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Abstract

Recent advancements in Al-generated content
(AIGC) have heightened concerns about harm-
ful outputs, such as misinformation and ma-
licious misuse. Existing detection methods
face two key limitations: (1) lacking real-
world AIGC scenarios and corresponding risk
datasets, and (2) both traditional and multi-
modal large language models (MLLMs) strug-
gle to detect risks in AIGC. Towards this
end, we introduce AIGUARD, the first bench-
mark for AIGC risk detection in real-world
e-commerce. It includes 253,420 image-text
pairs (i.e., the risk content and risk descrip-
tion) across four critical categories: abnor-
mal body, violating physical laws, mislead-
ing or illogical context, and harmful or prob-
lematic message. To effectively detect these
risks, we propose distilling text annotations
into dense soft prompts and identifying risk
content through image soft prompt matching
during inference. Experiments on the bench-
mark show that this method achieves a 9.68%
higher recall than leading multimodal mod-
els while using only 25% of the training re-
sources and improving inference speed by 37.8
times. For further research, our benchmark
and code are available at https://github.
com/wenh-zhang/aiguard-dataset.

1 Introduction

Recent advancements in AIGC have significantly
improved creative workflows in text (Zhang et al.,
2024; Achiam et al.,, 2023), image (Saharia
et al., 2022; Koh et al., 2024), and video gener-
ation (Blattmann et al., 2023; Liu et al., 2024c),
demonstrating substantial commercial potential.
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Figure 1: Online E-commerce platforms with the risky
AIGC content, e.g., “Abnormal foot” or “Make fake
certificate”, that evade the system detection. However,
current MLLMs lack knowledge and have limited capa-
bility to detect the risk of AIGC content.

According to the Al index report (Clark and Per-
rault, 2024), in 2024, 42% of surveyed companies
reduced their operating costs due to Al technology
and 59% increased their revenue. For example,
platforms like Google Ads' and Alimama® now
use Al-power tools to automate creative processes
that previously required weeks of human effort.
While these systems offer significant advan-
tages, the associated risks require careful attention.
On one hand, the inherent randomness of genera-
tive models can lead to outputs such as hallucina-
tions (Ji et al., 2023; Li et al., 2023b) or toxic con-
tent (Wen et al., 2023; Smith et al., 2022), which
can undermine reliability and erode user trust. On
the other hand, these systems also pose the risk
of being misused in illegal domains. For exam-
ple, malicious users might exploit these systems to

'https://ads.google.com/home/
Zhttps://www.alimama.com/index.htm
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generate risky content that evades detection, such
as biased materials or illegal items for criminal ac-
tivities like selling counterfeit or regulated prod-
ucts (Nadeem et al., 2021; Smith et al., 2022; Qu
et al., 2023). As shown in Figure 1, real-world
online e-commerce systems might contain AIGC
risky content, such as “abnormal foot” and “make
fake certificate”, which is too sophisticated to be
detected by the system. These issues pose signif-
icant threats to user safety, create legal risks for
platforms, thus demanding immediate attention.

The solutions to this challenge can be divided
into two directions. The first focus is on detect-
ing real-world risky content, such as pornog-
raphy, hate speech, or sensitive political mate-
rial (Pavlopoulos et al., 2020; Ratkiewicz et al.,
2011; Clarke et al., 2023). These approaches for
this detection have evolved from rule-based meth-
ods (Warner and Hirschberg, 2012; Gitari et al.,
2015), to deep learning (Gambick and Sikdar,
2017; Markov et al., 2023), and now leverage pre-
trained models and large language models (Cohen
et al., 2023; Pan et al., 2023). However, AIGC
risks, such as disproportion or object suspension,
are more complex than risks like pornography or
hate speech. Detecting these subtle issues requires
more world knowledge of MLLMs.

With the development of large language models
(LLMs), the second focus is on controllable gen-
eration, which aims to align models with human
preferences and ethical guidelines. Due to the dif-
ficulty of annotating training data, these methods
primarily rely on reinforcement learning methods,
such as reinforcement learning from human feed-
back (Ouyang et al., 2022), process reward mod-
eling (Lightman et al.), and group relative policy
optimization (Shao et al., 2024; Mu et al., 2024).
Consequently, the heavy computational demands
of reinforcement learning limit their adaptability
to intentional misuse by malicious users.

The weakness of existing methods is pri-
marily due to limitations in available datasets.
Existing datasets often concentrate on specific
model safety issues, such as evaluating hallucina-
tions (Hartvigsen et al., 2022; Wang et al., 2023a;
Li et al., 2023a) or detecting toxic content (Shen
et al., 2025; Podolak et al., 2024; Tang et al.,
2025), while overlooking sophisticated risks, such
as hidden illegal messages or disharmonious back-
ground. This narrow focus weakens detection
methods. Additionally, MLLMs excel at under-
standing real-world content but struggle to recog-

nize risky AIGC outputs, as illustrated in Figure 1,
where models like Qwen2-VL-7B fail to detect
such risks. This limitation arises because MLLMs
are primarily trained on standard real-world data
and lack exposure to risky or adversarial AIGC ex-
amples (Schuhmann et al., 2022).

