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Abstract

Temporal Knowledge Graphs (TKGs) incorpo-
rate the temporal feature to express the tran-
sience of knowledge by describing when facts
occur. TKG extrapolation aims to infer possible
future facts based on known history, which has
garnered significant attention in recent years.
Some existing methods treat TKG as a se-
quence of independent subgraphs to model tem-
poral evolution patterns, demonstrating impres-
sive reasoning performance. However, they
still have limitations: 1) In modeling subgraph
semantic evolution, they usually neglect the
internal structural interactions between sub-
graphs, which are actually crucial for encod-
ing TKGs. 2) They overlook the potential
smooth features that do not lead to semantic
changes, which should be distinguished from
the semantic evolution process. Therefore, we
propose Disentangled Multi-span Evolutionary
Network (DiMNet) for TKG reasoning. Specif-
ically, we design a multi-span evolution strat-
egy that captures local neighbor features while
perceiving historical neighbor semantic infor-
mation, thus enabling internal interactions be-
tween subgraphs during the evolution process.
To maximize the capture of semantic change
patterns, we design a disentangle component
that adaptively separates nodes’ active and sta-
ble features, used to dynamically control the
influence of historical semantics on future evo-
lution. Extensive experiments demonstrate that
DiMNet achieves substantial performance in
TKG reasoning, outperforming the state-of-the-
art up to 22.7% in MRR.

1 Introduction

Factual knowledge and entity semantics evolve
over time, revealing intricate temporal properties.
Recent studies have introduced Temporal Knowl-
edge Graphs (TKGs) as an extension of static
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Knowledge Graphs (KGs) to capture time-sensitive
facts (Dong et al., 2023, 2024). It introduces a time
feature to record the timestamps or time intervals
related to events and takes quadruples to repre-
sent a temporal fact, denoted as (s, 7,0,t), such
as (Edison, BornIn,USA,02/11/1847). TKGs
have a broader range of applications, such as crisis
warning (Liu and Fan, 2022) and real-time dia-
logue (Liu and Mazumder, 2021).

Similar to static KGs, TKGs also face the chal-
lenge of incompleteness. The task of reasoning
on TKGs aims to complete missing links based
on given known temporal facts. This includes two
settings: interpolation and extrapolation (Jin et al.,
2020). The former is used to predict missing facts
within a known historical time range, while the
latter predicts future facts based on known histor-
ical facts (Li et al., 2021). In this work, we focus
on extrapolation reasoning that presents significant
challenges and a wide scope for investigation.

A few early works start from the future query
and extract relevant semantic information and oc-
currence patterns from history. RE-NET (Jin et al.,
2020) is a representative work that encodes histor-
ical facts related to the query by RNN to obtain
query-related representations. CyGNet (Zhu et al.,
2021) directly captures repetitive patterns of facts
that share the same entities and relations as the
query. Although these methods can make the in-
ference distribution at the prediction stage closer
to the future, they overlook the structural informa-
tion and relative temporal characteristics within the
historical facts.

To make more comprehensive use of histori-
cal information and deeply capture the develop-
mental patterns of history, several subgraph evo-
lution methods have been proposed, such as RE-
GCN (Li et al., 2021), RETIA (Liu et al., 2023),
DaeMon (Dong et al., 2023), etc. They view the
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TKG as a sequence of subgraphs and use GNN-
based methods to model local structural dependen-
cies in history, while employing sequence modeling
to capture global semantic evolution patterns. How-
ever, this approach results in the structural model-
ing of the constructed subgraphs being independent
of each other, hindering the mutual influence of in-
ternal structures between subgraphs. TITer (Sun
et al., 2021a) connects the sequence of historical
subgraphs into a whole by introducing auxiliary
edges. TiPNN (Dong et al., 2024) and XERTE (Han
et al., 2020a) sample the historical facts of the TKG
into a single comprehensive graph, utilizing time
encoding to capture the dynamic characteristics of
facts. Although these methods break the isolation
of subgraph internal structures, they neglect the
features of the semantic evolution pattern of TKG.

However, the internal structural interaction
among subgraphs and the subgraphs’ semantic evo-
lution over sequence are both crucial. Therefore, it
still remains challenges:

(1) Existing models only focus on one of them.
From the viewpoint of GNN’s message passing, the
semantic evolution over time essentially involves
the influence of neighbors in different subgraphs on
the central node, leading to changes in the central
node’s semantics. To enable beneficial interactions
among subgraph structures, the most direct way
is to allow the central node to perceive its histor-
ical neighbors. However, for a central node, it
has neighbors at different distances, and the im-
portance of these neighbors to the central node is
distance-related. Therefore, when the central node
perceives the historical neighbors’ features, the dis-
tance between the central node and its neighbors in
the historical subgraph should also be considered.

