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Abstract

Ensuring factual consistency in summariza-
tion remains a challenge, especially for long-
document evaluation. While automated,
reference-free evaluation models are essential
given the impracticality of large-scale human
assessment for lengthy texts, challenges per-
sist in evaluating different systems on how
to handle different summary granularities and
evolving model generations. In this work, we
conduct a systematic study on diverse factual-
consistency evaluation systems across four
long-document datasets, encompassing sum-
maries generated by models from non-LLMs
to proprietary LLMs. Our analysis reveals
that fine-grained continuous scores can provide
more reliable assessments of different evalua-
tion systems’ capabilities than binary classifi-
cation. We also examine the relationship be-
tween sentence-level and summary-level model
performance, highlighting its dependency on
dataset characteristics. Moreover, our study
reveals that advanced systems can achieve
higher recall in error detection for older sum-
maries, yet struggle with false positives and
fine-grained error detection. Our analysis and
case studies provide further insights into de-
signing robust factuality evaluation systems,
which are becoming increasingly in demand as
generative models advance rapidly.

1 Introduction

Despite the recent progress for summarization mod-
els in producing fluent summaries, they still en-
counter challenges in producing summaries that
are factually consistent with the source context
(Maynez et al., 2020; Kryscinski et al., 2020; Goyal
and Durrett, 2021; Cao and Wang, 2021; Zhang
et al., 2024). While human evaluation remains
the best practice to judge the factual consistency
of automatically generated summaries, it becomes
increasingly challenging when long sequences of
generated texts (close to or over 100 words) and

inputs (over thousands of words) need to be evalu-
ated (Goyal et al., 2022; Krishna et al., 2023). Thus,
building reference-free evaluation metrics becomes
much more appealing. Yet, testing and develop-
ing reliable evaluation systems1 faces challenges,
especially for long document summarization.

Different from short news/dialogue summariza-
tion benchmarks–such as SUMMAC (Laban et al.,
2022), AGGREFACT (Tang et al., 2023) and DI-
ALSUMM (Gao and Wan, 2022) – which pro-
vide summary-level binary labels (1/0) indicat-
ing the factual consistency of brief (1-3 sentence)
summaries, long-document evaluation benchmarks
(Koh et al., 2022; Zhang et al., 2024; Lee et al.,
2024) typically feature summaries of three or more
sentences and are over 100 words in length. This
discrepancy raises the question about how to pro-
duce the summary-level predictions for long docu-
ment summaries. While some works (Zhang et al.,
2024; Scirè et al., 2024) opt for a binary classi-
fication setup, others aggregate human-annotated
sentence- or clause-level scores to produce a con-
tinuous measure of the overall factual consistency.
While different evaluation systems are proposed
to optimize for individual datasets, clarifying the
impact of label setups is crucial to provide fair
comparisons of different approaches.

Moreover, inspired by the study by Pagnoni et al.
(2021), several long-document evaluation datasets
collect sentence-level fine-grained error types. Al-
though recent work (Xu et al., 2024; Song et al.,
2024) started incorporating error prediction at the
sentence level, their approaches relied on LLM’s
zero-shot capability, and there lacks a systematic
evaluation of how different systems perform in de-

1In this paper, we distinguish between evaluation sys-
tems and metrics when reporting benchmarking results.
The former refers to models that take the source document
and summary as input to produce a summary-level predic-
tion, while the latter refers to the measures (e.g., correlation,
accuracy) used to compare these predictions against human-
annotated scores in benchmark datasets.
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tecting the fine-grained error types.
Meanwhile, although summarization models

have quickly evolved from pre-trained models such
as BART (Lewis et al., 2020) and Pegasus (Zhang
et al., 2020) to Large Language Models (LLMs)
(Achiam et al., 2023; Dubey et al., 2024; Anthropic,
2024), the development of benchmarking datasets
has lagged behind (i.e., the human-annotations of
BART-generated summaries (Koh et al., 2022) still
serve as one primary reference to assess the perfor-
mance of varied strong LLM-based evaluators (Xu
et al., 2024)). As found by Lee et al. (2024), propri-
etary LLM-generated summaries have a lower rate
of intrinsic errors compared to those of non-LLM-
generated summaries. Before attempting to excel
on any given benchmark, it is vital to understand
the strengths and limitations of different evaluation
systems across model-generated summary types.

To overcome the limitations mentioned above,
we conduct a systematic study over four different
long-document summarization evaluation datasets
that cover different source text domains, with sum-
maries generated by models ranging from non-
LLMs to proprietary LLMs. We empirically evalu-
ate different factual consistency evaluation systems
over the combined datasets, motivated by multi-
ple research questions. Exploring the optimal uti-
lization of summary-level annotation in evaluating
long summaries (RQ1), we find that fine-grained,
continuous scoring methods are more effective
than binary classification (which is heavily relied
on in short document summarization evaluations)
(§5.1.1). We also examine the transferability of
models’ sentence-level prediction capabilities to
summary-level evaluations (RQ2), noting a high
correlation between model efficiency in detecting
sentence-level inconsistencies and the performance
on summary-level tasks, supposing utilization of
suitable datasets and metrics (§5.1.2). Additionally,
we assess the strengths and limitations of differ-
ent evaluation systems in capturing fine-grained
error types (RQ3), observing that more advanced
systems can significantly improve the recall in de-
tecting errors, yet still face challenges in minimiz-
ing false-positives (§5.2). Lastly, our analyses on
how factual-inconsistency errors evolve as sum-
marization systems are updated (§3.2 and §6) and
the systematic comparison of system performances
across time (RQ4, §5.3) underscores the need for
continuous efforts in co-designing benchmarks and
iteratively refining evaluation systems to enhance
factual error detection. Lastly, we conduct both

quantitative and qualitative analyses of model pre-
dictions, which reveal key takeaways about the
strengths and limitations of different approaches,
as well as actionable insights for guiding the devel-
opment of future methods (§6).2

2 Related Work

Long Document Evaluation Benchmarks Re-
search on automatic factual consistency evaluation
metrics and resources for long document summa-
rization is limited. Koh et al. (2022) released anno-
tated model-generated summaries assessing factual
consistency at the sentence and summary levels
for GovReport (Huang et al., 2021) and arXiv (Co-
han et al., 2018) and Krishna et al. (2023) intro-
duced human-evaluation guidelines for long docu-
ment summaries and released their crowdsourced
datasets. Furthermore, Bishop et al. (2024), Zhang
et al. (2024), Ramprasad et al. (2024), and Lee et al.
(2024) introduced multiple benchmarks on long
documents and covered diverse domains. However,
most prior studies proposed and validated factual
consistency evaluation methods using their own
released corpora, which often lacked standardized
reference labels (some used binary summary labels
while others prefer continuous scores). We aggre-
gate multiple long document evaluation datasets
that span multiple domains, unify the sentence-level
and summary-level prediction tasks, and conduct a
comprehensive study on the evaluation tasks.
Evaluation Systems To tackle the challenges of
long documents, numerous approaches leveraging
either natural language inference (NLI) models
(Zha et al., 2023; Zhang et al., 2024; Zhong and
Litman, 2025) or Question-Answering-based mod-
els (Deutsch et al., 2021; Fabbri et al., 2022) were
explored. With the rise of more capable LLMs,
evaluating summaries on either sentence or sum-
mary level through zero-shot prompting became
increasingly popular in the community (Liu et al.,
2023; Song et al., 2024; Li et al., 2025). Our study
benchmarks different evaluation systems and sys-
tematically evaluates the strengths and limitations
of those systems, providing discussions on the fu-
ture directions in developing more robust factual
consistency evaluation systems.
Systematic Evaluation on Summarization Tasks
Recent studies have aggregated benchmarking
datasets and conducted meta-evaluations of differ-

2Scripts, predictions and analyses are available at https:
//github.com/cs329yangzhong/TaleOfFactualEval.
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Text Diversity Summary Generation Human Annotation Dataset Statistics

Doc.Src Gen.Model Granularity Sum.Label Size Doc.Word Sum.Sent Sum.Word

DIVERSUMM
GovReport non-LLMs: PEGASUS, BART Sent Level Binary 147 2008 15 391

ArXiv 146 4407 6 150

LONGEVAL
SQuALITY non-LLMs: BART, BART-DPR Clause Level Percent. 40 7457 19 388

PubMed BIGBIRD-Pegasus, LongT5 40 3888 8 190

RAMPRASAD’24 BillSum non-LLM: Flan-T5-XL Sent Level Percent. 100 1681 3 86
PubMed proprietary LLM: GPT-3.5 100 1797 4 100

UNISUMEVAL

GovReport non-LLMs: BART, T5

Sent Level Percent.

