for representing these demonstrations, often
fails to capture fine-grained contextual cues
such as intent, safety-critical environmental
factors, and subtle preferences embedded in
human behavior. This sensory gap fundamen-
tally limits the ability of Vision Language Mod-
els (VLMs) to reason about why actions oc-
cur and how they should adapt to individual
users. To address this, we introduce MICA
(Multimodal Interactive Contextualized As-
sistance), a framework that improves conversa-
tional agents for task assistance by integrating
eye gaze and speech cues. MICA segments
demonstrations into meaningful sub-tasks and
extracts keyframes and captions that capture
fine-grained intent and user-specific cues, en-
abling richer contextual grounding for visual
question answering. Evaluations on questions
derived from real-time chat-assisted task repli-
cation show that multimodal cues significantly
improve response quality over frame-based re-
trieval. Notably, gaze cues alone achieves 93%
of speech performance, and their combination
yields the highest accuracy. Task type deter-
mines the effectiveness of implicit (gaze) vs.
explicit (speech) cues, underscoring the need
for adaptable multimodal models. These results
highlight the limitations of frame-based context
and demonstrate the value of multimodal sig-
nals for real-world AI task assistance.

1 Introduction

When individuals learn tasks through demonstra-
tions, whether administering medication, assem-
bling machinery, or cooking family recipes, they
rely on subtle contextual cues. Although pre-
trained vision language models (VLMs) have

*This work was conducted while interning at Microsoft
Research.

Figure 1: Illustration of multimodal cues in shopping.
A user selects a lactose-free product using eye gaze
and speech. Gaze highlights the product before speech
clarifies intent: “I usually get this to avoid lactose.”

shown promise in describing RGB video content,
they often fail to ground the intent and fine-grained
visual details in the demonstrations: a muttered
safety warning, shifting gaze between relevant
items or deliberately avoiding them, or hesitant
gestures revealing personal preferences. As illus-
trated in Figure 1, both implicit (eye gaze) and
explicit (speech) cues play a role in user intent and
task execution, yet frame-based models often ig-
nore these signals (Gebhardt et al., 2019). This gap
is especially problematic when safety requirements,
implicit reasoning, or fine-grained preferences are
essential, issues that generic training data do not
capture.

The core challenge lies in reconciling two short-
comings: (1) partial perception, where frame-only
processing discards intent-revealing signals like
spoken instructions and gaze identification, and (2)
static reasoning, where VLMs lack mechanisms
to adapt to demonstrator-specific patterns. How-
ever, most retrieval-augmented generation (RAG)
approaches limit themselves to captioning frames
or clustering segments (Wang et al., 2024, 2025),
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Figure 2: Overview of MICA (Multimodal Interactive Contextualized Assistance). (A) A user demonstrates an
activity (e.g., boiling eggs) with multimodal inputs like RGB, speech, and gaze, with key frames highlighted in
green. (B) A new user asks context-specific questions (purple: objects, red: actions). (C) MICA extracts contextual
cues (e.g., egg count in purple, actions in red) using multimodal signals. (D) MICA provides real-time, personalized
instructions, aligning object (purple) and action (red) references with the query.

losing these essential signals. Meanwhile, existing
VLMs often struggle to ground fine-grained spatial
details in images or video, particularly in the ab-
sence of additional guidance (Fu et al., 2024b; Wu
and Xie, 2024; Yang et al., 2024). Consequently,
critical moments, such as a chef’s glance at oven
settings or a mechanic’s triple tool check, become
lost as actionable signals.

To bridge this gap, we introduce MICA (Mul-
timodal Interactive Contextualized Assistance),
an end-to-end system that records and processes
a single user demonstration—including eye gaze
and speech—and subsequently provides personal-
ized guidance to a different individual. As shown in
Figure 2, MICA extracts key moments from demon-
strations and aligns them with user queries to pro-
vide contextualized assistance. MICA dynamically
leverages available cues, using gaze and speech
signals to segment the demonstration, extract key
frames, and generate contextualized captions for
retrieval-augmented generation. At inference time,
it retrieves the most relevant segments and prompts
a vision-language model on the contextualized im-
ages and captions to produce tailored responses.

We evaluate MICA on a benchmark derived from
real-time chat-assisted interactions. In this setting,
participants demonstrate personalized tasks while
simultaneously providing multimodal cues. Later,
different users ask questions about these tasks to
an AI chat assistant, aiming to replicate the same

procedures. While previous video benchmarks rely
solely on RGB and use offline annotators or tem-
plates for question generation (Fu et al., 2024a;
Yang et al., 2024), ours integrates video, contin-
uous gaze, and speech with ecologically-valid,
on-the-fly user queries. Our findings reveal: (1)
MICA significantly outperforms zero-shot and
frame-only RAG baselines, leveraging multimodal
cues for richer and more contextualized responses.
(2) GPT-4o effectively utilizes gaze to approach
speech performance, achieving 93% of the speech
condition’s score. Furthermore, combining gaze
and speech yields the highest performance. (3)
Task type interacts significantly with cue effective-
ness, showing that implicit (gaze) versus explicit
(speech) cues vary in importance depending on
the task. Certain tasks benefit more from implicit
gaze cues (e.g., identifying preferences in shop-
ping), while others rely on explicit verbalization
(e.g., step-by-step routines). (4) Our in-depth anal-
ysis of the real-time dataset reveals that demon-
stration utterances and interaction questions are
both task-dependent and goal-driven—factors of-
ten overlooked by existing benchmarks.

By unifying speech with RGB and nonverbal
cues like gaze, MICA improves intent-aware task
understanding—showing that how demonstrators
communicate (through hesitations and attention
shifts) is every bit as crucial as what they say.

12808



2 Related Works

2.1 Multimodal Interaction and Gaze-Based
Input

Gaze has long been studied as an interaction modal-
ity (Jacob, 1990), enabling hands-free interaction
in graphical user interfaces. While early work fo-
cused on explicit gaze input (e.g., gaze-based typ-
ing), later approaches leveraged implicit gaze cues
to infer user attention (Duchowski et al., 2004).
Understanding gaze behavior has been key to op-
timizing human-computer interaction, including
eye-hand coordination (Binsted et al., 2001; Smith
et al., 2000) and active sensing in virtual environ-
ments (Sitzmann et al., 2018).

Recent research has shifted toward egocentric
eye-tracking, particularly in augmented reality
(AR) systems (Plopski et al., 2022). With AR
headsets like Microsoft HoloLens 2 and Apple Vi-
sion Pro, gaze tracking enables object selection
and interaction in immersive environments. More
broadly, multimodal interaction integrates gaze,
gestures, and voice for richer user experiences.
Early work, such as Bolt’s “Put-That-There” (Bolt,
1980), demonstrated the synergy between speech
and gestures, while later systems (Koons et al.,
1991; Cohen et al., 1997) advanced multimodal fu-
sion. Gaze enhances reference resolution in speech-
based interactions (Prasov and Chai, 2008; Lee
et al., 2024), and recent studies (Khan et al., 2022;
Bader et al., 2009) explore gaze-speech integration
for implicit interactions.

2.2 Egocentric Task Assistance and Guidance

Egocentric video QA systems, such as
Ego4D (Grauman et al., 2022) and Ego-
Exo4D (Grauman et al., 2024), retrieve episodic
memory from extensive first-person video datasets
but primarily focus on passive, retrospective analy-
sis rather than real-time task assistance. In contrast,
our approach leverages a single-task demonstration
to extract multimodal cues—gaze, speech, and
gestures—enabling real-time, interactive guidance.

Automated task guidance systems provide step-
by-step assistance using sensor-equipped environ-
ments (Schoop et al., 2016; Knibbe et al., 2015)
or AR-based tracking (Gupta et al., 2012; Tho-
ravi Kumaravel et al., 2019), though many rely on
extensive user-defined tutorials and lack adaptabil-
ity across different settings (Whitlock et al., 2020;
Chidambaram et al., 2021; Huang et al., 2021). Re-
cent AR-based assistants, such as SIGMA (Bohus

et al., 2024b,a), integrate generative AI for per-
sonalized task guidance, while systems like Gaze-
PointAR (Lee et al., 2024) and GazeGPT (Konrad
et al., 2024) incorporate gaze for adaptive inter-
action. Our approach builds on these advances
by learning from demonstrations without requiring
manual authoring, improving generalization across
diverse tasks.

2.3 Visual Retrieval-Augmented Generation
(RAG)

Visual RAG models offer an alternative to tradi-
tional fine-tuned models by retrieving relevant vi-
sual data in real time (Majumdar et al., 2024b;
Wang et al., 2023a). In-context learning has been
explored in text (Brown, 2020; Agarwal et al.,
2024), image (Bar et al., 2022; Wang et al., 2023b),
and image-text domains (Zheng et al., 2024),
though performance depends on selecting relevant
context examples (Zhang et al., 2023; Balazevic
et al., 2024). Unlike prior work that primarily relies
on image features, our multimodal RAG framework
integrates explicit and implicit cues, optimizing
retrieval for personalized assistance tasks. This
allows for adaptive, real-time guidance without re-
quiring large-scale dataset-specific training.

