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Abstract

Graphical User Interface (GUI) agents, which
autonomously operate on digital interfaces
through natural language instructions, hold
transformative potential for accessibility, au-
tomation, and user experience. A criti-
cal aspect of their functionality is ground-
ing — the ability to map linguistic intents
to visual and structural interface elements.
However, existing GUI agents often strug-
gle to adapt to the dynamic and intercon-
nected nature of real-world digital environ-
ments, where tasks frequently span multi-
ple platforms and applications while also be-
ing impacted by version updates. To ad-
dress this, we introduce TransBench, the first
benchmark designed to systematically evalu-
ate and enhance the transferability of GUI
agents across three key dimensions: cross-
version transferability (adapting to version up-
dates), cross-platform transferability (gener-
alizing across platforms like iOS, Android,
and Web), and cross-application transferabil-
ity (handling tasks spanning functionally dis-
tinct apps). TransBench includes 15 app
categories with diverse functionalities, captur-
ing essential pages across versions and plat-
forms to enable robust evaluation. Our exper-
iments demonstrate significant improvements
in grounding accuracy, showcasing the prac-
tical utility of GUI agents in dynamic, real-
world environments. Our code and data will
be publicly available at TransBench.

1 Introduction

GUI (Graphical User Interface) agents (Zhang
et al., 2024), which are autonomous agents act-
ing in the digital world via operating on GUIs, en-
ables users to accomplish complex tasks through
natural language instructions (Chen et al., 2024a;
Ma et al., 2024; Baechler et al., 2024; Hong

* Equal contribution
† Corresponding author: Zeming Liu.

et al., 2024; Wu et al., 2024b; Wang et al., 2024a).
These agents locate and manipulate multimodal
GUI elements (i.e., buttons, icons, and menus)
(Kapoor et al., 2025) and autonomously execute
corresponding operations (e.g., clicking, scrolling)
(Gao et al., 2024a) across diverse interfaces given
the user instructions (Lu et al., 2024b; Mukhtar,
2025). By translating natural language instruc-
tions into precise actions, GUI agents democra-
tize access to digital systems, offering transfor-
mative potential for accessibility, automation, and
user experience. A core aspect of their function-
ality is grounding: the ability to map linguistic in-
tents from instruction to visual and structural inter-
face components. It is crucial to ensure effective
grounding, as failures in accurately interpreting
and localizing GUI elements propagate to down-
stream execution errors, rendering even sophisti-
cated action planning futile.

While prior work has advanced GUI agents’
grounding capabilities, existing approaches focus
exclusively on platform-specific settings, such as
mobile apps (e.g., GUI-Odyssey (Lu et al., 2024a),
AUITestAgent (Hu et al., 2024)), desktop inter-
face (e.g., AssistGUI (Gao et al., 2024a)), and
web environments (e.g., Mind2web (Deng et al.,
2024)). However, real-world applications oper-
ate dynamically: they span multiple platforms
(e.g., iOS, Android, Web) and evolve continuously,
with version updates frequently altering GUI lay-
outs and functionalities. Meanwhile, user instruc-
tions often span applications with relevant or dis-
tinct functionalities, such as requesting "compar-
ing products on Amazon and Alibaba with its re-
view videos on Youtube" and implicitly assume
cross-version or cross-platform consistency. This
challenge highlights a crucial aspect of grounding
for GUI agents — transferability. Without it, rigid
version-, platform-, or app-specific grounding fails
to generalize, making agents brittle in practice.

To address this issue, we first formally identify
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Figure 1: Interpretation of Transferability’s three aspects. Green means cross-version transferability: transferring
the knowledge learned from the homepage of Jingdong (a Chinese shopping app) from Android version 12.0.0 to
a newer Android version, 13.6.8. Red means cross-platform transferability: transferring from the Android version
of Jingdong to its iOS version 13.8.1 and Web version. Blue means cross-application transferability: transferring
from Jingdong to other apps with the same functionality (e.g., shopping: Pinduoduo) or with different functionality
(e.g., Finance: Bank of China)

three levels of transferability in terms of ground-
ing capability of GUI agents, as shown in Figure
1: 1) cross-version transferability: localizing GUI
elements despite interface changes from version
updates; 2) cross-platform transferability: trans-
ferring grounding knowledge between platforms
with divergent interaction patterns; and 3) cross-
application transferability: generalizing from in-
terchangeable features to partially overlapping or
functionally distinct ones. Therefore, these di-
mensions collectively determine whether the GUI
agents can generalize beyond narrow, static set-
tings to cross-version, cross-platform, and cross-
application workflows.

To systematically evaluate and enhance the
transferability at these three levels, we introduce
TransBench, the first benchmark that addresses
version and platform discrepancies with abundant
real-world applications. Specifically, we carefully
design a data collection pipeline in three consecu-
tive steps: 1) screenshot collections, ranging from
Android (including multiple versions), iOS 1, and
web platforms; and 2) bounding boxes annota-
tions; and 3) user instruction generation. We con-
duct rigorous quality control and human verifi-
cation to ensure the quality and diversity of our
benchmarks. We hope our dataset not only pro-
vides a robust foundation but also sets a new stan-
dard for future research in transferability, enabling

1Old versions for iOS applications are unavailable.

the development of more adaptive and generaliz-
able GUI agents across dynamic digital environ-
ments. Overall, our contributions can be summa-
rized as follows:

• We are the first to identify and highlight
the challenge of transferability in grounding
tasks, focusing on enabling GUI agents to ex-
ecute multi-app tasks while adapting to ver-
sion updates and platform differences.

• To support this, we design TransBench, a
benchmark featuring datasets with screen-
shots of each applications essential pages
across versions and platforms, covering 15
categories with diverse functionalities.