182 6296 6 156
PubMed open-source LLMs: Phi-2, Mistral7B

Llama2-13B-chat, Mixtral-8x7B
193 3187 7 165

SQuALITY 217 6083 5 110
MediaSum proprietary LLMs: GPT3.5-turbo

GPT-4-turbo, Claude2.1
194 1618 5 113

MeetingBank 194 978 4 89

Table 1: Dataset statistics on our selected portions of DIVERSUMM (Zhang et al., 2024), LONGEVAL (Krishna
et al., 2023), the dataset in Ramprasad et al. (2024), and the long split of UNISUMEVAL (Lee et al., 2024). We
report the source of input (Doc.Src) and the summarization models (Gen.Model). Regarding human annotation
details, LongEval annotates at the clause level by breaking down sentences into atomic units, while the other
datasets annotate at the sentence level. Summary labels are either aggregated in a binary form (label 1 if there are
no inconsistent sentences and 0 otherwise) or reported as a percentile of annotated “consistent“ sentences/clauses.
Finally, we report the number of test cases (Size), document length in the average number of words (Doc.Word),
summary length in the average number of sentences (Sum.Sent) and words (Sum.Word).

ent factual consistency evaluation systems across
these datasets (Gabriel et al., 2021; Pagnoni et al.,
2021; Fabbri et al., 2021; Laban et al., 2022; Tang
et al., 2023; Laban et al., 2023; Tam et al., 2023;
Aharoni et al., 2023; Chrysostomou et al., 2024).
However, many focus solely on summary-level per-
formance metrics, such as correlation and accuracy,
without offering insights into improving these eval-
uation systems. Notably, Pagnoni et al. (2021) per-
formed error analyses of evaluation system predic-
tions over fine-grained error types, and Tang et al.
(2023) studied the different error types included
in the benchmark’s system summaries and further
compared evaluation systems performances span-
ning both pre-LLM and LLM models. Yet, both
studies focused on the short summarization tasks,
with conclusions based on summary-level labels.
Our work addresses the more challenging long-
document summarization tasks by considering the
nuanced sentence-level evaluations. We introduce
a comprehensive evaluation that spans different
systems, including both the older specialized fact-
checkers and more recent LLM-based systems, and
analyze their performances over summaries pro-
duced by varied generations of generative models.

3 Datasets and Analysis

3.1 Long Datasets Studied

We choose four data sources in our experiments:
(1) DIVERSUMM (Zhang et al., 2024), specifically
its ArXiv and GovReport split; (2) LONGEVAL (Kr-
ishna et al., 2023) (the machine-generated sum-

mary portion) 3; (3) RAMPRASAD’24 (Ramprasad
et al., 2024), which spans both the legal domain
(Billsum) (Kornilova and Eidelman, 2019) and the
medical domain (PubMed (Cohan et al., 2018)); as
well as (4) UNISUMEVAL (Lee et al., 2024), which
includes long document splits spanning five text
domains, and we use its faithfulness annotations.

All datasets contain (annotated/derived) fine-
grained sentence-level labels and aggregated
summary-level labels. Noticeably, these datasets
reflect the NLP community’s ongoing efforts to
construct annotated instances derived from sum-
maries produced by state-of-the-art generative mod-
els, ranging from non-LLMs such as BART to
LLMs such as GPT-4-turbo. We include detailed
dataset comparisons in Table 1 and a more extended
table about the dataset annotation quality in Table
8 of Appendix A.1. Compared to shorter summa-
rization benchmarks such as AggreFact (Tang et al.,
2023), which typically include inputs of fewer than
500 words and summaries consisting of just one
to three sentences in the news domain, the corpora
examined in our work cover a broader range of
domains and feature much longer inputs and sum-
maries. This complexity poses greater challenges
for factual consistency detection (Koh et al., 2022).

3.2 Analyses on Dataset Labels

Analysis 1: How do factual inconsistency scores
distribute across the binary summary-level la-

3This aligns with the setup in prior work (Wu et al.,
2024) by excluding human-written reference summaries.
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Figure 1: Distribution of summary-level continuous
scores for summaries assigned the binary label of 0.
For each dataset, we report the proportion of sum-
maries containing errors (% labeled as 0) along with
the total number of annotated article-summary pairs.

bels? In DiverSumm, summary-level labels are
determined based on sentence-level annotations. A
summary is labeled as inconsistent (0) if at least
one sentence is annotated as inconsistent. Other-
wise, it is labeled as consistent (1). In Figure 1,
we plot the distributions of summary-level scores
for all four datasets. For those annotated with de-
fault percentage scores, we transform them into the
binary version as in DIVERSUMM. We observe
that the distribution of datasets can differ, despite
all containing factual consistency errors. While
DIVERSUMM has a relatively higher proportion of
consistent summary sentences, LONGEVAL has a
left-skewed distribution, highlighting the high error
rates. We hypothesize that treating all inconsistent
summaries as 0 overlooks fine-grained differences,
which may hinder the evaluation result’s credibility
when applying binary classification-based metrics.
We further validate this hypothesis in RQ1 of §5.1.

Analysis 2: The distribution of fine-grained
sentence-level factual inconsistency errors DI-
VERSUMM and UNISUMEVAL provide fine-
grained fact verification error types (Table 9 and
Table 10). In Figure 2, we plot the distributions of
fine-grained error types among all errors for each
dataset, with the breakdown over the summariza-
tion models (non-LLMs / open-source LLMs / pro-
prietary LLMs). We observe that extrinsic errors,
i.e., out-of-article errors (OutE), are prevalent in
UNISUMEVAL, denoting the persisting challenges
of models in introducing non-verifiable facts while
generating summaries. The proportion of entity er-
rors (EntE) is also reduced. In a later section (§5.2),
we benchmark the capabilities of different evalua-

Figure 2: Error distribution across datasets and sum-
marization models. Non-LLM summaries exhibit
higher proportions of errors, of which entity (EntE)
and out-of-article errors (OutE) are the most prevalent.

tion systems in detecting various error categories.

4 Experimental Setup

With the varied research questions introduced, our
main focus is to perform a systematic study on ex-
isting factual consistency evaluation systems under
the long document evaluation setting. Below, we
describe the systems we experiment with to pro-
duce sentence-level labels (§4.1), as well as the
evaluation metrics suitable for sentence-level and
summary-level evaluations (§4.2).

4.1 Factual-Consistency Evaluation System
Selection

We split our evaluated systems into three main cat-
egories: (1) Specialized fact-checkers, a term de-
fined in prior work (Tang et al., 2024a), which are
powered mainly by trained natural language infer-
ence models over fact-checking tasks and devel-
oped before LLMs. One of our baselines is Align-
Score (Zha et al., 2023), an NLI-based metric used
as one strong baseline in prior work. We also in-
clude INFUSE (Zhang et al., 2024), which sets the
SOTA on DIVERSUMM, as well as MINICHECK
FT5-SENT (MC-FT5) that is a best-performing
non-LLM fact-checker over multiple benchmarks,
which computes the individual summary sentences’
scores using MINICHECK FT5 (Tang et al., 2024b).
Additionally, we include (2) LLM-based systems
that mainly rely on the LLM’s zero-shot capa-
bility through prompting. We include GPT4o
(OpenAI et al., 2024) and Gemini as the LLM
fact-checkers, using a prompt adopted from Tang
et al. (2024b). Additionally, we add Llama-3.1-
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BeSpoke-MiniCheck-7B (BeSpoke), the SOTA
fact-checking model on the LLM-AggreFact bench-
mark (Tang et al., 2024b), and the faithfulness com-
ponent of FineSurE (Song et al., 2024), which
evaluates summarization quality at a fine-grained
level by assessing individual summary sentences.
It introduces reasoning and error predictions on top
of the binary classification.

Lastly, we include two variants of StructScore
(Zhong and Litman, 2025), (3) the linguistic-
informed approach to enhance long-document fac-
tual consistency evaluation. The initial sentence-
level scores can be generated using different
backbone systems. In this study, we consider
MC+rew. and BeSpoke+rew., where the sentence-
level scores are re-weighted based on computed
discourse-structure features. Additionally, we in-
clude StructS-MC and StructS-BS (BeSpoke),
which incorporate both document segmentation and
post-hoc reweighting for improved evaluation, as
proposed in Zhong and Litman (2025). Implemen-
tation details are provided in Appendix B.

4.2 Evaluation Metrics

For sentence-level tasks, we evaluate in two set-
tings. Since sentence-level annotations can be con-
verted into a binary format (indicating whether the
sentence contains errors or not), we report both
ROC-AUC (AUC) and balanced-accuracy (bAcc)
across all sentences within the summary, as done in
prior work (Zhang et al., 2024; Song et al., 2024).
On the fine-grained level evaluation, we measure
the recall of individual fine-grained types when
the system prediction does not have fine-grained
types. On summary-level tasks with binary labels,
we report balanced-accuracy bAcc and ROC-AUC
(AUC). For tasks with continuous scores (i.e. Ram-
prasad et al. (2024) and UniSumEval), we report
Pearson correlation r (Benesty et al., 2009) and
Spearman correlation ρ (Zar, 2005).

5 Experiments

5.1 Which granularity-level metrics to use
when evaluating different systems?

Despite the growing number of datasets, determin-
ing the most effective granularity-level evaluation
remains challenging. As found in §3.2, the wide
distribution of continuous scores suggests that a
simple binary classification setting may be less con-
vincing. In the following section, we empirically
examine the impacts of summary-level evaluation

settings, exploring the sentence-level prediction ca-
pabilities of different evaluation systems, as well as
uncovering the connections between sentence-level
and summary-level evaluations.

5.1.1 RQ1: What is the better way to utilize
summary-level annotations in evaluating
long summaries?

We standardize summary-level evaluations across
the four datasets in both binary and continuous
settings. For evaluating systems that produce con-
tinuous sentence-level scores, we aggregate them
by computing the average to produce continuous
summary-level scores. We choose the threshold 0.5
to generate binary labels, aligning with the zero-
shot setup in Tang et al. (2024a). For LLM-based
systems which only produce binary sentence-level
labels, we report the percentage of predicted con-
sistent sentences for LLM-based systems, as they
only output binary sentence-level labels.

