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Abstract

We make the case for language models over
logical forms (LFLMs), arguing that such mod-
els are more data-efficient than their textual
counterparts. To that end, we introduce the
Graph-based Formal-Logical Distributional
Semantics (GFoLDS) prototype, a pretrained
LM over graph representations of logical forms,
as a proof-of-concept of LFLMs. Using
GFoLDS, we present strong experimental evi-
dence that LFLMs can leverage the built-in, ba-
sic linguistic knowledge inherent in such mod-
els to immediately begin learning more com-
plex patterns. On downstream tasks, we show
that GFoLDS vastly outperforms textual, trans-
former LMs (BERT) pretrained on the same
data, indicating that LFLMs can learn with sub-
stantially less data than models over plain text.
Furthermore, we show that the performance of
this model is likely to scale with additional pa-
rameters and pretraining data, suggesting the
viability of LFLMs in real-world applications.

1 Introduction

Although recent advances in LLMs have led to re-
markable performance on a wide variety of bench-
marks, the consistent improvements exhibited by
SoTA LLMs are largely due to corresponding in-
creases in model size (Villalobos et al., 2024;
Muennighoff et al., 2024). Given the Chinchilla
Scaling Laws (Hoffmann et al., 2022) and the rate
at which SoTA LLMs are expanding, Villalobos
et al. (2024) estimate that high-quality English
training data will be exhausted at some point be-
tween 2026 and 2032: language model expansion
is outpacing available natural language production.
This suggests that—without models that use signif-
icantly less data than current approaches—LLMs’
performance increases will begin to decelerate sub-
stantially in the near future.

However, there is a considerable amount of
evidence in the literature (e.g. Xu et al., 2021;

Figure 1: DMRS representation of the sentence “every
bored person saw her yesterday.”

Wu et al., 2021b; Prange et al., 2022; Sachan
et al., 2021; Zhou et al., 2020; Zhang et al., 2020,
2022, etc.) indicating that linguistically-informed
LMs—models whose inputs and/or architectures
are augmented by linguistic knowledge—can im-
prove performance without consuming more text
data.

In this paper, we argue for the use of LMs over
logical forms (LFLMs): LMs that take as input
semantic representations, rather than text. In par-
ticular, we posit the following hypothesis:

The Linguistic-Knowledge Catalysis Hypothesis
(LKCH): The (aspects of) linguistic knowledge
incorporated into LFLMs greatly accelerates their
learning of elementary linguistic phenomena, in
turn accelerating the learning of more complex
patterns.

One relevant corollary of the LKCH is that
LFLMs can learn with less data: the linguistic
knowledge built into LFLMs facilitates more rapid
learning of advanced phenomena.

We argue that the primary advantage of logi-
cal forms (as opposed to other types of linguis-
tic knowledge) with respect to language modeling
is the de-noising effect conferred by the function-
argument structure inherent to such representations.
Specifically, the translation of surface text to logical
form has an equivalence-classing effect, so that all
syntactic paraphrases of the same proposition—for
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example, an active sentence and its passive coun-
terpart—are mapped to the same representation.
The benefit to an LM of the de-noising effect re-
sulting from this equivalence-classing is clear: the
model does not need to learn to equate periphrastic
structures, and so can immediately begin learning
co-occurrence relations between predicates.

To make the case empirically for LFLMs,
we introduce the Graph-based Formal-Logical
Distributional Semantics (GFoLDS; Section 3)
model as a proof-of-concept of such LMs.
GFoLDS is a pretrained, encoder graph transformer
(Wu et al., 2021a) over structures derived from De-
pendency Minimal Recursion Semantics (DMRS;
Copestake, 2009) representations (see Figure 1):
directed, labeled acyclic graphs in which nodes
correspond to predicates and edge labels denote
relations (i.e. semantic roles) between them, in a
similar manner to Abstract Meaning Representa-
tion (AMR; Banarescu et al., 2013) structures.

Unlike AMR, which abstracts away from mor-
phosyntactic features such as tense and number,
DMRS includes these features (see Figure 7 in
the Appendix). Beyond yielding a more faith-
ful representation of linguistic meaning, this ad-
ditionally has the effect of further de-noising the
model’s input by offloading the morphological re-
alization of these features to explicitly annotated
labels: GFoLDS does not need to learn the sur-
face patterns corresponding to inflection, as this
information is instead explicitly provided through
the DMRS representation. For example, the model
does not need to understand that the suffix –s has
the same effect on meaning as other, irregular re-
alizations of pluralization (e.g. goose ⇒ geese),
because plural nouns are directly labeled as such.

The contributions of this work are three-
fold: firstly, we provide experimental support
towards the validity of the LKCH, demonstrat-
ing that—from the start of pretraining—GFoLDS
achieves near-peak performance on tasks designed
to evaluate its elementary linguistic knowledge,
and that this translates to more rapid learning of
complex phenomena (Section 4).

Secondly, we demonstrate the viability of pre-
trained LFLMs in Section 5, by comparing the per-
formance of GFoLDS to that of BERT (trained on
∼6.5 times more data than GFoLDS; Devlin et al.,
2019) on a range of downstream tasks. Although
the actual BERT models outperform GFoLDS, our
model outperforms—by a wide margin—BERT
models pretrained on the same data as GFoLDS on

all benchmarks, indicating that LFLMs can learn
useful representations with much less data than
their textual counterparts.

Thirdly, we establish that LFLMs have the poten-
tial to compete with textual LLMs at scale: in Sec-
tion 6, we present evidence indicating that GFoLDS
is likely to scale with respect to parameter count
and pretraining dataset size.

We make all code for the GFoLDS model and
the experiments conducted in this paper available
on GitHub1.

2 Related Work

As discussed in Section 1, there exists a body of
research indicating that injecting graph representa-
tions of linguistic structures into textual LMs can
improve downstream performance. Xu et al. (2021)
fuse dependency parse graphs into pretrainined
transformer encoders (e.g. BERT and RoBERTa;
Liu et al., 2019), and surpass the then-SoTA results
on relation classification, entity typing, and ques-
tion answering tasks, demonstrating the general
utility of linguistically-informed LMs. Similarly,
Wu et al. (2021b) inject syntactic dependency parse
graphs into a pretrained BERT model, yielding
then-SoTA results on semantic role labeling and
relation extraction tasks. These authors addition-
ally compare the respective impacts of syntactic
and semantic representations on performance, and
find that semantic representations are more benefi-
cial with respect to downstream performance than
syntactic structures.

Prange et al. (2022) show that linguistic struc-
tures can be incorporated into the input of GPT-2
(Radford et al., 2018) to improve next word pre-
diction accuracy and entropy. Of particular rele-
vance is their finding that Elementary Dependency
Structures (EDS; Oepen and Lønning, 2006)—a se-
mantic framework that is related to DMRS—yield
greater performance improvements than syntactic
(or other semantic) representations.

All of the models described thus far in this sec-
tion are hybrid architectures that merge textual and
graph representations. Furthermore, in these ap-
proaches, the textual component of the model is
initialized from a pretrained LM such as BERT,
RoBERTa, or GPT-2. This contrasts with the
GFoLDS model, which takes only graph represen-
tations as input and is pretrained from scratch.

1https://github.com/mjs227/GFoLDS
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Figure 2: Top-level architecture of the GFoLDS model
(top) and positional encoding network (bottom).

To the best of our knowledge, Functional Distri-
butional Semantics at Scale (FDSAS; Lo et al.,
2023) represents the only2 extant LFLM aside
from GFoLDS. FDSAS is a variational autoencoder
over DMRS graphs that learns probabilistic truth-
conditional functions for each predicate (node la-
bel). FDSAS is not, however, a transformer and
so does not benefit from the flexibility afforded by
such architectures: it is unclear how to scale the
model to yield a deeper architecture, and it does not
generate usable hidden states that can be passed to
(for example) a classification head for downstream
tasks. Additionally, its rigorous formal-semantic
foundations give rise to a degree of inflexibility
in this model: for example, Lo et al. (2023) dis-
carded prepositions, quantifiers, and modal verbs
from FDSAS’ training dataset out of necessity.

3 GFoLDS

In this section, we describe the GFoLDS model
architecture (Section 3.1), preprocessing steps that
we employed on its DMRS graph inputs (Section
3.2), and the model’s pretraining procedure (Sec-
tion 3.3).

3.1 Architecture

The GFoLDS model is a variant of the graph trans-
former paradigm (Wu et al., 2021a), which was
originally introduced for molecule graph classifi-
cation. A graph transformer consists of a graph
neural network (GNN) that encodes local neigh-
borhood information, whose output is then fed to
a permutation-invariant (i.e. without linear posi-
tional embeddings) transformer encoder for global
message-passing (attention).

Unique to this work is the GNN component of
GFoLDS, which consists of an embedding layer
and the positional encoding network (see Figure

2Aside from its predecessor: Functional Distributional
Semantics (Emerson, 2018).