To address these challenges, we introduce Al-
GUARD, the first comprehensive benchmark for
detecting risks in AIGC within real-world e-
commerce scenarios. Our dataset comprises real-
world adversarial examples and industrial risks
(e.g., product flaws), accompanied by expert anno-
tations and detailed risk descriptions. It includes
253,420 image-text pairs, with text descriptions
categorizing risks into four critical types: abnor-
mal body, violating physical laws, misleading or
illogical context, and harmful or problematic mes-
sage. We also propose a lightweight detection
method based on the pre-trained BLIP model (Li
et al., 2022). Risk detection is optimized by distill-
ing human annotations into soft prompts through
image soft prompt matching and causal risk de-
coding tasks. During inference, risks are identified
by matching images with the soft prompts, achiev-
ing high accuracy at minimal computational cost.
This approach enables efficient detection of AIGC
risks, conserving computational resources in real-
world e-commerce applications.

The contributions are summarized as follows:

¢ Introduce AIGUARD, the first comprehensive
AIGC risk detection benchmark, compiling a
dataset of 253,420 image-text pairs covering
four critical risk categories (abnormal body, vio-
lating physical laws, misleading or illogical con-
text, harmful or problematic message).

* Propose a lightweight detection method using a
pre-trained BLIP model with the soft prompts,
achieving high accuracy via image soft prompt
matching while minimizing computational over-
head for real-world applications.

* Conduct extensive experiments on the bench-
mark, identifying key challenges and highlight-
ing critical research problems that merit further
systematic investigation.

2 Related Work
2.1 Risk Detection Benchmarks

Prior research on risk datasets has primarily fo-
cused on text-based risks, such as pornogra-
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Benchmark Task Risk Types Size
Toxic Hallulation Illegal
FELM (Zhao et al., 2023) Factuality Evaluation v 847
ToxiGen (Hartvigsen et al., 2022) Hate Speech Detection v 274,186
HaluEval (Li et al., 2023a) Hallucination Recognition v 30,000
CHIFRAUD (Tang et al., 2025) Fraud Text Detection v v 411,934
MHaluBench (Chen et al., 2024) Multimodal Hallucination Detection v 1,860
M-HalDetect (Gunjal et al., 2024) Multimodal Hallucination Detection v 4,000
MM-safetybench (Liu et al., 2024b)  Safety-critical Evaluation v 5,040
AIGUARD (Ours) Multimodel Risk Detection v v v 253,420

Table 1: Comparison of AIGC risk detection benchmarks.

phy detection (Pavlopoulos et al., 2020), fraud
identification (Tang et al., 2025), and politi-
cally sensitive content (Ratkiewicz et al., 2011).
With the rise of AIGC, datasets evaluating risks
in Al-generated text, such as factual hallucina-
tions (Zhao et al., 2023; Li et al., 2023a) and
toxic outputs like hate speech (Hartvigsen et al.,
2022), have gained prominence. For example,
FELM (Zhao et al., 2023) assesses factual ac-
curacy across domains (e.g., math, reasoning),
while ToxiGen (Hartvigsen et al., 2022) cata-
logs toxic/benign statements targeting 13 minor-
ity groups. Recent work has extended to multi-
modal tasks, exploring hallucination and toxicity
in image-text contexts. New benchmarks aim to
evaluate hallucination/toxicity severity (Liu et al.,
2024b; Ying et al., 2024; Li et al., 2023b; Wang
et al., 2023b) or detector performance (Chen et al.,
2024). Examples include MM-safetybench (Liu
et al., 2024b), which classifies multimodal toxic-
ity risks, and MHaluBench (Chen et al., 2024), a
multi-task hallucination detector benchmark span-
ning three modalities.

However, current research often concentrates on
analyzing text in isolation or addressing a single
type of risk (e.g., toxic outputs, hallucinations).
There is a notable lack of exploration into com-
posite risk data derived from real-world scenarios.
We compare the recent risk detection benchmarks
with AIGUARD in Table 1.

2.2 Risk Detection and Model Alignment

The approaches to risk detection have primarily
evolved alongside the development of deep learn-
ing. Early solutions rely on rule-based meth-
ods, such as template-based strategies (Warner
and Hirschberg, 2012) or syntactic features (Gi-
tari et al., 2015), which often lack generaliza-
tion ability. Subsequently, deep learning-based
methods, such as CNN-based detectors (Gam-

back and Sikdar, 2017) and domain adversarial
training (Markov et al., 2023), are introduced to
enhance performance. More recently, detectors
leveraging pre-trained models and large language
models have gained traction (Cohen et al., 2023;
Pan et al., 2023). For instance, Pan et al. in-
troduce program-guided fact-checking, which de-
composes complex claims into simpler sub-tasks
using reasoning programs generated by large lan-
guage models. Nevertheless, these methods are ei-
ther too outdated or lack generalizability for de-
tecting diverse multimodal risks.