• Using TransBench, our experiments show-
case significant progress in grounding accu-
racy, highlighting increased robustness and
practicality for transferability in dynamic dig-
ital environments.

2 Related work

2.1 GUI Agents Datasets

GUI agent datasets play a crucial role in evalu-
ating model performance and enhancing agents’
abilities to understand GUI elements and execute
tasks across diverse applications (Liu et al., 2023;
Chen et al., 2024b; Liu et al., 2024b). Most of the
existing benchmarks tend to specialize in specific
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platforms, such as web (Deng et al., 2024), mo-
bile (Hu et al., 2024; Lu et al., 2024a), and desk-
top (Gao et al., 2024a). For example, Mind2Web
(Deng et al., 2024) is designed for web-based
environments, while Android-specific datasets in-
clude PixelHelp (Li et al., 2020), MoTIF (Burns
et al., 2022), GUI Odyssey (Lu et al., 2024a), and
MobileViews (Gao et al., 2024b). Only in re-
cent works, such as VisualAgentBench (Liu et al.,
2024c) and WebHybrid (Gou et al., 2024), has
the importance of cross-platform evaluation been
widely recognized. However, they primarily con-
centrate on structural differences between differ-
ent platforms, overlooking other levels of transfer-
ability for GUI agents, such as cross-version trans-
ferability and cross-application transferability. To
the best of our knowledge, no existing dataset si-
multaneously tackles all these challenges. It is
believed that our proposed TransBench can fulfill
this blank by providing a benchmark that compre-
hensively and systematically evaluates GUI agents
across these crucial dimensions.

2.2 GUI Agents Models

GUI agents play a crucial role in enabling in-
telligent automation, assisting users in navigat-
ing digital environments, and improving human-
computer interaction (Lu et al., 2024b; Mukhtar,
2025). Recent advancements in GUI agent mod-
els have significantly improved their ability to un-
derstand complex interface layouts and user inter-
actions (Wang et al., 2024f). For example, UI-
BERT (Bai et al., 2021) enhances agents’ compre-
hension of user intent and interface structures by
leveraging contextual representations, and Auto-
GLM (Liu et al., 2024a) builds on this by integrat-
ing both textual and visual data, improving adapt-
ability but at the cost of increased computational
demands However, they still struggle with gener-
alizing to unseen or frequently changing layouts.
Besides that, MobileVLM (Chu et al., 2023) en-
hances task execution efficiency in mobile appli-
cations, while MobileAgent (Wang et al., 2024b)
leverages multimodal data to handle multi-step
commands. Furthermore, AutoMobileGPT (Yang
et al., 2023) advances natural language task exe-
cution by enabling seamless interaction across di-
verse applications. As the need for GUI agents
that can seamlessly adapt across different app ver-
sions, platforms, and functionalities continues to
grow, advancing their transferability remains a cru-
cial research challenge. Furthermore, addressing

Name Transferability Lan
Version Platform Application

Mind2Web (Deng et al., 2024) % % % en
PixelHelp (Li et al., 2020) % % % en
MoTIF (Burns et al., 2022) % % % en
GUI Odyssey (Lu et al., 2024a) % % " en
E-ANT (Wang et al., 2024c) % % % en
Mobile3M (Wu et al., 2024a) % % % ch
MobileViews (Gao et al., 2024b) % % % ch
VisualAgentBench (Liu et al., 2024c) % " % en
WebHybrid (Gou et al., 2024) % " % en
TRANSBENCH (Ours) " " " ch

Table 1: Comparison between TransBench to other
GUI agent datasets from transferabilities’ three as-
pects, including cross-version, cross-platform, and
cross-application. "Lan" stands for "Language" and
"ch" means targeting Chinese apps).

the complexities of varying user interfaces and in-
teraction patterns will be key to ensuring robust
performance in real-world applications.

3 TransBench Construction

It is difficult to directly leverage existing bench-
marks as our seed dataset, since there are two sig-
nificant challenges. First of all, current datasets
are typically constructed as task sets and lack crit-
ical metadata, such as app names, page titles, ver-
sion numbers, and platform details. However,
these details are crucial for the study of transfer-
ability, as it depends on accurately identifying and
comparing interface variations across different ver-
sions, platforms, and apps. Secondly, a compre-
hensive evaluation of transferability requires estab-
lishing correspondence relationships across multi-
ple dimensions, such as mapping an app’s current
version to its previous versions and linking dif-
ferent platform-specific versions of the same app
with the same pages. Existing datasets typically
confine tasks within a single version or platform,
making it infeasible to be reused as an evaluation
of transferability. Therefore, we provide a detailed
data collection pipeline for TransBench in this sec-
tion (as shown in Figure 2), alongside the formal
task definition. Table 1 shows the detailed com-
parison between TransBench with other popular
benchmarks.

3.1 Task Definition

The input is a user instruction u and a screenshot
sji where i stands for ith APP and j means jth
screenshot of this APP. Screenshot sji is combined
with a set of instructions {u1, u2, ..., um}, which
of each is associated with a ground truth bounding
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Figure 2: Interpretation of data collection process. The blue box represents our proposed benchmark -TransBench,
which consists of three parts: ScreenShot Acquisition, Annotating Bounding Boxes, and Annotating Grounding
Instructions. Platform means iOS, Android, and Web. Page names are manually divided into page names according
to human semantics, such as "Shopping cart," "My page," "Home," "Comments," and so on, which usually have
similar functions.

box bk = (xmin, ymin, xmax, ymax). The agent’s
goal is to output a coordinate (x, y). The predic-
tion is correct if (x, y) falls within the correspond-
ing bounding box bk. The objective is to improve
the accuracy of GUI grounding across varying ver-
sions, platforms, and applications.