Figure 3: Architecture of an SWA layer in the positional
encoding network.

2). The output of the embedding layer is fed into
the positional encoding network, which provides
each node with a representation of its local neigh-
borhood in the DMRS graph structure.

Let ni denote the ith node in a graph G, and let
F (ni) be its set of DMRS features (person, number,
tense, etc.; see Figure 7 in the Appendix). Then
the output of the embedding layer e⃗i = E(X,G)i
(where X denotes the node labels of G) is the sum
of the embedding of the node’s label ET (Xi) with
the normalized sum of the embeddings EF (ϕ) of
each feature ϕ ∈ F (ni) (Equation 1).

e⃗i = ET (Xi) + Norm


 ∑

ϕ∈F (ni)

EF (ϕ)


 (1)

These summed feature and node/predicate em-
beddings are then passed to the positional encoding
network (see Figure 2). This module consists of a
linear layer (to project the embeddings from dmodel

to dSWA) followed by a stack of step-wise aggre-
gation (SWA) layers (see Figure 3)—in which the
output of each SWA layer is fed to the subsequent
layer—followed by a second linear projection (to
project from dSWA back to dmodel).

In their respective adaptations of the Graph-
SAGE (Hamilton et al., 2017) and Graph Convo-
lutional Network (GCN; Kipf and Welling, 2017)
architectures to directed graphs, Xu et al. (2018)
and Tong et al. (2020) introduce forward and back-
ward node projection layers, which encode infor-
mation about incoming and outgoing connections
(respectively) for a given node. In a similar fash-
ion, each SWA layer (see Figure 3) contains a for-
ward (Equation 2) and a backward SWA block,
which encode the nodes—and the semantic roles
thereof—mapping into and out of a given node.

f⃗i = Norm




∑

nk
ℓ−→ni ∈G

W
(f)
ℓ h⃗k


 (2)

For each node ni ∈ G, its forward representation
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f⃗i (i.e. the output of the forward SWA block) is
the (normalized) sum of W (f)

ℓ h⃗k for each node nk
with an edge nk

ℓ−→ ni in the graph structure, where
W

(f)
ℓ ∈ RdSWA×dSWA is the forward edge projection

linear layer for the edge label ℓ. This representation
of each edge label as a unique projection layer is
conceptually similar to the label-specific matrices
employed in Relational GCNs (Schlichtkrull et al.,
2018) and Beck et al.’s (2018) adaptation of the
Gated GNN (Li et al., 2016) architecture to labeled
graphs.

The backward SWA block is architecturally iden-
tical to the forward block, but contains distinct
edge projection matrices W (b)

ℓ and operates on the
transpose GT of the graph. The respective forward
and backward representations of each node ni are
summed together and passed through a two layer,
feed-forward block (identical to the feed-forward
blocks in the model’s encoder layers).

The input to the encoder stack is then the sum of
the outputs of the embedding layer and positional
encoding network: E(X,G) + P (E(X,G), G).
This is analogous to (and inspired by) the approach
taken by most transformer LMs (e.g. Devlin et al.,
2019; Brown et al., 2020; Lewis et al., 2020; Raffel
et al., 2020; Dubey et al., 2024, etc.), where the
encoder stack input for token t at position p is the
sum of the token embedding for t and the positional
embedding for p.

The encoder is not directly exposed to the graph
structure: all nodes are able to attend to any other
node(s). The encoder layers in the GFoLDS archi-
tecture are similar to those in BERT and Vaswani
et al. (2017), with a few key differences with re-
spect to the residual connections and layer normal-
ization. A full description of the GFoLDS architec-
ture is located in Appendix A.

3.2 Data Preprocessing

GFoLDS’ pretraining corpus consisted of ∼17.5
million randomly-selected sentences from the
November 1, 2023 English Wikipedia dump3, con-
stituting a total of ∼508 million words (∼6.5 times
smaller than BERT’s pretraining corpus). We first
used Spacy’s SentenceRecognizer4 pipeline to ex-
tract individual sentences from the text. We then
used the PyDelphin (Goodman, 2019) library with
the ACE/ERG (Copestake and Flickinger, 2000)

3https://huggingface.co/datasets/wikimedia/wikipedia;
CC-BY-SA-3.0 license.

4https://spacy.io/api/sentencerecognizer

rule-based parser/grammar5 to obtain a DMRS rep-
resentation of each sentence, before preprocessing
the resulting DMRS structures to yield GFoLDS
input graphs. The ACE/ERG parser was able to
parse ∼84% of the data, for a total of ∼14.6 million
DMRS-derived graphs.

It was not feasible to tokenize named entities
(CARGs) and out-of-vocabulary (OOV) items in
the same manner as for the in-vocabulary DMRS
predicates—i.e. by simply assigning an integer to
each unique predicate string in the vocabulary. We
therefore replaced all CARGs and OOV terms with
the [MASK] token. These [MASK] tokens are not
targets for prediction during the pretraining proce-
dure (as they are OOV, so there is no possible target
token): the goal is instead to have the model repre-
sent the OOV item with the closest in-vocabulary
token, based on the context in which the OOV item
appears. The removal of CARGs and OOV items
is a stop-gap measure, and remains an open prob-
lem and barrier to the performance of the GFoLDS
model. We defer the incorporation of CARGs and
OOV items into the model’s input structures to fu-
ture work (see Section 8.1).

Further details on the preprocessing procedures
that we employed are located in Appendix B.

3.3 Pretraining

We pretrained GFoLDS with the masked-node mod-
eling (MNM) objective, which is analogous to
the MLM objective used to pretrain encoder trans-
former LMs. The model trained for four epochs,
with a total training time of ∼102 hours (∼25.5
hours per epoch) on a single NVIDIA A100 GPU.
Further details on our pretraining procedure and
hyperparameters are located in Appendix C.1.

We employed a GFoLDS model with two SWA
layers and ten encoder layers (eight attention heads
each), and set dSWA = dmodel = 1024. The MNM
prediction head that we used is identical to BERT’s
MLM prediction head (aside from the difference
in vocabulary size). This yields a total of ∼174
million parameters: for comparison, BERTbase (12
encoder layers, dmodel = 768) and BERTlarge (24
encoder layers, dmodel = 1024) have ∼110 million
and ∼335 million parameters, respectively.

4 Evaluating the LKCH

This section is dedicated to an investigation of the
validity of the LKCH. The hypothesis can be bro-

5ERG-1214 release: https://github.com/delph-in/erg
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ken down into two distinct claims: (i) that the (as-
pects of) linguistic knowledge incorporated into
LFLMs greatly accelerates their learning of ele-
mentary linguistic phenomena; and (ii) that this
in turn accelerates the learning of more complex
patterns.

We therefore divided this experiment into two
parts, which respectively probe the model’s knowl-
edge of elementary and complex linguistic phe-
nomena. Due to the claim made in the LKCH that
linguistically-informed LMs’ learning of complex
patterns is accelerated, we evaluate the model at
regular intervals throughout pretraining, in order to
measure the rate at which it is learning.

4.1 Comparison Models
As a baseline, we pretrained BERTbase and
BERTlarge (uncased) models from scratch on the
same dataset as GFoLDS (the surface sentences),
for the same number of epochs (four).

Recall that the ACE/ERG parser was only able to
parse ∼84% of the sentences in GFoLDS’ pretrain-
ing dataset (see Section 3.2). If GFoLDS were able
to match the performance of BERT with ∼84% of
the pretraining data (for example), then—given
the ACE/ERG parser’s ∼84% successful parse
rate—this model would provide no practical benefit
over its textual counterparts. We therefore chose to
pretrain the BERT comparison models (BERT-C)
on GFoLDS’ entire pretraining dataset, rather than
the parsable subset: the BERT-C models were pre-
trained with ∼1.19 times more data than GFoLDS.

We evaluated a variety of different pretraining
hyperparameter configurations for BERT-C in or-
der to yield the most rigorous comparison: a full
description of these hyperparameter configurations
is located in Appendix C.2.

4.2 Experimental Setup
This experiment consisted of two tasks that were de-
signed to evaluate knowledge of elementary linguis-
tic phenomena, and one to evaluate knowledge of
more complex patterns: we evaluated GFoLDS and
the BERT comparison models on the three tasks
at twenty evenly-spaced intervals per pretraining
epoch, for a total of eighty points of comparison.

Note that it is difficult—if not impossible—to
define “elementary” and “complex” linguistic phe-
nomena in absolute terms. In this paper, we con-
sider these terms in a relative sense: the elementary
tasks (Section 4.2.2) are undoubtedly more elemen-
tary than the complex task (Section 4.2.1), in that

they do not require as much (if any) world knowl-
edge, and deal entirely with awareness of basic
linguistic categories. Conversely, this entails that
our complex task is complex relative to our elemen-
tary tasks.

