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Abstract

We introduce Slam, a recipe for training high-
quality Speech Language Models (SLMs) on
a single academic GPU in 24 hours. We do so
through empirical analysis of model initialisa-
tion and architecture, synthetic training data,
preference optimisation with synthetic data
and tweaking all other components. We em-
pirically demonstrate that this training recipe
also scales well with more compute getting
results on par with leading SLMs in a frac-
tion of the compute cost. We hope these in-
sights will make SLM training and research
more accessible. In the context of SLM scaling
laws, our results far outperform predicted com-
pute optimal performance, giving an optimistic
view to SLM feasibility. See code, data, mod-
els, samples - https://pages.cs.huji.ac.il/adiyoss-
lab/slamming.

1 Introduction

Speech Language Models (SLMs) have gained
significant interest from researchers (Peng et al.,
2024a; Cui et al., 2024; Ji et al., 2024; Latif et al.,
2023), demonstrating remarkable performance in
traditional speech tasks (Wang et al., 2023; El-
makies et al., 2025), diverse generative applica-
tions (Yang et al., 2023, 2024b), and reasoning
over speech and audio signals (Tang et al., 2024;
Chu et al., 2023).

SLMs can generally be classified into two main
categories: (i) generative speech Language Models
(LMs) (which can also incorporate text) and (ii)
speech-aware LMs. The first category follows a
similar pre-training approach to text-based Large
Language Models (LLMs), directly maximising
the likelihood of speech considering both input
and output, typically by representing audio as a
sequence of discrete tokens. The second category
consists of pre-trained text LMs adapted to process
speech inputs. In this work, we focus on the first.
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Figure 1: Comparing Topic-StoryCloze performance
of different SLMs as a function of training compute.
Model size is indicated by the size of the circle.

Training high-quality SLMs can be highly re-
source intensive (Hassid et al., 2024; Cuervo and
Marxer, 2024; Zeng et al., 2024; Nguyen et al.,
2025; Défossez et al., 2024). For example, Nguyen
et al. (2025) trained their SLM on approximately
570k hours of speech data, while Défossez et al.
(2024) utilised around 7M hours. Additionally,
Cuervo and Marxer (2024) proposed SLM scaling
laws, suggesting that training high-quality SLMs
requires ∼ 3X more data compared to text-based
counterparts. These computational demands re-
strict the required fundamental research aimed at
enhancing SLMs, such as advancements in speech
tokenisation, efficient acoustic modelling, etc.

In the Natural Language Processing (NLP) com-
munity, numerous studies have investigated effi-
cient model training techniques, including masked
language models such as Cramming (Geiping and
Goldstein, 2023) and ModernBERT (Warner et al.,
2024), along with next-token prediction LLMs such
as MobileLLM (Liu et al., 2024b). These methods
include implementation efficiencies, architectural
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improvements, data selection strategies, and en-
hancements to the overall training pipeline.

Inspired by Cramming (Geiping and Goldstein,
2023) in text, we investigate compute-limited SLM
training, which we term Slamming. We pose the
question: Is it possible to train high-quality SLMs
using a single GPU within 24 hours? For that, we
conduct an extensive empirical analysis exploring
how different training components influence per-
formance. From this, we derive a training recipe
that maximises model performance within a fixed
compute budget. Specifically, we investigate the
impact of model initialisation and architecture, var-
ious optimisers and learning rate schedulers, data
selection strategies - including the role of synthetic
data, text-interleaving and preference optimisation.

We believe that developing these training strate-
gies and proving their feasibility will empower the
speech and audio research community to advance
SLMs beyond the scope of large, well-funded aca-
demic and industrial labs. Figure 1 illustrates the
performance of various SLMs relative to their train-
ing compute budget, with circle sizes representing
the size of the models. Furthermore, we compare
our results with the scaling performance predicted
from Cuervo and Marxer (2024). Although the
authors present a somewhat pessimistic view of
the computational resources needed to train high-
quality SLMs, we empirically show that reality is
more promising, demonstrating that it is possible to
significantly exceed the predicted performance per
unit of compute. We encourage the community to
refine and expand scaling laws specifically tailored
for SLM training across various settings.

Our Main Contributions are:

1. We introduce Slam, a training recipe for ef-
ficiently training high-quality SLMs using a
single A5000 GPU within 24 hours.

2. We carry out extensive experiments explor-
ing model initialisation and architecture, opti-
misation, data collection and generation, and
training objectives (i.e., preference optimisa-
tion and text-speech interleaving), providing
insights into the impact of each component on
model performance.

3. Building on these insights, we scale the com-
pute budget to two A100 GPUs for 48 hours
and demonstrate that our model achieves per-
formance on par with state-of-the-art models
that require substantially more compute.

We open-source all code, models, training recipes,
and synthetic datasets.

2 Related Work

Efficient Training. Enhancing the efficiency of
neural network training has been extensively stud-
ied (Shen et al., 2023). Hajimolahoseini et al.
(2023); Wang et al. (2024) examined the impact of
data selection on Large Language Model (LLM)
training and introduced efficient data selection
methods. Muhamed et al. (2024) proposed using
structured sparse gradients to enhance compute ef-
ficiency in LLM training, while Rawat et al. (2024)
explored the potential of leveraging smaller lan-
guage models to improve the training efficiency
of larger LLMs. Lv et al. (2024) investigated the
use of low-dimensional projections for attention
parameters to enhance training efficiency. Mean-
while, Neiterman and Ben-Artzi (2024) proposed
applying LayerDrop as a technique to optimise neu-
ral network training.