3 Problem Formulation

Consider the scenario in which a conversational
assistant helps a new user replicate an everyday
task after seeing a single demonstration from a
different user. Formally, given a query (Q, I) from
a new user which consists of an open-vocabulary
question Q and an image I (Fig 2B). The goal of
the assistant is to generate an answer A (Fig 2D)
to the question Q informed by the image I and a
previous demonstration D (Fig 2A). The answer A
must approximate the ground truth human answer
A∗ i.e, A ≈ A∗.

The demonstration D includes: 1. Egocentric
RGB frames It at each time step t. 2. Natural lan-
guage speech transcriptions N = (n, s, e), where
n represents the text segment spoken by the user, s
denotes the start time, and e denotes the end time. 3.
Eye gaze gt = (pt, dt), with gaze origin pt ∈ R3

and gaze direction dt ∈ R3, and hand pose Kt

∈ R3×k for each hand keypoint k. Despite over-
laying hand pose keypoints on all frames, they had
little effect on interpreting hand cues; we therefore
prioritize gaze and speech.
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Figure 3: MICA uses multimodal cues to extract context from demonstrations. The framework leverages gaze-
based cues to segment the demonstration temporally (A) For gaze-driven temporal segmentation, we monitor changes
in the user’s gaze to detect and track gaze-fixated objects. Once the set of fixated objects changes substantially,
a new temporal segment is started. (B) For each temporal segment, key frames and captions are generated via a
Vision-Language Model by conditioning on gaze and/or speech annotations. The resulting information is saved to a
database for retrieval-augmented assistance.

4 Method

The goal of our framework shown in Fig. 2C is to in-
corporate implicit (eye gaze) and explicit (speech)
cues to enrich demonstration understanding for
Vision-Language Models (VLMs). As shown in
(Fig. 3), we first segment demonstrations into mean-
ingful units and then perform key frame extraction
and captioning.

4.1 Gaze-based Temporal Segmentation

To structure the demonstration into meaningful
units, we segment a long demonstration based on
user actions or “key moments.” This segmentation
ensures that subsequent processing steps operate
on coherent, task-relevant segments rather than raw,
unstructured video frames.

We segment the video based on changes in the
user’s visual attention, as shown in Figure 3A.
At each frame, we generate object proposals at
the user’s gaze point using SAM (Kirillov et al.,
2023). We track these objects over time with
DEVA (Cheng et al., 2023) to maintain continu-
ity. A segment boundary is defined when the set
of tracked objects changes by a fixed percent (i.e.,
fixation shifts to a different object or group of ob-
jects for a sustained period). This ensures segments
reflect meaningful task transitions rather than brief
gaze shifts. Further implementation details are in
the Appendix Section S3.2.

4.2 Key Frame Extraction and Captioning

Once the video is segmented, we extract represen-
tative frames and generate textual descriptions for
each segment, as shown in Figure 3B. This process

provides a structured summary that enables effi-
cient retrieval at inference time. For each segment,
we uniformly sample 30 frames from the segment
and prompt a VLM to:

1. Select the top-k key frames that best represent
the segment. We use k = 3.

2. Generate detailed captions describing the
user’s activity and context within the segment.

Gaze-based methods overlay a projected gaze point
onto each frame. Speech-based methods append
the user’s utterances to the prompt. We give an
overall task description to the VLM (e.g., “The
user is shopping”), which may be inferred or pro-
vided. The resulting key frames and captions form
a database entry for retrieval-augmented generation
at inference time.

4.3 Inference on New Questions
When a new user asks a question with an accom-
panying image (e.g., from their wearable device),
we:

1. Caption the query image with a captioning
model.

2. Encode both the caption and image into em-
beddings.

3. Retrieve the top-k matching segments from
the stored database.

4. Append these retrieved segments (key frames
and captions) into the VLM’s context window.

Finally, the VLM produces an answer. Imple-
mentation details, including the similarity scoring
function and weighting of textual vs. visual embed-
dings, can be found in the Appendix Section S3.4.
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5 Data Collection

We collected user demonstrations and evaluations
with a HoloLens 2 across three task categories: or-
ganizing a room, shopping, and a morning routine.
In the demonstration phase (Fig. 4, left), partic-
ipants performed each task following their own
preferences while speaking aloud to provide rich
verbal cues. In the live evaluation phase (Fig. 4,
right), a new participant asked questions to repli-
cate the same task setup. This produced realistic,
user-specific queries answered by referencing the
demonstration.

Our offline evaluation set includes 32 demonstra-
tions and 415 live questions. We annotated each
question with a ground-truth answer A∗. Ques-
tion accuracy is measured via LLM-Match (See
Appendix Section S4.2.2). Further details on par-
ticipant instructions, hardware setup, and sample
prompts are provided in Appendix Sectoion S4.

Figure 4: In the demonstration phase (left panels), a user
performs a task while wearing a HoloLens 2, recording
their eye gaze and speech. During the live evaluation
phase (right panels), the system uses the demonstration
context to assist a new user in replicating the task by
answering real-time questions.

6 Results

We evaluate the effectiveness of various models
in extracting user-specific context from demonstra-

tions, leveraging implicit (e.g., eye gaze) and ex-
plicit (e.g., speech) cues. Our goal is to benchmark
advanced VLMs’ performance in understanding
nuanced user intent and facilitating accurate re-
sponses in real-world applications.

Baselines. We evaluate the ability of various
baselines to extract relevant context from demon-
strations using implicit and explicit cues on the
annotated evaluation set.

For each model, we assess the following meth-
ods for in-context learning from the demonstration:

1. ZERO SHOT: The model is provided with the
query Q without any additional context from the
demonstration.

2. CLIP CLUSTERING: A visual clustering ap-
proach that groups similar frames based on feature
similarity derived from a pre-trained feature en-
coder, CLIP (Radford et al., 2021). This method
is commonly used in retrieval-based video under-
standing techniques (Wang et al., 2024). We en-
code all video frames and apply k-means clustering
with k = 10. For each cluster, we select the top-3
keyframes closest to the cluster centroid vector and
provide them to GPT4o for captioning, as detailed
in Section S3.3. For a given question, retrieval
occurs the in the same manner as defined in Sec-
tion S3.4.

3. FRAMES AS CONTEXT: Frames are encoded
as CLIP embeddings, and for each input, the 10
frames with the lowest L2 distance to the input
query frame are retrieved to serve as context, as
described in Section S3.4.

MICA Condition Comparisons. We test our
method, MICA, with different cues available dur-
ing demonstration processing:

1. MICA EYE GAZE: Utilizes eye gaze cues
without speech inputs, as detailed in Section 4.
2. MICA SPEECH: Leverages speech cues with-
out gaze. Instead of gaze-based temporal seg-
mentation, we use speech transcriptions from
Whisper to identify segment boundaries. Each
utterance (with start and end times) becomes one
segment.
3. MICA EYE GAZE + SPEECH: As described
in Section 4, combines eye gaze for segment
generation with speech transcripts in prompts to
select keyframes and caption video segments.
4. MICA EYE GAZE + SPEECH + SUMMARY:
Extends the Eye Gaze + Speech method by
appending an inferred textual summary of the
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demonstration generated by prompting the VLM
with all segments.
Unless the method name explicitly includes "w/

Inferred Intent," all reported results use ground-
truth task descriptions (e.g., "The user is cleaning
a room").

Models. We evaluate each method using the
following models: GPT4o, GPT4o-mini, VILA-
1.5-3B with context provided by GPT4o (which
uses a database of text and images obtained using
GPT4o), LLaVA-OneVision-7B with GPT4o con-
text (also utilizing a database of text and images
from GPT4o), and VILA-1.5-3B independently.

We investigate the following research questions:

1⃝ RQ1: How well can current VLMs utilize im-
plicit and explicit cues for user-specific con-
text understanding?

2⃝ RQ2: What is the effect of task type on im-
plicit and explicit context understanding?

3⃝ RQ3: What verbal behaviors do participants
exhibit while demonstrating tasks and inter-
acting with a live AI assistant?

6.1 RQ1: How well can current VLMs utilize
implicit and explicit cues for user-specific
context understanding?

Our main findings are shown in Figure 5. We draw
the following conclusions.

1. Zero-shot baselines significantly underper-
form. Pretrained knowledge alone is insufficient
to respond to user queries accurately, emphasizing
the necessity of demonstration context.