Table 2 shows the performances of different
factual consistency evaluation systems on the full
dataset.4 We observe different trends between the
binary and continuous evaluation settings. Among
evaluation systems, the linguistic-informed ap-
proaches generally rank in top-3 on DIVERSUMM

(row 8-11) and on RAMPRASAD’24 (i.e. row 8
obtains the highest AUC and ρ for the two set-
tings). Specialized fact-checkers, such as ALIGN-
SCORE and MC-FT5 (SENT), obtain better AUC
over RAMPRASAD’24 and LONGEVAL, yet per-
form the worst on r. We attribute this to those sys-
tems’ tendency to assign low scores to summaries
with factual consistency near zero, effectively han-
dling skewness but failing to differentiate varying
levels of inconsistency. On UNISUMEVAL, LLMs
achieve significantly higher correlations on contin-
uous labels (rows 4-6) and AUC.

To further validate our hypothesis on the effects
of dataset fine-grained score distributions (§3.2
Analysis 1), we compare the ranking correlations
among the 11 systems under the two evaluation se-
tups (Binary vs. Continuous) in the bottom block of
the table. AUC and Pearson’s r exhibit significant
correlations, as measured by both Spearman’s ρ
and Kendall’s τ , particularly on DIVERSUMM and
UNISUMEVAL, which follow normal distributions.
In contrast, on LONGEVAL, rank correlations be-
tween AUC, Pearson’s r, and bAcc are generally
close to zero or negative, indicating that binary

4Alternative colorings by quantile ranking as well as
domain-specific breakdowns are in Appendix C.
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ID

Eval System DIVERSUMM RAMPRASAD’24 LONGEVAL UNISUMEVAL

Ref. Label Binary Contin. Binary Contin. Binary Contin. Binary Contin.

Eval Metric AUC bAcc r ρ AUC bAcc r ρ AUC bAcc r ρ AUC bAcc r ρ
Specialized fact-checkers
1 INFUSE 87.15 59.31 0.55* 0.60* 74.16 60.86 0.36* 0.41* 96.53 84.67 0.72* 0.69* 52.91 50.86 0.05 0.04
2 AlignScore 84.59 74.00 0.53* 0.57* 75.55 54.46 0.42* 0.45* 91.20 76.00 0.74* 0.74* 57.41 53.74 0.21* 0.12*
3 MC-FT5 88.05 55.27 0.57* 0.62* 75.34 54.27 0.48* 0.45* 86.93 79.33 0.80* 0.77* 57.31 49.96 0.10* 0.12*
LLM-based
4 GPT4o 82.45 53.19 0.59* 0.59* 60.24 53.97 0.44* 0.33* 84.40 71.33 0.88* 0.87* 69.67 52.65 0.51* 0.41*
5 Gemini 83.11 55.10 0.52* 0.55* 56.58 54.35 0.54* 0.33* 89.20 80.67 0.90* 0.86* 71.18 52.16 0.54* 0.47*
6 BeSpoke 61.92 53.21 0.35* 0.30* 66.91 53.58 0.49* 0.33* 90.13 68.67 0.94* 0.92* 69.61 53.29 0.41* 0.32*
7 FineSurE 81.36 68.37 0.49* 0.53* 62.63 51.86 0.32* 0.28* 84.93 84.67 0.86* 0.85* 69.24 57.84 0.41* 0.34*
Lingustic-informed
8 MC+rew. 88.62 61.27 0.59* 0.64* 76.94 54.23 0.49* 0.47* 88.53 81.33 0.81* 0.76* 56.05 50.44 0.08 0.10
9 StructS-MC 91.19 62.54 0.63* 0.68* 71.68 58.08 0.43* 0.38* 89.60 80.67 0.90* 0.86* 54.91 51.30 0.08* 0.08*
10 BeSpoke+rew. 60.78 55.45 0.34* 0.29* 71.40 53.85 0.51* 0.40* 90.13 70.67 0.93* 0.90* 64.81 55.94 0.32* 0.25*
11 StructS-BS 89.65 69.72 0.62* 0.66* 72.03 61.63 0.47* 0.40* 86.40 74.67 0.86* 0.85* 58.99 55.67 0.17* 0.15*

System-level Eval Metrics Ranking Correlation
AUC vs. bACC ρ = 0.45, τ = 0.35 ρ = 0.41, τ = 0.24 ρ = -0.02, τ = 0.00 ρ = 0.50, τ = 0.27
AUC vs. Pearson ρ = 0.89*, τ = 0.84* ρ = -0.18, τ = -0.11 ρ = -0.09, τ = -0.04 ρ = 0.99*, τ = 0.94*
BACC vs. Pearson ρ = 0.25 , τ =0.18 ρ = -0.19, τ = -0.15 ρ = -0.57, τ = -0.45 ρ = 0.52, τ = 0.28

Table 2: Summary-level results for all summarization evaluation systems on DIVERSUMM, RAMPRASAD’24,
LONGEVAL and UNISUMEVAL. We study two types of summary-level reference labels (Ref Label): (1) Binary,
evaluated using ROC-AUC (AUC) and balanced accuracy (bAcc), and (2) Continuous, for which we report
Pearson correlation r and Spearman correlation ρ, with * indicating statistical significance (p < 0.05). The best
model performance per column is bold. Green, orange and red indicate system performance ranking intervals per
column based on three-digit value ranks, corresponding to top (rank 1-3), middle (rank 4-6), and bottom (rank
7-11) tiers, respectively. We further examine system-level rank correlations across different metric pairs, finding
relatively low correlations, which highlights the challenges in comprehensively evaluating a model’s capabilities.

evaluation metrics struggle to provide fair assess-
ments when label distributions are relatively flat. In
summary, given the nature of long summaries,
fine-grained labels provide a more comprehen-
sive evaluation than binary conversion, as long
as the dataset is not overly skewed (i.e., most
sentences are not factually inconsistent).

5.1.2 RQ2. Is sentence-level prediction
performance transferable to
summary-level results?

Sent-level Evaluation. We present sentence-
level performance results and include an additional
column for default summary-level evaluation, fol-
lowing prior work (Zhang et al., 2024; Ramprasad
et al., 2024; Wu et al., 2024) in Table 3. Look-
ing at sentence-level prediction columns, we find
that evaluation systems perform differently across
datasets. The linguistic-informed approach StructS-
BS obtains better AUC than zero-shot LLMs on
DiverSumm. The BeSpoke that is fine-tuned on a
large amount of inference tasks also demonstrates
its capability in obtaining the best or second best
AUC on LONGEVAL and UNIEVALSUMM. To an-
alyze the correlation between sentence-level and
summary-level performance, we conduct a rank-
ing comparison across the 11 evaluation systems in
the bottom section of Table 3. Over DIVERSUMM

and RAMPRASAD’24, where summaries contain

fewer inconsistent sentences, we observe a discrep-
ancy between sentence-level and summary-level
performances. On the other datasets that are
sufficiently large and contain summaries with
varying degrees of factual inconsistency, there
exist significant correlations (measured in Spear-
man’s ρ and Kendall’s τ ) between the two sets of
evaluations, suggesting that optimizing sentence-
level detections could benefit the summary-level
development.

Instance-level Analysis. We introduce a new ap-
proach to analyze the relation between sentence-
level accuracy and summary-level evaluation. We
adopt the reliability diagram (Murphy and Win-
kler, 1977) (which is traditionally used to compare
predicted probabilities to actual outcomes in classi-
fication tasks (Guo et al., 2017))—by treating each
summary’s average sentence-level accuracy as the
“predictor” and comparing it against the model’s
summary-level factuality predictions and ground-
truth labels (here we use the continuous ground
truth labels across all four datasets).5 We first
bin the summaries by their sentence-level accuracy
range and compute each bin’s corresponding av-
erage predicted vs. actual summary-level scores.6

Plotting the error between predicted and ground-
5We provide an illustrative example in Appendix D.
6By default, we form 10 bins within the range of 0-1.
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ID

Eval System DIVERSUMM RAMPRASAD’24 LONGEVAL UNISUMEVAL

Eval. Task Sent-level Summ-level Sent-level Summ-level Sent-level Summ-level Sent-level Summ-level

Eval. Metric AUC bAcc AUC AUC bAcc ρ AUC bAcc r AUC bAcc r
Specialized fact-checkers
1 INFUSE 75.62 67.96 87.15 67.30 63.02 0.41* 77.84 72.89 0.72* 62.31 61.52 0.05
2 AlignScore 72.70 68.73 84.59 74.78 66.06 0.45* 76.76 72.24 0.74* 66.88 61.90 0.21*
3 MC-FT5 74.45 68.40 88.05 68.33 58.82 0.45* 86.47 77.88 0.80* 68.94 61.19 0.10*

LLM-based
4 GPT4o 74.88 74.88 82.45 61.54 61.54 0.33* 88.72 88.72 0.88* 75.89 75.89 0.51*
5 Gemini 70.47 70.47 83.11 60.33 60.33 0.33* 88.49 88.49 0.90* 70.50 70.50 0.54*
6 BeSpoke 76.53 70.32 61.92 74.35 60.13 0.33* 95.11 87.94 0.94* 82.39 71.64 0.41*
7 FineSurE 76.69 76.69 81.36 64.93 64.93 0.28* 84.64 84.64 0.86* 77.23 77.23 0.41*

Lingustic-informed
8 MC+rew. 75.89 69.16 88.62 73.41 60.39 0.47* 85.97 79.53 0.81* 67.73 61.14 0.08*
9 StructS-MC 75.74 69.75 91.19 68.66 57.95 0.38* 90.37 83.80 0.90* 65.57 60.31 0.08*