Assuming that the LKCH holds, we should
expect to see GFoLDS outperform the BERT-C
models on the complex task throughout the pre-
training process, as—according to the hypothe-
sis—GFoLDS is able to learn complex patterns
faster than textual LMs.

On the elementary tasks, we again expect
GFoLDS to outperform BERT-C, but also that
GFoLDS’ performance will improve substantially
faster than it does on the complex tasks: the LKCH
predicts that an LFLM’s accelerated learning of el-
ementary phenomena catalyzes its learning of com-
plex patterns, so its learning of the former should
therefore accelerate at a faster rate than that of the
latter.

4.2.1 Complex Task
The complex task in this experiment is the REL-
PRON (Rimell et al., 2016) dataset. This dataset
consists of terms (nouns), each paired with a hy-
pernym and up to ten properties: relative clauses
that restrict that hypernym (see Table 2 in the Ap-
pendix). The development set consists of 65 terms
and 518 properties (∼8 properties per term on av-
erage), and the test set contains 73 terms and 569
properties (∼7.8 per term). The task is to retrieve
the properties that apply to each term, without in-
cluding those that do not: the evaluation metric is
Mean Average Precision (MAP) score.

To evaluate the models, we constructed tem-
plates out of each (term, hypernym, property)
triple: for example, the triple (telescope, device,
astronomers use) yields the template “a device that
astronomers use is a telescope”. We then replaced
the target term with the [MASK] token (e.g. “a de-
vice that astronomers use is a [MASK]”): the prob-
ability assigned to a given term under the masked
distribution is taken as proportional to the probabil-
ity that the property applies to that term.

As discussed in Section 3.2, CARGs and OOV
items are masked in the input graphs: given that
each template only contains four content words
(the hypernym, verb, relative clause subject/object,
and the target term), the GFoLDS model is effec-
tively blind to (at least) one third of the context
in templates that contain OOV items or CARGs.
We therefore discarded all examples containing
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Figure 4: Precision scores on the two elementary tasks (left and center) and MAP scores on the RELPRON test set
(right) across the 80 evenly-spaced training snapshots for GFoLDS (green) and the BERTbase/BERTlarge comparison
models (blue/orange, respectively).

CARG-bearing predicates or OOV items for eval-
uation. This resulting subset of the test split (the
“RELPRON-No-UNK/NE” column of Table 1) con-
tains 63 terms and 421 properties, for a total of
∼6.68 properties per term on average.

Due to the small size of the dataset (and the lack
of a training split), the frozen, pretrained models
were used to obtain token probabilities for property
ranking on this task.

4.2.2 Elementary Tasks
POS-Prediction. The first elementary task eval-
uates the LMs’ ability to model the distribution
of parts-of-speech: this is a commonly-employed
probing task used to assess LMs’ elementary lin-
guistic competence (Waldis et al., 2024). We evalu-
ated the models on 200 sentences (not drawn from
their pretraining data) from English Wikipedia.
For each sentence, we masked a single word and
recorded its POS: we then extracted the models’
probability distribution over the masked word of
each sentence, and recorded their precision at ten
with respect to the masked word’s part-of-speech.
For example, if the masked word was a noun, and
nine of the model’s top ten most-likely predictions
were nouns, then the model received a score of 0.9
for that instance.

Quantifier-Agreement. The second elementary
task evaluates the models’ knowledge of quantifier
number agreement—whether a quantifier restricts
a singular or plural noun (or both)—across 179
sentences drawn from English Wikipedia (not used
to pretrain the models). Although less common
than POS prediction, quantifier agreement tasks
have also been employed as a metric of language
models’ elementary lingustic competence (see e.g.
Huebner et al., 2021; Waldis et al., 2024).

As in the POS-prediction task above, we masked
a single quantifier per sentence, then extracted the

probability distribution over the masked quantifier
of each sentence to compute precision at k. The
value of k varied as a function of the number of the
noun in the masked quantifier’s restriction, as there
were more quantifiers that restrict singular nouns
(k = 14) than plural nouns (k = 13).

Additional details on the setup and evaluation of
the elementary tasks are given in Appendix F.

4.3 Results
The results of this experiment (Figure 4) conform
almost exactly to the behavior predicted by the
LKCH: the performance of GFoLDS on the elemen-
tary tasks remains relatively constant throughout
pretraining, because the model starts near peak per-
formance from the first checkpoint—this indicates
that its learning of elementary patterns was com-
plete within 5% of the first epoch. While the per-
formance of the BERT models steadily increases
on these tasks, it does so at a much lower rate.

On the RELPRON test set, GFoLDS begins
improving immediately, BERT-Clarge does not
improve substantially, and the performance of
BERT-Cbase doesn’t begin to meaningfully increase
until the latter half of the first epoch (and at a lower
rate than that of GFoLDS): the point at which it
began to improve on the elementary tasks.

These results constitute strong evidence towards
the LKCH. It is clear from this experiment that
GFoLDS can model the elementary phenomena
almost from the onset (and retains this ability
throughout pretraining) and GFoLDS’ performance
on the RELPRON test set suggests that this acceler-
ated learning of elementary phenomena translates
to more rapid learning of more complex patterns.

5 Downstream Tasks

In order to demonstrate the viability of LFLMs,
we evaluated GFoLDS on a series of downstream
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tasks: our primary objective was to demonstrate
that language models over logical forms are able to
learn from less data than their textual counterparts.

To that end, we compared GFoLDS to the BERT
comparison (BERT-C) models pretrained on the
same data (see Section 4.1), in order to show that
GFoLDS is able to outperform a textual LM when
pretrained on the same amount of data: it then
follows that GFoLDS would be able to perform as
well as a textual LM with less pretraining data.

We additionally compared GFoLDS to the orig-
inal BERTbase and BERTlarge (uncased) models,
both of which are pretrained on roughly 6.5 times
more data than GFoLDS.

5.1 Datasets

We evaluated the models on four downstream tasks:
the RELPRON task described in Section 4.2.1,
SNLI (Bowman et al., 2015), the MegaVeridicality
V2.1 factuality dataset (White et al., 2018), and the
McRae et al. (2005) property inference dataset.

5.1.1 SNLI
All five models were fine-tuned end-to-end on
SNLI with a two-layer, feed-forward MLP clas-
sifier over their mean-pooled token/node embed-
dings. The details of our SNLI fine-tuning hyper-
parameters are located in Appendix D.

Graph Representations. The GFoLDS model
described in Section 3 cannot process multiple sen-
tences. While this obviously represents a serious
general limitation of the model (discussed further
in Section 8), it also presents a more immediate
complication in terms of the SNLI dataset, whose
examples are given as (premise, hypothesis) pairs.

To overcome this obstacle, we construct a sin-
gle graph G(Pi, Hi) from each premise (G(Pi))
and hypothesis (G(Hi)) pair. G(Pi, Hi) is de-
rived from the disjoint union G(Pi) ⊕ G(Hi)
by adding the node if_x_then, and then insert-
ing edges6 if_x_then ARG1−−−→ htop(G(Hi)) and
if_x_then ARG2−−−→ htop(G(Pi)), as in Figure 5.

5.1.2 MegaVeridicality V2.1
The objective in this task is to determine whether
the event denoted by a subordinate clause is true,
given the context of the matrix clause (see Table
3 in the Appendix). The MegaVeridicality V2.1

6The DMRS htop node is typically the (node correspond-
ing to the) main verb of the sentence from which G is derived:
see Copestake et al. (2005).

Figure 5: Illustration of the derivation of G(Pi, Hi)
(bottom) from G(Pi) (top left) and G(Hi) (top right)
for the contradiction example (the man is lying down,
the man is standing).

dataset consists of 5,026 examples, each with ten
annotations of the factuality of the event: for this
experiment, we converted the data into a binary
classification task via majority voting of the anno-
tated labels (see Appendix E).

As with RELPRON (see Section 4.2.1), we re-
moved all examples containing OOV items and/or
CARG-bearing predicates for this task, due to the
lower amount of content words per example in
MegaVeridicality V2.1 in comparison to SNLI.
This left 3,126 remaining examples (∼62%), of
which we withheld 20% as a test set.

We fine-tuned all five models end-to-end for
eight epochs with a two-layer (binary) classifier
head over their mean-pooled embeddings, using a
learn rate of 10−6, a weight decay value of 10−5,
and a batch size of 16.

5.1.3 The McRae et al. (2005) Dataset
To evaluate the quality of GFoLDS’ embeddings
in comparison to BERT, we evaluated the models
on a property inference task using the McRae et al.
(2005) feature norm database. This database con-
sists of a set of 541 concepts (words) W and 2,526
features F , where each concept w ∈W is assigned
a feature vector f(w) ∈ R|F |: the value of f(w)Q
is the value of the feature Q for the word w (see
Table 4 in the Appendix).