(2) When the neighbor changes along the time-
line, the semantics of a node evolve. However,
the changes in the neighbor may not be entirely
thorough, and each central node also has its inher-
ent attributes. Subgraph semantic evolution is a
higher-order implicit modeling process. During the
evolution, there are stable semantics of nodes that
change relatively smoothly. Although (Li et al.,
2021) introduced static entity types in evolution-
ary modeling, which is not a generalizable method
since the duration of stable semantics is often un-
predictable. For subgraph evolution, features with
stable changes should be distinguished so that the
model can maximize the capture of changes in node
semantic information.

To this end, we propose the Disentangled Multi-

span Evolutionary Network (DiMNet) based on an
encoder-decoder structure for the TKG reasoning
task. The encoder models the evolutionary pro-
cess of the historical subgraph sequence, and the
decoder infers future facts from the evolutionary
results. Specifically, in the encoding phase, we
propose Multi-span Evolution approach based on
graph neural network to enable interaction between
the internal structures of subgraphs while preserv-
ing the modeling of semantic evolution across his-
torical subgraphs. It is designed to perceive the
semantic information of historical neighbors with
equal spans during the local subgraph structural
modeling stage, thus realizing the perception of the
distance features of historical neighbors (First chal-
lenge). Additionally, during the subgraph evolution
process, we design a Disentangle Component to
dynamically and adaptively separate the mutually
exclusive active and stable features of nodes as
they evolve over time. The stable feature is used
to guide the node evolution without deviating from
the node’s steady-state characteristics and intrinsic
properties. The active feature is to guide the influ-
ence of multi-span historical neighbors on the cur-
rent subgraph, thereby maximizing the modeling
of change patterns (Second challenge). In general,
this paper makes the following contributions:

* We propose a novel method DiMNet for TKG
extrapolation, which models the evolution of
historical subgraph sequences from the per-
spective of semantic change. Through a multi-
span evolution strategy and a disentangle com-
ponent, DiMNet is able to learn node semantic
change patterns in a fine-grained manner.

* We design an inference strategy based on sam-
pling virtual subgraphs specifically for the
multi-span evolution encoding method to mit-
igate the issue of future topology uncertainty
during the inference phase.

* Extensive experiments on four benchmark
datasets demonstrate the effectiveness of DiM-
Net, showing superior performance compared
to baselines for the TKG reasoning task and
achieving new state-of-the-art results.

2 Related Work

We briefly review the classic traditional KG reason-
ing methods and then introduce some recent related
TKG reasoning methods.
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Traditional KG reasoning methods aim to model
static knowledge and have seen significant ad-
vancements (Sun et al., 2019; Li et al., 2022a).
There are some translation-based methods, such as
TransE (Bordes et al., 2013), TransH (Wang et al.,
2014), and TransR (Lin et al., 2015), view relations
as translations of subject entities to object entities
in the vector space. For the semantic matching-
based methods, such as RESCAL (Nickel et al.,
2011), which measures the semantic matching be-
tween entities and relations through a tensor-based
relational learning approach. Neural network-
based methods, such as R-GCN (Schlichtkrull et al.,
2017) and CompGCN (Vashishth et al., 2019),
learn representations of entities and relations from
the perspective of graph structural features.

To represent facts with temporal feature, re-
cent literature has increasingly focused on learn-
ing TKGs. From the perspective of reasoning
tasks, they are usually divided into interpola-
tion and extrapolation reasoning. For interpola-
tion, TTransE (Leblay and Chekol, 2018) extends
TransE (Bordes et al., 2013) by binding timestamps
to relations as translation features. HyTE (Das-
gupta et al., 2018) links timestamps to their respec-
tive hyperplanes. TNTComplEx (Lacroix et al.,
2020), building on ComplEx (Trouillon et al.,
2016), treats TKGs as a 4th-order tensor and learns
representations via canonical decomposition. How-
ever, these methods are not particularly effective
for predicting future facts (Goel et al., 2020; Han
et al., 2020b; Leblay and Chekol, 2018; Sadeghian
et al., 2016), leading to the development of extrap-
olation methods. CyGNet (Zhu et al., 2021) pro-
poses a copy-generation mechanism to collect re-
peated events for query head entities and relations.
RE-NET (Jin et al., 2020) utilizes sequence mod-
eling and GCN to capture temporal and structural
dependencies in TKG sequences. RE-GCN (Li
et al., 2021) considers both subgraph structures
and static properties, modeling them in an evolving
manner. TANGO (Han et al., 2021) employs neural
ordinary differential equations for continuous-time
reasoning. XERTE (Han et al., 2020a) constructs
an enclosing subgraph around the query through
iterative sampling and attention propagation for
reasoning. DaeMon (Dong et al., 2023) proposes
capturing query-aware temporal path features in
sequential subgraphs to complete future missing
facts. TiPNN (Dong et al., 2024) builds a history
temporal graph from subgraph sequences and uses
query-aware methods to learn relevant reasoning

paths for queries.