3.2 Step 1: Screenshot Acquisition

To cover diverse user instructions and applications,
we identify 81 commonly used multi-platform
applications in practice drawn from both previ-
ous studies and everyday usage, including shop-
ping, video streaming, social networking, travel,
lifestyle, maps, music, communication, finance,
email, reading, education, camera, fitness, and util-
ity tools. A complete list of applications is pro-
vided in the Appendix 11. Furthermore, consid-
ering the different levels of transferabilities, we
define two types of screenshots: 1) fundamen-
tal screens that are common across most applica-
tions (i.e., homepage, message page, user profile
page), allowing agents to establish a basic under-
standing of frequently encountered GUI elements;
and 2) domain-specific screenshots which capture
the unique functionalities of each application, en-
abling agents to adapt to specialized tasks. Con-
sequently, we successfully collect the seed dataset,
which includes a total of 1,459 screenshots: 825

from Android (covering both new and old ver-
sions), 429 from iOS, and 205 from web platforms.
Tables listing the names of the applications and the
titles of their corresponding pages are provided in
the Appendix A.3.

3.3 Step 2: Annotating Bounding Boxes

Bounding boxes are essential for identifying and
localizing GUI interface components such as but-
tons or input fields (Gou et al., 2024). In this way,
we first utilize an automated annotation tool to
generate preliminary bounding boxes, providing a
foundational layer for the following work. After
that, manual verification is conducted to address
any discrepancies identified in the automated pro-
cess.

Automatic Annotations. We use OmniParser
(Lu et al., 2024b) to automatically identify the
bounding boxes due to its strong GUI element
recognition capabilities. This automated process
enables efficient identification of key GUI ele-
ments, reducing the manual workload in the initial
stages. Additionally, an automated filtering pro-
cess is applied to exclude non-essential elements,
such as status bars or advertisements. This filter-
ing step ensures that the dataset remains focused
on GUI elements relevant for evaluating interac-
tion capabilities.
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Manual Verification. Following automated an-
notation, manual verification is performed by four
well-educated human annotators. To streamline
this process, we develop a specialized annotation
tool, GUILabeller2, designed to facilitate flexi-
ble and efficient manual adjustments. Each hu-
man annotator is required to review each bounding
box to identify whether it correctly encapsulates
the intended GUI element. If discrepancies are
found, the annotators manually adjust or redraw
the bounding box to ensure precision. Addition-
ally, particular attention is given to verifying the
semantic equivalence of GUI components (Gou
et al., 2024), which refers to cases where multi-
ple GUI elements might belong to a larger GUI
component and trigger identical outcomes. To ad-
dress this issue, an additional larger bounding box
is added during verification to encapsulate seman-
tically equivalent elements, forming a hierarchical
GUI element structure.

3.4 Step 3: Annotating Grounding
Instructions

Following the completion of bounding box anno-
tation, resulting in over 65,000 bounding boxes,
the subsequent step is to generate high-quality
grounding instructions while minimizing human
intervention to ensure diversity and accuracy. This
process is structured into three key steps, includ-
ing extracting bounding box attributes, generat-
ing screen summaries, and constructing grounding
instructions. Each step’s prompt details can be
found in Appendix A.13. Manual verification is
performed at the end to ensure correctness. Data
examples can be found in Appendix A.2.

Bounding Box Attributes Acquisition. Screen-
shots and their corresponding bounding boxes are
processed to Qwen2VL (Wang et al., 2024e) to
obtain three-dimensional attributes (inspired by
ARIA-UI (Yang et al., 2024)), including visual fea-
tures, positional relationships, and functional char-
acteristics.

Screen Summaries Generation. Each screen-
shot, alongside its relevant metadata such as the
application name and page title, is incorporated
into prompts designed for Qwen2VL to generate
screen summaries. These summaries synthesize
both visual and contextual information, providing

2Details of our tool can be found in Appendix A.4
3All prompts can be found in the Appendix if not stated.

Statistics Android old Android new iOS Web
# Apps 77 80 81 47
# Screenshots 393 432 429 205
# Bounding Boxes 17,455 19,384 14,477 14,341
# Checked Instructions 5,696 6,305 6,046 4,191
# Fundamental Pages 300 300 300 150
# Domain-Specific Pages 93 132 129 55
Avg. # Screenshots 5.1 5.4 5.3 4.4
Avg. # Bounding Boxes 226.7 242.3 178.7 305.1
Avg. # Instructions 74.0 78.8 74.6 89.2
Avg. #Fundamental Pages 3.9 3.8 3.7 3.2
Avg. # Domain-Specific Pages 1.2 1.7 1.6 1.2

Table 2: The data statistics of our proposed
TransBench. Avg. meas average on single App.
Bounding boxes include boxes with unchecked instruc-
tions and boxes with checked Instructions.

a holistic understanding of the interface’s layout
and functionality, which serves as the foundation
for generating grounding instructions.

User Instruction Construction. Using the
bounding box attributes and screen summaries
obtained from previous steps, we prompt Qwen-
plus (for its strong reasoning, imagination, and
instruction-following abilities) to construct the
required user instruction. The generation process
leverages multidimensional visual information
provided by the visual model, as well as com-
monsense information associated with application
names and page titles as prior knowledge.

Quality Control. Finally, to ensure data quality,
manual verification is performed. Four human an-
notators together address inconsistencies and re-
fine instructions while necessary. As a result, more
than 22,000 high-quality grounding instructions
are refined, and only these refined instructions are
used in the following experiments. Furthermore,
following Liu et al. (2020), Shi et al. (2023) and
Wang et al. (2024d), we employ human evalua-
tions to assess data accuracy. An instruction is
considered correct only if it precisely corresponds
to the single corresponding bounding box, while
pointing to more than one bounding box is consid-
ered incorrect. The final evaluation yields an aver-
age score of 95.5%, confirming the high quality of
the grounding instructions in the dataset.