10 BeSpoke+rew. 78.58 71.34 60.78 74.46 63.46 0.40* 94.41 87.80 0.93* 79.81 72.69 0.32*
11 StructS-BS 81.58 75.89 89.65 71.83 66.06 0.40* 91.88 86.19 0.86* 73.36 68.36 0.17*

System-level Eval Metrics Ranking Correlation
sent-AUC vs. sent-bAcc ρ = 0.54, τ = 0.38 ρ = 0.25, τ = 0.18 ρ = 0.70*, τ =0.56* ρ = 0.81*, τ = 0.60*
sent-AUC vs. summ-metric ρ = -0.11, τ = -0.05 ρ = 0.51, τ = 0.38 ρ = 0.86*, τ = 0.69* ρ = 0.72*, τ = 0.54*
sent-bAcc vs. summ-metric ρ = -0.36, τ = -0.24 ρ = 0.06, τ = 0.02 ρ = 0.80*, τ = 0.65* ρ = 0.81*, τ = 0.61*

Table 3: Sentence-level performance of different evaluation systems on DIVERSUMM, RAMPRASAD’24,
LONGEVAL and UNISUMEVAL. We report both AUC and bAcc and include the official summary-level met-
ric released for each dataset. Green, orange and red indicate system performance ranking intervals per column
based on three-digit value ranks, corresponding to top (rank 1-3), middle (rank 4-6), and bottom (rank 7-11) tiers,
respectively. The best model performance per column is bold. We report the rank correlations across sentence-
level and summary-level ratings. * indicates statistical significance (p<0.05).

Figure 3: The reliability diagrams of the top-
performing summary-level evaluation systems for
each dataset. On the y-axis, values above and below
zero indicate overestimation (predicts too high) and
underestimation of the true score, respectively. Points
close to 0 suggest that the model is well-aligned with
the ground truth in the accuracy range. The x-axis
refers to the bins of summaries with sentence-level
accuracy from less (left) to more (right) accurate.

truth scores along these bins allows us to visualize
whether the model consistently overestimates or
underestimates summary-level factual consistency
when sentence-level accuracy is high or low.

We select the best-performed summary-level

models within the three model categories. Figure 3
reports the diagrams of all four datasets. Looking
at the y-axis, we observe that all models under-
estimate the scores of DIVERSUMM (predicting
lower scores than ground truth labels) and over-
estimate over LONGEVAL, which aligns with the
factual consistency score distribution in §3.2. The
upward trends from left to right in DIVERSUMM

and UNISUMEVAL suggest that the model becomes
more calibrated when sentence-level accuracy is
increasing, becoming more accurate with higher-
accuracy summaries. Models turn more precise
(closer to 0) by reducing the positive errors in the
remaining two datasets. Comparing different mod-
els, we observe Gemini obtains the best-calibrated
performances on UNISUMEVAL, affirmed by its
high summary-level correlation score in Table 3.

5.2 Fine-grained Error Detection

RQ3. What are the strengths and limitations
of different evaluation systems in detecting fine-
grained error types? We investigate the capabil-
ity of different models in capturing the fine-grained
types on DIVERSUMM and UNISUMEVAL. We
select the models with the highest sentence-level
bAcc per dataset (Table 3 of each model category).
Compared to the specialized fact-checker Align-
Score, LLM-based model FineSurE improves the
recall of EntE and GramE in Table 4 and the re-
calls of all errors in Table 5. However, current
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Error Cat. OutE EntE PredE CircE GramE LinkE CorefE
(error/total: 320/3143) (48) (117) (15) (13) (83) (35) (9)
AlignScore (1388) 97.9% 74.4% 73.3% 92.3% 66.3% 91.4% 55.6%
FineSurE (1312) 93.8% 89.7%* 93.3% 84.6% 92.8%* 74.3% 100%
StructS-BS (1082) 91.7% 79.5% 93.3% 100.0% 71.1% 80.0% 88.9%

Table 4: Recall analysis in assessing factual consis-
tency on DIVERSUMM. We report the sentence count
for each erroneous type. We also include the numbers
of predicted error sentences for each model, which
indicate high false positives. (*) indicates a significant
difference in recall compared to AlignScore.

Error Cat. OutE SenE EntE RelE
(error/total : 392/5299) (212) (103) (50) (27)
AlignScore (904) 42.5% 29.1% 46.0% 40.7%
FineSurE (1129) 64.6%* 85.4%* 84.0%* 66.7%*
BeSpoke+rew. (1179) 59.9%* 77.7%* 64.0%* 51.9%

Table 5: Recall analysis in assessing factual consis-
tency on UNISUMEVAL. We report the sentence count
for each erroneous type. We also include the number
of predicted error sentences for each model, which in-
dicates high false positives. (*) indicates a significant
difference in recall compared to AlignScore.

evaluation systems tend to generate many false pos-
itives in sentence-level predictions. For instance, in
UNISUMEVAL (long split), each of the three mod-
els in Table 5 predicts over 900 error sentences,
which is far more than the actual count of 392 in-
consistent sentences. Notably, over 75% of model-
predicted “non-factual” sentences are annotated as
consistent. This calls for further endeavors in de-
veloping evaluation methods that produce fewer
false positives in error prediction. Meanwhile, ac-
curately predicting fine-grained error types remains
challenging, as discussed in Song et al. (2024).

5.3 RQ4. How do factuality-consistency
evaluation systems perform across
datasets of different generations?

We experiment with UNISUMEVAL by splitting the
dataset based on the summarization model used
(splits shown in Table 1). As seen in Table 6,
LLM-based models consistently obtain the high-
est performance across all three groups of sum-
maries. Meanwhile, specialized fact-checkers (row
1 and row 2) show a decline in performance as
summarization models evolve (i.e., in row 1, In-
fUSE’s performance, measured by Pearson correla-
tion, declines from 0.27 on non-LLMs summaries
to 0.06 with close-sourced proprietary LLMs’ out-
put.) Lastly, most models–except for Gemini–fail
to generate evaluations that are correlated with the
human-annotated errors when using proprietary

ID
Eval System UNISUMEVAL

Gen.Model non-LLMs open LLMs close-LLMs
Eval Metric r ρ r ρ r ρ

Specialized fact-checkers
1 INFUSE 0.27* 0.29* 0.19* 0.19* 0.06 0.04
2 AlignScore 0.40* 0.32* 0.30* 0.27* -0.04 -0.06
3 MC-FT5 0.24* 0.30* 0.28* 0.28* -0.02 -0.02
LLM-based
4 GPT4o 0.54* 0.53* 0.43* 0.37* 0.02 0.02
5 Gemini 0.59* 0.60* 0.41* 0.42* 0.14* 0.10*
6 BeSpoke 0.46* 0.43* 0.47* 0.40* 0.01 0.05
7 FineSurE 0.47* 0.44* 0.42* 0.34* 0.07 0.10
Lingustic-informed
8 MC+rew. 0.24* 0.28* 0.27* 0.28* -0.02 -0.01
9 StructS-MC 0.28* 0.31* 0.25* 0.26* -0.00 -0.02
10 BeSpoke+rew. 0.44* 0.41* 0.41* 0.34* -0.00 0.02
11 StructS-BS 0.41* 0.40* 0.30* 0.29* 0.01 -0.00

Table 6: Summary level results on UNISUMEVAL
separated by the types of summarizer model. We re-
port Pearson correlation r and Spearman correlation ρ
under summary-level, with * indicating statistical sig-
nificance. The best model performance per column is
bold. Green, orange and red indicate the performance
ranking intervals of the system for each column, cor-
responding to top (rank 1-3), middle (rank 4-6), and
bottom (rank 7-11) tiers, respectively.

LLMs as the summarizer. This finding aligns with
the preliminary exploration of faithfulness evalu-
ation systems’ domain-level performances in Lee
et al. (2024), calling for efforts in developing de-
tection models that can identify the more nuanced
errors generated by powerful LLMs.

6 Analysis

We conducted both quantitative and qualitative
analyses of model predictions across different sys-
tems, leading to the following insights and take-
aways. Takeaway 1: The main types of factual
consistency errors have shifted as summarizer mod-
els continue to improve, from surface-level and
grammatical errors to those requiring a deeper un-
derstanding of context and inferential reasoning.
(Findings 1.1 and 1.2 in §E.1.) Takeaway 2: The
primary performance gains of recent LLMs lie in
their ability to reduce false positive predictions on
factual sentences. However, no significant improve-
ments are observed regarding specific fine-grained
error types. (Finding 1.3, 1.4 in §E.1 and exam-
ples below). In addition, two actionable insights
are drawn. Insight 1 — Evaluation Focus: On
evaluation, future work should move beyond over-
all summary-level correlations and focus on pin-
pointing specific errors. As LLM-generated text
is mostly factual, the inconsistencies only take a
small portion. Aggregated summary-level evalu-
ations may thus overlook the true capabilities of
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Ex 1: They were all men who paid for their ship with their lives.
Label: SentE; Generator: Phi-2; All systems failed to identify the error.
Author comment: The crew did not pay for their ship with their lives; rather, they paid for their greed when encountering the cursed derelict ship. This
factual error is more nuanced and pinpoints the challenge of deriving the correct relations when using specific entities.

Ex 2: The medicos are aware of the dangers of contagious diseases from the beginning rather than being explicitly warned later.
Label: EntE; Generator: Phi-2; All systems failed to identify the error.
Author comment: The medicos are not aware of the dangers of contagious diseases from the beginning. The error is embedded in the conceptual understand-
ing of the context, not simply on the surface level.