As discussed earlier, there is still significant
room for improvement in TKG reasoning methods.
The proposed methods provide valuable solutions
for learning semantic evolution patterns.

3 Preliminaries

A TKG can be formalized as a sequence of static
subgraphs arranged in chronological order, i.e.,

= {G1,Gs,...,Gy,...}. Each G; in G can be
represented as Gy = (V, R, &), where V is the set
of nodes, R is the set of relation types, and &; is the
set of edges at timestamp ¢. Each element in £; can
be expressed as (s, ¢, 0¢), describing a relation
type 7 € R occurring between the subject node
s € V and the object node o € V at timestamp
t € T, where T denotes the set of timestamps.
Extrapolation reasoning of TKG aims to complete
facts that occur in the future. Given an object node
query (s,r,?,t,) at a future timestamp t,, we de-
rive the reasoning results by considering all histori-
cal known facts {(s,r,0,t;)|t; < t,}. Without loss
of generality, inverse edges (0,771, ?,¢,) are also
added to the TKG. This allows us to transform the
query when predicting the subject, i.e., (7,7, 0,t,),
into the form of predicting the object (0,771, ?,,).

4 Methodology
4.1 Model Overview

The overall framework is illustrated in Figure 2.
DiMNet equip a Multi-span Evolution strategy
to enable the local structure to perceive the his-
torical neighbor information of nodes during the
evolution of the subgraph sequence. Through the
multi-span approach, historical neighbor features
can assist in the fine-grained updating of nodes at
the current timestamp. We hope to involve histori-
cal neighbors with the same hop when the central
node aggregates current different hop neighbors, as
shown in Figure 1.

To maximize the modeling of dynamic change
patterns in historical sequences, we integrate a
cross-time Disentangle Component into the gaps
between subgraph modeling, which can guide
how evolved information influences the subsequent
learning of historical subgraphs. It adaptively dis-
entangles the semantic changes of nodes in adjacent
subgraphs, separating active and stable features of
nodes, and uses them for dynamic control of his-
torical information in the subsequent multi-span
evolution process.
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Figure 1: Illustration of the current central node perceiv-
ing historical neighbors.

As historical subgraphs evolve node semantics
over time, the evolved node representations implic-
itly contain temporal and semantic features. Exist-
ing methods, such as (Li et al., 2021; Zhang et al.,
2023), directly score the final representations to
complete future facts. However, due to the un-
known topology of subgraphs at future timestamps,
there might be a distribution shift between the in-
ferred future facts and the actual facts. We design
a decoder specifically for multi-span evolution. It
constructs an Inference Virtual Subgraph based on
the query, then revisits the multi-span evolved his-
tory to make a query-aware final score.

4.2 Multi-span Evolution Backbone

Given a historical subgraph sequence with length
m, i.e., {Gi—m+1, ..., G¢ }, the goal of the evolu-
tion backbone is to model the subgraphs along the
historica} timeline intg a sequence of node embed-
dings {H; 41, ..., Hi }.

In DiMNet, the evolutionary component adopts
a GNN-based approach to model the structure of
subgraphs at each timestamp. To smoothly incorpo-
rate historical neighbor information from different
hops, we employ an w-layers multi-span iteration
to integrate intermediate features from previous
subgraphs. Each layer is designed in two parts:
message aggregation and feature update.

4.2.1

For a subgraph at timestamp ¢, for an object node
o at the [-th layer (I € [1,w]) is as follows:

Message Aggregation Process

., = Agg({ Wi (hi @ ') }&J{ Whl }) )

NeighborMessage Self—loop

The central node o considers neighbor features and
self-loop features during the aggregation. The term
r! € R denotes the relation type representation
between s and o. It is important to note that, con-
sidering the different contributions of edges to se-
mantic evolution at different layers, we process

the relation embedding in a layer-specific manner
using a linear function, i.e., r' = Wiz r + bk,
where 7 € R is a learnable original relation rep-
resentation. W,llbr, Wéf € R4 are layer-specific
transformation parameters for neighbor and self-
loop features, respectively. & is defined as the
element-wise summation operator. & denotes the
operation of merging the two types of feature mes-
sages. Agg(-) represents the message aggregation
method, for which we use the widely adopted Prin-
cipal Neighborhood Aggregation (PNA) proposed
in (Corso et al., 2020), which leverages multiple
aggregators (namely mean, maximum, minimum,
and standard deviation) to learn joint features. For
izlsjtl, ﬁlogl € RY, they are derived from the previ-
ously obtained final updated features, as follows:

H'=HoWLH! . 2)

Here, we use H* € RIVI*? with uppercase to de-
note the representations of the entire set of nodes
V. For s,0 € V, there is izf;tl, leO}l cH'. H!
represents the final updated features, which will be
introduced in Sec. 4.2.2. Wl € R4 is a train-
able transformation matrix used for the weighted
summation of updated features from two different
timestamps to achieve Cross-time Evolution (CE).
Through the above observations, we can conclude
that the input of each layer is generated by: the
output from the same layer at the previous times-
tamp, and the output from the previous layer at the
current timestamp.