3.5 Data Statistics
Table 2 illustrates the statistics of TransBench.
Specifically, it includes up to 81 apps across An-
droid (old and new versions), iOS, and Web plat-
forms, with a total of 1,459 screenshots and over
65,000 bounding boxes. On average, each app con-
tains a maximum of 5.4 screenshots, 305.1 bound-
ing boxes, and 89.2 instructions. The dataset bal-
ances fundamental pages (common across apps)
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and domain-specific pages (unique to each app),
ensuring broad coverage of GUI elements and
tasks.

To assess meaningful differences between ver-
sions, we manually analyzed screenshots to quan-
tify interface changes. Among all screenshots,
74.6% showed significant differences. We further
examined 20 pairs of old and new version screen-
shots, classifying elements into six categories: lay-
out or icon/text changes, both layout and icon/text
changes, additions, deletions, and no change. Re-
sults are summarized in the table 3.

Element Type Percentage
Layout Change 10.0%
Text/Icon Change 2.0%
Layout and Text/Icon Change 13.6%
Addition 30.8%
Deletion 14.0%
No Change 29.6%

Table 3: Differences between Android old version and
Android new version.

4 Experiment

4.1 Setup

Models. We select several top-performing
LLMs on ScreenSpot. Specifically, we include
Cogagent (Hong et al., 2024) (glm-4v (Zeng
et al., 2024)), Seeclick (Cheng et al., 2024)
(Qwen-VL (Bai et al., 2023)), Aria-UI (Yang
et al., 2024) (Aria (Li et al., 2024)), OS-Atlas
(Wu et al., 2024c) (Qwen2-VL (Wang et al.,
2024e)), UGround (Gou et al., 2024) (Qwen2-
VL), and Qwen2.5VL (Team, 2025). Among
them, UGround and CogAgent have been updated
compared to the versions in their paper, and
Qwen2.5VL is the latest released model.

Implementation Details. Following (Huang
et al., 2024; Zhuang et al., 2023; Cheng et al.,
2024), we conduct evaluations under two config-
urations: 1) the Standard Set, where all baselines
are tested and evaluated on our complete dataset.
Evaluation details can be found in Appendix
B.1. 2) the Finetuning Set, which utilizes the
rich metadata of our dataset to construct different
partitions, allowing models to be fine-tuned on
the training sets of each partition and tested on the
corresponding test sets. Details of the training set
division and finetuning are available in Appendix
B.2 and B.3.

4.2 Evaluation Metrics
In line with previous practices, we evaluate
grounding accuracy on TransBench by determin-
ing a prediction to be correct if the predicted lo-
cation is contained within the ground truth bound-
ing box. Moreover, to compare the precision of
click positions at a finer scale, we introduce an av-
erage distance evaluation metric D, which refers
to the Euclidean distance between the predicted
click position (xi, yi) and the center of the Ground
Truth bounding box (x̂i, ŷi). To accommodate var-
ious interface sizes and ensure readability, we uni-
formly scale x, y with screen width and height to
a range of 0-100 by x′ = x

W × 100 and y′ =
y
H×100, thereby enabling the comparison of preci-
sion across screens with varying width and height.

D =
1

N

N∑

i=1

∥∥(x̂′i, ŷ′i), (x′i, y′i)
∥∥ (1)

4.3 Results
Table 4 presents the TransBench evaluation re-
sults of different LLMs across different platforms
and app versions. Several key observations can be
made:

Overall, Qwen2.5VL achieves the highest ac-
curacy, while UGround minimizes distance.
Qwen2.5VL consistently outperforms all other
models in terms of accuracy across all settings,
achieving the highest overall accuracy (89.62%).
Meanwhile, UGround exhibits the lowest distance
metric in most cases, except on the Web, where
Qwen2.5VL attains the smallest distance (7.35).
Other models show a notable performance gap
compared to these two, with SeeClick and Co-
gagent demonstrating particularly weak perfor-
mance, as reflected in both accuracy and distance
scores.

Models released at different times exhibit vary-
ing performance across different versions of
Android, with newer models generally perform-
ing better on the Android new version. In
detail, older models such as CogAgent (76.04%
old vs 75.70% new) and SeeClick (46.86% old
vs 46.42% new) demonstrate better performance
on android old version. Conversely, newer mod-
els, including Aria-UI, OS-Atlas, UGround, and
the top-performing Qwen2.5VL (88.87% old vs
90.29% new) achieve higher results on new ver-
sions. These results suggest substantial differ-
ences between app versions, which potentially
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Models General Android iOS Web
Overall Android Old Android New

acc↑ dis↓ acc↑ dis↓ acc↑ dis↓ acc↑ dis↓ acc↑ dis↓ acc↑ dis↓
Cogagent 72.16 14.99 75.86 14.13 76.04 13.99 75.70 14.25 68.61 16.28 66.69 15.58
SeeClick 39.90 22.72 46.63 19.27 46.86 19.07 46.42 19.45 43.57 19.71 15.37 36.96
Aria-UI 77.51 9.26 81.18 8.99 80.97 9.10 81.38 8.89 77.61 9.61 66.86 9.55
OS-Atlas 81.37 8.36 84.56 8.24 84.52 8.10 84.60 8.36 79.64 8.89 74.76 7.97
UGround 84.18 7.23 87.34 6.89 86.94 6.89 87.71 6.89 82.43 7.42 77.62 7.94
Qwen2.5VL 86.43 7.72 89.62 7.68 88.87 7.82 90.29 7.55 84.72 8.04 79.79 7.35

Table 4: Accuracy rate (%) of different LLMs on TransBench.

come from evolving GUI components and interac-
tion philosophies.