For large language models (LLMs), alignment
is a hot topic aimed at reducing risky outputs by
aligning models with human preferences. Exist-
ing alignment techniques primarily follow the rein-
forcement learning from human feedback (RLHF)
paradigm (Ouyang et al., 2022; Yu et al., 2024;
Sun et al., 2023; Xu et al., 2023), evolving into
variants including group relative policy optimiza-
tion (Shao et al., 2024), and rule-based reward
modeling (Mu et al., 2024), among others. For ex-
ample, Wu et al. use dense reward signals for fine-
grained control. Recently, Lightman et al. propose
a process reward model that provides feedback on
each step of the model’s reasoning process, rather
than focusing solely on the final result.

However, these methods primarily focus on
alignment with real-world content rather than ad-
dressing risks in AIGC. Furthermore, these meth-
ods require meticulous parameter tuning and ne-
cessitate further research to develop fast and adap-
tive approaches for quickly responding to adver-
sarial risks in real-world scenarios.

3 Risk Detection Problem Formulation

Detecting risky content in Al-generated e-
commerce images involves predicting a probabil-
ity y € [0, 1] for a given image I, representing the
likelihood that the image contains risky content.
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However, purely predicting the label may overfit
to specific patterns and lack interpretability,
which undermines generalization and contravenes
the principles of developing robust detectors.
Therefore, we formalize the task as interpretable
risk detection, where models generate textual
explanations S = (wq, w1, ..., wr) that explicitly
identify and describe harmful content while
aligning with expert annotations. Here, 1" denotes
the number of decoding steps. The goal is to learn
a function fp : I — {7, S} that jointly optimizes
classification accuracy (e.g., F1, AUC-ROC) and
explanation verifiability, ensuring that predictions
are grounded in causal expert rationales rather
than spurious correlations.

4 Benchmark Description

This section outlines the construction of the
dataset, detailing the workflow for collecting
AIGC images, the expert annotation procedure,
and the construction of the benchmarks.

Online AIGC Workflow Our dataset comprises
images sourced from a real-world e-commerce
application. The risky images primarily origi-
nate from our advertising creative platforms pow-
ered by Al-driven generative tools, such as text-
to-image, image-to-image, doodle-style art, vir-
tual model synthesis, and personalized portrait
generation. These tools enable creative and cost-
effective advertising. The image generation work-
flow is depicted in Figure 2. As illustrated, product
images produced by the AIGC platform’s cutout
tool, paired with descriptive prompts, are pro-
cessed by a Flux-based model (Labs, 2024). This
model dynamically selects LoRA fine-tuning pa-
rameters (Hu et al., 2021), such as visual model,
background, and style, to align with the input
prompt. This process may inadvertently generate
risky content, including hallucinations (e.g., unre-
alistic product attributes) or toxic information. Ad-
ditionally, malicious actors could exploit advanced
Al techniques to embed inconspicuous text or ille-
gal content, evading standard OCR systems and
enabling deceptive material to proliferate unde-
tected. Further technical details of the image gen-
eration pipeline are provided in Appendix B.

Data Collection Procedure Our dataset com-
prises a subset of samples collected from the
e-commerce platform between January 1 and
December 31, 2024. During this period, the

____________________________________________________________

© AIGC Platform
Chiiouli Prompts
Tool

The sneakers are placed
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Product Original
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i# 4 Ry =
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Figure 2: The workflow for generating Al-produced
advertisement images. The process begins with the
extraction of product images from the original inputs
provided by merchants. These extracted images are
then combined with descriptive prompts, and subse-
quently fed into a Flux-based image generation model.
Throughout this process, the platform dynamically in-
tegrates pre-tuned LoRA modules to tailor features ac-
cording to user preferences.

platforms generated a significantly large volume
of images. To filter out normal images, we
employ a multi-stage process combining user
complaints, manual inspection, and model-based
checks.  Specifically, all user-submitted com-
plaints flagged with risky tags are subjected to
expert annotation procedures. For the large un-
labeled dataset, we first recruit professional an-
notators to manually label the images. Subse-
quently, we train a ViT-S/16 model (Dosovitskiy
et al., 2021), a small version of the Vision Trans-
former, using professionally annotated data. The
trained model is employed to filter out images
identified as deemed certainly non-risky, ensur-
ing the resulting dataset contains only high-quality
samples with potential risks relevant to real-world
e-commerce platforms. The final dataset com-
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prises 253,420 samples, including 43,885 risky
and 209,535 normal instances.

Expert Annotation To enhance the generaliza-
tion and usability of the dataset, we include de-
tailed annotations for each sample. Specifically,
we recruit three domain experts to label the data
following a standardized procedure.

* Risk Classification: Experts are required to
categorize the images into four distinct classes
based on their risk type: Abnormal Body refers
to the unrealistic human features (e.g., “a man
with three arms”). Violating Physical Laws in-
volves images that defy the laws of physics (e.g.,
“a smartphone floating in mid-air”). Misleading
or lllogical Context describes images where the
background is inconsistent with the main sub-
ject (e.g., “a giant toothbrush in a forest land-
scape”). Harmful or Problematic Message in-
cludes images with hidden illegal message in the
background (e.g., “make fake certificate) in Fig-
ure 1.