2. MICA outperforms frame-only RAG base-
lines Across all models, MICA consistently out-
performs frame-only RAG baselines. Using GPT-
4o, the FRAMES-AS-CONTEXT baseline achieves
48.4% ± 2.1 (Figure 5; GPT4o, FRAMES-AS-
CONTEXT) while even the most minimal MICA
variant (EYE GAZE) already improves upon this
at 55.37% ± 2.3 (Figure 5; GPT4o, EYE GAZE).
Adding speech further improves results: EYE

GAZE + SPEECH achieves 62.2% ± 2.3 (Figure 5,
GPT-4o, EYE GAZE + SPEECH), and EYE GAZE

+ SPEECH + SUMMARY reaches the highest per-
formance at 66.5% ± 2.2 (Figure 5, GPT-4o, EYE

GAZE + SPEECH + SUMMARY). This progression
highlights MICA’s strength in integrating multiple
modalities to produce more contextually grounded
responses above frame-only cues.

3. GPT4o utilizes gaze input to approach
speech performance (93%). With a high-level
task description, GPT4o demonstrates gaze as
a viable alternative to speech (55.3%±2.4 vs.
59.4%±2.5; U test n.s., p=0.25). Combining
gaze and speech yields the highest performance
(62.16±2.30), and adding an inferred demonstra-
tion summary further improves scores by 4.35%
(66.51±2.15).

4. Inferring task descriptions degrades gaze
performance but not speech. With GPT-4o,
EYE GAZE (with ground-truth intent) reaches
55.4%±2.5 (Figure 5, GPT-4o, EYE GAZE), but
performance declines to 52.4%±2.3 (Figure 5,
GPT-4o, *Eye Gaze w/ Inf. Intent*) under the *Eye
Gaze w/ Inferred Intent* condition—a decrease
of 3.0%, consistent across tasks. In contrast, the
SPEECH condition remains stable: 59.4%±2.2 with
ground-truth intent (Figure 5, GPT-4o, SPEECH)
versus 59.4%±2.15 with inferred intent (result not
shown in the figure). Thus, speech cues that include
the user’s explicit statement of intent offer a clearer
and more reliable signal for inferring intent (U-test
p = 0.033) and supporting task-level abstraction.

5. Weaker VLMs struggle with gaze input.
GPT4o-mini significantly underperforms in gaze
conditions (40.9%±2.2 vs. 51.6%±2.2; U test,
p=0.0007), suggesting an inability to infer context
from implicit cues.

6. GPT4o enhances weaker models’ per-
formance. When GPT4o processes context for
weaker models (e.g., VILA, LLaVA), these mod-
els improve significantly, achieving parity between
gaze and speech conditions (e.g., VILA-1.5-3b;
37.9%±2.3 vs. 34.8%±2.2; U test, p=0.38).

7. Small open-source models struggle with
video context extraction. Compared to closed-
source VLMs, VILA 3B fails across all conditions,
underscoring its limitations in understanding user
intent in videos.

6.2 RQ2: What is the effect of task type on
implicit and explicit context
understanding?

To determine the effect of task type on outcomes
under implicit or explicit cues, we examined the ef-
fects of different task types (Organizing, Shopping,
Morning Routine) on evaluation accuracy under
two conditions (Eye Gaze, Speech) using GPT4o
context extraction using an ordinal mixed-effects
model. The model included fixed effects for task
and condition, as well as their interaction, with
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Figure 5: Performance of base models (GPT4o, GPT4o-mini, VILA, LLaVA) across different context extraction
methods (Zero Shot, CLIP Clustering, Frames as Context, Eye Gaze, Speech, Eye Gaze + Speech) on the annotated
evaluation set. The plot shows overall model performance across questions. We report mean ± standard error across
evaluation questions (n=415). We include a table version of this plot in Appendix Table S1.

random intercepts for conditions to account for
variability between groups.

As shown in Figure 6, results from the ordinal
mixed-effects model indicate a significant interac-
tion between task type and condition (β = 0.3485,
p = 0.049), suggesting that the effect of task type
on scores is moderated by the condition (speech
or gaze). Specifically, task types exhibited varying
responses under Eye Gaze and Speech conditions,
as depicted in Figure 6. For instance, while the
Morning Routine task showed improved scores in
the Speech condition compared to Eye Gaze, the
Organizing and Shopping tasks demonstrated ei-
ther a decline or minimal change. This differential
impact underscores the importance of considering
both task type and context condition when evaluat-
ing task performance.

Furthermore, the main effect of task type was
found to be statistically significant (β = −0.3904,
p = 0.004), indicating that scores generally de-
crease with the extent of changes in task type (Orga-
nizing > Shopping > Morning Routine), regardless
of condition.

These findings show that task type signifi-
cantly interacts with condition, highlighting that
the effectiveness of implicit cues (Eye Gaze) ver-
sus explicit cues (Speech) varies across tasks.
This variability suggests that selecting the appro-

priate cue type is crucial for optimizing task perfor-
mance, as certain tasks benefit more from implicit
cues, like eye gaze, while others are better sup-
ported by explicit cues, like speech.

6.3 RQ3: What verbal behaviors do
participants exhibit while demonstrating
tasks and interacting with a live AI
assistant?

While previous video benchmarks rely on offline
annotators (Fu et al., 2024a) or synthetic ques-
tion generation (Yang et al., 2024), our dataset
uniquely captures live, interactive user behaviors
during personalized demonstrations. This ecologi-
cal approach provides deeper insight into the natu-
ral communication patterns users adopt when en-
gaging directly with AI assistants.

We analyzed participants’ verbal behaviors, cat-
egorizing utterances during demonstrations using
GPT-4o (Figure 7). Action commands dominated
overall (48%), indicating users primarily adopt di-
rective speech to instruct AI systems clearly. Inter-
estingly, task-specific differences emerged promi-
nently: organizing tasks showed structured speech,
characterized by frequent sequential steps (11.8%)
and explicit error identification (2.9%), demonstrat-
ing users’ structured approach and goal-oriented
clarity. In contrast, shopping tasks exhibited fewer
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Figure 6: Interaction effect between task type and im-
plicit (eye gaze) or explicit (speech) condition. We re-
port the mean score and 95% CI for each task type and
condition. A significant interaction between task type
and condition (β = 0.3485, p = 0.049) highlights dif-
ferential impacts of Eye Gaze and Speech across tasks,
with Morning Routine improving under Speech while
Organizing and Shopping tasks show varying changes.
A significant main effect of task type (β = −0.3904,
p = 0.004) suggests scores decrease from Organizing to
Shopping to Morning Routine, irrespective of condition.

Figure 7: Distribution of instructional speech categories.
Action Commands dominate across tasks (48%), with
variations reflecting task-specific structures.

action commands (15.7%) and increased conver-
sational fillers (19.6%), highlighting users’ pref-
erence for a relaxed and reflective style indicative
of ongoing decision-making. The morning rou-
tine tasks notably involved more explicit task com-
pletion indicators (8.6%) and clarifying utterances
(5.7%), reflecting user intent to demarcate com-
pleted activities clearly and seek reassurance in
routine tasks.

In evaluating participant question types dur-
ing live interactions (Figure 8), we identified In-
structional/Procedural Questions as most preva-
lent (19.2%), followed by Location/Identification
(13.15%). Behavioral Observation Questions ap-
peared rarely (0.35%), suggesting minimal expecta-
tion for AI visual awareness by current users. Task-

Figure 8: Distribution of question types. Instruction-
al/Procedural Questions dominate (19.2%), with task-
specific trends highlighting unique information needs.

specific question patterns further illustrate users’
adaptive strategies: organizing predominantly in-
volved queries about item placement (29.52%),
highlighting spatial reasoning demands; shopping
elicited frequent instructional (20.96%) and choice-
based questions (13.97%), reinforcing continuous
decision-making; and morning routines featured
frequent quantitative and recall inquiries (11.26%),
emphasizing the user’s need to track task progres-
sion accurately.

Overall, these findings underline that ecolog-
ical interactions with AI assistants are highly
nuanced, task-dependent, and driven by distinct
information needs at different phases of task ex-
ecution. Effective AI-driven assistance must there-
fore dynamically adapt to the directive and evalua-
tive verbal cues users naturally exhibit, providing
timely guidance on next actions and situational
object grounding. Future systems that integrate ex-
plicit instructions, clarifications, and conversational
speech into their interaction paradigms could sub-
stantially improve user experience by better align-
ing AI behaviors with human expectations.

7 Analysis of implicit cues to ground
context

Our results (Section 6.1) show that VLMs effec-
tively use eye gaze for contextual understanding,
matching or surpassing speech in some cases .
Three key benefits emerged: (1) gaze provides pre-
cise focus cues for disambiguation, (2) it grounds
intent by linking attention to objects, and (3) it
resolves ambiguous references like ‘those’ more
effectively than speech alone.

Item Identification and Selection. Eye gaze im-
proves item recognition where speech is ambigu-
ous. In one case, when asked, “Based on my pre-
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vious shopping, what would you buy here?”, the
gaze model correctly identified “green pear” and
“red apple,” leveraging extracted demonstration con-
tent (e.g., “places the red apple into a white bowl
with the green pear”). The speech-only model
misidentified them as “colorful toy fruits” due to
vague speech (e.g., “Ooh, they would probably love
these”).