GUI agents tend to perform grounding best on
Android, followed by iOS, with the worst per-
formance on the web. As reported in Table 4,
we can find that the performance on Android is
always higher than iOS, and the performance of
both Android and iOS is substantially better than
Web interfaces, no matter which method is cho-
sen. For example, Qwen2.5VL achieves 89.6%,
84.72%, and 79.79% accuracy on Android, iOS,
and Web, respectively. The substantially weaker
Web results indicate that GUI differences between
mobile and web platforms pose a significant chal-
lenge, and the observed performance variations be-
tween Android and iOS platforms also underscore
the inherent heterogeneity within mobile ecosys-
tems.

Our proposed distance serves as a strong com-
plementary evaluation metric to accuracy, of-
fering a finer-grained assessment of precision in
grounding tasks. Unlike accuracy, which sim-
ply checks whether a click falls within the bound-
ing box, distance considers the exact position of
the click relative to the box’s center. It is ob-
served that Cogagent exhibits a large discrepancy
between accuracy and distance. Despite only a 7%
accuracy gap compared to Aria-UI, its distance is
62% higher. Further inspection reveals that Coga-
gent interprets some tasks as already completed,
although we precisely prompt it to perform a click
action. Qwen2.5VL achieves the highest accu-
racy, but it underperforms UGround in terms of
the distance metric. With more careful inspection,
we speculate that this may be due to its absolute
coordinate output (align with screenshot resolu-
tion), whereas UGround normalizes coordinates to
a 0-1000 scale, making it more robust to varying
screen resolutions.

5 Analysis

In this section, we fine-tune Aria-UI4. We use
ARIA-UI as an experimental subject to address
three key research questions. RQ1: How does
transferability across versions impact the perfor-
mance of GUI agents, and can fine-tuning on older
versions improve adaptability to newer ones? (Sec
5.1) RQ2: To what extent can models general-
ize across platforms (i.e., from Android, iOS, to
Web)? (Sec 5.2) RQ3: How do models perform
when transferring knowledge across applications
with varying functionalities, and what are the lim-
itations in cross-application generalization? (Sec
5.3)

5.1 Cross-Version Transferability Evaluation

To investigate the cross-version transferability, we
split our dataset into a training set (containing
5,000 samples of low-version Android data) and a
test set (composed of high-version Android data,
iOS data, and Web data). We then fine-tune
the Aria-UI model using the training dataset, re-
sulting in the Aria-UI-Android-old model. We
provide the performance of it on the test set in
Table 5. Training focused on comparing old
and new versions demonstrates significant perfor-
mance improvements across all platforms. Specif-
ically, accuracy on the Android new version in-
creases from 81.38% to 88.36%, on iOS from
77.61% to 82.57%, and the Web from 66.86% to
73.61%. Notably, the performance on Android
new and iOS surpasses that of the second-best
model, UGround, and approaches the performance
of the top-performing Qwen2.5VL. This indicates
strong transferability from old to newer versions,
suggesting that finetuning on older versions can
yield robust performance even after application up-
dates. Furthermore, it highlights the potential of

4All the code and scripts will be open-sourced. Please see
Appendix B for more details
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Models Android New Android Old iOS Web
acc dis acc dis acc dis acc dis

Base Model
Aria-UI-Base 81.38 8.89 80.97 9.10 77.61 9.61 66.86 9.55

Fine-tuned Model
Aria-UI-Android-old 88.36 5.80 89.37 5.92 82.57 7.74 73.61 8.43
Aria-UI-iOS 87.06 6.98 86.83 6.92 82.03 7.09 73.66 8.74
Aria-UI-General 88.15 6.17 87.20 6.08 83.15 7.21 76.54 7.58

Table 5: Accuracy rate (%) of Aria-UI after fine-tuning on the Different split of TransBench.

leveraging historical data to improve model adapt-
ability across version changes and even different
platforms.

In addition, we evaluated whether fine-tuning
data from the old version improves a models per-
formance on newly added UI elements in the new
version. Using 271 randomly sampled new ele-
ments from the updated version, we compared the
accuracy of the model before and after fine-tuning
on the old Android version.

Model New Element Accuracy (%) ↑
Aria-UI-Base 80.15

Aria-UI-Android-Low 87.50

Table 6: Aria-UI Accuracy Change for Newly Added
Elements in New Version

The results in Table 6 indicate that the GUI ele-
ments newly added in the new version can benefit
from fine-tuning based on the old version.

5.2 Cross-Platform Transferability Evaluation
To assess cross-platform transferability, we further
create two additional training sets: 1) iOS split us-
ing 5000 samples of iOS data as the training set
(Aria-UI-iOS); and 2) general split, which mixes
all available data and randomly select 5000 sam-
ples as the training set to maintain consistency
(Aria-UI-General). Furthermore, to evaluate trans-
ferability from the Web to other platforms, we cre-
ate a Web split using 4,000 samples of Web data
due to the smaller data scale as the training set
(Aria-UI-Web).