Following Rosenfeld and Erk (2022), we created
ten random folds consisting of 50 concepts each
from the dataset. The concepts within each fold
represent the set U of unknown words, and those
outside of the fold represent the set K = W − U
of known words. For each u ∈ U , its feature vector
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RELPRON-All RELPRON-No-UNK/NE SNLI MegaVeridicality V2.1 McRae et al. (2005)
(MAP) (MAP) (Accuracy) (Accuracy) (Spearman ρ)

GFoLDS — 0.651 81.0% 81.3% 0.205
BERT-Cbase 0.147 0.193 79.9% 78.1% 0.167
BERT-Clarge 0.047 0.056 62.0% 76.2% 0.134
BERTbase 0.667 0.690 90.7% 84.2% 0.247
BERTlarge 0.768 0.769 91.1% 85.6% 0.241
FDSAS 0.580 — — — —

Table 1: Results for GFoLDS and the four BERT models on downstream tasks. BERT-Cbase/large indicates the BERT
models pretrained on the same data as GFoLDS (see Section 4.1).

f(u) is withheld: the task is to reconstruct f(u).
As the goal of this experiment was to evaluate

the quality of their embeddings, the models were
not fine-tuned for this task: again following Rosen-
feld and Erk (2022), we used the Modified Adsorp-
tion (Talukdar and Crammer, 2009) graph label-
propagation algorithm to estimate properties, using
the cosine distance between two words’ embed-
dings to weight the graph edge between them.

The evaluation metric was Spearman’s ρ: we
averaged over all scores for each unknown word in
each fold to yield each model’s final score.

5.2 Results

The results of these experiments are given in Table
1. Although the original BERT models outperform
GFoLDS, the BERT comparison models trained
on the same data as our model (BERT-C; see Sec-
tion 4.1) both lag far behind GFoLDS on all four
benchmarks, demonstrating across a wide range of
downstream tasks that our model is able to learn
useful representations with less data than its textual
counterparts.

The pretrained FDSAS model is not publicly
available, so we were unable to evaluate it on the
RELPRON No-UNK/NE subset to obtain a direct
comparison to GFoLDS. However, based on the
differences in MAP scores from the full dataset to
the No-UNK/NE subset for BERTbase/BERT-Cbase
and BERTlarge/BERT-Clarge (+0.023/+0.019 and
+0.001/+0.009, respectively), it is likely that
GFoLDS would outperform FDSAS (0.580) on
that data.

6 Scalability

While the results of Section 5 show that GFoLDS
outperforms textual models trained on similar
amounts of data, this model is still outperformed
by the original BERT models. It is therefore crucial
to establish the scalability of GFoLDS: the degree
to which we would expect its downstream perfor-

mance to scale if it were larger and/or pretrained on
more data. To that end, we applied the techniques
of Muennighoff et al. (2024) to GFoLDS, to deter-
mine the degree to which our model is under- or
over-parameterized—and therefore, by the scaling
laws established in Muennighoff et al. (2024), over-
or under-trained.

As loss is not an exact predictor of downstream
performance (Shin et al., 2022; Tay et al., 2022;
Xia et al., 2023), we follow Hoffmann et al. (2022)
and evaluate the impact of pretraining token count
on a validation task as well. We again used the
RELPRON dataset for this purpose, as SNLI intro-
duces potential confounding factors in the form of
the fine-tuning procedure.

6.1 Experimental Setup

We pretrained five GFoLDS models on 50%, 25%,
12.5%, 6.25%, and 3.125% of the pretraining data
used in Section 3.3. Following Muennighoff et al.
(2024), we ensured that the iterations pretrained on
less data always use a randomly-selected subset of
the dataset used in those with more data.

Aside from the differing number of pretraining
tokens, all models were pretrained using the same
procedure and hyperparameters as described in Sec-
tion 3.3, as the focus of this experiment was the
effect of pretraining tokens with a fixed parameter
count.

6.2 Results

Figure 6 shows that final pretraining loss consis-
tently decreases as the number of pretraining tokens
increases from 3.125% to 50% of the data. After
this point, the final loss value plateaus: the 50%
run (1.3232) finishes with a slightly lower cross-
entropy loss than the actual (100%) run (1.3331),
although this minor difference is likely explained
by the noise introduced by random initialization of
the models’ parameters.

In Appendix G, we prove that—assuming that an
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Figure 6: Final pretraining loss (left) and RELPRON
MAP (right; No-UNK/NE test split). The 100% run
denotes GFoLDS pretrained on the entire dataset.

analogue of the Muennighoff et al. (2024) scaling
laws holds for the GFoLDS architecture—it can
only be the case that the final loss for the 100%
run is (roughly) equal to that for the 50% run if
GFoLDS is underparameterized for both the 100%
run and the 50% run. This is to say that GFoLDS
requires much less pretraining data per parame-
ter than textual models: the Chinchilla Scaling
Laws (Hoffmann et al., 2022) predict that a tex-
tual LLM with the same parameter count (∼174
million) as GFoLDS necessitates ∼5 billion pre-
training tokens—roughly twenty times more than
the ∼254 million tokens for which GFoLDS is
overparameterized.

We also observe improvement of +0.082 in REL-
PRON MAP score from the 50% (0.569) to the
100% (0.651) run—higher than the +0.062 increase
from the 25% (0.507) to the 50% run.

The results of this experiment lead to the con-
clusion that GFoLDS is likely scalable in terms of
model size and pretraining data. The application
of the Muennighoff et al. (2024) scaling laws to
GFoLDS indicates that increasing the parameter
count will decrease final pretraining loss, while
its run-over-run performance on the RELPRON
test set suggests that larger pretraining datasets
will lead to corresponding increases in the model’s
downstream performance.

7 Conclusion

In Section 4, we provided direct evidence in sup-
port of the LKCH: critically, this finding indi-
cates that LFLMs can learn with less data than
textual models. This is supported by our find-
ings in Section 6, which indicate GFoLDS is un-
derparameterized with half of its pretraining data.

To the best of our knowledge, the experiments
in Section 5 represent the first time that a language
model pretrained solely over logical forms has been
evaluated on a wide range of downstream tasks.

GFoLDS’ capacity to be applied to tasks rang-
ing from RELPRON to SNLI—and consistently
outperform BERT models pretrained on the same
amount of data—demonstrates this model’s versa-
tility. These results therefore represent a significant
step towards demonstrating the practical viability
of LFLMs.

Although much work remains to be done before
LFLMs can reach the same level of performance
and utility as their textual counterparts (see Section
8), the results of Sections 4-6 suggest that such
models present an exciting avenue for continuing
the improvement of language models at a more
sustainable rate of data consumption than LLMs
over text.

8 Limitations

This section is divided into two parts: Section 8.1
overviews the limitations of the current GFoLDS
pipeline laid out in Section 3, while Section 8.2 dis-
cusses the limitations of the experiments conducted
in Sections 4-6.

8.1 Limitations of the Current Approach

Tokenization. As discussed in Section 3.2, we re-
placed all OOV node labels with the [MASK] token.
Although this preprocessing step was necessary
due to the tokenization scheme that we employed,
it prevents the model from seeing every word in
every input sentence. For the same reason, we re-
moved CARGs (named entities), keeping only the
CARG-bearing predicates (nodes): this amounts to,
for example, replacing the sentence “John went to
the park in the spring of 2017” with “[NAMED]
went to the park in the [SEASON] of [YEAR].”

The removal of these items from its DMRS-
derived input graphs almost certainly negatively im-
pacts GFoLDS’ performance on downstream tasks,
and entirely precluded a direct comparison with
FDSAS on the RELPRON benchmark (see Sec-
tion 5.2). However, this limitation lies purely with
the current GFoLDS architecture—rather than the
proposed approach in and of itself—as we simply
tokenized the nodes by assigning a unique integer
to each in-vocabulary term (i.e. node label). The
ACE/ERG parser can still parse OOV items: the
node label of an OOV term is constructed by ap-
pending the suffix “_unknown” (along with a part-
of-speech tag) to the corresponding string in the
surface text.

Future work in this area must involve redesign-
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ing the model’s approach to node embeddings in
order to overcome this limitation, for example by
replacing GFoLDS’ embedding layer with a small,
character-level encoder transformer that is applied
to each individual node. As we intended this work
to primarily be a proof-of-concept of LFLMs, we
left this issue to future research in order to retain
focus on that goal.

Multiple-Sentence Inputs. For the SNLI dataset,
we were able to overcome GFoLDS’ inability to
process sequences of multiple sentences by con-
verting each premise/hypothesis pair into a single,
connected graph. However, this task-specific rem-
edy cannot be readily generalized to other multiple-
sentence NLP benchmarks. In future work, we
intend to address this deficiency through sentence-
level positional encodings (e.g. rotary embeddings;
Su et al., 2024): a sequence of sentences repre-
sented as the disjoint union of their DMRS graphs,
where the positional encoding p⃗i is added (or con-
catenated) to the embedding of each node in the ith

graph in the sequence.