Content Annotation: Experts then describe
whether the image contains risky content. Both
risky and normal samples are annotated strictly
in a certain format to ensure clarity and accuracy.
For Abnormal Body, normal images are labeled
as “Characters do not have any abnormal fea-
tures, such as missing bodies, flying heads, twist-
ing limbs, etc.”, and risky images are described
using a ‘“Abnormal part + Identification’ for-
mat (e.g., “The woman’s left hand is deformed
and the right hand is missing, and there is an
abnormal structure in her body”). For Mislead-
ing or Illlogical Context, normal images are an-
notated as “The product has no reasonableness
issues, the product size is reasonable, and the
background is coordinated (not floating in the
water or standing on the table, etc.).”, and risky
images are described using a “Observation +
Assessment’ format (e.g., “Shoes appear on the
ground, obviously too large”). More specific an-
notation rules are detailed in Appendix C.

* Peer Review: To ensure label accuracy through-
out the annotation process, annotators perform
a peer review of each other’s annotations and
resolve disagreements through majority voting.
Corrections are made as needed to adhere to
established guidelines. This step is crucial to
maintain consistency and reliability in the anno-

Category Total Risky Normal Ratio
Abnormal Body 76,800 12,768 64,032 ~1:5
Violating Physical Laws 90,880 15,154 75,726 =~1:5
Misleading or Illogical Context 65,280 10,847 54,433 =~I1:5
Harmful or Problematic Message 20,460 5,116 15,344 =~1:3

Table 2: The statistic of the dataset.

tations, ensuring that the dataset is robust and
usable for various applications.

AIGUARD Benchmark After annotation, the
benchmark dataset comprises a total of 253,420
samples. The distribution across categories is as
follows: Abnormal Body (76,800 samples), Violat-
ing Physical Laws (90,880 samples), Misleading
or lllogical Context (65,280 samples), and Harm-
ful or Problematic Message (20,460 samples). To
balance the dataset, we remove many normal sam-
ples, resulting in a risky-to-normal ratio close to
1:5. The statistic of the dataset is shown in Table 2.

5 Lightweight Detection Method

To balance efficiency and effectiveness, we de-
velop a lightweight detection model based on the
BLIP framework (Li et al., 2022), which unifies
image-text contrastive learning (ITC), image-text
matching (ITM), and language modeling (LM)
to achieve strong performance across multimodal
tasks. Specifically, we distill expert-annotated risk
information into soft prompts using image soft
prompt matching and language modeling tasks.
During inference, we rely solely on image soft
prompt matching to reduce detection time. The
framework overview is illustrated in Figure 3.

Cross-Attentive Image Soft Prompt Matching
To address the absence of text during inference,
the module employs learnable soft prompts to
encode risk information into general dense vec-
tor representation. Specifically, the input im-
age I is first encoded into a feature sequence
Hpg € RV*4 where N is the number of im-
age patches and d is the embedding dimension. Si-
multaneously, the soft prompts are represented as
Hs ¢ RE*4, with L denoting the prompt length.
These features are concatenated with a [CLS] to-
ken h¢ s and fed into n transformer encoder layers
Encoder,,, initialized from BLIP’s cross-encoder.
Then, the final output H,, is calculated as

H,, = Encodery([hcLs, Hivg, Hs)), ¢

where [, -, -] is the concentrate operation. Finally,
the last layer output of the summarized token hg ¢
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Figure 3: An overview of the lightweight detection method. It contains two components: (1) The image-grounded
text encoder leverages cross-attention and soft prompts to identify AIGC risk, guided by an image-text matching
objective. (2) The image-grounded text decoder utilizes causal self-attention and is refined through a language
modeling objective, embedding semantic information into the soft prompts.

is passed through a MLP to yield the binary classifi-
cation probabilities as

§ = sigmoid (MLP(h(ys)) , (@3]

where Sigmoid transforms the output of the MLP
into a probability score between 0 and 1.

This module is trained using an image soft
prompt matching objective, denoted as Ly, to
determine whether an image contains risk content.
The objective function is defined as

Lvtm = —ylog(g) — (1 —y)log(1 — 9), 3)

where y = 1 indicates that the image contains risk
content, and y = 0 is not.

Visual-Grounded Risk Decoding This mod-
ule employs a shared architecture that combines
causal self-attention, optimized via a language
modeling objective. This design enables the in-
tegration of semantic information into the soft
prompts, allowing the creation of more expressive
representations conditioned on visual semantics.
Specifically, given an input image I and the
soft prompts, the model autoregressively pre-
dicts the t-th token of the risk description
S = (wp,w1,...,wr) at each decoding step
t.  This is achieved using an m-layer de-
coder, initialized from BLIP’s pre-trained decoder,

as Decodery, (w¢|I, Hs, H,,_,) where H,,_, de-
notes the token embeddings of the first £ —1 tokens.
The soft prompts Hs are jointly optimized with
the decoder by minimizing the next-token predic-
tion loss Lrp, which encodes expert annotations

into the soft prompts as

T
Lrp = — Zlog Decodery, (w¢|I, Hs, Hy_,). (4)

t=1

This process ensures that the soft prompts adapt
to visual semantics while aligning with annotated
risk descriptions.