4.2.2 Feature Update after Aggregation

After completing the feature aggregation described
in Eq. 1, hé’t is expected to have captured the sub-
graph and historical [-hop neighbor information
for node o, and the same applies to other nodes
o € V. Similarly, we use H' € RVI*9 to rep-
resent the features obtained for the entire set of
nodes at timestamp ¢ after [-th layer aggregation.
To better capture the temporal pattern of the sub-
graph sequence and non-trivial influence of histor-
ical neighbors on the semantic evolution process,
we employ a multi-span gating mechanism to as-
sist in updating the node semantics based on the
aggregation process, as follows:

H =UeH +1-UHYoH ,. 3

Eq. 3 describes how to obtain the final updated
representation H} € RIVIX4 of nodes using the ag-
gregated features H after [-th layer aggregation.
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Figure 2: The Overall Architecture of DiMNet.

Here, ® is defined as the element-wise multiplica-
tion operator. U} € RVIXd represents the gating
weights at timestamp ¢, which are obtained by

Ul = o(WigAi_1 + bly), )

where Wi, € R¥9 and bl, € R? are the train-
able weights and bias parameters in the Updating
Gate (UG) computation process, respectively. As for
A;_1, it represents an active factor used to guide
the influence of historical neighbors on feature up-
date, that can be disentangled during the evolution
process, which will be introduced in Sec. 4.3.

We can see that U}, W;, and bl are all layer-
specific, ensuring that the influence of updated fea-
tures from different historical layers on the cur-
rent timestamp’s update is unique. This multi-span
strategy aligns with our goal by modeling the cross-
time same-layer feature transmission, allowing the
central node to perceive the semantic changes of
historical neighbors.

4.2.3 Feature Initialization

Here we introduce the feature initialization at the
starting layer and timestamp. In the training phase,
we initialize the trainable embeddings for the set
of nodes and relations, denoted as V € RIVI*d
and R € RIRIX4 respectively. For Vt > 0, which
means for timestamps other than the starting times-
tamp of the subgraph sequence, the input for the
1-st layer is derived as follows:

ﬁg,t = g(po,t I MP{RIC(O)})a 5

where C(0) represents the edges that o serve as
objects, MP{-} denotes the mean pooling opera-

tion performed on relation embeddings correspond-
ing to (o), || represents the vector concatenation
operation, and g is a 2-layer fully connected net-
work used to reduce the dimensionality to R%. And
Pot € P; is determined as follows:

Pt:It®v+(]—_It)®ﬁgil’ (6)

I, = U(WIGBt—l + bIG)~ @)

Similar to Eq. 3 & Eq. 4, a gating mechanism pa-
rameterized by Initialization Gate weight Wig is
adopted here. ﬁf_l represents the features ob-
tained after the final w-th layer update at ¢ — 1,
ensuring that while evolving across same-layer, the
sequential temporal characteristics of the structure
are also preserved. And B;_1, in contrast to A;_1
in Eq. 4, represents a stable factor used to guide
the initialization of the layer, which will also be
introduced in Sec. 4.3. Fort = 0, P, + V, and
Atfl,Btfl — 6

4.3 Cross-time Disentanglement

Since node semantic changes occur along with the
changes in subgraph structures over time, here we
design a cross-time disentangle component to learn
how node semantics change after each subgraph
structure, utilizing the updated features at two adja-
cent timestamps, HY and H¥ |, where w denotes
the final layer of aggregation in the evolution. We
aim to disentangle a pair of mutually exclusive
factors, namely the active factor and the stable
factor, to represent the activity and smoothness of
the semantic changes of nodes between timestamp
tandt — 1.
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Considering that the semantic changes of fzw

relative to h“t 1 are due to the differences in the
neighbor at timestamp ¢ compared to ¢ — 1. There-
fore, we start from the updated feature of a central
node o at timestamp ¢ and the related 1-hop neigh-
bors NV, ¢—1 at timestamp ¢ — 1, since 1-hop neigh-
bors have already collected sufficient neighbor fea-
tures in HY |, where N,; 1 = {s|(s,7,0) €
Gi—1}. Specifically, we design a mutually ex-
clusive attention mechanism to disentangle the
adjacent updated states. For Vs € N,; 1 and
(s,r,0) € G¢_1, we calculate the attention vectors:

