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Abstract

We investigate whether the success of a zero-
shot Chain-of-Thought (CoT) process can be
predicted before completion. We discover that
a probing classifier, based on LLM represen-
tations, performs well even before a single to-
ken is generated, suggesting that crucial infor-
mation about the reasoning process is already
present in the initial steps representations. In
contrast, a strong BERT-based baseline, which
relies solely on the generated tokens, performs
worse—likely because it depends on shallow
linguistic cues rather than deeper reasoning dy-
namics. Surprisingly, using later reasoning
steps does not always improve classification.
When additional context is unhelpful, earlier
representations resemble later ones more, sug-
gesting LLMs encode key information early.
This implies reasoning can often stop early
without loss. To test this, we conduct early
stopping experiments, showing that truncating
CoT reasoning still improves performance over
not using CoT at all, though a gap remains com-
pared to full reasoning. However, approaches
like supervised learning or reinforcement learn-
ing designed to shorten CoT chains could lever-
age our classifier’s guidance to identify when
early stopping is effective. Our findings pro-
vide insights that may support such methods,
helping to optimize CoT’s efficiency while pre-
serving its benefits.1

1 Introduction

Chain-of-Thought (CoT) prompting (Wei et al.,
2023) enhances the capability of large language
models (LLMs) to perform multi-step reasoning.
It explicitly guides the LLM in creating interme-
diate explanations to solve a problem, offering a
sequence of reasoning steps while responding to a
prompt. Given its effectiveness, CoT has found suc-
cess in mathematical reasoning (Zheng et al., 2023),

1Code and data is available at
github.com/anum94/CoTpred.

“Two trains trav-
eling in opposite
directions... Let’s
think step by step”
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Figure 1: Illustration of our approach. The LLM gener-
ates intermediate reasoning steps in a Chain-of-Thought
sequence. At step i, we use its internal representations
to predict whether the CoT process will succeed. The
snowflake (❄) indicates frozen parameters, while the
flame (\) indicates trainable parameters.

medical applications (Liu et al., 2024a), faithful-
ness evaluation (Xu et al., 2024b), and multimodal
models (Wang et al., 2024; Kumari et al., 2024;
Byun et al., 2024). While CoT reasoning has been
shown to improve performance across many tasks,
it is computationally expensive, as it requires de-
composing complex problems into a series of in-
termediate steps, each demanding its own process-
ing. This raises two intriguing questions: a) Do
LLMs implicitly "know" whether they will arrive
at a correct answer before completing their reason-
ing? and b) If progressing past the initial steps
doesn’t improve this knowledge, does this indicate
that the LLM has completed its calculation? Given
the high computational cost of CoT, understanding
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when and how LLMs "know" their answer could
enable more efficient and targeted reasoning strate-
gies. Developing a method to assess whether CoT
will lead to a correct conclusion could optimize re-
source allocation—stopping reasoning early when
the outcome is clear or dedicating more steps when
uncertainty remains. Furthermore, this knowledge
could inform annotation efforts to support CoT-
specific fine-tuning.

To explore these questions, we create a CoT suc-
cess prediction dataset derived from popular math-
solving datasets, where zero-shot CoT has been
shown to significantly outperform vanilla prompt-
ing (more details are provided in Section 4.3). By
applying a CoT prompt to these questions, we cap-
ture the LLM activations across multiple CoT steps
and annotate the final answer as either correct or
incorrect. We then train a probing classifier (Be-
linkov, 2022) on top of the LLM representations
(assuming white-box access) to predict if a given
prefix of the ongoing CoT sequence would lead to
a correct answer (see Figure 1). Our experiments
show that by leveraging the LLM’s internal rep-
resentations, our classifier can effectively predict
whether a CoT sequence will be successful—even
before generating a single token—achieving 60%
to 76.4% accuracy across different datasets and
LLMs. Notably, it outperforms BERT (Devlin et al.,
2019), a strong text classifier that relies only on the
input text, demonstrating that the LLM’s internal
representations encode valuable information about
intermediate calculations—information that BERT,
constrained to shallow linguistic features, cannot
capture.

Further experiments with mid-CoT steps reveal
an intriguing pattern: in two of six cases, providing
the classifier with later reasoning steps does not sig-
nificantly improve its prediction accuracy. Using
SVCCA, a complementary method to probing, we
find that in these scenarios, earlier steps are more
similar to the final step compared to the dataset
where additional CoT context benefits the classi-
fier. We conduct initial zero-shot experiments to
investigate whether this similarity allows for early
termination of the CoT process without affecting
the final answer. While zero-shot alone is insuf-
ficient, our results suggest that more targeted ap-
proaches, such as supervised learning or reinforce-
ment learning, could effectively shorten the CoT
process while maintaining strong performance.

To conclude, our contributions are as follows:

1. We define the task of Chain-of-Thought (CoT)
success prediction and investigate whether
LLMs inherently estimate the effectiveness
of CoT prompting before generating a full
answer.

2. We construct datasets for this task and train a
lightweight probe that predicts the success of
CoT prompting before the LLM completes its
generation.