The final training loss £ is formulated by com-
bining two components:

L = Lyt™m + ALRD, (5

where A is a hyper-parameter that balances the in-
fluence of Lyp.

6 Experiments

This section examines intuitive risk detection
methods on AIGUARD and compares their ef-
fectiveness against our proposed lightweight ap-
proach. The experimental results provide valuable
insights and suggest promising directions for refin-
ing risk detection models in future work.
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Model

Params
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R

P

F1

Violating Physical Laws

R

P

F1

Misleading or Illogical Context

R

P

Fl1

Harmful or Problematic Message

R

P

F1

R

Overall

P

FI

ResNet-50
ViT-B/16
BLIP-LM
BLIP-ITM

235M

86M
224M
447TM

48.48
77.21
73.00
79.09

52.80
76.17
20.38
81.50

50.54
76.68
31.86
80.28

75.59
84.29
84.40
83.49

32.08
80.55
87.09
89.10

45.04
82.38
85.72
86.20

40.47
83.68
7.26
71.55

79.01
77.20
21.10
82.53

53.52
80.31
10.81
79.96

2.78
4278
53.15
95.19

52.57
53.97
50.62
25.69

5.28
4773
51.85
40.46

50.36
7147
58.60
82.24

41.45
75.87
37.25
63.80

45.47
76.66
45.54
71.86

Qwen2-VL-7B
Qwen2-VL-7B (sft)
LLaVa-1.6-7B
GLM-4V-9B
GPT-40

7.6B

7.6B

7.6B
9B

10.54
65.66
5.27
3.99
46.78

63.77
56.93
44.29
90.91
35.86

18.09
60.98
9.42
7.64
40.60

24.90
80.28
6.36
592
49.28

68.22
86.57
100
78.61
37.44

36.49
83.30
11.96
11.01
42.55

7.64
71.42

6.70
40.66
82.76

37.85
79.60
33.81
30.16
36.01

12.72
75.29
11.18
34.63
50.18

16.11

71.48
0.37

0.56

13.08

24.79
86.35
50.00
17.65
27.23

19.53
78.21
0.73
1.09
17.67

15.53
72.88
543
13.32
52.61

51.16
74.96
51.01
3545
36.08

23.83
73.90
9.82
19.36
42.80

Ours

500M

87.74

84.92

86.31

84.47

90.27

87.27

80.75

86.64

83.59

67.41

3524

46.28

82.40

76.06

79.10

Table 3: Performance comparison of different methods on AIGUARD. “Params” denotes the number of parameters
in the model. “Overall” is calculated from the entire dataset. The best results are shown in bold.

6.1 Experimental Setting

Baseline Models To comprehensively evaluate
our proposed method, we compare it against five
baseline approaches from distinct categories: (1)
ResNet-50 (He et al., 2016): A foundational
convolutional neural network pre-trained on Ima-
geNet (Deng et al., 2009). We adapt this model
for risk detection via full fine-tuning. (2) ViT-
B/16 (Dosovitskiy et al., 2021): A base version of
the transformer-based vision model using 16x16
patches, pre-trained on ImageNet. We adapt this
model for risk detection via full fine-tuning. (3)
BLIP-LM (Li et al., 2022): The decoder part
of BLIP is designed to generate descriptive text
from visual data and identify the risk from the
descriptive text information. (4) BLIP-ITM (Li
et al., 2022): We utilize image-text matching part
of BLIP for risk classification by simply setting
the query text as “The image does not contain
any risk information” and fine-tune the model with
the benchmark dataset. (5) Qwen2-VL-7B (Bai
et al., 2023): A state-of-the-art large multimodal
model with 7.6 billion parameters. We evaluate
its performance before and after LoRA (Hu et al.,
2021) fine-tuning. (6) LLaVa-1.6-7B (Liu et al.,
2024a): A state-of-the-art large multimodal model
with 7.6 billion parameters, which showcases re-
markable zero-shot capabilities in Chinese. (7)
GLM-4V-9B (GLM et al., 2024): A state-of-the-
art large multimodal model with 9 billion param-
eters, which achieves impressive performance in
both Chinese and English tasks and can effectively
utilize tools to complete complex tasks. (8) GPT-
40 (Achiam et al., 2023): A state-of-the-art mul-
timodal language model developed by OpenAl®.
It is capable of processing and generating high -
quality text based on the input prompts, and has
been widely used in various natural language pro-
cessing tasks. In this paper, it serves as one of the

3https://openai.com/

baselines for performance comparison.