Qt = Wo(h%, || 7), (8)
= Wi(h?,_1 || ), ©)
vt:w <), (10)

S
where h“’t 1 represents the updated feature of node
o’s neighbor s at timestamp ¢ — 1. Wy, W €
R24xd Wy € R4 denotes the weight matrices
for query, key and value vector, respectively. Note
that in the computation of Q! and K!, we con-
catenate the relation embedding r to distinguish
the impact of different edge types. For simplic-
ity, we omit the bias terms here. Then, we can
calculate the attention score between the neighbor
s € No,t,l and the central node o through the dot
product operation, as follows:

Q.- K;
€<s,o0> = — =~ -
) \/&

The positive and negative forms of e, .~ are
passed through the softmax function to thus obtain
two inversely proportional normalized scores:

(1D

eXp(€<s,o>)
ZUENo,t—l exp(e<u,o>) ’

exp(—e<s,0>)
ZuENa,t—l exp(—e<uo>)

Mo = (12)

Moo = (13)
Here, we denote 7 as the active score and 77 as the
stable score. Intuitively, a neighbor with higher
1 will have lower n. Finally, we perform mean
pooling on all the neighbor features V! based on
the two scores to obtain a pair of mutually exclusive
factors, namely active factor o and stable factor 3:

Vu € Noy—1, af = GRU(a 1, MP{n}, ,V,/}),
(14)

Vu € Na,t—h IBtO - Mp{ﬁz,ovut}' 15)

Note that o € A; and 3 € B;. As mentioned in
Sec. 4.2, they are used to guide the dynamic gating
parameters U, and I, (corresponding to Eq. 4 and
Eq. 7, respectively). Here we see that the calcu-
lation of af incorporates a GRU iterative process.
This endows the active factor with temporal charac-
teristics, allowing it to learn the temporal patterns
of activity along the subgraph sequence and thus
providing better temporal features to guide seman-
tic evolution.

4.4 Decoder and Inference

After the subgraph sequence of a TKG undergoes
multi-span evolution, the complex evolutionary fea-
tures of node semantics are captured. Based on this,
we design an inference scheme specifically for the
multi-span evolution encoding.

4.4.1 Score Function

Given a historical subgraph sequence ending with
G, where T is the final timestamp in the given
historical sequence, the final evolution result H 7
retains all the semantic and temporal information
from the subgraph sequence. Therefore, for the
query (s,r,7?7) at timestamp 7' + 1, we consider
using I;[‘j‘i to decode and calculate the probability
of interaction between subject node s and object
candidates Vo € V under the relation r.

Specifically, we use the widely adopted scoring
function ConvTransE (Shang et al., 2019) to score
the missing object node following Eq. 16, where
h R ho o € HY, C denotes ConvTransE layer, o
is 51gm01d function.

or+1(ols,r) = U<ho rC(hS 7 ))

4.4.2 Inference on Virtual Subgraph

(16)

We note that the topologies between subgraphs are
mutually independent. This means that when pre-
dicting the subgraph at a future timestamp, solely
relying on the updated features IQI% obtained at
timestamp 7" is insufficient, as DiMNet does not
incorporate query-related features during the encod-
ing phase. Therefore, inspired by the query-aware
method (Dong et al., 2023, 2024), we sample a few
edges using the scoring results derived by Eq. 16
to form a virtual graph, which is used for the final
scoring inference, as follows:

ﬁ;‘—l - {(87 r, Oi)

0; € Top-k [(I)T+1(57 7")] }7 (17)

where @741 (s, r) represents the scores of all candi-
date tail entities corresponding to the query (s, 7, ?),
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i.e., ¢pr41(0ils,r) € ®ryi(s,r). s and r are the
subject and relation of the query at timestamp 7'+ 1.
Top-k[-] denotes sampling top k candidates with
the highest scores.

Based on the virtual graph G{Nj?l, we perform
multi-span evolution (Eq. 1-7) once again to ob-
tain I:I% 1> Which is used to fed into the scoring
function again to obtain the final scoring results:

dpa(olsr) = o (hep ChEr ) ). (18)
4.5 Learning and Optimization

Predicting missing facts can be viewed as a multi-
label learning task. Therefore, based on the final
scoring results, the prediction loss is formalized as:

7]

Lorea=Y_ Y. > ytloggi(uls,r), (19)

t=1 (s,r,0)€Gt u€eV

where |7 | represents the number of timestamps in
the training set. And y;’ is the ground truth label,
where the value is 1 indicates that the fact occurs
and 0 otherwise.