3. Through extensive analysis, we demonstrate
that leveraging LLM internal representations
significantly improves classification perfor-
mance compared to relying solely on gener-
ated tokens, indicating that these representa-
tions capture knowledge about intermediate
calculations.

4. We conduct initial experiments on zero-shot
early stopping in CoT, showing that while a
gap remains between early stopping and full
CoT completion, stopping mid-calculation
still slightly outperforms not using CoT at all.
This suggests that stronger methods could fur-
ther unlock LLMs’ potential to shorten CoT
chains while maintaining high performance.

2 Related Work

We review studies that analyze and customize CoT
reasoning and those that use the internal LLM rep-
resentations to predict aspects of their generation
in advance. Given the breadth of research in these
areas, we focus on the most relevant works for our
setup.

2.1 Analyzing Chain-of-Thought
As CoT reasoning gained popularity, an increas-
ing number of papers sought to analyze its under-
lying mechanisms, mainly when applied to solv-
ing math questions, where it often excels. Xu
et al. (2024a) demonstrated how minor changes in
numbers or units can drastically affect CoT perfor-
mance. Several empirical studies have explored key
factors in improving CoT performance. For exam-
ple, Madaan and Yazdanbakhsh (2022) used coun-
terfactual prompts to highlight the importance of
symbolic reasoning in the CoT process. Wang et al.
(2023a) found that the order of rationales and their
relevance to the query are the most crucial aspects
of CoT. Rai and Yao (2024) analyzed the neurons
in LLM feed-forward layers to determine whether
information about the design decisions studied in
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empirical research is encoded within them. Al-
ternatively, Liu et al. (2024b) draw a comparison
between an LLM and a human’s overthinking na-
ture. They show a series of tasks where similar to
humans, LLM’s performance also gets worse with
CoT prompting.

Wang et al. (2023a) evaluate which factors play
a role in CoT prompting and show that even using
incorrect demonstration in CoT prompting leads to
the generation of correct answers. In contrast, Cui
et al. (2024) show that errors in intermediate reason-
ing steps tend to affect CoT performance. Lastly,
Pfau et al. (2024) used filler words like "..." to show
that the CoTs displayed by LLM are just superficial
and rather similar internal compute responsible for
LLM’s reasoning could be triggered by meaning-
less filler words. Bao et al. (2025) use structural
causal models to analyze how instructions, reason-
ing steps, and answers interact in CoT prompting.
Instead, our work probes internal representations to
assess whether models encode information about
answer correctness during the reasoning process.
While their analysis is causal and text-level, ours
focuses on what the model "knows" internally.

2.2 Probing LLMs Internal Representations
The internal representations of LLM have been
used to gather insights about tasks; one such task
is using representations at a given state t to pre-
dict the words at positions beyond t + 2 (Goyal
et al., 2024). Turpin et al. (2023) try to evaluate
if LLM are honest in their explanations and con-
cluded that LLM explanations are heavily biased by
simple variations in the prompt, such as reordering
of items. Azaria and Mitchell, 2023; Gottesman
and Geva, 2024; Seo et al., 2025 investigate the
task of estimating LLM’s knowledge on a given
subject before it starts generation. They approach
this task by using the internal representations of
LLM as training features for a probe that can pre-
dict if the LLM output would be faithful. The field
of probing to comprehend the internal mechanisms
of CoT using LLM’s internal representation is still
evolving.

2.3 CoT Reasoning for Math Tasks
Recent research has demonstrated the effective-
ness of CoT reasoning in logical tasks (Sprague
et al., 2024), particularly for solving mathemati-
cal datasets. Ahn et al. (2024) examine the latest
advancements in large language models (LLMs)
for mathematical reasoning and highlight the ef-

fectiveness of CoT in this domain. Furthermore,
Ji et al. (2025) introduced a dual CoT approach
that incorporates self-reasoning and self-criticism
to improve performance on math tasks. Several
other studies (Wang et al., 2023b; Li et al., 2023)
have focused on improving LLM performance in
mathematical tasks by developing custom models
optimized for benchmark datasets.

3 Methodology

Constructing the Dataset We first generate de-
terministic outputs to assess whether an LLM in-
herently "knows" if it can solve a task using CoT
prompting. We run inferences with a tempera-
ture of zero, ensuring consistency and eliminating
stochastic noise. In addition, low sampling tem-
peratures are recommended for tasks that require
precision and factual accuracy, such as technical
writing, code generation, or question answering,
which is particularly crucial for solving math prob-
lems (Renze, 2024). Each generated response is
compared to a reference answer, assigning a cor-
rectness label that serves as a ground-truth label for
our trained classifier. Next, assuming white-box
access to the LLM, we extract the LLM’s hidden
states from the initial forward pass of the prompt to
examine whether its internal representations en-
code predictive information about CoT success.
These hidden states (H) capture the LLM’s pre-
generation reasoning and are used as training fea-
tures. For each sample, we obtain a 3D tensor (H ,
N , k), where H = h1, h2, . . . , hL represents the
hidden layers, N is the number of samples, and k
is the hidden dimension size. Since prompt lengths
vary, we use the last token’s representation for con-
sistency. To study the contribution of different lay-
ers, we train a separate probe for each hidden layer,
evaluating its accuracy as a measure of the layer’s
role in CoT success prediction. A higher classifica-
tion accuracy (CL) indicates that layer L contains
more information about the likelihood of success.
We conduct our experiments using Llama-3.1-8B
and Mistral-7B, utilizing all hidden layers, each
with 4096 dimensions.