Ex 3: Map is a chronic debilitating disease in ruminants.
Label: SenE; Generator: T5 model, GPT4o and Gemini detected the error, while all others failed.
Author comment: In the original document, “the general characteristics of Johne’s disease with respect to the pathogenesis and immune response to MAP,
as well as recent advances in development of vaccines were briefly examined” suggests that MAP itself is not a disease, but the causative agent of Johne’s
disease.

Ex 4: The story explores themes of isolation, adaptation, and the risks and ethical dilemmas of colonization and medical experimentation.
Label: OutE; Generator: GPT-4; Only linguistic-based models detect the error, and all other models fail to identify it.
Author comment: The sentence introduces an interpretative element that is not explicitly stated in the transcript. This suggests that interpretative elements
are becoming harder to detect, even for LLMs that generate the summary itself.

Ex 5: Starrett Blade, a space pirate, is trapped by the feared Devil Garrett and fights for his life.
Label: EntE; Generator: GPT3.5 model; only GPT4o and StructS (BS) succeeded in detecting the errors.
Author comment: The source text begins with, “Trapped by the most feared space pirates, Devil Garrett, Starrett Blade was fighting for his life.” Further
main document texts show that Starrett is, in fact, a hunter of space pirates. Here, the model messed up the entity attribution.

Table 7: Examples of system detection error analysis, including the oracle label, the generator of the correspond-
ing summary, model prediction status, and accompanying author comments.

LLM-based systems in error detection. (Findings
in §E.2.) Insight 2 — Model Improvements: Fu-
ture factual consistency evaluation systems should
leverage the reasoning capabilities of LLMs to ver-
ify the credibility of individual sentences. Our case
studies in Table 7 review that LLM-generated
summaries can include errors that appear plau-
sible on the surface yet lack factual grounding
or omit critical context upon closer inspection.
These subtle errors often require deeper reasoning
and contextual understanding to detect—an area
where current automatic evaluation systems still
fall short. Incorporating approaches such as multi-
step reasoning will be a potential future direction.
Further details can be found in Appendix E.

7 Discussion and Conclusion

For long document summary evaluation, the con-
nection between summary-level and sentence-level
evaluation has largely been overlooked. Most prior
work directly adopted approaches from the short-
text domain or proposed a new benchmark and
demonstrated the superior performance of their pro-
posed approach. Instead, we examine more funda-
mental challenges of selecting suitable evaluation
granularity and metrics. Without such reflection,
researchers risk optimizing their methods toward
objectives that are misaligned. For instance, many
novel systems tested on AggreFact (Tang et al.,
2023) show minimal differences in scores. How-
ever, Laban et al. (2023) point out that this dataset
contains at least 6% mislabeled content (flipped
binary labels), casting doubt on the reliability and

usefulness of the improved benchmarking results
for informing future studies. Our work serves as
a foundational study to clarify existing challenges
and provide guidance for future research.

To sum up, we conducted a comprehensive eval-
uation of factual-consistency detection systems
across multiple long-document datasets, analyz-
ing their performance at different granularity levels.
Our findings highlight the benefits of fine-grained
continuous scoring over binary classification and
reveal the transferability of sentence-level predic-
tions to summary-level evaluation. Our analysis
reveals that while advanced LLM-based systems
exhibit higher recall in detecting errors compared
to older benchmarks, they struggle with false posi-
tives and the fine-grained detection of errors. Our
work further provides thorough analyses and useful
insights into the current state of evaluation systems,
calling for continuous benchmark development and
system refinement to enhance factual consistency
assessment in long document summarization.
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Limitation

Our findings and conclusions relied on human an-
notation efforts for the different datasets and fo-
cused on the factual consistency dimension of sum-
mary quality. Additional dimensions, such as com-
pleteness and salience, could enhance the assess-
ment of summaries. Our selection of evaluation
systems is decided based on recent literature in
the long document summarization and requires a
sentence-level prediction. We acknowledge that
there exist recent approaches that focus on de-
composing the summary into atomic facts (Scirè
et al., 2024; Yang et al., 2024a) and function on
making summary-level predictions. We did not
include these approaches in the main result sec-
tion because they break the summary into stan-
dalone claims. This is incompatible with our pri-
mary research question, which aims to uncover the
connections between summary-level and sentence-
level evaluations. We include the summary-level
results by rerunning models using their released
codebase, as presented in Appendix F, finding that
these claim-decomposition-based approaches per-
form on par or worse than the sentence-level base-
lines such as MC-FT5. Another line of question
answering (QA) based metrics exists for faithful-
ness evaluation (Deutsch et al., 2021; Fabbri et al.,
2022). However, these methods operate by verify-
ing loosely connected sentence-level annotations,
rely on some older backbone models that are unable
to process long contexts, and focus on noun-phrase
mismatches generated by question-answering mod-
els developed in 2021. We leave more exploration
of these approaches for future work.
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Figure 4: Zero-shot factual consistency evaluation
prompt used in FineSurE (Song et al., 2024).

Yang Zhong and Diane Litman. 2025. Discourse-driven
evaluation: Unveiling factual inconsistency in long
document summarization. In NAACL. Association
for Computational Linguistics.

A Dataset Details

A.1 Dataset Annotation Details

Table 8 provides details about the human annota-
tions of datasets studied in the paper.

A.2 Facual Inconsistency Error Type

Adopting the typology of factual errors introduced
(Pagnoni et al., 2021), Koh et al. (2022) annotated
summaries on sentence level by classifying it into
one of the seven categories in Table 9 or no error
(NoE). UNISUMEVAL adopt a different setup of
fine-grained labels with details in Table 10.

B Implementation Details

B.1 LLM Prompts

We include our prompt for zero-shot factual consis-
tency evaluation using GPT4o and Gemini in Table
11 and the prompts adopted from FineSurE (Song
et al., 2024) for fact-verification on DIVERSUMM

and UNISUMEVAL (“Binary Label + Reasoning +
Error Localization”) in Figure 4.

B.2 Baselines
AlignScore (model size 355M) (Zha et al., 2023)
is an entailment-based model that has been trained
on data from a wide range of tasks such as NLI, QA,
and fact verification tasks. It divides the source
document into a set of sequential chunks at sen-
tence boundaries. For a multi-sentence summary,
it predicts the max scoring value of all combina-
tions of source chunk and target sentence, then
returns the unweighted average of all sentences as
the summary prediction. We follow the original
setting by setting chunk size at 350 tokens and
use the default model alingsocre_large ckpt. The
model outputs a score between 0 and 1. We con-
duct experiments on top of their released codebase
https://github.com/yuh-zha/AlignScore.

MiniCheck-FT5 (model size 770M) (Tang et al.,
2024b) is an entailment-based fact checker built
on flan-t5-large. It has been further fine-tuned on
21K datapoints from the ANLI dataset (Nie et al.,
2020) and 35k synthesized data points generated in
(Tang et al., 2024b) on the tasks to predict whether
a given claim is supported by a document. We
follow the authors’s setting and set the chunk size to
500 tokens using white space splitting. The output
score is between 0 and 1. We use the released
code repo from https://github.com/Liyan06/
MiniCheck.

InfUsE (model size 60M) Zhang et al. (2024)
uses a variable premise size and breaks the sum-
mary into sentences or shorter hypotheses. Instead
of fixing the source context, it retrieves the best
possible context to assess the faithfulness of an
individual summary sentence by applying an NLI
model to successive expansions of the document
sentences. Similar to prior approaches, it outputs
an entailment score for each summary sentence,
and the summary-level score is the unweighted
average. We follow their settings on INFUSE
with summary sentences instead of INFUSESUB
as the authors only released the code for the for-
mer model. INFUSE outputs scores in the range
0-1. We use the author’s released codebase from
https://github.com/HJZnlp/Infuse.

GPT4o We used the API of chatgpt-4o-latest (as
of Feb 1, 2025); we set max_tokens 2000, sampling
temperature at 0, and top_p as 1.0. We call the Ope-
nAI API from https://openai.com/api. Given
the lengthy summary, we prompted the LLM to
assign a binary label (yes/no) to assess individual
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Dataset Source Annotators Kappa Annotation Scheme

DiverSumm ArXiv 3 annotators Fleiss κ 0.52 {NoE, EntE, PredE, CircE, CorefE, LinkE, GramE}
GovReport

LongEval SQuALITY crowd-source Fleiss κ 0.74 clause-level binary
PubMed Fleiss κ 0.53

Ramprasad’24
BillSum 2 expert

attorneys
Cohen’s κ 0.17 binary / {intrinsic, extrinsic, mixed, others}

PubMed 2 expert medi-
cal doctors

Cohan’s κ 0.11

UniSumEval 9 domains crowed-source Krippendorff’s
α 0.60

{OutE, EntE, RelE, SentE}

Table 8: Summary of the human-labeled datasets we used in Table 1.

Category Description Example

PredE Relation Error The predicate in the summary state-
ment is inconsistent with the source
article.

The Ebola vaccine was rejected by the
FDA in 2019.

EntE Entity Error The primary arguments (or their at-
tributes) of the predicate are wrong.

The COVID-19 vaccine was approved
by the FDA in 2019.

CircE Circumstance Error Additional information (such as loca-
tion or time) specifying the circum-
stance around a predicate is wrong.

The first vaccine for Ebola was ap-
proved by the FDA in 2014.

CorefE Coreference Error A pronoun/reference with a wrong or
non-existent antecedent.

The first vaccine for Ebola was ap-
proved in 2019. They say a vaccine for
COVID-19 is unlikely to be ready this
year.

LinkE Discourse Link Error Error in how multiple statements are
linked together in discourse (e.g.,
incorrect temporal ordering or causal
link).