Similarly, for “Which items did I buy last time to
build the birdhouse?”, gaze identified the correct
tools (hammer, drill, tape measure) based on ex-
tracted cues (“picks up a hammer and places it into
the crate”). The speech-only model, relying on
phrases like “I’m going to need this one”, omitted
key tools, leading to errors.

User Intent Clarification. Gaze-based models
inferred user intent more effectively than speech-
only models by incorporating non-verbal cues

For “How many Oreos did I buy last time?”,
gaze correctly answered ‘one package’ based on
segment details (“reaching for Oreo cookies and
placing them in the basket”), due to gaze focus on
one package in the video. The speech model, lack-
ing detailed visual grounding, incorrectly answered
‘two packages.’

Implicit Visual Referencing. Gaze enhances ref-
erence resolution, improving answer specificity .
When asked, “Are you saying this one I should
buy?”, the gaze model disambiguated: “No, buy
the yellow Vroom box”. Without gaze, the model in-
correctly confirmed a different toy due to requiring
grounding of “those”. This demonstrates how gaze
improves referential grounding, allowing models
to resolve ambiguous queries more effectively.

These results highlight the benefits of incorporat-
ing gaze cues in VLMs for contextual understand-
ing, item recognition, and disambiguation, leading
to more precise and context-aware AI assistance.

8 Conclusion

In this work, we presented a novel framework that
leverages VLMs with gaze and speech inputs to
provide contextualized task assistance from a sin-
gle demonstration. Our approach highlights the
potential of using both implicit and explicit cues
to enable personalized and efficient task assistance
in real-world settings. Through experiments across
various tasks such as organizing, shopping, and
morning routines, we demonstrated that VLMs can
achieve significant performance gains compared

to naive video methods by effectively utilizing im-
plicit gaze cues.

9 Limitations

System Limitations There are limitations in the
current system design. For example, our approach
primarily provides audio output, which limits the
ways in which instructions and feedback can be de-
livered to users. Expanding to multimodal outputs,
such as visual or holographic cues, could offer a
richer user experience and potentially improve task
performance.

Moreover, while we explored variations in ob-
ject instances, users, and room arrangements be-
tween the demonstration and evaluation phases, the
evaluation did not involve completely new environ-
ments between the demonstration and evaluation
phases. Future research should explore how well
the system generalizes to completely different en-
vironments and contexts, including variations in
physical space.

Currently, the system is designed for single-task
scenarios, where each database is tailored to a spe-
cific task. Expanding to multi-task learning and
exploring how demonstrations of multiple tasks
can be effectively integrated or combined will be
a crucial next step. Additionally, while our sys-
tem relies on gaze and speech as input modalities,
future work could explore the integration of other
inputs, such as ambient context, to provide a more
comprehensive understanding of user intent.

Hardware and Performance Constraints Our
system’s performance is also influenced by its re-
liance on specific hardware, such as eye-tracking
and speech recognition technologies. Although
the approach is not tied to any specific AR device,
certain hardware limitations, such as resolution
and response latency, can impact overall perfor-
mance. Notably, there is a tradeoff between the
amount of context provided to the model and the
response time in current VLMs; feeding excessive
context can lead to significant latency, which may
not be acceptable for time-sensitive tasks. Future
improvements should focus on optimizing this bal-
ance to ensure both context richness and acceptable
response times, particularly for assistive applica-
tions requiring rapid feedback.
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S1 Appendix Overview

We organize the appendix as follows:

• Section S2: Discussion of potential risks.

• Section S3: Additional details on methods.

• Section S4: Further information on data col-
lection.

• Section S5: Additional results and analysis.

• Section S6: Details on behavioral coding.

S2 Potential Risks

MICA relies on multimodal user data, including
speech and gaze, which may raise privacy concerns
if not handled securely. Additionally, biases in
vision-language models could lead to misinterpre-
tation of user intent, particularly for diverse user
behaviors and accessibility needs. Future work
should focus on robust privacy safeguards and bias
mitigation strategies to ensure fair and responsible
deployment.

S3 Additional Methods Details

S3.1 Inferring Overall User Intent
User intent refers to the underlying goal or purpose
behind a user’s actions, and accurately identifying
it is crucial for providing personalized and contex-
tually relevant assistance. In MICA, a ground truth
user intent is provided obtained by annotators, but
may be inferred by the model itself. To do so, given
a demonstration D, we first infer the user’s over-
all intent for the entire activity (e.g., “The user is
cleaning a room”) to contextualize all future steps
towards the overall goal, as shown in Figure 4 A1
and A2. To fit within the VLM’s context window,
we uniformly sample 50 frames from the sequence
I . These subsampled frames collectively represent
the entire demonstration, and the VLM is prompted
to infer and output a single, consistent intent that
applies across all sampled frames, accurately de-
scribing the user’s activity throughout the demon-
stration. To provide additional contextual cues for
inferring this intent, along with these frames, we
include annotations that consist of gaze data or
speech data.

For the gaze condition, we reproject the user’s
eye gaze from a 3D ray to a 2D image space us-
ing the camera’s extrinsic and intrinsic parameters.
We then use visual prompting (Cai et al., 2024) to

Figure S1: Example of multimodal eye gaze and hand
gesture overlay for the image input Vision-Language
Model (VLM). MICA uses visual prompting to indicate
gaze and gesture locations to the VLM. The user’s gaze
is represented by the purple circle, while hand gestures
are highlighted in red.

highlight the gaze point on the image and reference
this point in the prompt. For the speech condition,
we transcribe any speech uttered by the user during
the demonstration and append these transcriptions
to the prompt. An example of this can be seen in
Figure S1.

S3.2 Temporal Segmentation

To accurately capture and understand the sequence
of events—discrete actions or occurrences within
the activity—in a long video demonstration, it is
crucial to divide the video into distinct temporal
segments. By breaking the video down into smaller
segments, we can better identify and track changes
in user behavior and object interactions, leading to
a more comprehensive understanding of the overall
demonstration. As before, we consider a temporal
segmentation method based on gaze or speech, as
shown in Figure 4 B1 and B2.

S3.2.1 Eye-Gaze-Based Object Tracking and
Temporal Segmentation

We propose an approach to leverage eye gaze data
to perform object tracking and key moment bound-
ary detection in videos. This method involves three
main steps: 1) detecting fixations using in-clip con-
sensus, 2) generating object proposals based on
these fixations, and 3) tracking these objects to
identify key moments of interaction changes. We
build on the DEVA tracker (Cheng et al., 2023) for
this implementation.

1. Fixation Detection via In-Clip Consensus.
We detect fixations by analyzing eye gaze points
across multiple frames. For each frame t, we gener-
ate object proposals {pti} using an image segmen-
tation model (Segment Anything (Kirillov et al.,
2023)) given the gaze point as a prompt. An in-clip
consensus is achieved by evaluating these propos-
als over a small temporal window of n frames,
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t, t + 1, . . . , t + n − 1. Fixations are identified
as the object proposals that consistently appear in
these frames, indicating sustained attention by the
user.

Formally, following DEVA (), let Segt+i be the
segmentation output at frame t+ i, where 0 ≤ i <
n. We define the object proposals at frame t as the
union of aligned segmentations across the temporal
window:

Pt =

n−1⋃

i=0

Ŝt+i = {pj |0 < j ≤ |Pt|}

The consensus output Ct is then determined by
selecting only those proposals pj that have a high
overlap with proposals in subsequent frames:

Ct = {pj ∈ Pt|IoU(pj , pk) > θ,

∀k ∈ {t+ 1, . . . , t+ n− 1}}
where IoU(pj , pk) is the Intersection-over-

Union between the j-th proposal at frame t and
the k-th proposal in the subsequent frames, and θ
is a threshold value.

2. Tracking fixated objects. Using the fixation-
based object proposals, we track objects across
frames to monitor changes in user interaction. We
use the DEVA tracker (), which utilizes XMEM ()
to propagate object masks from one frame to the
next. Objects are continuously tracked as long as
they remain within the field of view. An object
stops being tracked if it leaves the field of view for
more than X frames.

As the video progresses, new objects may enter
the field of view or become relevant due to changes
in user focus. New object proposals are generated
whenever a new fixation is detected outside the
current consensus. These proposals are incorpo-
rated into the existing tracking framework using
the same in-clip consensus method, ensuring the
model dynamically adapts to the user’s shifting
focus.

3. Temporal Boundary Detection. We de-
tect temporal boundaries by monitoring significant
changes in the consensus object proposals over
time. A temporal boundary is defined as the point
in the video where there is a substantial change in
the objects being tracked. Specifically, a boundary
time b is marked when the set of tracked objects
at time b differs from the set of tracked objects
at the end of the previous segment by more than

Z%. This change indicates that the user’s focus
has shifted to different objects, signaling a new
segment in the video.