Classification Model Following the precedent
set by Azaria and Mitchell (2023), we employ a
compact feedforward neural network with three
hidden layers of 256, 128, and 64 units, each us-
ing ReLU activation. The output layer applies a
sigmoid activation function. Training is optimized
using either the Adam or SGD optimizer, which is
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selected based on empirical performance for each
dataset. We perform a hyperparameter tuning spe-
cific to the task and detail the selected configura-
tions in Appendix A. The classifier is trained for
five epochs across all datasets and LLMs.

Success Prediction over Time While our pri-
mary methodology focuses on predicting CoT per-
formance before LLM generation begins, we also
explore how this prediction may change during the
generation process. Identifying atomic steps in the
generation can be challenging due to their varying
lengths and styles, so for simplicity, we instead use
percentages of the total number of tokens generated
(10%, 20%, up to 90%) and concatenate them with
the initial prompt (see Appendix C for illustration).
This approach allows for a consistent evaluation
across different generations. As in the previous
approach, we extract hidden layers for partial gen-
erations at 10% intervals, enabling us to observe
the evolution of internal representations. We apply
a similar strategy to expand our test sets.

CoT wo CoT success rate

Cn-k12 AQuA Olympiad
Llama-3.1-8B

0 0 41.83% 47.46% 44.76%
0 1 8.11% 2.53% 4.77%
1 0 32.52% 43.32% 36.97%
1 1 17.44% 6.67% 12.92%

Mistral-7B

0 0 44.07% 39.43% 41.43%
0 1 5.89% 10.54% 8.46%
1 0 32.33% 33.83% 28.08%
1 1 17.69% 16.2% 22.03%

Table 1: We depict the percentage of Problems the
LLM was able to solve with and without any Chain-
of-Thought prompting on a balanced dataset where CoT
prompting helped solve 50% of the problems. We show
a confusion matrix such that 0 means LLM was not able
to solve the problem, and 1 means that it was able to
solve the task.

4 Experimental Setup

4.1 Baseline

The prediction of CoT success may depend more
on linguistic cues in the text than on internal LLM
representations encoding intermediate computa-
tions. To explore this, we build on (Azaria and
Mitchell, 2023), which examined whether LLMs

store information in their internal states, albeit for
different purposes. Our goal is to demonstrate
that such information is indeed retained within
the LLM’s representations. To test this, we use
BERT as a baseline, as it relies solely on tex-
tual tokens without access to internal LLM states,
effectively functioning as a black-box access ap-
proach. Given BERT’s strength as a text classi-
fier, its ability to predict CoT success would indi-
cate that textual cues alone suffice. We use the
google-bert/bert-base-uncased variant with
default settings, maintaining a consistent neural
network-based classification setup while varying
the input features.2

4.2 Large Language Models
For the hidden representations of
Llama-3.1-8B and Mistral-7B, we use the
meta-llama/Llama-3.1-8B-Instruct and
mistralai/Mistral-7B-Instruct-v0.3 check-
points on huggingface respectively.

4.3 Datasets
We used three math problem datasets of varying dif-
ficulty in our experiments: World Olympiads Data
(Olympiad) (LI et al., 2024), Chinese K-12 Exam
(cn-k12) (LI et al., 2024), and AQuA (aqua) (Ling
et al., 2017). To assess model behavior across dif-
ferent reasoning patterns, we ran each dataset with
two different LLMs—Llama-3.1-8B (Grattafiori
et al., 2024) and Mistral-7B—resulting in six dis-
tinct dataset variants. Since we enforce class bal-
ance (i.e., an equal number of correct and incorrect
generations), the two versions of the same origi-
nal dataset may contain different sets of questions,
depending on the LLM’s outputs. Given the diffi-
culty level of questions within each dataset, the suc-
cess rate using Llama-3.1-8B, for example, varies
considerably, reaching 22%, 28%, and 62.3% on
Olympiad, cn-k12, and AQuA, respectively. For
all datasets and both LLMs, we ran inference to
obtain balanced train (10k) and test (1k) sets with
an equal distribution of positive and negative ex-
amples. Consequently, our classification model is
trained on a 10000× 4096 feature space for each
dataset and LLM layer combination. We reserve
10% of the training set for validation to tune hyper-
parameters. The distribution of question and gen-
eration lengths is summarized in Table 2. Lastly,
it is also important to evaluate how well the same

2Training features vary when using BERT embeddings
(dimension 768) or LLM layers (dimension 4096).
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# Question Tokens # Generation Tokens

Dataset avg min max avg min max

Llama-3.1-8B

AQuA 42.96 5 308 287.24 17 512
Olympiad 67.76 3 1109 401.56 2 512
Cn-k12 76.38 7 520 327.46 4 512

Mistral-7B

AQuA 84.23 38 344 255.07 35 509
Olympiad 86.10 9 1108 368.47 40 511
Cn-k12 88.94 5 679 304.96 29 511

Table 2: Average, Minimum and Maximum token count
of Questions and LLM generation using Llama-3.1-8B
and Mistral-7B tokenizers on all three datasets. Gener-
ation Tokens are capped at 512 using max_new_tokens
= 512.