DMRS Parsing. Although the ACE/ERG parser
that we employed to derive DMRS graphs from
natural language enjoys high precision (93.77%;
Zamaraeva and Gómez-Rodríguez, 2024), it suf-
fers from relatively low recall: only ∼84% of our
pretraining dataset was able to be parsed. This can
(and should) be addressed in future work, perhaps
through the use of a neural DMRS parser (e.g. Buys
and Blunsom, 2017), which trades lower precision
for higher recall than a rule-based parser such as
ACE/ERG.

Additionally, the grammar of the ACE/ERG
parser (ERG: English Resource Grammar) is solely
an English grammar, rendering our approach inap-
plicable to other languages7.

Model Type. The GFoLDS model described in
this work is an encoder model: in order to be able
to perform the same range of tasks as current SoTA
LLMs, LFLMs must have generative capabilities.
In future research, we intend to adapt GFoLDS to
construct a sentence-level, graph-to-graph gener-
ative LFLM, by adapting existing work in the do-
main of molecule graphs on autoregressive graph
generation (e.g. Bacciu et al., 2020; Goyal et al.,
2020; Bacciu and Podda, 2021) that we believe can

7Although broad-coverage grammars do exist for some
other higher-resource languages (e.g. the Spanish Resource
Grammar; Zamaraeva et al., 2024)

be readily extended to DMRS, using (for example)
a breadth-first search to impose a canonical genera-
tion order on the graph nodes during training.

8.2 Experimental Limitations

Logical Representations. While the GFoLDS
model demonstrates that language models over
DMRS representations are able to learn with less
data than textual models, we did not evaluate
the LKCH using other logical-form representa-
tions such as AMR. AMR in particular is a prob-
lematic representational format for the GFoLDS
model, as this framework utilizes ∼100 edge la-
bels (Banarescu et al., 2013) (our DMRS-derived
graphs have nine; see Table 5 in the Appendix).
Recall from the discussion in Section 3.1 that
each unique edge label corresponds to unique for-
ward/backward edge projection layers within each
SWA layer (see also Appendix B): with the archi-
tectural configuration of the GFoLDS model used
in this work (i.e. two SWA layers with dSWA =
1024), the additional AMR edge labels would add
∼380 million parameters to the positional encod-
ing module (the model in this work has only 174
million total parameters).

Although they may require significant architec-
tural modifications, future work should investigate
the use of AMR, EDS, and other graph-based se-
mantic representations for language modeling, in
order to determine the most effective framework
for this application.

Dataset Size. Due to computational limitations,
we did not investigate the GFoLDS model at scale
(i.e. with the same amount of training data as
BERT): it required roughly one month to parse
the training dataset used in this work into DMRS8.
Although this does introduce the risk that our pro-
posed method may only show superiority on a
small-scale dataset, the results of Section 6 indicate
that this risk is relatively low: extrapolating from
the pattern shown in Figure 6 (see the discussion in
Section 6.2), we would expect GFoLDS to surpass
BERTlarge (the original model) on the RELPRON
test set with four times the current training data
(still less than that of BERTlarge, which addition-

8We do not view this as a severe limitation of the proposed
approach: DMRS parsing can be achieved in parallel (each
parse is independent of the others), and so the speed of parsing
scales linearly with the number of CPU cores. With sixteen
times as many cores as used in this work, for example, a
dataset the size of BERT’s pretraining data could be parsed in
roughly two weeks.
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ally has twice the parameter count).

Model Size. We did not investigate the effect of
parameter size on the GFoLDS model: these ex-
periments were only performed with a 174 million
parameter LFLM.
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Term Hypernym Properties Corresponding Templates
telescope device astronomers use “A device that astronomers use is a telscope”

observatory has “A device that an observatory has is a
telescope”

dome houses “A device that a dome houses is a telescope”
observer points “A device that an observer points is a

telescope”
has a mirror “A device that has a mirror is a telescope”
uses a lens “A device that uses a lens is a telescope”
detects planets “A device that detects planets is a telescope”
views stars “A device that views stars is a telescope”
tracks the sky “A device that tracks the sky is a telescope”
collects light “A device that collects light is a telescope”

assignment document student writes “A document that a student writes is an
assignment”

student submits “A document that a student submits is an
assignment”

teacher reads “A document that a teacher reads is an
assignment”

receives a grade “A document that receives a grade is an
assignment”

ruin building archaeologist discovers “A building that an archaeologist discovers
is a ruin”

dig excavates “A building that a dig excavates is a ruin”
archaeologist studies “A building that an archaeologist studies is

a ruin”
collector restores “A building that a collector restores is a ruin”
jungle covers “A building that the jungle covers is a ruin”
excavation reveals “A building that excavation reveals is a ruin”

Table 2: RELPRON dataset entries for the terms telescope, assignment, and ruin, including their respective
hypernyms, properties, and the verbalized templates derived from each (term, hypernym, property) triple.

Sentence Label
A particular person didn’t mean to do a particular thing 1
Someone didn’t tell a particular person to do a particular thing 0
John wasn’t upset that a particular thing happened 1
John didn’t find that a particular thing happened 0
A particular person was thrilled to do a particular thing 1
A particular person yearned to have a particular thing 0

Table 3: Examples of sentences (with subordinate
clauses underlined) and their corresponding labels from
the MegaVeridicality 2.1 dataset. A label of 1 indicates
that the subordinate event is portrayed as true, while a
label of 0 indicates that is not.

Feature Value
a-utensil 0.634 (19/30)
found-in-kitchens 0.600 (18/30)
used-with-forks 0.534 (16/30)
a-cutlery 0.500 (15/30)
is-dangerous 0.467 (14/30)
a-weapon 0.367 (11/30)

Table 4: (McRae et al., 2005) feature norms for the
concept knife (feature values are obtained from experi-
ment participants’ judgments). For all other features Q,
F (knife)Q = 0.
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Figure 7: DMRS graph from Figure 1, with node fea-
tures included. Features are highlighted in red; a dashed
arrow ϕ→ x indicates that ϕ is a feature of the node x.

Figure 8: Architecture of a GFoLDS (top) and BERT
(bottom) encoder layer.

A Encoder Architectural Details

As discussed in Section 3.1, the outputs of the
embedding layer and positional encoding network
(E(X,G) and P (E(X,G), G), respectively) are
summed together and passed to the encoder stack.

The encoder layers in the GFoLDS architecture
are similar to those in BERT and Vaswani et al.
(2017)9, but contain a few key differences—in par-
ticular with respect to the residual connections and
interrelated layer normalization. As shown in Fig-
ure 8, in a BERT encoder layer, the layer input is
directly passed to the multi-head attention module,
immediately followed by a skip connection and
layer normalization. The output of this first layer
normalization is then passed to the feed-forward
layer, which is again immediately followed by a
skip connection and second layer normalization.

In a GFoLDS encoder layer, the input is first
layer-normalized before being passed to the multi-
head attention module, which is followed by a skip
connection. The next skip connection—in contrast
to BERT—is copied before layer normalization,
which itself is followed by the feed-forward layer
(which is identical to a BERT encoder feed-forward
layer) and a second skip connection; this skip con-
nection is not followed by layer normalization.

9Which is also the architecture employed in Wu et al.’s
(2021a) original formulation of the graph transformer.

Figure 9: DMRS representation of the noun phrase “the
large building”.

These architectural differences are motivated
by the fact that—since the introduction of
BERT—normalization outside of the residual con-
nection (i.e. Norm(x + f(x))) has been shown
to be problematic. Godbole et al. (2023) in-
stead recommend normalization inside the residual
(i.e. x+ f(Norm(x))), which we implemented in
GFoLDS.

B Data Preprocessing

After removing CARGs and OOV items from the
graph structures (see Section 3.2), there remain
a few—relatively less significant—preprocessing
steps that we took in order to transform DMRS
representations into inputs for the GFoLDS model.

For the sake of semantic well-formedness, the
ACE/ERG parser attempts to represent all inputs
as if they were entire sentences. For example,
given the input “the large building”, the parser
will parse the noun phrase, then insert the pred-
icate unknown10 and an edge ARG : unknown →
building_n_1 (see Figure 9), which indicates that
there is some unknown (presumably verbal) pred-
icate for which the building plays an (again un-
known) semantic role (indicated by ARG). Such
constructions are the only context in which the ARG
edge label appears in DMRS.

While this representational choice is sensible
from the perspective of formal semantics, it is un-
desirable from the viewpoint of machine learning.
The fact that ARG only links unknown to other
predicates (and is always included when unknown
is in the graph) makes that predicate extremely pre-
dictable: if, during pretraining, the model is given
a graph with a masked unknown predicate, it needs
only look for the ARG-labeled edge to know that
unknown is the masked node. This means that the
model does not need to learn any co-occurrence
relations between unknown and other nodes in the
graph in order to learn to reliably predict the distri-
bution of unknown.