S3.2.2 Speech-Based Temporal Segmentation

We consider the use of the speech uttered by the
user during the demonstration to temporally seg-
ment the video. We use the Whisper () model to
generate text segments, using the start and end
times of the Whisper segments to define the tempo-
ral boundaries of segments in the video demonstra-
tion. An example speech segment is “Make sure
it’s mixed up nicely, no chunks.”.

S3.3 Extracting key frames and textual
knowledge.

For each segment identified in Section S3.1, we use
the VLM to analyze the segment based on the user
intent determined in Section S3.2. This involves
identifying key frames and generating descriptions
of relevant information within each segment. We
first provide the VLM with 30 subsampled frames
from the segment. The VLM is then prompted
to select the top-k most informative keyframes
{Ki,1,Ki,2, . . . ,Ki,k} and generate a detailed cap-
tion Ci for the segment Ti. For the gaze condi-
tion, we use visual prompting () to highlight the
gaze point on the image and reference this point
in the prompt. For speech condition, we include
any speech uttered by the user during the video
segment.

Note that our prompts are completely agnostic
to the task or the user. We provide the prompt used
to extract key frames and caption them in Listing 1.

These outputs are stored in a database for in-
context learning. The database stores each segment
Ti as follows:

DB(Ti) = {(Ki,1, Cij), (Ki,2, Cij), . . . , (Ki,k, Cij)}

Here, DB(Ti) denotes the database entries for
segment Ti, each consisting of a keyframe Ki,j

and the corresponding caption Cij . We encode the
keyframes for each segment into a visual vector,
and the captions for each segment into a textual
vector (CLIP (Radford et al., 2021)) using a text
encoder (OpenAI Embeddings Model (OpenAI)).
Given a new query, this structured storage facili-
tates efficient retrieval and use of keyframes and
captions for retrieval-augmented generation.
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S3.4 Inference on new questions

Given a text query and corresponding visual input,
such as an image and gaze data, we first generate
a caption for the image using a captioning model.
For offline captioning, we use GPT-4o, while Flo-
rence 2 (Xiao et al., 2023) is employed for real-time
inference.

The caption is encoded using a text encoder, and
the image is processed through a visual encoder to
obtain its visual embedding. We then compute the
cosine similarity between the text embedding and
image embedding with each segment’s embeddings
in the database. We select the top-k highest-scoring
entries to use as context for retrieval-augmented
generation.

The similarity score s for each entry is calculated
as follows:

s = λtextual · stextual + λvisual · svisual

where: - stextual is the similarity score based on
the text embedding, - svisual is the similarity score
based on the visual embedding, and - λtextual, and
λvisual are weighting factors that determine the con-
tribution of each type of embedding to the overall
similarity score. We append the retrieved segment
images and captions to the VLM prompt for addi-
tional context for question answering.

Our prompt for inference on new questions is
provided in Listing 2.

S3.5 Prompts

We provide the prompts used in MICA in Listings
1-2.

S3.6 Key Frame Selection

We provide examples of the key frames selected by
GPT4o during the key frame selection and caption-
ing step in MICA in Figures S5- S8.

S4 Data Collection

We conducted data collection using the HoloLens
2 device, where participants were recruited to per-
form user demonstrations and participate in evalu-
ation episodes. We focused on three distinct task
categories to assess user personalization from a sin-
gle demonstration: organizing a room, shopping,
and completing a morning routine. The data collec-
tion process was divided into two main phases.

1. Demonstration Phase: Participants were
asked to perform one of three task types based
on their personal preferences (Figure 4; Left).

2. Evaluation Phase: Participants interacted
with a live assistant that was provided with an-
other participant’s demonstration to generate
ecologically valid questions (Figure 4; Right).

Data collected during the first phase served as the
demonstration data, while the second phase data
was used to evaluate the assistant’s performance.
We recruited 10 participants (6 male, 4 female).
Participants were compensated with a gift card.

S4.1 Demonstration Phase
In the demonstration phase, participants were
tasked with demonstrating one of three types of
tasks. Each participant was given broad guidelines
to follow but was allowed to complete the tasks
according to their personal preferences. The tasks
included:

• Organizing a Room: Participants were asked
to organize a set of objects on a shelving unit
in one of three ways: (1) according to their
personal preferences, (2) by object type, or (3)
by color.

• Shopping: Participants were asked to shop
for items based on one of the following sce-
narios: (1) their own needs or wants, (2) gath-
ering materials to build a birdhouse, or (3)
preparing for a toddler’s birthday party.

• Morning Routine: Participants were in-
structed to prepare specific juices, supple-
ments such as protein powder and chia seeds
(with varying scoop counts), and arrange spe-
cific types of supplements from a pill bottle.

These tasks—organizing a room, shopping, and
executing a morning routine—reflect real-world
scenarios that involve personal preferences and
complex decision-making, making them ideal for
studying the personalization of Vision-Language
Models (VLMs). Each task varies significantly
based on individual approaches, whether it’s arrang-
ing items, selecting products, or managing daily
routines, capturing a broad range of user interac-
tions. This variety provides rich data for under-
standing how VLMs can be tailored to meet the
unique needs and preferences of users in everyday
contexts.
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Figure S2: We conducted an offline evaluation using real
questions asked during the real-time evaluation phase.
Each question was paired with the corresponding user
demonstration provided to the live assistant during the
evaluation. Ground truth answers were annotated of-
fline based on these demonstrations. To assess model
performance, we queried models with the same demon-
strations and compared their responses to the human-
provided answers using a LLM as an evaluator.

It is important to note that even when a specific
objective was given, such as organizing objects
by type, participants had the freedom to group
and place items as they saw fit. We instruct the
participants to carry out the task naturally, and to
“speak aloud” their intents as they demonstrated the
task. We provide the full participant instructions
for phase 1 in the appendix Listing 3.

We recorded speech, RGB, eye gaze, and hand
pose using the hl2ss (Dibene and Dunn, 2022) soft-
ware in Python. We transcribe all speech to text
using Whisper (Radford et al., 2022).

S4.2 Live Evaluation Phase

To generate evaluation data, we aim to: 1) create
ecologically-valid queries that a user might ask
while interacting with an AI assistant to complete
a task, and 2) obtain user-specific queries and re-
sponses based on a particular user demonstration.
In the evaluation phase, we have a live assistant
guide a new user to complete a task, based on a
demonstration collected by a different user. Each
participant was given a broad overview of the task
(e.g., “Your task is to interact with an AI assis-
tant to determine how to organize the items in the
room”). The participant is able to interact with the
assistant by asking it spoken questions, with the
goal of replicating what the other user did during
the demonstration. We provide the full participant
instructions for phase 2 in the appendix Listing 4.

Real-time interactive system. We present a

real-time interactive system that answers user ques-
tions based on demonstrations provided through
sensor inputs from the HoloLens 2 device. Our
system leverages hl2ss (Dibene and Dunn, 2022)
to stream through TCP ports and synchronize these
sensor inputs, interfacing them with our models in
Python. Users initiate a question by saying “Hey
agent,” after which they have a predefined period
to ask their question while the user’s current ego-
centric RGB view is recorded. The audio input is
then transcribed to text using Whisper, and used to
query our assistant.

The model retrieves relevant context from a pre-
defined database initialized from a user demonstra-
tion, processed using our gaze and speech method
as described in the main paper. The question and
user image is encoded, per Section S3.4. This con-
text is utilized for retrieval-augmented generation
using GPT4o to formulate an answer, which is sub-
sequently converted to speech with OpenAI’s TTS
and delivered to the user through a speaker. We
provide GPT4o with a chat history of questions and
user images throughout the interaction.

S4.2.1 Offline evaluation.
To benchmark the different models in their ability
to extract information from user demonstrations
and answer ecologically valid questions, we devel-
oped an offline evaluation based on real questions
asked during the real-time evaluation phase. For
each question, we paired it with the corresponding
user demonstration that was provided to the live
assistant during the evaluation episode. This ap-
proach allows us to assess how well each model
can interpret and respond to questions grounded in
actual user interactions, thereby providing a realis-
tic measure of their performance in understanding
and utilizing user input in real-world scenarios.

S4.2.2 LLM-Match: Evaluating Answer
Correctness

Evaluating open-vocabulary answers in QA is chal-
lenging due to the variety of possible correct re-
sponses. While human evaluation is a reliable
method, it is often too slow and costly. To ad-
dress this, we use an LLM to assess the correct-
ness of answers generated by agents. We adapt
the evaluation method from OpenEQA (Majumdar
et al., 2024a) for this purpose. Given a question
Qi, a human-provided reference answer A∗

i , and
the model-generated answer Ai, the LLM assigns
a score σi ∈ {1, 2, 3}. In this scoring system, a
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score of 1 corresponds to an incorrect response, 3
denotes a correct response, and 2 indicates a par-
tially correct response. We compute the overall
LLM-based correctness metric (LLM-Match) as
follows:

C =
1

N

N∑

i=1

σi − 1

2
× 100%. (1)

Dataset statistics. In total, our evaluation set
includes 10 participants, 32 user demonstrations,
and 415 evaluation questions.