LLM performs when solving the same problems
without chain-of-thought (CoT) prompting. We
present this comparison in a confusion matrix in
Table 1, which shows that, for instance, without
CoT, Llama-3.1-8B achieved only 9.2%, 17.69%,
and 25.55% success rates on AQuA, Olympiad, and
cn-k12, respectively, substantially lower than the
50% CoT accuracy we enforce when collecting a
balanced dataset.

Olympiad: The Math Olympiad is a competi-
tive examination designed to evaluate students’
mathematical skills and competencies. We use
the olympiad dataset from the NuminaMath-CoT
(LI et al., 2024) collection of the dataset. This
dataset is a collection of problems and respective
answers following a CoT format collected from
international/national contests as well as forums,
books, and summer school materials.

Cn-k12: This large-scale Chinese K-12 educa-
tion math exercise dataset was translated and re-
aligned to English using GPT-4. This dataset is
also part of the NuminaMath-CoT (LI et al., 2024)
collection of datasets, and reference answers follow
a CoT format.

AQuA: This dataset (Ling et al., 2017) consists
of algebraic math problems, each presented with a
step-by-step reference solution. Unlike the other
two datasets, it includes multiple-choice options.
We use the original dataset released by the authors.

4.4 Manual Annotation
Given the large dataset size, we used GPT-4o
mini3 to label the training and validation sets for

3https://platform.openai.com/docs/models#
gpt-4o-mini

the first language model (Llama-3.1-8B). To en-
sure the reliability of our evaluation, we manu-
ally annotated the test set using annotators selected
from a local university’s STEM Master’s program,
compensated at 16 euros per hour. Annotators eval-
uated the correctness of each generation based on
the question and a reference answer. On a test
set of 1,000 samples, human annotations agreed
with LLM-generated ones on 90.9%, 94.8%, and
93.4% for AQuA, Cn-K12, and Olympiad, respec-
tively. These numbers indicate that although LLM-
generated labels are generally reliable, the disagree-
ment with human judgment suggests caution when
using them for evaluation. For the second language
model (Mistral-7B), all datasets (training, valida-
tion, and test) were annotated using GPT-4o mini.
Given the imperfect agreement observed between
human and GPT-4o mini annotations for the first
model, these results should be interpreted with ap-
propriate caution.

5 Results and Discussion

Since the test set for Llama-3.1-8B was manually
annotated by human experts, it is considered more
reliable than the GPT-4o mini-annotated test set
used for Mistral-7B. As a result, in certain anal-
yses where only one LLM is presented, we focus
solely on Llama-3.1-8B to ensure more reliable
evaluation.

Figure 2: Accuracy on the test set when the probe is
trained and tested on hidden representations from each
layer. Results are shown for all 33 layers of Llama 3.1
8B Instruct across all three datasets.

5.1 Prediction before Generation
Main Results We evaluate the information con-
tained in the internal representation of the LLM be-
fore it begins generating and present the results in
Table 3, specifically under the %0 column. Given
that 50% of answers in the dataset are correct (bal-
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Before Gen Over Time

Dataset top-5 layers 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Llama-3.1-8B (human-annotated)
BERT (baseline)

AQuA - 53.50 54.2 55.8 54.1 54.1 53.5 51.7 51.6 53.7 51.7 50.6
Olympiad - 69.10 67.9 68.7 66.2 66.4 67.4 65.1 67.9 66.8 67.1 66.9
Cn-k12 - 66.20 57.8 64.4 64.1 63.8 64.3 63.8 62.7 61.7 61.1 62.4

Our Model

AQuA 11, 12, 13, 14, 16 60 51.5 60 60.5 63.2 60.11 60.8 63.7 62.9 65.7 69.4
Olympiad 8, 14, 16, 17, 31 76.4 75.1 75.8 73.8 74.6 76.5 73.8 75.3 75.3 73.8 75.9
Cn-k12 13, 14, 16, 17 22 69.10 67.7 69.9 69.2 67.7 67.2 70 71.6 70.7 68.9 70.9

Mistral-7B (GPT-4o mini annotated)
BERT (baseline)

AQuA - 60.1 57.8 59.5 63.4 65.2 63.7 67.8 66.7 66.8 68.1 71.8
Olympiad - 68.8 68.1 69.6 68.8 68.3 68.6 66.4 67.1 68.3 68.6 69.6
Cn-k12 - 65.5 63.5 65.8 65.1 64.4 64.8 66.5 66.7 67.3 67.8 68.5