Additionally, during the evolution process, we
disentangle the updated features of adjacent times-
tamps to obtain the active factor a and the stable
factor 3. To ensure that the stable factor captures
smooth features during training, we introduce an
additional distance constraint loss:

m
Las=3 (1 — CosSim[BY,, ﬁg}). (20)
t=1 ueV
Note that, for simplicity, we omit the outer sum-
mation symbol over the absolute timestamps in
the training set, and use ¢ to denote the relative
timestamps in the input historical sequence, with m
representing the length of the historical sequence.
CosSim[-] denotes the computation of the cosine
similarity between vectors, used to ensure that the
stable factors obtained at adjacent timestamps are
similar. Based on the above discussion, the final
loss is £ = Lyreqd + Lais-

S Experiments

5.1 Experimental Setup

Datasets. We adopt four widely used datasets:
ICEWS14 (Han et al., 2020a), ICEWSO05-15 (Li
et al., 2021), ICEWSI18 (Jin et al., 2020), and
GDELT (Leetaru and Schrodt, 2013). Specifi-
cally, all of ICEWS datasets are the subsets gener-
ated from the Integrated Crisis Early Warning Sys-
tem (Boschee et al., 2015), which contains political

events with specific timestamps. GDELT is derived
from the Global Database of Events, Language,
and Tone. We follow the data processing strategies
mentioned in (Jin et al., 2020; Dong et al., 2024),
which split the dataset into train/valid/test by times-
tamps that (timestamps of the train) < (timestamps
of the valid) < (timestamps of the test). Detailed
dataset statistics are provided in Table 2.
Evaluation Metrics. We use Mean Reciprocal
Rank (MRR) and Hits@{1, 3, 10} as performance
evaluation metrics. Some existing methods use
filtered metrics that exclude all valid quadruples in
the dataset, but it has been shown to be unsuitable
for TKG reasoning tasks (Dong et al., 2024; Han
et al., 2021), thus we report the more reasonable
time-aware filtered metrics, which only filter out
valid facts at the query timestamp from rank list.
Baseline Methods. We conduct a comparison
with interpolated and extrapolated TKG meth-
ods. (1) Interpolated TKG: TTransE (Leblay and
Chekol, 2018), TA-DistMult (Garcia-Duran et al.,
2018), DE-SimplE (Goel et al., 2020), and TNT-
ComplEx (Lacroix et al., 2020). (2) Extrapolated
TKG: TANGO-Tucker (Han et al., 2021), TANGO-
DistMult (Han et al., 2021), CyGNet (Zhu et al.,
2021), RE-NET (Jin et al., 2020), RE-GCN (Li
etal., 2021), TITer (Sun et al., 2021b), XERTE (Han
et al., 2020a), CEN (Li et al., 2022b), GHT (Sun
et al., 2022), DaeMon (Dong et al., 2023), and
TiPNN (Dong et al., 2024).

5.2 Implementation Details

For all datasets, the embedding dimension d is
set to 128, and we use Adam (Kingma and Ba,
2014) for parameter learning with a learning rate of
le — 3. For the multi-span evolution, we perform
a grid search on the history length m and present
overview results with the lengths 10, 2, 10, 5, corre-
sponding to the datasets ICEWS14, ICEWS05-15,
ICEWS18, and GDELT in Table 1, of which param-
eter sensitivity analysis is shown in Figure 3. The
number of evolution layers w in each timestamp
is set to 3 for the ICEWS14, ICEWS18, GDELT
datasets, and 1 for the ICEWS05-15 dataset. Layer
normalization and shortcuts are applied for the
message aggregation process of each layer. The
adopted activation function is RReLU. For the
cross-time disentanglement, we incorporate a multi-
head design into the attention mechanism to learn
more complex features. The number of heads is
set to 4 for ICEWS14 and ICEWSI18, and to 1 for
ICEWSO05-15 and GDELT. The sampling number
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ICEWS14 ICEWSO05-15 ICEWS18 GDELT