To produce the vaccine, scientists have
to show successful human trials, then
sequence the DNA of the virus.

OutE Out of Article Error The statement contains information not
present in the source article.

China has already started clinical
trials of the COVID-19 vaccine.

GramE Grammatical Error The grammar of the sentence is so
incorrect that it becomes meaningless.

The Ebola vaccine accepted have
already started.

Table 9: Typology of factual errors in DiverSumm. The example is directly taken from (Pagnoni et al., 2021).
Original text for the examples: The first vaccine for Ebola was approved by the FDA in 2019 in the US, five years
after the initial outbreak in 2014. To produce the vaccine, scientists had to sequence the DNA of Ebola, then
identify possible vaccines, and finally show successful clinical trials. Scientists say a vaccine for COVID-19 is
unlikely to be ready this year, although clinical trials have already started.

summary sentences’ consistency with the original
article. Then, we reported the percentile of “yes”
answers as the summary-level rating.

Gemini We used the API of Gemini-2.0-Flash;
we set max_tokens 2000, sampling temperature
at 0, and top_p as 1.0. We call the API from
https://ai.google.dev/gemini-api/. Given
the lengthy summary, we prompted the LLM to
assign a binary label (yes/no) to assess individual
summary sentences’ consistency with the original
article. Then, we reported the percentile of “yes”
answers as the summary-level rating.

BeSpoke-MC-7B We harnessed the SOTA
Llama-3.1-BeSpoke-MiniCheck-7B (BeSpoke-
MC-7B) released by BeSpoke Labs. The model

is fine-tuned from “internlm/internlm2_5-7b-chat”
(Cai et al., 2024) on the combination of 35K data
points following the approach in MiniCheck(Tang
et al., 2024b). We use the suggested code repo
from https://huggingface.co/bespokelabs/
BeSpoke-MiniCheck-7B. To calculate the AUC
score, we employed the raw probabilities returned
by the code to determine sentence-level ratings.
We calculated the summary-level score as the
unweighted average across all sentences.

FineSurE We utilize the original factual error
types used in the prompt of FineSureE (Song
et al., 2024) and the modified version used in
UniSumEval (Lee et al., 2024). We use the au-
thor’s released codebase from https://github.
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Example Source Text

In the heart of the bustling city, nestled inside a park, stands the historic Jefferson Library. Built in 1910, this architectural marvel houses a vast
collection of rare books, manuscripts, and artifacts, attracting scholars and history enthusiasts from around the world. Its grand facade and ornate
interiors make it a beloved landmark, reflecting the city’s rich cultural heritage and commitment to education.

Error Type Description Example Summary Sentence

Out-of-Article
Error

This error occurs when a summary sentence introduces
facts, subjective opinions, or biases that cannot be verified or
confirmed by the source text.

The Jefferson Library was the first library to offer online book
lending services.

Entity Error This error involves incorrect or misrepresented entities (such
as names, numbers, or main subjects) within the summary
sentence.

The Jefferson School houses a vast collection of rare books.

Relation Error This error arises from incorrect semantic relationships
within a summary sentence, such as wrong verbs, prepo-
sitions, or adjectives, which misrepresent the relationship
between entities.

The Jefferson Library is located beside a park.

Sentence Error This error occurs when a summary sentence entirely
contradicts the information in the source text, requiring
significant revision or removal.

The Jefferson Library is a modern structure with minimalist
architecture.

Table 10: Descriptions and examples of factual error types in UNISUMEVAL. The parts of each summary sen-
tence that are relevant to the specific error type are highlighted in bold.

Determine whether the provided claims are consistent with the corresponding document. Consistency in this context
implies that all information presented in the claim is substantiated by the document. If not, it should be
considered inconsistent.

Document: [DOCUMENT]
Claims: [CLAIMS]
Please assess the claim’s consistency with the document by responding with either "yes" or "no".
The CLAIMs are ordered in the format of a dictionary, with { index: CLAIM }. You will need to return the result in JSON format.
For instance, for a CLAIMs list of 4 items, you should return {0:yes/no, 1:yes/no, ...., 3:yes/no}.

ANSWER:

Table 11: Zero-shot factual consistency evaluation prompt for GPT4o and Gemini.

com/DISL-Lab/FineSurE-ACL24.

StructS We use the authors’ released codebase7

to make predictions. Being compatible with differ-
ent sentence-level prediction models, the STRUCTS
(Zhong and Litman, 2025) is composed of two
parts: (1) discourse-inspired document chunking
and (2) a reweighting algorithm aggregating dis-
course structure information to re-calibrate the
sentence-level scores predicted. For more details,
we refer the authors to the original paper.

B.3 Machine Configuration for Models

We use up to 2 NVIDIA L40S GPU, each equipped
with 48 GB VRAM, for model inferences on
our hardware. According to Lambda8 a single
NVIDIA A6000 (the closest to our setting with
48GB VRAM) GPU costs $0.8 per hour.

7https://github.com/cs329yangzhong/
discourse-driven-summary-factuality-evaluation

8https://lambdalabs.com/service/gpu-cloud

C Extra Results

C.1 Different Coloring
Here we provide a different coloring method for
Tables 2 and 3 in Table 12 and Table 13. For each
column, we rank the scores into quantile intervals.

C.2 Summary-level Evaluation with Domain
Split

Table 14 and Table 15 show the domain-split of
summary-level evaluations on the experimented
four datasets.
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ID

Eval System DIVERSUMM RAMPRASAD’24 LONGEVAL UNISUMEVAL

Ref. Label Binary Contin. Binary Contin. Binary Contin. Binary Contin.

Eval Metric AUC bAcc r ρ AUC bAcc r ρ AUC bAcc r ρ AUC bAcc r ρ
Specialized fact-checkers
1 INFUSE 87.15 59.31 0.55 0.60 74.16 60.86 0.36 0.41 96.53 84.67 0.72 0.69 52.91 50.86 0.05 0.04
2 AlignScore 84.59 74.00 0.53 0.57 75.55 54.46 0.42 0.45 91.20 76.00 0.74 0.74 57.41 53.74 0.21 0.12
3 MC-FT5 88.05 55.27 0.57 0.62 75.34 54.27 0.48 0.45 86.93 79.33 0.80 0.77 57.31 49.96 0.10 0.12
LLM-based
4 GPT4o 82.45 53.19 0.59 0.59 60.24 53.97 0.44 0.33 84.40 71.33 0.88 0.87 69.67 52.65 0.51 0.41
5 Gemini 83.11 55.10 0.52 0.55 56.58 54.35 0.54 0.33 89.20 80.67 0.90 0.86 71.18 52.16 0.54 0.47
6 BeSpoke 61.92 53.21 0.35 0.30 66.91 53.58 0.49 0.33 90.13 68.67 0.94 0.92 69.61 53.29 0.41 0.32
7 FineSurE 81.36 68.37 0.49 0.53 62.63 51.86 0.32 0.28 84.93 84.67 0.86 0.85 69.24 57.84 0.41 0.34
Linguistic-informed
8 MC+rew. 88.62 61.27 0.59 0.64 76.94 54.23 0.49 0.47 88.53 81.33 0.81 0.76 56.05 50.44 0.08 0.10
9 StructS-MC 91.19 62.54 0.63 0.68 71.68 58.08 0.43 0.38 89.60 80.67 0.90 0.86 54.91 51.30 0.08 0.08
10 BeSpoke+rew. 60.78 55.45 0.34 0.29 71.40 53.85 0.51 0.40 90.13 70.67 0.93 0.90 64.81 55.94 0.32 0.25
11 StructS-BS 89.65 69.72 0.62 0.66 72.03 61.63 0.47 0.40 86.40 74.67 0.86 0.85 58.99 55.67 0.17 0.15

System-level Eval Metrics Ranking Correlation
AUC vs. bACC ρ = 0.45, τ = 0.35 ρ = 0.41, τ = 0.24 ρ = -0.02, τ = 0.00 ρ = 0.50, τ = 0.27
AUC vs. Pearson ρ = 0.89*, τ = 0.84* ρ = -0.18, τ = -0.11 ρ = -0.09, τ = -0.04 ρ = 0.99*, τ = 0.94*
BACC vs. Pearson ρ = 0.25 , τ =0.18 ρ = -0.19, τ = -0.15 ρ = -0.57, τ = -0.45 ρ = 0.52, τ = 0.28

Table 12: Summary-level results for all summarization evaluation systems on DIVERSUMM, RAMPRASAD’24,
LONGEVAL and UNISUMEVAL. We study two types of summary-level reference labels (Ref Label): (1) Binary,
evaluated using ROC-AUC (AUC) and balanced accuracy (bAcc), and (2) Continuous, for which we report Pear-
son correlation r and Spearman correlation ρ. In each column, the system’s performance is ranked into quantile
intervals, indicated by specific colors: Green:top 25%, Orange: 50% to 75%, Red:25%-50% and Gray:Bottom
25%. We further examine system-level rank correlations across different metric pairs, finding relatively low corre-
lations, which highlights the challenges in comprehensively evaluating a model’s capabilities.