General, iOS, and Android comparison. Ta-
ble 5 shows the results of Aria-UI-iOS, Aria-UI-
Android-old and Aria-UI-General. It is observed
that finetuning on Android data provides the most
substantial performance gains across platforms.
For instance, iOS accuracy improves by 4.96%
when fine-tuned on Android data, compared to
4.42% when fine-tuned on iOS data. This suggests
that Android data, being more diverse and repre-
sentative than iOS, offers better transferability to

Models Android New Android Old iOS Web
acc dis acc dis acc dis acc dis

Base Model
Aria-UI-Base 81.38 8.89 80.97 9.10 77.61 9.61 66.86 9.55

Fine-tuned Model
Aria-UI-Web 84.87 7.70 84.08 7.70 80.62 8.39 66.49 9.60

Table 7: Accuracy rate (%) of Aria-UI after fine-tuning
on the Web split of TransBench.

other platforms, and finetuning on it is highly ef-
fective. In addition, we can found it is not easy to
directly transfer from Android or iOS to Web with-
out the web data since the performance of Aria-
UI-iOS and Aria-UI-Android-old is significantly
worse than Aria-UI-General.

Web results. Besides that, the result in Table 7
on the one hand shows that fine-tuning on the Web
with 4,000 samples can not significantly enhance
performance on the Web test set, but on the other
hand, can improve performance on Android and
iOS. Combined with our previous findings in Ta-
ble 5, the Aria-UI-General model, fine-tuned on
the general split, achieves the most significant im-
provement on Web (76.54%) and iOS (83.15%).
This further confirms that diverse, multi-platform
data is crucial for enhancing not only Web per-
formance, but for achieving robust cross-platform
transferability.

5.3 Cross-Application Transferability
Evaluation

To evaluate cross-application transferability, we
split app categories into two parts5: 1) the train-
ing set contains 18 Apps from the first seven cate-
gories; and 2) the test set, which is composed of 35
Apps from the same seven categories (i.e., Same
CAT), and 28 Apps from other categories (i.e, Dif-
ferent CAT). Then we fine-tune the Aria-UI model
on the training set and inferences at these two dif-
ferent test sets. Figure 3 shows the significant im-
provements in accuracy and reductions in the dis-

5The training set has 6247 samples and the test set has
15991 samples. We randomly selected 5000 samples from
the training set for finetuning.
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Figure 3: Sub-figure (a), (b) shows the variation of aver-
age accuracy and average distance after finetuning Aria-
ui on App Split. "CAT" means category.

tance across both apps in same category and dif-
ferent category. However, the performance gains
are slightly more pronounced for apps in same cat-
egory, benefiting from the task similarity. Despite
this, the difference between the two category types
is not substantial, indicating that app similarity
has less impact on transferability compared to plat-
form and version differences. This suggests that
while app-specific finetuning can yield improve-
ments, the overall transferability of GUI agents
is more influenced by platform and version adapt-
ability.

6 Conclusion

In this paper, we explore three major fine-grained
aspects of transferability (i.e., cross-version, cross-
platform, and cross-application) of grounding ca-
pabilities for GUI agents to better accommodate
diverse user instructions and complex real-world
scenarios. To this end, we build the first compre-
hensive benchmark – TransBench, covering var-
ious applications spanning different versions and
platforms. Our experimental results on a more
fine-grained evaluation showcase that there is still
a big gap between different levels of transferabil-
ity, and we hope our benchmarks and new metrics
can pave the way for more effective and adaptable
GUI agents in practical applications.

Limitation

One notable limitation of our approach is the high
computational requirements for training and fine-
tuning the models. The extensive dataset, com-
bined with the need for multi-dimensional parti-
tioning and rigorous evaluation of transferability
across versions, platforms, and applications, de-
mands significant computational resources. This
can pose challenges for researchers or organi-
zations with limited access to high-performance

computing infrastructure, potentially restricting
the reproducibility and scalability of our methods.

Ethical Statement

This study adheres to ethical guidelines by ensur-
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suring responsible dissemination and compliance
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A Data Collection

A.1 Prompt Details

The prompts we used are shown in Tabel 8, 9 and
10.

You are a powerful GUI recognizer, your mission is to ac-
curately recognize GUI element on screenshot and output
information.

You have two input images, first image is a crop of
your target GUI element, second is a target GUI element
zoomed-in view of full screenshot.

Output three types of information, including: Visual in-
formation such as "The vertical three-dot button, with
text more at the bottom", Positional information such as
"Next to the entry "28 YEARS LATER - Official Trailer",
and the Functional information such as "Access more op-
tions for the video entry". The output should be in chi-
nese and included in json dict: {"Visual":"visual infor-
mation", "Positional": "positional information", "Func-
tional": "functional information"}.

Table 8: The prompt used to generate the bounding box
attributes, including visual, positional, and functional
information.

You are a GUI annotator. The input screenshot is the
{page_title} page of the {app_name} application. Please
fully describe the page in Chinese.

Table 9: The prompts to generate the screen summaries
using information of app names with page titles.

Your mission is to generate instructions that correspond
to potential interactions when user want to act with the
specified GUI element on current screen, such as instruc-
tion "watch video about happy dog." corresponding to a
video about a happy dog in video list on the screen. Re-
member that your output should like a normal user in-
struction.

Your output based on three part of input information, first
is a screen summary, second is the description of target
GUI element, third is the current app name and page
name. Input information may conflict or including some
errors, neglect these conflicts or errors, ensure that the in-
structions you generate correspond uniquely to the GUI
on the screen.

Input1: Screen summary is { "screen_summary":
"{screen_summary}"}.
Input2: The target GUI element is {caption_data} .
Input3: The current app is {app_name} app, current page
is {page_name} page.

The output should be in Chinese and included in json
dict{"Instruction": Instructions that the user would say.}

Table 10: The prompts to generate the grounding in-
structions using information of screen summary, de-
scription of target GUI element, and app names with
page titles. Caption data is a json dict like: {"Visual":
"xxx", "Positional": "xxx", "Functional": "xxx"}

A.2 Example Description

Here are data examples (Figure 4, 5, and 6) for
three platforms: Android new, iOS, and Web. In
each example, there are several bounding boxes
and the corresponding instructions. It is worth
noting that the different colors are only for con-
venience in viewing more details and do not have
different semantics.