Implementation Details We employ the Vil-
B/16 model as our baseline, initializing it with
Googles official checkpoint (Dosovitskiy et al.,
2021). For BLIP-based caption generation and
image-text retrieval, we utilize COCO-fine-tuned
checkpoints provided by the BLIP authors (Li
et al.,, 2022). As for the trainable soft prompts,
they comprise 25 embeddings, which are initial-
ized by averaging the predefined negative label to-
ken embeddings. Consistent with the BLIP model
configuration, the Transformer architecture com-
prises both encoder and decoder layers, each with
a layer size of 12, and the hyper-parameter A is set
to 1. Prior to encoding, all input images are re-
sized to 384 x384 resolution. The training and test
datasets are split in a 9:1 ratio. For the four risk
categories in AIGUARD, baseline models (except
Qwen2-VL-7B) are trained for 25 epochs, while
Qwen2-VL-7B is trained for one epoch. The train-
ing process uses an initial learning rate of 1 x 107°
and a weight decay of 0.05. For all experiments,
we report precision (P), recall (R), and F1-score
(F1) as performance metrics.

6.2 Performance Comparison

Table 3 presents the recall, precision, and F1
scores of the evaluated baseline models on our Al-
GUARD benchmark. All experiments are repeated
four times to ensure reliability, with results aver-
aged across runs to reflect consistent performance
metrics. From the table, we have followed ob-
servations: (1) Our experiments reveal signifi-
cant room for improvement, underscoring the
need for further research. Current baseline meth-
ods, including MLLMs (e.g., Qwen2-VL-7B),
demonstrate limited effectiveness on our dataset.
For instance, Qwen2-VL-7B after supervised fine-
tuning (sft) only achieves a recall of 65.66% and
a precision of 56.93% on the abnormal body de-
tection task. (2) Our lightweight framework es-
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tablishes state-of-the-art results. Our method
outperforms Qwen2-VL-7B by 9.68% in recall
and 1.10% in precision on the overall dataset. It
also reduces GPU memory consumption by 4.45x
during training and increases inference QPS by
37.8x, as shown in Table 6. (3) MLLMs exhibit
limited proficiency in image risk detection. We
evaluate MLLMs (e.g., Qwen2-VL-7B, LLaVa-
1.6-7B, GLM-4V-9B ) on our AIGUARD dataset.
Despite their extensive world knowledge, the mod-
els’ performance remain suboptimal (e.g., recall of
80.28% in Violating Physical Laws category for
Qwen2-VL). Fine-tuning improves results slightly,
but our approach still outperforms it across most
risk types. This suggests MLLMs currently lack
specialized knowledge for AIGC content analysis.
(4) General MLLMs hold promise for future
risk detection. The fine-tuned Qwen2-VL-7B
model achieves strong performance in the Harm-
ful or Problematic Message category, demonstrat-
ing MLLMs’ potential for complex harmful mes-
sage detection tasks (e.g., detecting hidden text).
As a comparison, the best-performing method ViT-
B/16 (Dosovitskiy et al., 2021) among the remain-
ing baselines, including our method, achieves only
an F1 score of 51.85%. This highlights the diffi-
culties these methods encounter in performing the
task, attributable to their deficiencies in context
comprehension and world knowledge.

6.3 Analysis Experiments

Benefit of Textual Description We evaluate the
impact of text descriptions by comparing model
performance with/without text inputs under identi-
cal settings, where text is used only during training
(not inference). As shown in Table 4, integrating
descriptive text description allows the model to
improve F1 scores on specific tasks while bal-
ancing precision and recall. For image-intensive
tasks (e.g., Violating Physical Laws detection), the
improvement is particularly obvious, with preci-
sion improving by 2.74% and recall improving by
0.33%. For the Harmful or Problematic Message
detection task, which requires the model to iden-
tify and detect risky hidden text accurately, the in-
corporation of descriptive image labels is counter-
productive and adversely affects the model’s train-
ing, leading to lower identification precision.

Influence of Prompt Length We compare the
model performance of the learnable soft prompts
under different length settings. As shown in Fig-

Category Text-Description Recall Precision F1-score
Abnormal X 87.66 84.54 86.07
Body v 87.74 84.92 86.31
Violating Physical X 84.14 87.53 85.80
Laws v 84.47 90.27 87.27
Misleading or X 81.60 85.81 83.66
Tllogical Context v 80.75 86.64 83.59
Harmful or X 67.04 43.77 52.96
Problematic Message v 67.41 35.24 46.28

Table 4: Comparison of model performance influ-
enced by text description labels generated by large mul-
timodal models. The symbol "X" indicates the absence
of a text-description, while "v/" indicates its presence.
The best results are shown in bold.

Recall, Precision, and F1 Score vs. Length

—— Recall
Precision
90%- —-—- F1 Score
88% /\/\//
TOPTS S = — 2 —
~o \\,\ e
84% e
82%-
80%
0 5 10 15 20 25 30 35 40 45 50 55 60

Figure 4: Performance comparison of different prompt
lengths on the abnormal body detection task. The hori-
zontal axis represents the length of soft prompts, and
the vertical axis represents the corresponding recall,
precision, and F1-score.

ure 4, our approach achieves the highest F1
score when the prompt length is set to 25. When
the prompt length is 5, we observe a suboptimal
F1 score, but recall and precision remain well bal-
anced. As the prompt length moves away from 25,
both recall and precision decline, which confirms
that our experimental setup is sound.