ID

Eval System DIVERSUMM RAMPRASAD’24 LONGEVAL UNISUMEVAL

Eval. Task Sent-level Summ-level Sent-level Summ-level Sent-level Summ-level Sent-level Summ-level

Eval. Metric AUC bAcc AUC AUC bAcc ρ AUC bAcc r AUC bAcc r
Specialized fact-checkers
1 INFUSE 75.62 67.96 87.15 67.30 63.02 0.41 77.84 72.89 0.72 62.31 61.52 0.05
2 AlignScore 72.70 68.73 84.59 74.78 66.06 0.45 76.76 72.24 0.74 66.88 61.90 0.21
3 MC-FT5 74.45 68.40 88.05 68.33 58.82 0.45 86.47 77.88 0.80 68.94 61.19 0.10

LLM-based
4 GPT4o 74.88 74.88 82.45 61.54 61.54 0.33 88.72 88.72 0.88 75.89 75.89 0.51
5 Gemini 70.47 70.47 83.11 60.33 60.33 0.33 88.49 88.49 0.90 70.50 70.50 0.54
6 BeSpoke 76.53 70.32 61.92 74.35 60.13 0.33 95.11 87.94 0.94 82.39 71.64 0.41
7 FineSurE 76.69 76.69 81.36 64.93 64.93 0.28 84.64 84.64 0.86 77.23 77.23 0.41

Linguistic-informed
8 MC+rew. 75.89 69.16 88.62 73.41 60.39 0.47 85.97 79.53 0.81 67.73 61.14 0.08
9 StructS-MC 75.74 69.75 91.19 68.66 57.95 0.38 90.37 83.80 0.90 65.57 60.31 0.08

10 BeSpoke+rew. 78.58 71.34 60.78 74.46 63.46 0.40 94.41 87.80 0.93 79.81 72.69 0.32
11 StructS-BS 81.58 75.89 89.65 71.83 66.06 0.40 91.88 86.19 0.86 73.36 68.36 0.17

System-level Eval Metrics Ranking Correlation
sent-AUC vs. sent-bAcc ρ = 0.54, τ = 0.38 ρ = 0.25, τ = 0.18 ρ = 0.70*, τ =0.56* ρ = 0.81*, τ = 0.60*
sent-AUC vs. summ-metric ρ = -0.11, τ = -0.05 ρ = 0.51, τ = 0.38 ρ = 0.86*, τ = 0.69* ρ = 0.72*, τ = 0.54*
sent-bAcc vs. summ-metric ρ = -0.36, τ = -0.24 ρ = 0.06, τ = 0.02 ρ = 0.80*, τ = 0.65* ρ = 0.81*, τ = 0.61*

Table 13: Sentence-level performance of different evaluation systems on DIVERSUMM, RAMPRASAD’24,
LONGEVAL and UNISUMEVAL. We report performances on sentence-level (both AUC and bAcc) and also
include the official summary-level metric released for each dataset, following the setup in Song et al. (2024). In
each column, the system’s performance is ranked into quantile intervals, indicated by specific colors: Green:top
25%, Orange: 50% to 75%, Red:25%-50% and Gray:Bottom 25%. We report the rank correlations across
sentence-level and summary-level ratings, with * indicating statistical significance (p<0.05).
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ID Eval System DIVERSUMM RAMPRASAD’24 LONGEVAL

GovReport ArXiv BillSum PubMed SQuALITY PubMed

Eval Metric AUC bAcc r AUC bAcc r AUC bAcc r AUC bAcc r r r

Specialized fact-checkers
1 INFUSE 80.41 59.37 0.43* 71.33 53.88 0.32* 76.16 61.86 0.41* 65.91 55.14 0.09 0.69* 0.55*
2 AlignScore 81.95 73.87 0.44* 71.43 62.64 0.34* 77.12 56.33 0.50* 62.93 48.12 0.14 0.68* 0.50*
3 MC-FT5 74.61 50.66 0.42* 77.19 55.13 0.41* 74.68 53.53 0.47* 64.64 50.00 0.12 0.52* 0.41*
LLM-based
4 GPT4o 68.37 53.46 0.47* 78.98 51.85 0.48* 61.12 53.77 0.45* 59.00 52.94 0.33* 0.78* 0.63*
5 Gemini 67.99 55.77 0.38* 71.02 51.85 0.33* 57.69 54.81 0.57* 54.82 52.94 0.35* 0.71* 0.74*
6 BeSpoke 79.64 55.14 0.47* 74.79 62.81 0.38* 53.37 52.72 0.44* 62.37 52.94 0.33* 0.84* 0.73*
7 FineSurE 68.76 60.68 0.41* 68.05 62.47 0.27 65.48 50.40 0.39* 60.74 53.40 0.24* 0.75* 0.63*
Lingustic-informed
8 MC+rew. 76.02 57.96 0.43* 77.93 56.57 0.44* 75.44 53.45 0.48* 66.34 49.40 0.10 0.57* 0.40*
9 StructS-MC 77.83 59.50 0.47* 82.57 56.57 0.51* 69.95 56.89 0.43 * 55.63 48.19 -0.05 0.68* 0.61*
10 BeSpoke+rew. 77.60 67.72 0.50* 72.83 65.11 0.36* 58.25 51.44 0.47* 64.42 52.34 0.27* 0.78* 0.72*
11 StructS-BeSpoke 77.01 69.50 0.50* 79.08 55.31 0.48* 62.06 56.49 0.42* 61.87 54.68 0.17 0.73* 0.53*

Rank Correlation
AUC vs. bACC ρ = 0.47, τ = 0.31 ρ = -0.09, τ = -0.02 ρ = 0.42, τ = 0.27 ρ = -0.09, τ = -0.07 – –
AUC vs. Pearson ρ = 0.41, τ = 0.31 ρ = 0.99*, τ = 0.95* ρ = -0.02, τ = 0.00 ρ = -0.47, τ = -0.44 – –
BACC vs. Pearson ρ = 0.35, τ = 0.27 ρ = -0.12, τ = -0.07 ρ = -0.09, τ = -0.07 ρ = 0.29, τ = 0.19 – –

Table 14: Results for all summarization evaluation systems on DIVERSUMM, RAMPRASAD’24 and LONGEVAL.
We report performances under summary-level. We opt for two types of summary-level labels: (1) Binary, evalu-
ated using ROC-AUC (AUC) and balanced accuracy (bAcc), and (2) Continuous, for which we report Pearson’s r
correlation, with * indicating statistical significance. LONGEVAL Green, orange and red indicate the performance
ranking intervals of the model for each column, corresponding to top (rank 1-3), middle (rank 4-6), and bottom
(rank 7-11) tiers, respectively. We analyze the system-level rank correlations across different metric pairs, reveal-
ing that they exhibit relatively low correlations, which underscores the challenges in comprehensively assessing a
model’s capability.

ID Eval System UNISUMEVAL

GovReport PubMed SQuALITY MediaSum MeetingBank

Eval Metric AUC bAcc r AUC bAcc r AUC bAcc r AUC bAcc r AUC bAcc r

Specialized fact-checkers
1 INFUSE 47.36 46.25 -0.03 56.61 49.93 0.13 42.78 41.74 -0.15 44.44 45.66 -0.08 47.60 46.59 -0.03
2 AlignScore 58.58 50.00 0.08 60.92 50.00 0.21 52.69 54.98 0.09 53.26 49.52 0.08 57.31 55.92 0.32
3 MC-FT5 48.84 49.38 0.01 62.67 48.70 0.18 43.55 43.91 -0.09 58.81 48.65 0.20 51.31 50.13 0.06
LLM-based
4 GPT4o 72.84 52.27 0.54 71.28 49.67 0.40 72.25 50.45 0.40 61.74 50.00 0.35 69.02 58.26 0.60
5 Gemini 70.60 51.96 0.46 74.81 51.28 0.62 72.92 51.10 0.44 60.64 49.61 0.31 77.57 55.88 0.64
6 BeSpoke 73.12 49.69 0.46 79.90 52.56 0.60 60.03 54.41 0.27 67.74 49.56 0.36 66.72 55.16 0.45
7 FineSurE 77.73 54.55 0.41 79.12 54.15 0.52 62.09 56.52 0.25 59.60 51.72 0.26 66.81 63.40 0.48
Lingustic-informed
8 MC+rew. 45.62 47.19 -0.01 61.91 52.55 0.17 42.26 44.14 -0.11 56.41 48.10 0.15 50.04 49.03 0.03
9 StructS-MC 45.28 46.88 -0.01 61.62 57.32 0.14 43.72 44.15 -0.12 52.06 50.73 0.11 47.66 46.36 0.04
10 BeSpoke+rew. 60.68 58.47 0.27 78.49 52.56 0.49 53.98 51.81 0.13 61.35 52.07 0.19 65.14 57.58 0.43
11 StructS-BeSpoke 49.94 45.31 0.02 64.97 56.67 0.28 47.03 50.52 -0.06 51.44 50.44 0.07 60.58 57.68 0.30

Rank Correlation
AUC vs. bACC ρ = 0.73*, τ = 0.53* ρ = 0.28, τ = 0.22 ρ = 0.68* , τ = 0.53* ρ = 0.31, τ = 0.24 ρ = 0.75*, τ = 0.60*
AUC vs. Pearson ρ = 0.90*, τ = 0.76* ρ = 0.89*, τ = 0.78* ρ = 0.95* , τ = 0.85* ρ = 0.94*, τ = 0.85* ρ = 0.98* , τ = 0.93*
BACC vs. Pearson ρ = 0.73* , τ = 0.54* ρ = 0.15, τ = 0.07 ρ =0.65*, τ = 0.45 ρ = 0.23, τ = 0.16 ρ = 0.72*, τ = 0.53*

Table 15: Results for all summarization evaluation systems on splits of UNISUMEVAL. We report performances
under summary-level. We opt for two types of summary-level labels: (1) Binary, evaluated using ROC-AUC
(AUC) and balanced accuracy (bAcc), and (2) Continuous, for which we report Pearson’s r correlation, with *
indicating statistical significance. LONGEVAL Green, orange and red indicate the performance ranking intervals
of the model for each column, corresponding to top (rank 1-3), middle (rank 4-6), and bottom (rank 7-11) tiers,
respectively. We analyze the system-level rank correlations across different metric pairs, revealing that they
exhibit relatively low correlations, which underscores the challenges in comprehensively assessing a model’s
capability.
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Figure 5: Sample diagram

D Examples on Applying Reliability
Diagram

Here we provide a toy example showcasing how
we execute the reliability diagram analysis.