10Not to be confused with out-of-vocabulary/“unknown”
items, which are represented in a different manner in DMRS.
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Original Label Interpretation/Role Replacement
ARG1 First-place argument —
ARG2 Second-place argument —
ARG3 Third-place argument —
ARG4 Fourth-place argument —
MOD Indicates a shared handle —

between two predicates
RSTR Restriction of a quantifier —
ARG Argument of the “unknown” MOD

predicate
L-INDEX Left-hand conjunct of two INDEX

coordinated variables
R-INDEX Right-hand conjunct of two INDEX

coordinated variables
L-HNDL Left-hand conjunct of two HNDL

coordinated handles
R-HNDL Right-hand conjunct of two HNDL

coordinated handles

Table 5: DMRS edge labels (left), the role that they play in describing meaning (center), and the edge labels that they
are replaced with (right) during preprocessing (if any: “ — ” indicates that a label is retained after preprocessing).

Second, recall that each unique argument label is
assigned unique forward and backward dSWA×dSWA

edge projection layers in each SWA layer (see
Section 3.1). This is to say that each unique
edge label corresponds to 2n(dSWA)

2 parameters
in the GFoLDS model, where n denotes the num-
ber of SWA layers. If, for example, n = 2 and
dSWA = 1024, then each additional edge label adds
4,194,304 parameters to the model architecture.
Given the highly specialized function of the ARG
edge label, it seems rather unreasonable to allocate
so many parameters to its representation.

Therefore, during preprocessing, we converted
each ARG label to the MOD label (see Table 5):
another purely structural DMRS edge label that
is used to indicate handle equality between predi-
cates when other argument-label edges alone are
insufficient to do so (Muszynska, 2020).

Additionally, we equivalence-classed argument
labels involved in coordination structures (corre-
sponding to logical conjunction and disjunction):
for a predicate such as and_c, DMRS includes
the argument labels L-HNDL : and_c → X and
R-HNDL : and_c → Y (L-INDEX and R-INDEX,
respectively, when the conjuncts are variables
rather than handles) denoting the left- and right-
hand conjuncts X/Y (respectively) of the coor-
dinated structure. Logically, however, conjunc-
tion and disjunction are commutative operators:

ϕ ∧ ψ = ψ ∧ ϕ and ϕ ∨ ψ = ψ ∨ ϕ. Therefore,
we replaced the edge labels L-HNDL/R-HNDL and
L-INDEX/R-INDEX with HNDL and INDEX (re-
spectively; see Table 5), ignoring the surface order
of the conjuncts. This preprocessing step has the
added benefit of reducing the overall size of the
GFoLDS model by 4n(dSWA)

2 parameters, as dis-
cussed above.

Finally, we removed from the graph structures
all instances of focus_d and parg_d: predicates
with a purely discourse-pragmatic role, which indi-
cate that the predicates that they modify are focus-
topicalized or the subject of a passivized verb (re-
spectively).

C Pretraining Details

This section describes additional details and hy-
perparameters of the pretraining processes for
GFoLDS (Section C.1) and the BERT comparison
models used in Sections 5-4 (Section C.2).

C.1 GFoLDS

Pretraining Objective During BERT’s pretrain-
ing procedure, while 15% of the input tokens are
selected for prediction, only 80% of the selected
tokens are masked: this is to account for the mis-
match between the model’s pretraining and fine-
tuning distributions that arises from the fact that
the [MASK] token only occurs during pretraining.
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Figure 10: GFoLDS pretraining learn rate schedule.

However, for GFoLDS, the [MASK] token does
occur during fine-tuning as well, due to OOV items
(as discussed in Section 3.2). Furthermore, Wettig
et al. (2023) find that higher selection rates—and
higher masking rates—result in improved perfor-
mance on downstream tasks, when compared to the
selection and masking/replacement rates reported
in Devlin et al. (2019). For these reasons, we chose
to mask 100% of the selected tokens during pre-
training, with the slightly higher selection probabil-
ity of 20%.

The MNM prediction head that we used is iden-
tical to BERT’s MLM prediction head (aside from
the difference in vocabulary size): a dmodel ×dmodel

linear layer, followed by GeLU activation, layer
norm, and a dmodel × 22077 (the size of the vocab-
ulary) linear layer.

Hyperparameters We pretrained GFoLDS with
a batch size of 16 for four epochs with the AdamW
optimizer (Loshchilov and Hutter, 2017) and a
weight decay value of 10−5. We set an initial learn
rate of 10−5, with a linearly interpolated learn rate
between values of 2× 10−5 at the end of the first
epoch, 10−5 at the end of the second, 3 × 10−6

at the end of the third, and 10−6 at the end of the
fourth (see Figure 10). That is to say that the learn
rate increased linearly from 10−5 to 2× 10−5 dur-
ing the first epoch, decreased linearly from 2×10−5

to 10−5 during the second epoch, and so on.
At the specified batch size of 16, the model

trained at a rate of roughly 25 hours and 36 min-
utes per epoch on a single NVIDIA A100 GPU,
for a total training time of 102 hours and 24 min-
utes. GFoLDS converged to a cross-entropy loss of
∼1.3331 at the end of the fourth epoch (see Figure
11).

Figure 11: GFoLDS pretraining cross-entropy loss.

C.2 BERT Comparison Models

Given the differences in size and modality be-
tween the BERT and GFoLDS models, the best-
performing set of pretraining hyperparameters for
BERT on this dataset is not likely to be identical to
those of GFoLDS. We therefore evaluated a vari-
ety of different hyperparameter configurations for
BERT in order to yield the most equitable compar-
ison with GFoLDS. Due to the relatively higher
cost associated with training BERTlarge (over three
times larger than BERTbase), we performed the ma-
jority of the trials with BERTbase, then transferred
the best-performing configuration found during
these experiments to BERTlarge.

We first evaluated BERTbase on three different
configurations across which the learn rate sched-
ule, weight decay, and masking rates varied: all
three configurations employed the next sentence
prediction (NSP) secondary pretraining task (De-
vlin et al., 2019). Due to hardware constraints, we
were limited to using a batch size of 16 for all of
the BERT pretraining trials.

The first configuration (a) was identical to that
which we employed for GFoLDS (see Appendix
C.1): a weight decay value of 10−5; a linearly
interpolated learn rate between values of 2× 10−5

at the end of the first epoch, 10−5 at the end of the
second, 3× 10−6 at the end of the third, and 10−6

at the end of the fourth (with an initial learn rate
of 10−5); and a token selection probability of 20%
with a masking probability of 100%.

In the second configuration (b), we used a hy-
perparameter configuration that was identical to
that of the original BERT models: a weight decay
value of 10−2; linear learn rate warmup to 10−4

across the first 1% of the training run (with linear
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Figure 12: Learning rates (left), cross-entropy loss values (center), and MAP scores on the RELPRON development
split (right) across training steps for the BERTbase pretraining trials (a)-(c).

decay thereafter); and a token selection probability
of 15% with a masking and replacement rates of
80% and 10%, respectively.

However, the original BERT models were pre-
trained with a batch size of 256, while trials (a)
and (b) use a batch size of 16. Although we were
not able to increase the batch size due to hardware
constraints (as mentioned above), Granziol et al.
(2022) show that proportional (to batch size) learn
rate scaling can be used to control for the effect of
batch size on training loss. We therefore introduced
a third trial (c): this configuration was identical to
that of (b) with the exception of the peak learn
rate value, which we scaled down to 2 × 10−5 to
account for the difference in batch size.

We then evaluated trials (a)-(c) with respect to
learn rate and a validation task that does not re-
quire fine-tuning: the development split of the REL-
PRON (Rimell et al., 2016) dataset (see Section
4.2.1). The results of these experiments are shown
in Figure 12.

The model clearly failed to learn with the origi-
nal BERT pretraining hyperparameters (b)—likely
due to the mismatch in batch size discussed
above—and finished training with a minimum
cross-entropy loss of 7.8864 and a peak MAP score
of 0.040 on the RELPRON development set. Of the
two remaining configurations, (c) outperforms (a)
both in terms of minimum cross-entropy (4.2988
vs. 4.8716) and peak MAP score (0.207 vs. 0.137).

Liu et al. (2019) suggest that pretraining with the
secondary NSP objective does not improve (and in
some cases may even hinder) model performance.
We therefore conducted a fourth hyperparameter
trial with BERTbase, using the same configuration
as in (c) above, but excluding the NSP task. The
results of this experiment are shown in Figure 13.

The variant of configuration (c) without NSP out-
performs the original trial in terms of cross-entropy
loss (3.8339 vs. 4.2988, respectively; see Figure

Figure 13: Cross-entropy loss values (left), and MAP
scores on the RELPRON development split (right)
across training steps for the BERTbase pretraining con-
figuration (c) with and without the secondary NSP ob-
jective.