Human annotations. We annotate each of the
questions offline based on the user demonstration
to get the ground truth answer A∗. The annotator
watches the user demonstration and then annotates
the ground truth answer based on the demonstra-
tion. Some questions may have multiple answers to
be correct. We flag and remove from the evaluation
set highly ambiguous questions.

S4.3 Task Instructions

We provide task instruction given to participants in
Listings 3-4.

S5 Additional Results

S5.1 Results in Table Format

In Table ??, we provide the results from the main
paper in table format.

S5.2 Model accuracy broken down by task
type

In Figure S3, we show model performance in the
evaluation dataset broken down by task type.

S5.3 Which combinations of input modalities
and feature encoders provide the best
performance for retrieval-augmented
generation?

In Table S2, we compare various visual en-
coders and input types for retrieving context from
the database to supply to GPT4o for retrieval-
augmented generation. The highest accuracy was
achieved by the combined approach of CLIP and
OpenAI Embeddings (56.6± 2.4), which equally
weights visual and textual inputs (λvisual = 0.5,
λtextual = 0.5). Comparisons between unimodal
configurations (e.g., CLIP image-only vs. OpenAI
Embed text-only, U test, p-val = 0.6269) suggest
that neither visual nor textual inputs alone domi-
nate in performance, underscoring the balanced

Figure S3: Performance of base models (GPT4o,
GPT4o-mini, VILA, LLaVA) across different con-
text extraction methods (Zero Shot, CLIP Clustering,
Frames as Context, Eye Gaze, Speech, Eye Gaze +
Speech) on the annotated evaluation set. Results are
broken down by task: (a) Organize, (b) Shopping, and
(c) Morning Routine. We report mean ± standard error
across evaluation questions (n=413).
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Condition GPT4o GPT4o Mini VILA-3b LLaVa-OV-7b VILA-3b
w/ GPT4o Ctx w/ GPT4o Ctx

Zero Shot 28.92 (±2.10) 19.28 (±1.82) 18.61 (±1.85) 14.14 (±1.66) 18.80 (±1.83)
Clip Clustering 49.28 (±2.31) 36.14 (±2.17) 32.38 (±2.16) 26.67 (±2.10) –
Frames-As-Context 48.43 (±2.28) 40.72 (±2.22) 28.04 (±2.07) 22.46 (±2.01) –
Eye Gaze w/ Inf. Intent 52.41 (±2.30) – – – –
Eye Gaze 55.37 (±2.49) 40.96 (±2.23) 37.97 (±2.27) 30.65 (±2.17) 18.07 (±1.75)
Speech 59.40 (±2.23) 51.57 (±2.22) 34.86 (±2.20) 29.53 (±2.16) 20.36 (±1.86)
Eye Gaze + Speech 62.16 (±2.30) 51.08 (±2.26) 40.57 (±2.29) 34.00 (±2.25) 21.57 (±1.90)
Eye Gaze + Speech + Summary 66.51 (±2.15) – – – –

Table S1: Performance across different input conditions for each model. Values are mean (± standard error).

contribution of both visual and textual cues in
ecological QA tasks.

When comparing CLIP + OpenAI Embed with
AlphaCLIP + Eye Gaze, the results show no sig-
nificant difference (t-stat = 90109.5000, p-val =
0.2030). This suggests that the use of eye gaze in
AlphaCLIP visual encoding does not substantially
improve retrieval performance in this setting. De-
spite eye gaze’s potential for contextual relevance,
its integration here did not yield significant im-
provements, possibly due to the text content already
incorporating eye gaze cue information. Similarly,
ImageBind, which jointly encodes images, text, au-
dio, depth, thermal, and IMU data, did not perform
as well as CLIP + OpenAI Embed, emphasizing
that the inclusion of more sensory inputs does not
necessarily translate into better performance. The
joint encoding strategy of ImageBind appears less
effective, potentially due to the complexity and
noise introduced by integrating heterogeneous data
types that do not directly contribute to the specific
QA task. These findings highlight the critical role
of strong and well-aligned visual and textual en-
codings, as achieved by CLIP + OpenAI Embed,
in improving the retrieval of relevant context in
ecological QA settings.

S5.4 How important is short term history in
ecologically evaluation?

User questions often depend on previous interac-
tions (i.e., the chat history) to accurately contex-
tualize the answer. In this section, we ask, ‘how
important is modeling chat history in an ecologi-
cal setting?’. We ablate the image-chat history in
Table S3. We observe a numerical decrease in ac-
curacy when removing the chat-image history from
our model (Eye Gaze + Speech condition; 62.2± 2.3

vs. 58.4± 2.3), though this difference is not statisti-
cally significant (U test p = 0.2499). These results
suggest that while chat history may contribute to

Table S2: Comparison of multimodal and unimodal
configurations on ecological QA tasks. The highest
accuracy is achieved by CLIP + OpenAI Embeddings
with balanced visual and textual inputs (λvisual = 0.5,
λtextual = 0.5). Eye gaze integration in AlphaCLIP
does not significantly improve performance, and Im-
ageBind’s multimodal approach shows lower accuracy,
highlighting the effectiveness of strong, aligned visual
and textual encodings. We use the gaze only condition
for all ablations.

Accuracy λvisual λtextual

CLIP (Radford et al., 2021) 56.6± 2.4 0.5 0.5
+ OpenAI Embed (OpenAI)
CLIP (Radford et al., 2021) 51.9± 2.3 1.0 0.0
OpenAI Embed (OpenAI) 53.5± 2.3 0.0 1.0
AlphaCLIP (Sun et al., 2024) 52.5± 2.3 1.0 0.0
+ Eye Gaze

ImageBind (Girdhar et al., 2023) 48.7± 2.3 0.5 0.5

Table S3: Ablation study on the importance of mod-
eling chat-image history in ecological QA tasks. In-
cluding chat-image history in the Eye Gaze + Speech
condition improves accuracy, though the difference is
not statistically significant (p = 0.2499). Incorporat-
ing question-answer pairs generated by GPT4o shows
minor, nonsignificant improvements in accuracy.

Accuracy

Eye Gaze + Speech 62.2± 2.3

w/ QA 64.2± 2.2

w/o chat-image history 58.4± 2.3

Eye Gaze 56.6± 2.4

w/ QA 58.2± 2.3

performance, its impact in this setting is not defini-
tive, highlighting the need for further investigation
into the conditions under which history modeling
is most beneficial.
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Figure S4: Retrieval accuracy progression when re-
trieval the top-k segments for context. The solid line
illustrates the improvement from Top-1 to Top-5 exam-
ple retrieval.

S5.5 Can VLMs ask good questions to get
additional context from the user?

We additionally test the ability of GPT4o to gen-
erate questions to get additional clarifying infor-
mation from the user about their preferences. We
find that appending these question-answer pairs to
the context of GPT4o provides minor, nonsignif-
icant improvements, as shown in Table S3. This
indicates that using GPT4o to generate clarifying
information from the user does not provide signif-
icant advantages over running the demonstration
only, both for the gaze and speech condition.

S5.6 Retrieval Accuracy
We provide an analysis of retrieval accuracy in
Figure S4. We find that performance plateaus at
retrieving the top 3 segments.

S6 Behavioral Coding

S6.1 Demonstration Utterance Coding
We code the utterances into the following cate-
gories (examples come directly from our dataset):

1. Purpose of the Task: This category includes
statements that explain the objective or goal of
the task. These utterances typically provide a
high-level overview of what the speaker intends
to demonstrate or accomplish. For example:

• “Okay, I’m going to demonstrate my morn-
ing routine.”

• “Okay, today I’m going to show you how
to organize the items on these tables based
on my preferences.”

2. Instructions to the Learner: These are direc-
tives given to the learner to focus their attention

or to observe the actions being performed. They
are aimed at guiding the learner on how to fol-
low along with the task. Examples include:

• “Take note of what I’m doing.”
• “Pay close attention.”

3. Action Commands: This category contains di-
rect instructions that tell the learner or listener
what specific action to take. These commands
are usually clear and concise. For instance:

• “Take one of these, put it in the water.”
• “Open it up.”
• “Stir the water.”

4. Sequential Steps: These utterances describe
the order in which actions should be performed.
They help in outlining the sequence of tasks that
need to be completed. Examples include:

• “First, I’m going to stack all these cups up.”
• “Next, I’m going to pick up the small play

basketball model here.”
• “Finally, take an empty cup, like this one.”