Our Model

AQuA 15, 16, 18, 23, 28 64.7 54.4 66.1 66.9 66.4 65.1 65.8 64.1 66.6 67.4 80.2
Olympiad 7, 9, 18, 26, 28 71.8 71.7 72.0 72.3 74.1 74.2 75.6 74.5 75.3 75.5 75.9
Cn-k12 12, 14, 18, 21, 24 67.1 68.0 68.4 66.7 67.7 67.8 67.1 68.1 68.6 67.6 71.4

Table 3: Classification model accuracy before generation begins and as it progresses, measured at different
completion percentages. The best-performing layers and time steps are highlighted in bold.

anced data), a random classifier would achieve an
accuracy of 50%, which serves as the baseline for
interpreting the results. The BERT baseline, which
relies exclusively on token representations on CoT
prompt with question, consistently outperformed
random chance across all six datasets. On gener-
ations from Llama-3.1-8B, BERT achieved accu-
racy scores ranging from 53.5% to 69.1%. For
Mistral-7B, BERT’s accuracy ranged from 60.1%
to 68.8%. However, the predictive power appears
relatively weaker for the AQuA dataset4. Our sug-
gested method, which uses the LLM’s internal
representations, outperformed the BERT baseline
across all datasets, demonstrating their importance
for predicting CoT success before generation be-
gins. For instance, on Llama-3.1-8B datasets, our
model achieved 60.0% accuracy on AQuA, signifi-
cantly higher than BERT, and 76.4% on Olympiad,
compared to BERT’s 69.1%. We observe similar
patterns for the Mistral-7B datasets. The large
variance in results (ranging from 60.0% to 76.4%)
suggests that the effectiveness of the internal rep-

4We hypothesize that accuracy on Llama-3.1-8B-
generated AQuA dataset might be lower as the sampled ques-
tions might contain less linguistic patterns than the other
datasets.

resentations may be influenced by factors such as
task complexity or dataset characteristics, which
warrant further investigation. See Appendix B for
details on Classification Performance Breakdown.

LLM Layers Analysis In our experiments, we
evaluated the accuracy of the classification model
when trained on the hidden representations of
each layer. We show the accuracy per layer of
Llama-3.1-8B in Figure 2. It can be seen that the
middle such as layers 11 - 14 and layers 16 - 17, and
in some cases the last layers of the LLM seem to
play a role in it’s internal notion of Success or Fail-
ure. As the in shown Table 3, we find layer 14 and
layer 16 to be consistent among all three datasets
suggesting these layers to be more involved in the
notion of CoT prediction. Our findings are inline
with those of Azaria and Mitchell 2023, who show
similar results regarding LLM’s notion of truthful-
ness and show layer 16 and in some cases the last
layers of LLM to be most knowledgable for their
task.

5.2 Prediction over Time

Main Results We evaluate the information con-
tained in the internal representation of the LLM

12796



Figure 3: Similarity scores using SVCCA between hidden representations of each time step and the full generation,
using Layer 14 for all three Llama-3.1-8B datasets.

during generation, as shown in Table 3. To do this,
we capture the hidden states at various time inter-
vals—after the LLM has generated 10%, 20%, and
so on of the total content—and use these states to
train the probe. The goal is to assess whether the
LLM’s understanding of success or failure becomes
more apparent as more content is generated. This
aligns with the idea that as more information is
revealed, the model’s understanding of success or
failure becomes clearer, similar to how humans typ-
ically gain better insight into a task as they progress
further. We selected the layer that performed best
on the given dataset in prior evaluations for the
prediction-over-time experiments. Interestingly,
in the Llama-3.1-8B-generated dataset, BERT’s
performance tends to decline as more context is
revealed, whereas for Mistral-7B, it remains rela-
tively stable. While BERT can effectively process
surface-level cues such as question structure, it
appears less capable of tracking the evolving rea-
soning embedded in the chain-of-thought (CoT)
generation. As the CoT unfolds and more tokens
are added, the increasing complexity may exceed
BERT’s shallow interpretive capacity, limiting its
ability to follow deeper logical developments. In
contrast, using internal LLM representations as in-
put significantly improves performance—e.g., from
60% to 69.4% on AQuA in the Llama-3.1-8B-
generated dataset—and yields consistent gains
across all Mistral-7B datasets. For Olympiad and
cn-k12 with Llama-3.1-8B, results remain com-
parable. This demonstrates the representations’
ability to capture more nuanced, cumulative rea-
soning and better reflect the underlying complexity

of the CoT process, ultimately enabling more accu-
rate success prediction. Surprisingly, Mistral-7B-
generated AQuA dataset performs better as com-
pared to the Llama-3.1-8B-generated one. Further
inspection of the generations revealed that for the
negative examples, Mistral-7B generations often
assume that the provided question might be incor-
rect. These linguistic queues as shown in Table 4,
might be used by BERT baseline as a feature to
classify negative examples.