13)—this is to be expected: the loss values reported
for the variant with NSP are the sum of the NSP
loss with the masked language modeling (MLM)
loss. However, the non-NSP configuration also out-
performs its NSP counterpart in terms of peak MAP
score on the RELPRON development set: 0.267 vs.
0.207 (respectively). For this reason, we selected
the non-NSP variant of the model pretrained with
hyperparameter configuration (c) as the BERTbase
comparison model to be used in the experiments in
this work.

We then pretrained BERTlarge with (non-NSP)
hyperparameter configuration (c). As shown in Fig-
ure 14 (configuration large-(a)), this model failed
to converge: it finished training with a minimum
cross-entropy loss of 7.1856 and a peak MAP score
of 0.039 on the RELPRON development set. As
larger neural networks are more prone to overfitting
(Caruana et al., 2000; Salman and Liu, 2019), we
scaled the peak learn rate by a factor of 1/10 in
trial large-(b) to account for the difference in size
between the BERTbase and BERTlarge models.

Trial large-(b) vastly outperformed large-(a) in
terms of both minimum cross-entropy loss (5.1998
vs. 7.1856) and peak RELPRON development split
MAP score (0.039 vs. 0.083), although it trails far
behind the best-performing BERTbase configuration
by both metrics (3.8339 vs. 5.1998 cross-entropy;
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Figure 14: Learning rates (left), cross-entropy loss values (center), and MAP scores on the RELPRON development
split (right) across training steps for the BERTlarge pretraining trials (a)-(b).

0.267 vs. 0.083 RELPRON MAP). This substantial
difference in performance between the base and
large BERT variants is to be expected: it is well-
known that larger neural networks require more
training data in order to properly converge (see e.g.
Hoffmann et al., 2022; Muennighoff et al., 2024),
and BERTlarge has over triple the amount of param-
eters (and double the number of encoder layers) as
the base version of the model. Further compound-
ing this issue is the fact that we pretrained these
comparison models on 6.5 times less data (and for
ten times fewer epochs) than was intended for the
BERT models.

With a batch size of 16, BERTlarge trained at a
rate of roughly 35 hours and 20 minutes per epoch
on a single NVIDIA H100 GPU, for a total training
time of 141 hours and 20 minutes. For compari-
sion, GFoLDS and BERTbase—each trained on an
NVIDIA A100—required 102 hours and 24 min-
utes, and 46 hours and 36 minutes, respectively
(total training time).

D SNLI Fine-Tuning Details

We fine-tuned GFoLDS and BERTbase for five
epochs with a batch size of 16, a weight decay
value of 10−5, an initial learn rate of 10−5, and
a linearly-interpolated learn rate (updated at each
batch) between values of 2×10−5 at the end of the
first epoch, 3× 10−5 at the end of the third, 10−6

at the end of the fourth, and 10−7 at the end of
the fifth (see Figure 15). We fine-tuned BERTlarge
with identical hyperparameters, except all learn
rates mentioned above were multiplied by 1/10 for
this model (BERTlarge was unstable with the higher
learn rate used for GFoLDS and BERTbase).

The fine-tuning hyperparameters for the BERT
models were admittedly not selected using as rigor-
ous of a search procedure as that employed during
pretraining (see Appendix C.2). However, the ac-
curacy that the (original) BERTbase and BERTlarge

Figure 15: SNLI fine-tuning learn rate schedule for
GFoLDS and the BERTbase models.

models attained with the hyperparameter configu-
rations described in the above paragraph (see Table
1) matched that reported for those models on the
SNLI dataset in Zhang et al. (2020). It is therefore
reasonably safe to assume that this set of hyper-
parameters is (near-)optimal for the BERT models
with respect to this data.

E MegaVeridicality V2.1 Task Setup

We converted this dataset to a binary classification
task by assigning a values of 1, 0, and −1 to the
labels yes, maybe, and no (respectively). We then
assigned each example a value of 1 (i.e. the subor-
dinate event is portrayed as true) if its mean value
was greater than zero, and 0 otherwise.

F Elementary Tasks

POS-prediction As discussed in Section 4.2, we
evaluated the models on 200 sentences drawn from
English Wikipedia. We first parsed each sentence
using the ACE/ERG DMRS parser (see Section
3.2), which automatically labels the part-of-speech
of each predicate in the DMRS representation of a
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Type Quantifiers
SG another, either, neither, that, this, every, a(n), each
PL these, certain, most, those, all, such, both
BOTH some, the, any, enough, no, which

Table 6: Quantifier types—along with a list of the quantifiers belonging to each type—used in the quantifier-
agreement task.

sentence. We then randomly selected a single word
to mask from each parsed sentence—subject to the
condition that the selected word must be mapped to
a single token by the BERT tokenizer (in order to
facilitate the evaluation of the BERT comparison
models)—and recorded to part-of-speech of the
selected word. This resulted in a dataset consisting
of 58 masked-quantifier, 28 masked-preposition,
33 masked-verb, 63 masked-noun, and 18 masked-
adjective sentences.

Determining the part-of-speech for each predic-
tion of the GFoLDS model was trivial: DMRS
predicates include part-of-speech tags, so we sim-
ply checked the tag of each predicted predicate.
The BERT models, however, necessitated the use
of the NLTK POS tagger11. For each sentence s,
and each of the model’s top-ten predicted tokens w
for s, we created a new sentence sw by replacing
the masked word of s with the prediction w, and
ran the NLTK POS tagger over sw to obtain the
tag for w. Note that, while the NTLK POS tagger
is not perfect, it does achieve 95+% accuracy on
English-language data (Jacobsen et al., 2021), and
therefore is sufficiently robust to yield an estimate
of the model’s performance.

We chose to use (bounded) precision as the eval-
uation metric for this task because of the large
amounts of positive examples for each class (es-
pecially nouns, verbs, and adjectives), which pre-
cluded the calculation of metrics that incorporate
false negatives (e.g. recall and F1). We recorded
each model’s mean precision across all 200 sen-
tences as its final score for this task.

Quantifier-agreement We first parsed each sen-
tence with the ACE/ERG parser, which explicitly
labels the number of each noun: this allowed the au-
tomatic extraction of the number of the noun in the
restriction of a given quantifier. We then randomly
selected a single quantifier from each sentence to
mask, and recorded the number of the noun in the
quantifier’s restriction.

We sorted all of the quantifiers into one of three
11https://www.nltk.org/api/nltk.tag.pos_tag.html

categories/types (see Table 6): singular (can only
restrict singular nouns), plural (can only restrict
plural nouns), and both (can restrict either kind of
noun). Note that the both-type quantifiers were
used only for evaluation: the type of the masked
quantifiers was recorded only as singular or plu-
ral—all nouns are either singular or plural, and
the target type was determined by the number as-
signed by the ACE/ERG parser to the noun in the
quantifier’s restriction.

When computing precision for this task, all non-
quantifier words in the models’ top-k predictions
were treated as false positives, while both-type
quantifiers in the top k were treated as true pos-
itives, regardless of the target type (singular or
plural). As in the POS-prediction task above, we
recorded each model’s mean precision across all
179 sentences as its final score for this task.

G Scalability

G.1 Background and Notation

(Hoffmann et al., 2022) investigate the relationship
between model size (i.e. number of parameters)
and amount of pretraining data, and the final pre-
training cross-entropy loss of LLMs. The optimal
number of parameters and amount of data (number
of tokens) for a fixed compute budget—expressed
in terms of floating-point operations (FLOPs)—is
given in Equation 3, where Nopt denotes the opti-
mal number of model parameters, Dopt the optimal
number of training tokens, C the compute budget,
and L(N,D) the model’s final pretraining loss on
D tokens with N parameters.

(Nopt, Dopt) = argmin
(N,D) :FLOPs(N,D)=C

L(N,D)

(3)
The authors fit a model of LLM final pretraining

loss as a function of N and D. This model is given
in Equation 4, where E, A, B, α, and β are learned
constants12.

12E = 1.69, A = 406.4, B = 410.7, α = 0.34, β = 0.28
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L(N,D) ≈ L̂(N,D) = E +
A

Nα
+

B

Dβ
(4)

However, (Hoffmann et al., 2022) only consider
unique training data—i.e. pretraining a language
model for a single epoch. (Muennighoff et al.,
2024) extend Hoffmann et al.’s (2022) experiments
to the case of repeated training data: pretraining
the model for multiple epochs on the same dataset.
The authors fit an analogous loss-prediction func-
tion to that given in Equation 4 (Equation 5a),
L̂(r)(N,UD), which estimates the final loss for a
language model with N parameters trained on UD

tokens for r repetitions (i.e. epochs).