Further ablation study and analysis experiments
are presented in Appendix D.

7 Discussion

Based on the dataset and experimental results,
this section highlights key challenges and emerg-
ing research opportunities for advancing AIGC
safety. (1) Advanced Risk Detection: Though
lightweight detection methods show promise, sig-
nificant improvements are still needed. Existing
approaches struggle particularly with Harmful or
Problematic Message risks, where threats are well-
hidden and demand more generalizable solutions.
Furthermore, as detection methods improve, ma-
licious users may adapt their tactics to hide il-
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legal content, highlighting the need for robust
and adaptable detection strategies. (2) MLLMs
and AIGC Risks: Our experiments reveal that
current MLLMs often fail to detect subtle risks
in AIGC due to their training on standard real-
world data. This underscores the need to expose
MLLMs to AIGC outputs, particularly adversar-
ial or risky content, to enhance their understand-
ing. With the increasing prevalence of AIGC, it is
crucial to introduce AIGC content to MLLMs and
develop specialized algorithms (e.g., contrastive
learning, adversarial training, pre-training), to im-
prove the models’ ability to recognize and pro-
cess AIGC content effectively. (3) AIGC Align-
ment Datasets: Current alignment efforts mainly
focus on real-world images. As these data sources
become limited, using composite data generated
by models can enhance model understanding and
improve generalization from weak to strong. Fu-
ture work could expand the dataset to AIGC data,
which can be generated at a low cost and with
controlled parameters. Our dataset can also serve
as a foundation for building alignment datasets to
improve models’ comprehension of e-commerce
AIGC content. (4) Safer AIGC Generation: This
work provides a real-world scenario for studying
the safety of AIGC generation. As the source of
this problem, we also highlight the need to develop
safer and controllable generation methods, which
can address risks in AIGC content at root.

8 Conclusion

This work introduces AIGUARD, the first bench-
mark designed to detect AIGC risks within e-
commerce contexts. The benchmark comprises
253,420 image-text pairs, each annotated with cor-
responding risk information. Then, we propose
an effective and lightweight detection method that
distills risk annotations into learnable soft prompts
via image-text matching and next-token prediction
tasks. Experimental results demonstrate the supe-
rior performance of our approach and provide in-
sights into future directions for developing robust
detection methods in real-world systems.

9 Limitation

This study faces two primary limitations. First,
the dataset has inconsistent annotation standards.
Specifically, while risky data are labeled in detail,
normal data are labeled uniformly across different
categories. This inconsistency requires further ex-
ploration of dataset caption methods to fully uti-
lize the dataset. Second, the risk content in the
system is dynamic. Therefore, models over-fitted
on this dataset may not perform well in real-world
systems, where risk patterns change rapidly. As
a result, this work can only provide guidance for
method development and encourages the develop-
ment of general and powerful models that can gen-
eralize across diverse and different risk types.

10 Ethical Considerations

Privacy While constructing AIGUARD from
content generated by the AIGC platform, we ob-
serve that the content is influenced by the pre-
training data of the underlying model and may in-
clude elements that resemble human features. We
affirm that our dataset does not include any per-
sonal information, ensuring that it can be safely
released and utilized.

Legitimacy Certain images in AIGUARD con-
tain content associated with illegal black and gray
market transactions. We wish to clarify that our
intention is not to promote illegal transactions. In-
stead, their focus is on analyzing the detection
effectiveness of harmful or problematic message
risk. All the risky images we collect have been
prohibited on e-commerce platforms.
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A AIGUARD License

The AIGUARD dataset is available for free down-
load at https://huggingface.co/datasets/
yinyueguilai/AIGUARD_dataset and can be
used for non-commercial purposes under a custom
license, CC BY-NC 4.01. In addition to the exist-
ing tasks in the dataset directory, users are permit-
ted to define their own tasks under this license.

B Details of Image Generation in the
Dataset

In this section, we will give a detailed description
of image generation in the online AIGC platform.

The dataset proposed in this work consists of
images from two sources: product advertisement
images and images that may contain illegal infor-
mation. For images from the first source, the sam-
ple generation process is illustrated in Figure 2,
which demonstrates the process by which an e-
commerce merchant can obtain Al-generated ad-
vertisement images for product display. The pro-
cess begins with the merchant providing require-
ments for product display, then the requirements
are addressed by the AIGC platform. The work-
flow involves the following steps:

* Original Images: The original images of the
products to be displayed. The merchants need
to start by taking product photos as original im-
ages and uploading them to the platform.

* Cutout Tool: A cutout tool developed by the
AIGC platform, which is used to isolate the prod-
uct from the original images, creating product
images. The merchant can obtain product im-
ages with the assistance of the tool and seam-
lessly input them into the model.