5. Clarifying Actions: This category includes
statements that provide further explanation or
details about a given action, often clarifying
what needs to be done. Examples are:

• “So we’re going to take two of these, two
of these ones, put them on the plate.”

• “Okay, and then two of these, one and
two, in the water, okay, close it, and now
we’re...”

6. Rationale: These utterances explain the reason
behind a specific step or action, providing con-
text or justification for why it is necessary. For
example:

• “Make sure it’s mixed up nicely, no
chunks.”

• “Because I don’t have enough hands, so
I’m putting this strawberry inside the cup.”

7. Task Completion: This category indicates the
conclusion of a task or series of actions, signal-
ing that no further steps are required. Examples
include:

• “And we’re done.”
• “Task complete.”
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8. Interim Confirmation: These utterances pro-
vide confirmation of intermediate steps or ac-
tions, often used to acknowledge progress or
correctness. For instance:

• “Okay, great.”
• “Okay, that’s mixed up.”

9. Self-Questions: This category includes ques-
tions the speaker asks themselves during the
task, often reflecting uncertainty or prompting
themselves to think. Examples are:

• “Shall I start?”
• “What else do I need?”

10. Responses: These utterances are answers to
questions or confirmations of actions, often used
to acknowledge understanding or correctness.
Examples include:

• “Yep, it works.”
• “No, that’s a toy.”

11. Observational Comments: This category con-
sists of comments made during the task that
note observations or provide additional thoughts
about objects or actions. For example:

• “This seems handy, so let me put this in the
basket.”

• “This looks like a glass cleaner probably
not more very important right now.”

12. Personal Preferences: These utterances reflect
the speaker’s personal choices or preferences,
often indicating likes or dislikes. Examples are:

• “Not a big fan of decoration, so no.”
• “I love snacks, so I want different kinds of

snacks.”

13. Error Identification: This category includes
statements that recognize mistakes or issues en-
countered during the task. For instance:

• “Okay, this wasn’t correct I guess.”
• “Oh, I forgot to stack the yellow cup in this

bigger stack.”

14. Adjustments: These utterances describe correc-
tions or modifications made to rectify mistakes
or to improve the task’s execution. Examples
include:

• “So I have to redo it again.”
• “I will put a bit of it in the cup.”

15. Filler Words and Phrases: This category in-
cludes non-essential words or phrases used dur-
ing the task, often to fill gaps in speech or to
signal thinking. Examples are:

• “Okay.”
• “Alright.”

16. Repetitions: These utterances involve repeat-
ing words or phrases for emphasis or to ensure
understanding. Examples include:

• “Birdhouse. Birdhouse.”
• “Okay, okay.”

S6.2 Question Coding
We code the questions into the following categories
(examples come directly from our dataset):

1. Clarification/Confirmation Questions: These
questions seek confirmation or clarification
about a previous action or instruction. They
are typically used to ensure correctness or un-
derstanding. Examples include:

• “Is this correct?”
• “Did I take any of these pills last time?”
• “Is this the correct one?”
• “Am I done?”
• “Did I put chia seeds into the drink?”

2. Instructional/Procedural Questions: These
questions request instructions or guidance on
the next steps or actions to take. They help
in understanding the procedure or sequence of
actions. Examples are:

• “What should I do next?”
• “What should I do with these?”
• “How should I mix it?”
• “What should be the next step?”

3. Quantitative Questions: These questions fo-
cus on the amount, number, or measurement of
items, often to determine the quantity required.
Examples include:

• “How many scoops should I put for chia
seeds?”

• “How much of this protein powder should
I take?”

• “How many of the protein powder, how
much of it should I use?”

• “How many cups should I get?”
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4. Choice/Selection Questions: These questions
involve making a choice or selecting between
multiple options. They are used to determine a
preference or decision. Examples are:

• “Which cup should I put the protein powder
in?”

• “Which shelf should I put the ceramic mugs
onto?”

• “Which pill should I take today?”
• “Which item should I get started?”

5. Location/Identification Questions: These
questions seek to identify or locate an item or
place. They help in finding or confirming the
position of objects. Examples include:

• “Where should I put the pills?”
• “Where is the pan?”
• “Is this the shelf you are referring to?”
• “Where should I keep these fruits?”

6. Recall/Memory Questions: These questions
ask the AI to remember or recall past actions
or information, often to verify if something has
already been done. Examples are:

• “Do you remember what powder I put for
this drink?”

• “Did I buy this item already?”
• “Did I take the vitamins last time?”

7. Verification Questions: These questions verify
the accuracy or correctness of a task or item,
ensuring that actions have been performed cor-
rectly. Examples include:

• “Is this the right hammer?”
• “Does this look neat for you?”
• “Is this placement correct?”
• “Is it the right one?”

8. Descriptive/Inquiry Questions: These ques-
tions seek descriptions or inquire about specific
characteristics of objects or actions. They help
in understanding details or functions. Examples
are:

• “Describe that drug for me.”
• “What are these pills for?”
• “What do I do with the protein powder, vi-

tamins, and the flaxseed?”
• “What should I take today?”

9. Opinion/Preference Questions: These ques-
tions seek the AI’s opinion or recommendation,
often asking for subjective feedback or sugges-
tions. Examples include:

• “Does this look good for my morning rou-
tine?”

• “Should I buy this drawing pen?”
• “What would be the best way to organize

this stuff?”

10. Miscellaneous Questions: These include vari-
ous questions that don’t fit neatly into the above
categories. They can be open-ended or cover a
range of topics. Examples are:

• “Can you speak English?”
• “What’s up?”
• “Shall I take the whole or just a few pieces

of wipes?”
• “What’s going on?”

11. Behavioral Observation Questions: These
questions ask the AI to confirm its observational
capabilities, often checking if the AI has noticed
specific actions. Example:

• “Did you see that I pour cranberry juice for
the drink?”

12. Non-Task-Related Commentary: This isn’t a
direct request or question but rather a commen-
tary that might invite the AI to respond empa-
thetically or adjust its recommendations. Exam-
ple:

• “This sounds terrible.”

13. Self-Directed Questions: This question seems
to be more of a self-reflection than a direct ques-
tion to the AI, but it’s posed in a way that invites
the AI to confirm, showing a blend of internal
dialogue and external communication. Exam-
ple:

• “I think I already done this, right?”
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Listing 1: Prompt template for key frame extraction and captioning
You are an AI assistant tasked with analyzing video frames to identify key moments that are most descriptive

of the overall task being performed. The inputs to this task include a sequence of video frames and
overall intent. Your goal is to provide a detailed description of the task segment , identify the top
three key frames that are most informative for understanding that segment , and a detailed description
of each key frame.

### Inputs:
1. ** Segment History **: A description of each segment that came before the current video segment you are

analyzing.
2. **Video Frames **: A sequence of images representing different frames from a video segment. (IF IMPLICIT

CONDITION) The user 's gaze location during the query is annotated on the image with a purple circle.
The user 's right and left hand locations are annotated on the image with blue and green dots ,
respectively.

(IF SPEECH CONDITION) 3. ** Speech Utterance **: A text transcript of what the user said during the video
segment.

4. ** Overall Intent **: A summary of what the user aims to achieve in the task segment.

### Outputs:
1. **Task Segment Description **: A very detailed text description of the task segment based on the provided

video frames and user intent. Describe the segment to help someone else deeply understand the
interaction taking place as if the other user would have to carry out the same interaction from your
description. Take into account any segment history provided.

2. **Top -3 Key Frames **: The three most descriptive frames that provide the best understanding of the task
segment.

3. **Top -3 Key Frame Description **: A very detailed task -based description of each key frame. Focus on
describing details in the frame that would help another user understand the objects being interacted
with , how they are interacted with , and how this interaction relates to the user intent.

4. ** Binary Segment Importance **: True of False. If True , the segment is important for understanding the
task. If False , the segment is uninformative and should not be examined later to understand the task.

### Guidelines:
- Select the three frames that most effectively illustrate the critical moments or actions in the task.
- If gaze and hand information is annotated on the image , use it to identify what the user is focusing on

when asking the query , and what you should focus on when giving your answer.
- Segment importance should be marked as 'False ' if the segment shows idle moments , transition phases ,

redundant actions , errors or missteps , or background activities that are not relevant to understanding
the task.

- Be specific about the key frame based on the user 's environment , task , and user preferences as much as you
are confident. For example , specifying 'black bin ' is more informative than saying 'bin '. Be very

detailed in your descriptions and how they relate to the user 's intent.
- Think of what would be most informative to teach another user the important actions , visual elements , and

user preferences required to carry out the task , so that the user could fully understand the segment/
key frame and the intent of the segment/key frame from your description.