Assume we have a dataset with columns in Table
16.

ID Avg. Sent Acc Pred. Factuality Ref. Factuality

1 0.80 0.75 0.85
2 0.60 0.65 0.60
3 0.90 0.85 0.95
4 0.70 0.70 0.75
5 0.50 0.55 0.50

Table 16: Summary Evaluation Metrics

The binning and average is shown in Table 17
and the converted plot is shown as Fig 5.

Bin Range Avg. Pred. Score - Avg. Ref. Score

[0.0, 0.1] NaN
(0.1, 0.2] NaN
(0.2, 0.3] NaN
(0.3, 0.4] NaN
(0.4, 0.5] 0.05
(0.5, 0.6] 0.00
(0.6, 0.7] -0.05
(0.7, 0.8] 0.00
(0.8, 0.9] -0.10
(0.9, 1.0] -0.05

Table 17: Binning Result

E Analysis on Model Predictions

E.1 Study 1. Sentence-level Error Analysis
We aggregated the model predictions from 10 sys-
tems (rows 1-6, 8-11) in Table 2 and analyzed their
sentence-level prediction label. We omitted row
7 as we find their prompting results sometimes
do not follow the input sentence splits, thus could
potentially introduce noise in the analysis. Specifi-
cally, we ranked sentences based on how many sys-
tems failed to make correct predictions, highlight-
ing those that posed the greatest challenge across
models. Below are findings we drew from analyz-
ing DiverSumm (3143 sentences).

• Finding 1.1: Among the top 200 most fre-
quently misclassified sentences (by at least

9 out of 10 systems), 177 were annotated as
NoE. A closer inspection of these cases re-
veals that many errors stem from noisy an-
notations (i.e., the sentence is incomplete or
contains grammatical errors but was misla-
beled as factual). For example, the follow-
ing sentence is incomplete but labeled as NoE.
“experts noted that public awareness is critical
to helping people understand the implications
of.”

• Finding 1.2: We inspected the top-500 chal-
lenging sentences and our interest is on
the hard-to-detect human-labeled non-factual
sentences. The distribution of error types
is {’CorefE’: 1, ’EntE’: 23, ’GramE’: 22,
’LinkE’: 4, ’OutE’: 3, ’PredE’: 1}, suggesting
that nuanced entity-related (EntE) and gram-
matical (GramE) errors present consistent dif-
ficulties across different systems.

Empirical Comparison on DiverSumm Predic-
tions. We group the systems in Table 2 to com-
pare how well each model group detects different
types of errors. The groups are: Specialized mod-
els (rows 1-3), LLM-based models (rows 4-6), and
Linguistic-featured models (rows 8-11). We use
data subsets where each sentence has only one type
of error or no error (NoE). Then, we check how
accurately each model can detect the presence or
absence of that error using binary classification and
report the average accuracy score. The result is
shown in Table 18.

• Finding 1.3: We group the systems to compare
how well each model group detects different
types of errors. We observe that the detection
improvements brought by LLMs are most no-
table in reducing false positives (NoE) and in
detecting GramE and PredE.

Empirical Comparison on UniSumEval Predic-
tions. On UniSumEval (5299 sentences), we have
conducted similar experiments and analyses on
UniSumEval on per-error performance.

• Finding 1.4: According to Table 19, LLM-
based approaches have improved in reducing
false positives during error detection and show
better performance on SenE and EntE. How-
ever, OutE remains a challenging and persis-
tent issue, with all models continuing to strug-
gle to identify it accurately (below 50%).
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Model NoE EntE GramE OutE LinkE PredE CircE CorefE

Specialized models 70.16% 62.39% 52.61% 88.19% 76.19% 71.11% 89.74% 55.56%
∆ (LLM vs. specialized model) 8.93% -1.42% 3.21% -7.64% -9.52% 8.89% -7.69% -3.70%
∆ (Linguistic-featured vs. specialized) 0.02% 5.56% 9.74% 1.39% 3.81% 12.22% 2.56% 16.67%

Table 18: Comparison of error type performance across Models on DIVERSUMM

Model NoE OutE SenE EntE RelE

Specialized models 75.12% 50.31% 45.95% 44.67% 45.68%
∆ (LLM vs. specialized) 19.58% -4.72% 17.80% 10.00% -9.88%
∆ (Linguistic-inspired vs. specialized) 13.75% -0.62% 6.41% 10.83% 7.10%

Table 19: Comparison of error type performance across Models on UNISUMEVAL

E.2 Study 2. Comparing non-LLM-generated
and LLM-generated Errors

In this subsection, we investigate the performance
of systems in detecting errors in summaries gener-
ated by more advanced LLM-based models. This
analysis is inspired by the finding that LLMs and
older generative models produce different types of
factuality errors (Figure 2 in §3.2).

Task Setup: We split the UniSumEval into three
subsets: summaries generated by older pre-trained
LMs, the open-sourced LMs, and the closed-
sourced LMs (an extension of Table 6).

Finding: Our analysis shows that recent LLM-
based evaluators perform well in detecting all er-
rors in summaries produced by older models. How-
ever, as summarization models have evolved, LLM-
based evaluators have shown greater improvement
in reducing false positives—avoiding incorrect
flags on factually consistent sentences—and in han-
dling SentE cases. However, the LLM-based sys-
tems did not show significant performance gains
when examining specific error types, and the per-
formance of all evaluation systems is equally low.

Below we depict the model’s performance on
the three individual splits in Tables 20, 21, and 22,
following the same setup in §E.1. We find that for
summaries generated by older models, LLM-based
approaches improve the detection of errors across
all error types. However, as summarization models
continue to evolve, these approaches significantly
enhance the detection of NoE errors (reducing false
positives), while other relation types remain chal-
lenging to detect across all three groups of models.

F Extra Experimental Results on
Claim-level Approaches

We added experiments using two recent approaches
that incorporate claim decomposition into the eval-
uation task: FENICE (Scirè et al., 2024) and FIZZ
(Yang et al., 2024b) by rerunning models using
their released codebase. We evaluated them on the
same four benchmark datasets, reporting Summary-
level AUC and balanced accuracy (bAcc) under the
binary setting and Pearson’s r under the continu-
ous setting. Our results (Tables 23, 24, 25 and 26)
show that claim decomposition-based models gen-
erally underperformed or performed comparably to
other sentence-level baselines. The only exception
is Fenice, which showed improved performance on
UniSumEval; however, a performance gap remains
between these models and LLM-based systems on
that dataset (we use MC-FT5, row 3 of Tables 2
and 3).
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Model NoE OutE SenE EntE RelE

Specialized models 88.81% 50.81% 37.78% 44.44% 37.50%
∆ (LLM vs. specialized) 2.54% 13.41% 23.89% 18.89% 4.17%
∆ (Linguistic-inspired vs. specialized) -3.32% 8.03% 12.22% 9.72% 3.12%

Table 20: Error detection performance on summaries generated by older LMs such as BART and T5. LLM-based
approaches improve the detection of errors across all error types.

Model NoE OutE SenE EntE RelE

Specialized models 76.11% 56.44% 61.90% 48.15% 53.33%
∆ (LLM vs. specialized) 18.06% -9.85% 10.48% -3.70% -13.33%
∆ (Linguistic-inspired vs. specialized) -0.17% 6.34% 13.81% 14.35% 11.67%

Table 21: Error detection performance on summaries generated by open LMs such as Phi-2. The improvements
of LLM-based approaches are more profound in the detection of NoE and SenE.

Model NoE OutE SenE EntE RelE

Specialized models 68.22% 36.51% 37.50% 16.67% 33.33%
∆ (LLM - specialized model) 28.57% -29.37% 4.17% 0.00% -25.00%
∆ (linguistic - specialized model) -0.21% 3.37% 25.00% -4.17% -2.08%

Table 22: Error detection performance on summaries generated by closed-source LLMs such as GPT-4 and
Claude 2.1. LLM-based approaches significantly improve the NoE detection (reducing false positives). However,
the other relation types are hard to detect across all three groups of models.
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Model AUC bAcc Pearson’s r

Fenice 80.00 49.95 0.36
Fizz 87.90 50.91 0.54
MC-FT5 88.05 55.27 0.57

Table 23: Summary-level evaluation results on DIVER-
SUMM

Model AUC bAcc Pearson’s r

Fenice 70.01 50.72 0.33
Fizz 67.49 50.61 0.27
MC-FT5 75.34 54.27 0.48

Table 24: Summary-level evaluation results on RAM-
PRASAD’24

Model AUC bAcc Pearson’s r

Fenice 92.00 56.00 0.82
Fizz 88.53 72.66 0.55
MC-FT5 86.93 79.33 0.80

Table 25: Summary-level evaluation results on
LONGEVAL

Model AUC bAcc Pearson’s r

Fenice 59.11 50.09 0.19
Fizz 54.55 50.29 0.08
MC-FT5 57.31 49.96 0.10

Table 26: Summary-level evaluation results on
UNISUMEVAL
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