Complimentary Analysis for Probing Our prob-
ing results suggest that the initial CoT steps in
the Olympiad and Cn-K12 Llama-3.1-8B gener-
ated datasets contain similar knowledge about CoT
success as the later stages, which may indicate
that they share an understanding of the calcula-
tions performed up to that point. However, prior
research has highlighted several limitations of prob-
ing. For instance, when trained on a large number
of examples, models using randomly initialized
embeddings as input representations can outper-
form those using pretrained intermediate represen-
tations (Zhang and Bowman, 2018; Wieting and
Kiela, 2019). To complement probing-based analy-
ses, several alternative methods assess knowledge
in model representations by measuring their cor-
relations without relying on a classifier. These
include SVCCA (Singular Vector Canonical Cor-
relation Analysis) (Raghu et al., 2017), PWCCA
(Projection Weighted Canonical Correlation Anal-
ysis) (Morcos et al., 2018), and CKA (Centered
Kernel Alignment) (Kornblith et al., 2019), among
others. Such methods are frequently used as alter-
natives for probing in NLP research (Saphra and
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Example 1
1. First, we need to find the probability that Kyle and Catherine solve the problem but David does not.
2. The probability that Kyle solves the problem is 1/3, and the probability that Catherine solves the problem is 5/9.
3. The probability that David does not solve the problem is 1 - 2/7 = 5/7.
4. To find the probability that all three events happen, we multiply their individual probabilities: (1/3) * (5/9) * (5/7).
5. Simplify the expression: (5/27) * (5/7) = 25/189.
6. The answer is E) 20 / 189. However, there seems to be a mistake in the options provided. The correct answer
should be 25/189, not 20/189. So, the correct answer is E) 25 / 189.
Example 2
1. The total investment is Rs. 70000 (A) + Rs. 120000 (B) = Rs. 190000.
2. The total profit is Rs. 26000.
3. To find the share of B, we need to divide the total profit by the total investment and then multiply it by B’s investment.
Share of B = (Total profit / Total investment) * B’s investment
= (26000 / 190000) * 120000
= (26/19) * 12000
= 24000 * (26/19)
= 24000 * (1.3158)
= 24009
So, the share of B is approximately Rs. 24009.
However, since the options provided are not exact, we can round the answer to the nearest option. The closest option
is D) 24009. But since the question asks for one of the options, we cannot be certain that D) 24009 is the correct
answer. It’s a tricky question due to the rounding of the options.
Final answer: The share of B is approximately 24009, but the question asks for one of the options, so the exact answer
cannot be determined from the given options.

Table 4: Linguistic Patterns in the negative examples of Mistral-7B-generated AQuA dataset, which might be used
by BERT classifier as a feature in our Prediction over Time experiments.

Lopez, 2018; Zhao et al., 2023, 2024). In our study,
we employ SVCCA following Zhao et al. (2022),
which investigated how domain-specific informa-
tion is encoded in LLMs—a research focus related
to ours.

We compute SVCCA scores between representa-
tions at each reasoning step5 (10%, 20%, ..., 90%)
with 100% (CoT completion), where higher scores
indicate greater similarity in encoded information
(Figure 3). Since the AQuA dataset consists of
shorter questions and CoT sequences (see Table 2),
one might expect its intermediate representations
to be more similar across steps, as the reasoning
process is more compact. However, we observe
that AQuA exhibits lower SVCCA scores between
earlier and later steps compared to Olympiad and
Cn-K12. This strengthens our probing findings:
when earlier steps contain information predictive
of CoT success, representations remain more stable
throughout the reasoning process. This suggests
that intermediate representations may not only en-
code predictive information about the final answer
correctness but also the final answer itself. If the
model is implicitly performing parts of the final
computation at earlier steps, we may be able to
leverage this by directly prompting it to provide an
answer before completing the full chain of thought.

5See Appendix B for scores between all possible combina-
tions of representations reasoning step

Early Stopping in CoT Reasoning To exam-
ine whether the model’s intermediate representa-
tions encode sufficient information for correct an-
swers, we prompt it to generate an answer at vari-
ous reasoning steps and evaluate its accuracy. As
in our previous experiments, this intervention is
performed in a zero-shot manner without explic-
itly training the model to follow such instructions.
Specifically, we halt the Llama-3.1-8B reasoning
process by providing the generated sequence up to
a certain point, followed by the instruction: "Stop
all computation and give me the correct answer in
2–3 words, if you already know it". This allows us
to assess whether the model can extract a final an-
swer without completing the full chain of thought
(See Appendix B for an illustration). We conduct
human annotation on 100 samples per dataset at
three timesteps6, summarizing the results in Ta-
ble 5. Our analysis examines how often the halted
response remains consistent with the final, uninter-
rupted answer, how often it changes (inconsistent),
and in what fraction of those cases the change leads
to a corrected answer—where stopping CoT rea-
soning actually improves performance. Finally, we
compare overall correctness rates to both the full
CoT process and a setting without CoT. The rela-
tively low consistency rate, even at 99% comple-

6We select two intervals where the classification model
achieves its highest accuracy and one at the final step.
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Dataset Gen % Consistent Inconsistent Corrected Correct W_CoT_Correct