Model
MRR H@l H@3 H@lI0 MRR H@l H@3 HE@I0 MRR H@l HE@3 H@I0 MRR H@l H@3 H@I0
TTransE 1343  3.11 17.32 3455 1557 4.80 19.24 3829 831 1.92 856 21.89 550 047 494 1525
TA-DistMult 2647 17.09 30.22 4541 2431 1458 2792 4421 1675 8.61 1841 3359 1200 576 1294 23.54
DE-SimplE 32.67 2443 3569 49.11 3502 2591 3899 5275 1930 11.53 21.86 34.80 19.70 1222 21.39 33.70
TNTComplEx 32,12 2335 36.03 49.13 27.54 952 3080 4286 21.23 1328 24.02 3691 1953 1241 20.75 3342
TANGO-Tucker  26.25 17.30 29.07 44.18 4286 32.72 48.14 62.34 28.68 19.35 32.17 47.04 1942 1234 20.70 33.16
TANGO-DistMult  24.70 16.36 27.26 41.35 40.71 3123 4533 5895 26.65 1792 30.08 44.09 19.20 12.17 2040 32.78
CyGNet 3273 23.69 36.31 50.67 3681 26.61 41.63 5622 2493 1590 28.28 42.61 1848 11.52 19.57 31.98
RE-NET 38.28 28.68 4143 5452 4332 3343 4777 63.06 2881 19.05 3244 4751 19.62 1242 21.00 34.01
RE-GCN 41.78 31.58 46.65 61.51 48.03 37.33 53.85 6827 30.58 21.01 3434 4875 19.64 1242 2090 33.69
TITer 41.73 3274 4646 5844 47.69 3795 5292 65.81 2998 22.05 3346 4483 1546 1098 15.61 2431
XERTE 40.79 32770 45.67 5730 46.62 37.84 5231 6392 2931 21.03 3340 4560 18.09 1230 20.06 30.34
CEN 42.17 32.10 47.59 6143 46.84 3638 5245 67.01 30.84 2123 3458 49.67 20.18 12.84 21.51 34.10
GHT 37.40 2777 41.66 56.19 4031 29.99 45.04 60.51 29.16 1899 33.16 48.37 20.13 12.87 21.30 34.19
DaeMon 40.68 31.53 4558 56.73 4450 3555 49.64 60.75 31.85 22.67 3592 49.80 20.73 13.65 22.53 34.23
TiPNN 41.79 3276 4692 5880 4535 36.27 50.58 62.16 32.17 2274 36.24 50.72 21.17 14.03 2298 34.76
DiMNet 4572 3441 5137 6799 5893 4855 65.16 7833 34.13 2329 3842 5580 2193 14.03 23.57 37.49

Table 1: Overall Performance Comparison of Different Methods. The best results are highlighted in bold.

Datasets VI IRl Etrain  Evatia  Etest  |T]
ICEWS14 7,128 230 63,685 13,823 13,222 365
ICEWS05-15 10,488 251 368,868 46,302 46,159 4,017
ICEWS18 23,033 256 373,018 45,995 49,545 304

GDELT 7,691 240 1,734,399 238,765 305,241 2976

Table 2: Statistics of Datasets (Erain, Evatids Etest de-
note the numbers of facts in train/valid/test sets.).

k is set to 50 for all datasets, during the construc-
tion of the virtual subgraph for scoring. The max-
imum epoch in the training stage has been set to
60. All experiments were conducted with TESLA
A100 GPUs. Code and datasets are available at
https://github.com/hhdo/DiMNet.

5.3 Experimental Results

Table 1 presents the overall performance of DiM-
Net in TKG reasoning task. From the results, we
find DiMNet outperforms all baseline methods on
the four TKG datasets. Specifically, it surpasses the
existing best methods in terms of MRR by 8.4%,
22.7%, 6.1%, and 3.6% on ICEWS14, ICEWSO05-
15, ICEWS18, and GDELT datasets, respectively.
Compared to interpolated TKG reasoning meth-
ods, DiMNet considers the temporal characteristics
of facts and employs an evolutionary modeling
strategy to maximize the capture of semantic evo-
lution features. This gives it a natural advantage
in TKG reasoning, showcasing excellent perfor-
mance in completing future missing facts. In com-
parison with existing extrapolated TKG reasoning
methods, DiMNet still demonstrates outstanding
performance. Unlike previous methods, in model-
ing the semantic evolution of historical subgraph
sequences, DiMNet incorporates a multi-span strat-
egy that allows the model to perceive intermediate
features of historical neighbor semantic updates
while capturing local structural semantics, facilitat-

ing the learning of multi-span semantic evolution,
which is overlooked by existing evolution-based
methods (Li et al., 2021; Liu et al., 2023; Dong
et al., 2023). The disentangle component in DiM-
Net adaptively separates the active and stable fea-
tures of nodes during semantic changes, guiding the
influence of historical neighbor features on subse-
quent semantic updates in the multi-span evolution
process, thereby maximizing the capture of seman-
tic change patterns. Furthermore, the specifically
designed decoder synergizes with historical evolu-
tionary modeling to enhance the performance in
completing future missing facts.

5.4 Ablation Study

To verify the impact of each component, we con-
ducted ablation study on all datasets. The results
of variants are shown in Table 3.