L(r)(N,UD) ≈ L̂(r)(N,UD) = E +
A

N̂α
+

B

D̂β

(5a)

D̂ = UD + UDR
∗
D(1− e−r/R∗

D) (5b)

N̂ = UN + UNR
∗
N (1− e−RN/R∗

N ) (5c)

UN = min{N,Nopt(UD)} (5d)

RN =
N

UN
− 1 (5e)

Where UD denotes the number of unique to-
kens (i.e. the amount of tokens in a single epoch),
Nopt(UD) is estimated as in (Hoffmann et al., 2022)
(see Equations 3 and 4), and E, A, B, α, β, R∗

D,
and R∗

N are learned constants13.

G.2 Proof
The term D in Equation 5 denotes the number of
pretraining tokens. This metric is likely not a per-
fect predictor for GFoLDS: recall from Section 3.1
that the model contains separate projection layers
for each DMRS edge label type. The model there-
fore receives training signal not only from the node
labels (i.e. tokens), but also from the edge labels.
For example, an input graph with six tokens and
five edges will update fewer model parameters than
a graph with six tokens and ten edges.

It is beyond the scope of this work to establish
exact scaling laws for GFoLDS and determine the
graph-based analogue to the term UD in Equation
5. However, it is clear that such a UD value scales
(more or less) linearly with the number of graphs
in the pretraining dataset: as with a textual model,
UD can be expressed as the sum of the amounts of

13E = 1.88, A = 523.22, B = 1480.30, α = 0.35,
β = 0.35, R∗

D = 15.39, R∗
N = 5.31

data (regardless of how it is quantified) contributed
by each individual input graph (respectively, se-
quence) in the dataset.

It is therefore reasonable to assume that UD′ ≈
UD/2, where UD denotes the dataset for the 100%
run, and UD′ that of the 50% run (see Section 6).
We may express the relationship between the 50%
run loss and the 100% loss in the notation intro-
duced in Appendix G.1 (while leaving the exact
definition of UD to future work): L(4)(N,UD) ≈
L(4)(N,UD/2). Recall from Equation 5a that the
term E is a constant, and so can be ignored. We are
then left with the following (approximate) equality
in Equation 6a.

A

N̂α
1

+
B

D̂β
1

≈ A

N̂α
2

+
B

D̂β
2

(6a)

D̂1 = UD + UDR
∗
D(1− e−4/R∗

D) (6b)

D̂2 ≈ (UD/2) + (UD/2)R
∗
D(1− e−4/R∗

D) (6c)

N̂1 = U
(1)
N + U

(1)
N R∗

N (1− e−R
(1)
N /R∗

N ) (6d)

N̂2 = U
(2)
N + U

(2)
N R∗

N (1− e−R
(2)
N /R∗

N ) (6e)

U
(1)
N = min{N,Nopt(UD)} (6f)

U
(2)
N ≈ min{N,Nopt(UD/2)} (6g)

R
(k)
N =

N

U
(k)
N

− 1 (6h)

Where the left-hand expression in Equation 6a
corresponds to the 100% run (L̂(4)(N,UD)), and
the right-hand expression corresponds to the 50%
run (L̂(4)(N,UD/2)). Note that D̂2 ≈ D̂1/2
(Equation 7).

D̂2 ≈
UD

2
+
UD

2
R∗

D(1− e−4/R∗
D)

=
UD + UDR

∗
D(1− e−4/R∗

D)

2
=
D̂1

2

(7)

Given the vast architectural and modal differ-
ences between GFoLDS and textual transformer
models, we do not assume that the coefficients E,
A, B, α, β, R∗

D, and R∗
N fitted in (Muennighoff

et al., 2024) are identical for GFoLDS. Moreover,
as stated above, it is beyond the scope of this work
to establish exact scaling laws for this model. How-
ever, from the fact that final loss decreases as pre-
training data increases from the 3.125% to the 50%
runs (see Section 6.2), we know that the coeffi-
cients B and β in 6 must be positive: this—in
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conjunction with the (approximate) equality in
Equation 7—means that it cannot be the case that
B/D̂β

1 > B/D̂β
2 .

Assume that B/D̂β
1 ≪ B/D̂β

2 : given the equal-
ity in Equation 6a, it must then be the case that
A/N̂α

1 −A/N̂α
2 ≈ B/D̂β

2 −B/D̂β
1 , and therefore

that A/N̂α
2 ≪ A/N̂α

1 .
Assume further that the model is underparam-

eterized at 100% of the data (i.e. that N <

Nopt(UD)): then U (1)
N = min{N,Nopt(UD)} = N

and R(1)
N = (N/U

(1)
N )− 1 = 0, which implies that

N̂1 = U
(1)
N +U

(1)
N (1− 1) = U

(1)
N = N (see Equa-

tion 6d). As the terms A and α are constants in
Equation 5a (and therefore in Equation 6a), we may
reduce to the inequality expressed in Equation 8
(where the last logical equivalence is by definition
of R(2)

N ; see Equation 6h).

N̂−α
1 ≫ N̂−α

2 ↔ N̂1 ≪ N̂2

↔ N ≪ U
(2)
N + U

(2)
N R∗

N (1− e−R
(2)
N /R∗

N )

↔ N − U
(2)
N

U
(2)
N

≪ R∗
N (1− e−R

(2)
N /R∗

N )

↔ N

U
(2)
N

− 1 ≪ R∗
N (1− e−R

(2)
N /R∗

N )

↔ R
(2)
N /R∗

N ≪ 1− e−R
(2)
N /R∗

N

(8)

But this is impossible: by Bernoulli’s inequality,
1 + x ≤ ex for all x. This implies that x ≤ ex − 1,
which in turn implies −x ≤ 1 − ex, which then
implies x > 1 − e−x. As it therefore cannot be
the case that R(2)

N /R∗
N < 1− e−R

(2)
N /R∗

N , we know
that the model cannot be underparameterized if
B/D̂β

1 ≪ B/D̂β
2 .

Now assume that the model is either over-
or well-parameterized at 100% of the data
(i.e. that N ≥ Nopt(UD)): then U

(1)
N =

min{N,Nopt(UD)} = Nopt(UD). It is
reasonable to assume that Nopt(UD/2) <
Nopt(UD) (i.e. that the model’s optimal num-
ber of parameters scales monotonically with the
amount of pretraining data), which implies that
U

(2)
N = min{N,Nopt(UD/2)} = Nopt(UD/2) <

Nopt(UD) = U
(1)
N . With a fixed number of parame-

tersN , N̂ (Equations 5c, 6d-e) is a monotonic func-
tion of UN (by construction; Muennighoff et al.,
2024), so we have U (1)

N > U
(2)
N → N̂1 > N̂2.

But this implies that A/N̂α
1 < A/N̂α

2 .
This—along with the assumption that B/D̂β

1 ≪

B/D̂β
2 —contradicts the observed result that

L(4)(N,UD) ≈ L(4)(N,UD/2), and so we
know that the model cannot be well- or over-
parameterized if B/D̂β

1 ≪ B/D̂β
2 .

Given that it cannot be the case that the
model of the 100% run is under-, well-, or over-
parameterized ifB/D̂β

1 ≪ B/D̂β
2 (and that it must

be one of the three), it therefore cannot be the case
that B/D̂β

1 ≪ B/D̂β
2 . As argued above, the coeffi-

cientsB and β must be positive, so it also cannot be
the case that B/D̂β

1 ≫ B/D̂β
2 : we must then con-

clude that B/D̂β
1 ≈ B/D̂β

2 . As D̂1 ≈ 2D̂2 (see
Equation 7), we know that B/D̂β

1 ≈ (B/D̂β
2 )/2

β ,
(and that 2β > 1, as β must be positive). It must
therefore be the case that B/D̂β

1 ≈ 0.
Given that B/D̂β

1 ≈ B/D̂β
2 , the equality in

Equation 6a implies that A/N̂α
1 ≈ A/N̂α

2 , which
in turn implies that N̂1 ≈ N̂2. If GFoLDS were
over- or well-parameterized at 100% of the data,
then the monotonicity of N̂ would imply that
N̂1 > N̂2 (as discussed above), contradicting the
conclusion that N̂1 ≈ N̂2.

On the other hand, replacing the inequalities in
Equation 8 with (approximate) equalities yields
R

(2)
N /R∗

N ≈ 1 − e−R
(2)
N /R∗

N : note that the only
value of x for which x = 1− e−x is 0. If GFoLDS
is underparameterized at the 50% run, then U (2)

N =
min{N,Nopt(UD/2)} = N , which implies that
R

(2)
N = 0, which in turn implies that R(2)

N /R∗
N =

0. Given that Nopt(UD) is (likely) greater than
Nopt(UD/2), it is also the case that R(1)

N /R∗
N = 0

and U (1)
N = min{N,Nopt(UD)} = N = U

(2)
N : this

implies that A/N̂α
1 = A/N̂α

2 (see Equations 6d
and 6e), which is congruent with the conclusion
that N̂1 ≈ N̂2.
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