Click the 'Manage' button in the upper right corner to enter the product management option.

Click the Price reduction button to see if there is any price reduction information or options.

Click the logo of Loboyi flagship store on Tmall to view more products on the store homepage.

Select all items from the first store in the shopping cart.

Select the first item in the cart.

View the first item recommended by the shopping cart page.

Click the round white border button at the bottom left of the screen to fully select the items in the 

shopping cart.

Click the orange button at the bottom to settle and start paying for the items in your cart.

Click the leftmost house icon in the bottom navigation bar to return to the home page of Taobao.

Click the 'Browse' icon in the bottom navigation bar to enter the browse page to browse the 

recommended content.

Click to view and manage my messages.

Click the orange shopping cart icon in the bottom navigation bar to go to the shopping cart page to 

view the added items.

Click the smiley face icon at the bottom to enter my Taobao page.

Figure 4: An example of Android version.

Manage the current shopping cart interface by clicking the three dots at the top right of the screen.

Search for items in your shopping cart by entering their name in the search box at the top of the 

shopping cart page.

Click the magnifying glass icon in the search bar to search for items in the shopping cart.

Click the 'Group' TAB, you can enter the group page to classify and manage the products in the 

shopping cart.

Click the yellow down arrow icon and select the 'Price Down' TAB to filter the price down items in 

your cart.

Click on the 'Frequently Purchased' TAB to see a list of items I buy frequently.

Click to see the details of the Wenfang jujube seed lily paste in the red box on the left.

Click the orange circular button in the upper left corner to select or deselect items in the shopping 

cart.

Click the orange 'Settle' button to start the settlement process.

Click the home icon at the bottom left of the screen to return to the home page of Taobao.

Tap the clothing icon in the bottom navigation bar to view live streaming and video notifications.

Click the message icon to view unread messages.

Click the shopping cart icon in the bottom navigation bar to view and manage the items in the 

shopping cart.

Click the "My Taobao" icon on the far right of the bottom navigation bar to enter the personal center 

page to view and manage my order, collection and other information.

Figure 5: An example of iOS version.

Click 'mobile shopping Taobao', enter the mobile shopping Taobao page.

Click on this orange "My Taobao“.

Click to view the 3 items in the shopping cart.

Click the favorites button on the right side of the navigation bar at the top of the shopping cart 

page to view my favorites.

Click the free store button at the top right of the page to see the free store options.

Click the "Qianniu Seller Center" button on the right side of the navigation bar at the top of the 

page to enter the Qianniu Seller center page.

Type 'Balance cart' into the search bar and click the orange button to search.

Click the orange 'Search Taobao' button to search for the balance car.

Click the button with the house shape icon and the word 'home' in the bottom right corner to 

jump to the home page of Taobao.

Click the official plugin button to enter the official plugin page to view and use various plugin 

functions provided by Taobao.

Click to see that you have 7 unread messages.

Click the orange button "My Taobao" in the bottom-right navigation bar to enter my personal 

page.

Click the feedback button with the pencil icon and the dialog bubble and exclamation mark 

combination to submit your feedback on the Taobao shopping cart page.

Click the orange 'Go shopping' button to jump to the Taobao home page to browse more

products.

Figure 6: An example of the Web version.

A.3 Application Names and Page Titles

Table 11 and 12 respectively list each category’s
application names as well as page titles (com-
prised of both fundamental pages and domain-
specific pages).
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App Categories APP Names
Shopping Taobao, Jingdong, Weipinhui, TMall, Pinduoduo, Dewu, Yitao, Alibaba1688
Video Streaming Aiqiyi, Tencent Video,, Youku Video, bilibili, Mangou, Xigua, Tudou, Souhu
Social Networking Douyin, Xiaohongshu, Kuaishou, Douyinjisu, Douyinhuoshan, Weibo, Jinritoutiao
Travel Qunaer, Xiecheng, 12306, Tongcheng, Feizhu, Zhixing, Tuniu
Lifestyle eleme, meituan, dingdong, Hema, Didi, Dazhong
Maps Gaode Maps, Baidu Maps, Tencent Maps, Beidou
Music Netease, QQ Music, Kugou Music, Qishui Music, Migu, Kuwo, Bodian, Quanmin
Communication QQ, Feishu, DingTalk
Finance Bank of China, Bank of Construction, Alipay
Email QQ Mail, Netease Mail, 189 Mail
Reading Kindle, Wechat Reading, Fanqie, Douban, Qimao, Netease Reading
Education Wanciwang, Xindongfang, Momo, Hujiang, Baicizhan
Camera Huangyou, Qingyan, Meitu, B612, Xingtu
Fitness Keep, MeiriYoga, Yinghan
Utility Tools Fanqie, Ticktick

Table 11: List of all Apps and their corresponding names in TransBench

Page TitlesApp Categories
Fundamental pages Domain-specific pages

Shopping Home, Me, Message Cart, Orders
Video Streaming Home, Me, Search Video, Full Screen, History, Advertisement
Social Networking Home, Me, Search Full Screen, Comments
Travel Home, Me Orders, Booking, Search, Flights
Lifestyle Home, Me Cart, Recommendations, Search, Details, Orders
Maps Home Details
Music Home, Me, Search Video, Comments, Favorites
Communication Home, Me Profile, Settings, Contacts, Moments, More
Finance Home, Me, Search Customer Service
Email Home Inbox, Emails, Compose
Reading Home, Me, Search Details
Education Home, Search Details
Camera Home Photo, Edit
Fitness Home, Me, Search Start Exercise
Utility Tools Home, Me Data Statistics, Add to-do Items

Table 12: List of all App categories and their corresponding page titles in TransBench

Figure 7: Enter Caption

A.4 Other details

Tools details. To quickly inspect the generated
data, we develop a manual inspection tool in Fig-
ure 7 called GUILabeller, which uses Python and
can run across different platforms. We will open-
source this tool on GitHub.