Multi-span evolution strategy (denoted as w/o
Multi-span): Note that we don’t remove the entire
evolution strategy but rather disable the percep-
tion of historical neighbor features during the local
structural semantics capturing. This way, the basic
temporal features can still be retained, thereby max-
imizing the impact of the multi-span strategy. From
the results, it is evident that without the perception
of historical neighbors, the performance of DiM-
Net significantly drops as it can no longer capture
the fine-grained multi-span updates and evolution.
Disentangle component (w/o Disentangle): We
replaced the active factor A and stable factor B
calculated by disentangle component with zero vec-
tors, removed GRU iterative process (in Eq. 14), and
deleted L4;5 loss term. Results show that without
the dynamic disentangled features, DiMNet also
suffers significant performance loss because the dis-
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ICEWS14 ICEWS05-15 ICEWSI18 GDELT
Model
MRR H@l H@3 H@I0 MRR H@l H@3 H@I0 MRR H@l H@3 H@I0 MRR Hel H@3 He@I0
DiMNet 4572 3441 5137 67.99 5893 4855 65.16 78.33 34.13 2329 3842 5580 21.93 14.03 23.57 37.49
w/o Multi-span 4075 30.16 45.64 61.62 51.17 40.80 56.97 70.88 30.74 20.67 34.57 5094 20.99 13.06 22.55 37.03
w/o Disentangle 3434 2490 3816 5299 5322 43.14 59.05 72.01 33.60 22.88 37.97 5491 2051 12.64 2256 36.23
w/o Multi-span & Disentangle 36.09 25.35 40.72 57.45 50.36 39.99 5596 7025 30.88 20.61 3474 51.57 2071 12.69 2220 36.55
wio Gy 36.10 2642 4033 5496 4545 3515 5093 6522 30.02 2025 33.61 4937 19.81 1254 21.10 33.92
Table 3: Experimental Results of Ablation Study.
P N I e e / L P —o
Her o et “ Hor o et

(a) ICEWS14 (b) ICEWSI18

Figure 3: Performance on Different Sequence Length.

(a) ICEWS14 (b) ICEWS18

Figure 4: Performance on Different Layer Number.

entangle component adaptively separates complex
changing features while providing updated guid-
ance for multi-span evolution. Additionally, when
both the multi-span mechanism and disentangle
component are removed (denoted as w/o Multi-
span & Disentangle), DiMNet almost degrades to
the stacking of m * w GNN layers, of which the
results are still not satisfactory. Sampling virtual
subgraph (w/o Gyr): We also attempted to re-
move the inference strategy using the virtual sub-
graph for re-scoring, and the results were similarly
poor. This aligns with our intuition and further
proves the effectiveness of DiMNet’s design.

5.5 Parameter Study

Here we test the performance on different historical
sequence lengths m, GNN layer numbers w, and
virtual subgraph sampling numbers £ on ICEWS14
and ICEWS18 datasets.

Analysis of Sequence Length m: As shown in
Figure 3, historical sequence length m does not
significantly affect performance on both datasets.
Especially for ICEWS18, the performance change
tends to stabilize, demonstrating the robustness of
DiMNet. In practice, to balance performance and
complexity, we set the optimal number of m to 10
for both ICEWS14 and ICEWS18.

(a) ICEWS14

(b) ICEWS18

Figure 5: Performance on Different Virtual Subgraph
Sampling Number.

Analysis of Layer Number w: As shown in Fig-
ure 4, it indicates that ICEWS14 and ICEWS18
perform best with 3 layers. Additionally, the layer
number has a relatively sensitive impact on perfor-
mance for the ICEWS14 dataset, and the model
performance tends to stabilize as the number of
layers increases in both of the datasets.

Analysis of Sampling Number k: The results are
shown in Figure 5, where w/o SVS indicates the
removal of Sampling Virtual Subgraph. We can see
that it significantly improves model’s performance.
However, for ICEWS14, when £ increases from 50
to 80, the model performance shows a declining
trend. This is because the sampled subgraph is
based on scoring, and a larger k value introduces
more erroneous noise, leading to poorer results.

6 Conclusion

In this paper, we propose DiMNet for TKG reason-
ing, which models historical subgraph evolution
from a semantic change perspective. Based on
message passing, the multi-span evolution strategy
enables interactions among subgraphs while cap-
turing semantic evolution. To enhance modeling
of semantic changes, we introduce a disentangle
component that separates active and stable features,
guiding updates in subsequent subgraphs. We fur-
ther design an inference strategy using virtual sub-
graph sampling to address uncertainty in future
topology. Extensive experiments show that DiM-
Net yields substantial improvements and achieves
new state-of-the-art results.
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Limitations

The limitations of this work can be summarized in
two points. First, while the multi-span evolution
strategy effectively encodes historical subgraph se-
quences in temporal knowledge graphs, it heavily
relies on local neighborhood information within
the graph structure. Therefore, DiMNet may face
performance bottlenecks when dealing with sparse
graph structures. Second, the disentangle compo-
nent in DiMNet can adaptively separate the mu-
tually exclusive active and stable node features.
However, due to its black-box modeling manner, it
is challenging to generate interpretable visualiza-
tions of these disentangled features. Designing a
robust and interpretable framework for semantic
evolution modeling could be a promising direction
for future work.
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