* Prompts: Textual prompts created to guide the
image generation process, e.g., "The sneakers
are placed on the ground...". The merchants
control the background generation by inputting
these descriptive prompts into the model.

* Flux Model: The product images and
the prompts are fed into the Flux-based
model (Labs, 2024), which is designed for
product image generation.

* LoRA Selection: The AIGC platform selects
appropriate LORA (Low-Rank Adaptation) (Hu
et al., 2021) modules to fine-tune the Flux-based
model based on the given prompts.

* Output: The Flux-based model may generate
two types of images: (1) Normal Product Im-
ages with New Background: These are standard
images of the product with a new background.
(2) Risky Product Images with New Background.:
These are abnormal images that may not meet
the desired quality or could be inappropriate.

During this process, different types of risky con-
tent may be generated. In this work, we divide the
risk information from this source into the follow-
ing three categories based on their specific forms:
Abnormal Body, Violating Physical Laws, and Mis-
leading or Illogical Context. The specific connota-
tions of them are elaborated in Section 4.

As for the images that may contain illegal infor-
mation, we primarily focus on the issue of embed-
ding illicit text into images using Al technology
in this work, for they are relatively easy to gener-
ate but difficult to detect. For instance, they can
be generated by some open-source text-to-image
web applications for image generation developed
based on Stable Diffusion (Rombach et al., 2022)
along with ControlNet (Zhang et al., 2023) plugin.
These applications can accept a text prompt and
a control signal image for ControlNet, allowing
it to generate an image that highlights the white
areas in the control signal while adhering to the
prompt in the background. Following this manner,
malicious merchants can convert an illegal text to
a black-and-white binary image, whose white ar-
eas are the text patterns, and then feed this image
along with a prompt (describing the background
of the image) into the platform to generate an im-
age that subtly incorporates the illegal text. We de-
scribe this category of risks as "Harmful or Prob-
lematic Message".

Figure 5 illustrates the four categories of risky
images mentioned in this section.

C Additional Annotation Rules

For Harmful or Problematic Message, all images
contain hidden text information that is difficult
to detect. The images are described using a
""Whether it is a violation + Hidden text' for-
mat, e.g., "There is violation information in the
hidden text ’pinhole camera’ in the figure", or
"There is no violation information in the hidden
text *fashion shoes’ in the figure".

For Violating Physical Laws, we primarily fo-
cus on whether the images display any phenom-
ena that defy the law of gravity. In particular,
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Violating Phsical

Abnormal Body L
aws

The human head that
appears out of thin air above
the red clothes, there is an
abnormal structure of the
human body.

The product is suspended.

Harmful or Problematic
Message

Misleading or Illogical
Context

i

The size of the product There is violation information
does not match the in the hidden fext "&i3_%%E

background. (Driver's license_Exemption)"

in the figure.

Figure 5: Our dataset covers four categories of Al-generated risk images: Abnormal Body, Violating Physical Laws,
Misleading or Illogical Context, and Harmful or Problematic Message. This figure provides specific examples for
each category, including images and manually annotated labels.

Category Soft Prompts LM Recall Precision F1
Abnormal 79.09 81.50 80.28
Body v 88.46 8220 85.22

4 v 87.74 84.92 86.31

iolati i 83.49 89.10 86.20
V101all£§§i1ys1cal v 8140 2007 8668
v v 8447 90.27 87.27

Misleading or 71.55 82.53  79.96
Illogical Context v 82.36 84.59 83.46
v/ v 80.75 86.64 83.59

Harmful or 95.15 25.69 40.46
Problematic Message v 65.93 3228 4334
v v 6741 3524 46.28

Table 5: Performance comparison of our detection
method under different component configurations."v"
represents the corresponding components are equipped.
The best results are shown in bold.

we describe the images using overall statements.
Normal images are labeled as "The product is not
suspended.”, and risky images are labeled as "The
product is suspended.".

D More Analysis Experiments

Contribution of Each Component We evalu-
ate the contributions of each component to the
model’s overall performance. The results, pre-
sented in Table 5, confirm that both the soft
prompts and language model components pos-
itively impact precision and F1 score.

Computational Resource Consumption Ta-
ble 6 shows the computation resource consump-
tion of our method compared to Qwen2-VL-7B.
Under the same experimental settings, our method
reduces GPU memory usage by 4.45x during
training and 16 x during inference, decreases train-
ing time by 4.89, and increases the QPS of infer-

Resource Consumption Training Inference
GPU Memory(GB) | Time(min)] GPU Memory(GB)| QPSt
Qwen2-VL(sft) 60.1 72.8 17.6 15
ours 135 149 11 56.7

Table 6: Comparison of resource consumption be-
tween our method and fine-tuned Qwen2-VL-7B dur-
ing training and inference under consistent settings on
a single NVIDIA H20 GPU. Training involves 10,000
samples with a batch size of 4 over one epoch, while in-
ference uses a batch size of 16. "|" means lower values
are better, and "1" means the opposite. The best results
are shown in bold.

ence by 37.8x.
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