### JSON Output Structure:
```json
{

"task_segment_description ": "[Your detailed description here]",
"key_frames ": [

{
"frame_number ": X,
"reason ": "[ Description of why this frame is key]"

},
{

"frame_number ": Y,
"reason ": "[ Description of why this frame is key]"

},
{

"frame_number ": Z,
"reason ": "[ Description of why this frame is key]"

}
],

"is_segment_important ": [Boolean True/False of whether segment is important]
}
```
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Listing 2: Prompt template for inference on new examples
Task: You are an assistant guiding a user to complete a task exactly the same as an expert has demonstrated

to you. The user has provided you with a natural language query and an egocentric view from a head -
mounted camera. You also have access to experience data from the expert who has performed the same task
. It is important to note that the user asking the query cannot see and has never seen the expert 's
experience. Your goal is to generate a response that accurately addresses the user 's query and helps
them perform the task as effectively as the expert. Ensure that your response incorporates the visual
context from the camera and leverages the expert 's experience to provide a precise and helpful answer.

Inputs:
- Chat History: If provided , chat history between you and the user from this interaction session.
- Expert Experience: You have access to a collection of key frames and their descriptions showing an expert

demonstrating the task. Each segment contains several key frames , capturing images and descriptions of
the expert performing the task correctly. Remember , only you can see this past experience; the user
cannot and has never seen it. Therefore , you must describe the expert 's experience in full detail so
the user can understand and perform the task accurately.
- The user 's eye gaze location during the query may be annotated on the image with a purple circle. The
user 's right and left hand locations are annotated on the image with blue and green dots , respectively.

- User Intent: The overall user intent of what task the user is performing. This may help contextualize the
query.

- Egocentric View: An egocentric image that is likely important for answering the query.
- Natural Language Query: The user query that you should respond to. The query answer will likely require

information found in the egocentric view and the previous experience.

Output:
- Answer: Your answer to the query based on the inputs. Answer the Natural Language Query directly. Be

concise without leaving out important information. Your answer should not be more than one or two
sentences. You should only respond in English , and should ask for the user to repeat if the query is
not in English.

Additional Context and Guidelines:
- You should guide the user so that the user completes the task the same as the expert has demonstrated ,

without deviating. For example , if the user intent is shopping for X, the same items as the expert
should be bought.

- The user is wearing a head -mounted camera that provides the egocentric view to you of their environment.
- The previous experience may be from the distant past and the environment or user state may have changed.

Use the previous experience as context given that aspects of the current scene may have changed.
- Format your output as a json , with "answer" as a seperate key.
- Do not refer to the expert experience in your answer without describing the experience fully. The user

will not understand utterances such as "like in experience #1" or "refer to expert previous experience
".

- If gaze and hand information is annotated on the image , use it to identify what the user is focusing on
when asking the query , and what you should focus on when giving your answer.

- Only use the chat history to remember what was just said. Use the expert experience to help you answer the
question.

- Be as concise as possible in your answer without leaving out important details.
- If the task involves food items , never instruct the user to consume the food. You can instruct them to

prepare the food , buy the food , etc. but not consume or ingest.
- You should only respond in English. If the Natural Language Query is not in English , you should respond "

Sorry I didn 't hear that correctly , can you repeat that?"
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Listing 3: Task instructions for phase 1.
Phase 1 Instructions
You will be carrying out a specified task while wearing the HoloLens. Please follow these instructions

carefully:
1. Preparation:
o Ensure the HoloLens is properly fitted and functioning.
o Familiarize yourself with the task you will be performing.
2. Starting the Task:
o Begin by clearly stating aloud the specific task you are about to perform. For example , say , "I am going

to make a cup of tea."
o Once you have stated your task , proceed to start performing it.
3. During the Task:
o As you perform the task , continuously speak aloud to describe your actions and intentions. This is known

as "thinking aloud." For example , if you are making a cup of tea , you might say , "I am filling the
kettle with water ," or "I am adding a tea bag to the cup."

o Be natural in your descriptions as if you were demonstrating the task to someone. This helps to annotate
your actions and intentions accurately.

4. Performing the Task Naturally:
o Carry out the task as naturally as you would in your daily life. Do not alter your usual way of doing

things.
o If you encounter any issues or have to deviate from your normal process , describe these changes aloud as

well.
o You can refer to items by looking at them or by using hand gestures , such as pointing.
o Important: Keep the scene area you are looking at in the center of your visor. Parts of the scene located

well below your visor will not be visible in the recording , even if you can see them.
5. Completion:
o Once you have completed the task , clearly state , "Task complete ."
o Inform the study administrator and wait for confirmation from the administrator before taking off the

HoloLens.
6. Respond to questions
o After completing your task , you will answer 5 questions on the computer by typing in your response on the

keyboard. You should check the question and the images that appear on the screen , and answer the query
based on your demonstration.

o The images are additional context and come directly from your demonstration.
o Please answer them as if someone was asking you clarifying questions to understand the why , what , and how

of your performed task.
By following these steps , you will help us collect valuable data for our study. Thank you for your

participation!
If you are uncomfortable or tired at any point during the study , please let the administrator know and we

will stop the collection , without affecting compensation.
Your task: Please see the second sheet of paper with your task instructions.
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Listing 4: Task instructions for phase 2.
Instructions Phase 2

You will perform a task by interacting with an AI assistant. Follow these instructions:
1. Task Overview:
o You will ask an AI assistant questions about a task that another person has previously performed. This is

unrelated to the tasks you have previously performed and will not follow the same patterns.
o The AI assistant can view what you are seeing just before you ask your question (see #2)
o Ask questions as naturally as possible , similar to how you would in a real -life scenario where you need

help understanding a new task.
2. Asking Questions:
o To ask a question , begin by saying the keyword , "Agent" or "Hey agent ".
1. Important! Ensure you are looking at the specific part of the scene or object you want to ask about

before saying "Agent" or "Hey agent". The agent will only be able to see what you were looking at
before you say the keyword.

2. Keep the scene area you are looking at in the center field of view of your visor (if you are looking
straight ahead). Parts of the scene located below your visor will not be visible in the recording , even
if you can see them.

o The assistant will acknowledge by responding back , indicating it is ready to listen to your question. If
the agent does not respond back , you may need to say the keyword again.

o Once the assistant has acknowledged , proceed to ask your question.
3. Example Flow:
o Example Interaction 1: Morning routine
1. You: (While looking at different bottles .) "Hey agent ."
2. Assistant: "How can I assist you?"
3. You: "Which of these should I start with?"
4. Assistant: "First , open the red bottle and pour water in it."
5. You: (You follow the instructions .)
6. You: (while looking at the bottle with water) "Hey agent"
7. Assistant: "Go ahead."
8. You: Is this correct?
9. ...
o Example Interaction 2: Organizing
1. ... (previous interactions)
2. You: (While holding an apple in your hand and looking at it.) "Hey agent."
3. Assistant: "I'm here. How can I assist you?"
4. You: "What should I do with this?"
5. Assistant: "Put that in the bowl on the shelf."
6. You: (Put the apple in the bowl on the shelf.)
7. ...
o Example Interaction 3: Decluttering the Desk
1. ... (previous interactions)
2. You: (While looking at a de -cluttered desk.) "Hey agent ."
3. Assistant: "I'm here. How can I assist you?"
4. You: "Is this correct ?"
5. Assistant: "No , the pens should be put in the cup on the right ."
6. You: (You put pens in the cup on the right .)
7. ...
4. General Tips:
o Keep your questions clear and specific to the part of the task you need help with.
o If the assistant 's response is unclear , feel free to ask follow -up questions for further clarification.
o Important! The assistant may give confusing advice. Follow the assistant 's responses as much as possible.

Try not to get stuck on a part of the task too long. If you do not get the guidance you need , use your
best judgement and move to the next part of the task. It is fine if you are not able to complete the
task.

o It is OK if you cannot complete the task successfully. If the agent gives repetitive or unclear advice for
multiple rounds , we suggest you move onto a different part of the task , or end the task completely by

saying "task complete ".
o It can be beneficial to ask about specific items or groups of specific , rather than very general questions

about the task.
o You can refer to items by looking at them or by using hand gestures , such as pointing.
By following these steps , you will help us collect valuable data for our study. Thank you for your

participation!
If you are uncomfortable or tired at any point during the study , please let the administrator know and we

will stop the collection , without affecting compensation.

Your task: Please see the second sheet of paper for your task instructions.
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Figure S5: Examples of key frame selection from the making breakfast video. We provide the VLM with 30
unsampled frames, asking it to select the top-k frames. Red highlighted frames indicate selected key frames.

.

Figure S6: Examples of key frame selection from the organizing apartment video. We provide the VLM with
30 unsampled frames, asking it to select the top-k frames. Red highlighted frames indicate selected key frames.

.
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Figure S7: Example of key frame selection from the making breakfast apartment video. We provide the VLM
with 30 unsampled frames, asking it to select the top-k frames. Red highlighted frames indicate selected key frames.

.

Figure S8: Examples of key frame selection from the organizing apartment video. We provide the VLM with
30 unsampled frames, asking it to select the top-k frames. Red highlighted frames indicate selected key frames.

.
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