Data collection pipeline details. To acceler-
ate the generation speed, as well as due to re-
source constraints, we utilized a combination of
online Qwen series models (including qwen-VL-
plus, qwen-VL-max, and qwen-plus) and locally
run Qwen2VL-72b model and Qwen2-72b model.
Specifically, the locally run models are running on
an NVIDIA A800 server cluster using int4 format
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quantization.

B Experiments

B.1 Evaluation Details

To ensure optimal performance for each model, all
hyperparameters (e.g., temperature) are set consis-
tently with their publicly released versions. We
adapt our evaluation framework to each model
and provide the evaluation scripts in our reposi-
tory. Since different models utilize distinct prompt
structures during training, we strictly follow the
prescribed prompt formats for each model to
achieve their best performance. Specifically, Co-
gAgent requires the platform type as input, and we
provide the correct platform type accordingly. We
will open-source our testing scripts in the GitHub
repository, which facilitates the easy addition of
new agents for testing. The detailed prompts are
in Table 13.

B.2 Training Set Division

Our dataset is annotated with five key dimen-
sions: app names, app categories, page titles,
app versions, and platform types, enabling multi-
dimensional partitioning. As illustrated in the fig-
ure below, models fine-tuned on specific partitions
are exclusively evaluated on their corresponding
test sets to prevent data leakage.

Android-Low Partition: From the dataset,
5,696 low-version Android samples are selected
as candidates. We randomly chose 5,000 for
training, with the remaining 696 and an additional
16,542 samples used for testing.

iOS Partition: A total of 6,046 iOS samples
are filtered as candidates. We randomly select
5,000 for training, leaving 1,046 and an additional
16,192 samples for testing.

Web Partition: From 4,191 Web platform sam-
ples, 4,000 are randomly chosen for training, with
the remaining 191 and an additional 18,047 sam-
ples used for testing.

Normal Partition: We randomly select 5,000
samples from the entire dataset for training, using
the remaining data for testing.

App Partition: To evaluate cross-app transfer-
ability, we first select the top 7 app categories with
the most data. From these, 40% of the apps are
reserved for testing, resulting in 6,247 candidate

ARIA-UI:

Given a GUI image, what are the relative (0-1000) pixel
point coordinates for the element corresponding to the fol-
lowing instruction or description: {instruction}

CogAgent:

Task: Click on the element most relevant to the instruc-
tion {instruction}
History steps:
(platform: {platform})
(Answer in Status-Action-Operation-Sensitive format.)

OS-Atlas:

In this UI screenshot, what is the position of the el-
ement corresponding to the command "{instruction} "
(with box)?

Qwen2.5VL:

The user query: Please click the most suit-
able{instruction} element:

SeeClick:

In this UI screenshot, what is the position of the element
corresponding to the command "{instruction} "(with
point)?

UGround:

Your task is to help the user identify the precise coordi-
nates (x, y) of a specific area/element/object on the screen
based on a description.
- Your response should aim to point to the center or a rep-
resentative point within the described area/element/object
as accurately as possible.
- If the description is unclear or ambiguous, infer the most
relevant area or element based on its likely context or pur-
pose.
- Your answer should be a single string (x, y) correspond-
ing to the point of the interest.
Description: {instruction}
Answer:

Table 13: The model evaluation prompts used on
LLMs. Qwen2.5VL has long system message, which
follows the message in Qwen2.5VL repository.
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samples. We then randomly select 5,000 for train-
ing, with the remaining 1,247 and an additional
15,991 samples used for testing.

B.3 Finetuning

We follow the Lora fine-tuning parameters offi-
cially provided by Aria and perform Lora fine-
tuning. Specifically, we trained Lora with r=8,
alpha=32, dropout=0.05, and target_modules as
"fc1", "fc2", "q_proj", "k_proj", "v_proj", "linear",
"o_proj", "up_proj", "down_proj", "out_proj",
"gate_proj", "lm_head". The learning rate was set
to 5e-5, the batch size was set to 16, and a total of
2 epochs were trained.

To validate the reasonableness of selecting two
epochs, we documented the accuracy and distance
variations in the validation set during fine-tuning
Aria-ui on the normal partition, as illustrated in
Figure 8. The results indicate that two epochs es-
sentially achieve the model’s optimal performance,
with minimal gains from further training, which
could potentially lead to overfitting.
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Figure 8: Variation of Average Accuracy and Average
Distance on the Test Partition with Respect to Fine-
Tuning Steps on the Normal Training Partition.

All fine-tuning and experiments were conducted
for 200 GPU hours on the NVIDIA A800 clus-
ter. Aria-ui has 25B parameters. We set seed as
42 for shuffle, using default config of transformers
Trainer. We also plan to open-source our training
scripts.

B.4 Error Analysis

The failure cases can be summarized into three cat-
egories, illustrated in Figure 9:

Incorrect GUI prediction. Models do not un-
derstand grounding instructions and predict wrong
click positions.

Incorrect location with correct prediction. De-
spite the ability to understand grounding instruc-
tions, models generate predicted positions that fall
near the bounding boxes.

Incorrect prediction affected by nearby ele-
ments. While models predict the target as a
whole, instructions focus on only a specific part
of it.

                                       

                               
                                                  

                                                       

                                  

                                                           

                                        

     
                                                                    

                              

                                                       

                                  

                                                              

                                        

   
                                                                 

       

                                                       

                                  

Figure 9: Three examples of error cases.
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