AQuA
50 40 45 15 37

3870 48 41 11 37
99 81 14 5 59

Olympiad
30 21 76 3 18

1950 28 70 2 22
99 57 41 2 33

Cn-k12
30 37 55 7 32

2450 42 49 7 33
99 88 9 3 47

Table 5: LLM’s generation was artificially interrupted to halt computation and were asked to just provide their
best guess on 100 samples at 3 different time steps defined Gen. Annotators marked an answer Consistent if it is
same the answer it provides when it is allowed to continue generation and Inconsistent if the provided answer differ.
There were cases where full generation led to incorrect solutions by LLM and these interruptions allowed LLM to
generate the correct answer, which was given the label Correct by annotators.

tion—particularly in Olympiad (57%)—suggests
that zero-shot early stopping is a suboptimal in-
tervention. The model does not always converge
to a stable answer, even when nearly the entire
reasoning sequence is generated, highlighting the
limitations of simply prompting it to stop early.
However, despite this brittleness, halting CoT mid-
way in AQuA and Cn-K12—the two datasets where
later reasoning steps did not enhance CoT success
predictability—still slightly outperforms the setting
without CoT. This indicates that even incomplete
CoT sequences can carry enough information to im-
prove accuracy, revealing untapped potential in in-
termediate reasoning states. These findings suggest
that while zero-shot interventions have limitations,
more sophisticated approaches—such as training
the model to generate concise reasoning chains
through supervised learning or reinforcing brevity
via RL-based rewards—could more effectively un-
lock this potential. By optimizing the model’s abil-
ity to extract key reasoning steps without unneces-
sary verbosity, future methods could further bridge
the gap between full CoT and early stopping while
maintaining or even improving accuracy.7

6 Conclusion

We demonstrate that the success of the CoT rea-
soning process can be predicted from the internal
representations of the LLM even before the genera-
tion of a single token. However, we also observe

7In some cases, halting CoT before completion improved
answer correctness, as reflected in the corrected column in the
table.

that, in some cases, the accuracy of this prediction
does not improve when the classifier is exposed to
intermediate reasoning steps. Using SVCCA, we
show that early steps encode information that is
more similar to the final steps in these cases. This
raises the question of whether these early represen-
tations also contain valuable information about the
final answer itself. Our initial experiments suggest
that while this potential exists, zero-shot prompt-
ing may not fully unlock it. We hope our findings
will inform future research aimed at making CoT
more efficient without sacrificing accuracy, as the
computational cost of CoT is significant.

Limitation

Manually annotating test examples for each dataset
limits the generalizability of our study, as we use
human evaluation for only a single LLM and focus
on three math datasets in a zero-shot setting. Addi-
tionally, we use a temperature of zero to minimize
stochastic noise in the generation process, which
could accumulate over multiple reasoning steps.
However, this setting may not fully capture the
variability present in real-world, stochastic LLM
usage. Furthermore, our method assumes white-
box access to the model, which is not typically
available for proprietary models.

Ethics Statement

Our research focused on evaluating the internal rep-
resentation of a Large Language Model to better
the notion of prediction for CoT Reasoning. Dur-
ing out research, we didn’t perform any fine-tuning
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that could introduce any bias in the LLM. We work
with open-source datasets and hence produce no
additional bias than what might already be part of
it. During our manual evaluations, annotators were
asked to correct math problems, where there is only
one logically correct answer, reducing the suspect
of biased annotations. We mostly used existing
algorithms for supporting our analysis, hence mak-
ing our findings more reliable. For reproducibility,
we release the hyper-parameters used in our experi-
ments.
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A Technical Details

Classification Models We performed
hyperparameter-tuning for each dataset (and
each layer) when training the classification
models. We illustrate the best hyperparameters in
Table 7 and used them in our Prediction over time
experiments.

B Additional Results

Complimentary Analysis for Probing We com-
pute SVCCA scores between all possible combina-
tions of representations reasoning step (10%, 20%,
..., 90%) and with 100% (CoT completion) and
show them in Figure 4.

Early Stopping in CoT Reasoning We show an
illustration of Early Stopping in CoT Reasoning
and the LLM response in Table 8. It can be seen
that despite being prompted to stop calculations to
30% of it’s original generatation, it still generates
the correct answer.

Classification Performance Breakdown Fol-
lowing our earlier evaluations, we perform an in-
depth analysis of the classification model’s perfor-
mance on a test set of 1,000 examples, summarized
in Table 9. Unlike the BERT baseline, which per-
forms well on true positives (TP) only, our model
excels at identifying both true negatives (TN) and
true positives (TP). For example, on the Llama-3.1-
8b generated Cn-k12 dataset, BERT identified 250
true negatives, while our model identified 317. Sim-
ilarly, on AQuA, BERT’s true negatives were 131,
while our model achieved 177, and on Olympiad,
BERT had 315 true negatives, compared to 388 for
our method. These results show that our model
not only performs well on true positives but also
significantly outperforms BERT in detecting true
negatives. This suggests that our method captures

Cn-k12 AQuA Olympiad

layer 31 layer 32 layer 13
layer 10 layer 10 layer 28
layer 11 layer 13 layer 32
layer 13 layer 12 layer 10
layer 17 layer 5 layer 3

Table 6: Five most dissimilar layers using SVCCA (Sin-
gular Vector Canonical Correlation Analysis) between
hidden representation with and with CoT prompt per
layer, averaged over 1000 samples.
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Dataset batch size weight init learning rate optimizer threshold

BERT (baseline)

AQuA 128 HE_uniform 0.001 sgd 0.6
Olympiad 128 HE_uniform 0.001 adam 0.6
Cn-k12 128 - 0.001 adam 0.6

Our Model

AQuA 32 HE_uniform 0.001 adam 0.5
Olympiad 128 HE_normal 0.001 adam 0.5
Cn-k12 16 HE_uniform 0.001 sgd 0.5

Table 7: Accuracy of the classification model before it starts generating and over time when model has generated
x% of the answer.

(a) AQuA

(b) Cn-k12

(c) Olympiad

Figure 4: Similarity Scores using Singular Vector Canonical Correlation Analysis (SVCCA) of the internal
representation of LLM through Prediction over Time using Layer 14.
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A high school has a total of 900 students, among which there are 300 freshmen, 200 sophomores, and 400 juniors. Now, a
stratified sampling method is used to select a sample of 45 students. How many students should be selected from each grade,
respectively?
A: 15, 5, 25
B: 15, 15, 15
C: 10, 5, 30
D: 15, 10, 20
Let’s think step by step:
To determine the number of students to be selected from each grade, we need to calculate the proportion of students in each
grade and then apply this proportion to the total sample size of 45 students.
Step 1: Calculate the proportion of students in each grad

Stop all computation and give me the correct answer in 2- 3 words, if you know it already.

Answer 15, 10, 20

Reference Answer The correct answer is D.

Table 8: An Illustration of a sample showing how we artificially halt LLM generation when it has generated 30% of
the answer.

more relevant predictive signals, enabling a more
nuanced understanding of the factors that drive
Chain-of-Thought success.

LLM Layer Analysis We also include the rep-
resentation of LLM without any CoT reasoning in
our experiments. In Table 6, we illustrate the 5
most dissimilar layers. Since they were both en-
coded using the same problems, the only different
is the inclusion of CoT Reasoning, the disimilarity
among the layers may just a more notable role in
LLM’s internal notion of CoT Reasoning.

C Dataset Examples

Success Prediction over Time An illustration
of samples from the Success Prediction over Time
method is shown in Table 10 for 2 different genera-
tion steps.
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Cn-k12 AQuA Olympiad
Llama-3.1-8B

BERT (baseline)

250 (TN), 196 (FP) 131 (TN), 306 (FP) 315 (TN), 159 (FP)
142 (FN), 412 (TP) 159 (FN), 404 (TP) 135 (FN), 391 (TP)

Our Model

317 (TN), 129 (FP) 177 (TN), 269 (FP) 388 (TN), 86 (FP)
180 (FN), 374 (TP) 147 (FN), 416 (TP) 153 (FN), 373 (TP)

Mistral-7B

BERT (baseline)

282 (TN), 221 (FP) 314 (TN), 181 (FP) 318 (TN), 177 (FP)
124 (FN), 373 (TP) 218 (FN), 287 (TP) 135 (FN), 370 (TP)

Our Model

328 (TN), 175 (FP) 366 (TN), 129 (FP) 387 (TN), 108 (FP)
154 (FN), 343 (TP) 244 (FN), 281 (TP) 178 (FN), 327 (TP)

Table 9: Confusion matrix comparing BERT (baseline) and our model at T = 0 on its respective balanced test set
using the best-performing layers on the test set.

T = 0 (Question + Prompt)
Let the complex numbers z1 and z2 have corresponding points in the complex plane that are symmetric with respect to the
real axis. Given that z1 = 1 + i, find z1z2. Let’s think step by step:

T = 3 (Question + Prompt + 30% of the Generation)
Let the complex numbers z1 and z2 have corresponding points in the complex plane that are symmetric with respect to the
real axis. Given that z1 = 1 + i, find z1z2. Let’s think step by step: To find z2, we need to understand the symmetry of
complex numbers with respect to the real axis.
When a complex number is symmetric with respect to the real axis, its imaginary part is negated.
Given z1 = 1 + i, we can find z2 by negating the imaginary part of z1.
S

T = 7 (Question + Prompt + 70% of the Generation)
Let the complex numbers z1 and z2 have corresponding points in the complex plane that are symmetric with respect to the
real axis. Given that z1 = 1 + i, find z1z2. Let’s think step by step: To find z2, we need to understand the symmetry of
complex numbers with respect to the real axis.
When a complex number is symmetric with respect to the real axis, its imaginary part is negated.
Given z1 = 1 + i, we can find z2 by negating the imaginary part of z1.
So, z2 = 1− i.
Now, we need to find the product of z1 and z2.
z1z2 = (1 + i)(1− i)
Using the difference of squares formula (a+ b)(a− b) = a2 − b2, we can simplify the expression:
z1z2 = 12 − i2

Since i2 = −1, we can substitute this value into the ex

Table 10: An Illustration of a sample from Cn-k12 dataset outlining how we construct the Prediction over Time
dataset in our methodology.
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