More closely related to our work, Li et al. (2023)
propose a training strategy for developing LLMs
within a 100k$ budget. Warner et al. (2024) intro-
duce ModernBERT, an efficient training pipeline
for optimising BERT models, while Izsak et al.
(2021) outline a method for training a BERT model
in 24 hours using 8 GPUs. The most relevant work
to ours is Cramming (Geiping and Goldstein, 2023),
where the authors conduct an in-depth analysis of
masked LM training on a single GPU in one day.

While these studies offer valuable insights, they
primarily focus on training text models, such
as LLMs and masked LMs. In the speech do-
main, similar research has been conducted on
self-supervised representation models (Liu et al.,
2024a), but not on SLMs. In this work, we address
this gap by focusing on efficient SLM training.

Generative Speech Language Models were ex-
plored under various setups (Lakhotia et al., 2021;
Kharitonov et al., 2021). Lakhotia et al. (2021)
were the first to show how raw, uncurated speech
data can be leveraged into building a Generative
Speech Language Model (GSLM). Next, Borsos
et al. (2023) proposed a cascade version using
both coarse and fine speech tokens. Such a mod-
elling framework opened up a new and promising
research direction for processing and modelling
spoken data, such as speech resynthesis (Polyak
et al., 2021), speaking style conversion (Kreuk
et al., 2021; Maimon and Adi, 2023), dialogue
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modelling (Nguyen et al., 2022), speech-to-speech
translation (Popuri et al., 2022; Peng et al., 2024b),
etc. Nachmani et al. (2024) proposed augmenting a
text Language Model (LM) with continuous speech
data to improve spoken question-answering tasks.
Recently, Park et al. (2024) proposed SLM based
on state-space models (Gu et al., 2021) to further
push long context-efficient modelling, while Lin
et al. (2024) proposed to fine-tune SLMs using di-
rect preference optimisation (Rafailov et al., 2024)
obtained from text LLM rankings.

Similar to text LLMs, training SLMs often
demands large-scale datasets. For instance,
Moshi (Défossez et al., 2024) was trained on 7
million hours of speech data, SpiritLM (Nguyen
et al., 2025) utilized 560k hours, and TWIST (Has-
sid et al., 2024) was trained on approximately 150k.
Recently, Cuervo and Marxer (2024) introduced the
first scaling laws for SLMs, suggesting that achiev-
ing comparable performance to text LMs requires
three times more tokens. In this work, we focus on
reducing the computational demands while main-
taining performance comparable to leading SLMs.

3 Setup

In this study, we explore decoder-only generative
SLMs, which aim at maximising the likelihood of
speech samples represented as discrete tokens. We
examine both purely speech-based SLMs trained
on speech tokens and joint speech-text SLMs using
interleaving strategies (Nguyen et al., 2025). Simi-
larly to Hassid et al. (2024); Lakhotia et al. (2021),
we obtain speech tokens by quantising continuous
latent representations of a self-supervised speech
representation model using the k-means algorithm,
often known as semantic tokens. Specifically, we
utilise a multilingual HuBERT (Hsu et al., 2021)
model running at 25 Hz, as employed in Hassid
et al. (2024). We then train SLMs by minimising
the negative log-likelihood of the input segments.

Unless mentioned otherwise, all SLMs are
trained using a single A5000 GPU (24GB
VRAM) along with 16 CPU cores for 24 hours. We
deliberately focus on this constrained compute bud-
get, assuming that most academic labs can access
similar resources, thereby ensuring the accessibility
of our research. The training data is pre-processed,
i.e. extracting HuBERT units and dividing data
into chunks, and stored prior to model training.
As a result, this pre-processing time is excluded
from the compute budget. This approach, aligned

with Geiping and Goldstein (2023), is practical
since many research experiments utilise the same
pre-processed data. We additionally do not count
the time for running validation and visualisations
as they are not used as part of the optimisation
pipeline and only used for demonstration purposes.

Evaluation Metrics. We assess all SLMs using
five distinct evaluation metrics. The first three are
based on likelihood evaluation, while the fourth and
fifth are generative metrics. For likelihood based
modelling we consider sBLIMP (Dunbar et al.,
2021), Spoken Story-Cloze (SSC)), and Topic Story-
Cloze (TSC) (Hassid et al., 2024). For modelling-
likelihood metrics, we evaluate the likelihood as-
signed by the SLMs to pairs of speech utterances,
consisting of a positive example and a distractor.
We calculate the percent of pairs in which the SLM
assigns higher likelihood to the positive sample.
sBLIMP focuses on grammatical abilities thus the
negative is ungrammatical version of the positive.
SSC and TSC focus on semantic modelling abili-
ties. In SSC, the distractor suffix is taken from the
original textual StoryCloze dataset (Mostafazadeh
et al., 2016), allowing to assess fine-grained seman-
tic speech understanding. In TSC, however, the
distractor suffix is drawn from a different topic,
enabling us to evaluate the model’s ability to under-
stand the overall semantic concept.

To assess the generative abilities of SLMs, we
compute generative perplexity (GenPPL). Follow-
ing the approach of Lakhotia et al. (2021); Hassid
et al. (2024), we provide the SLM with a short
speech prompt and generate speech tokens contin-
uation. We use unit-vocoder with duration predic-
tion to convert the tokens into speech (Polyak et al.,
2021; Hassid et al., 2024). The generated speech is
then transcribed, and its Perplexity (PPL) is evalu-
ated using a pre-trained text LLM. To minimise the
impact of token repetition on PPL measurements,
we ground the generated text using diversity met-
rics derived from the auto-BLEU score (Lakhotia
et al., 2021). Similarly to Lin et al. (2024) we
use bigram auto-BLEU. In other words, we ensure
that all models achieve similar auto-BLEU scores,
allowing for a fair comparison of PPL. Specifically,
we transcribe speech segments using Whisper-
large-v3-turbo model (Radford et al., 2023) and
measure PPL using Llama-3.2-1B model (LLama,
2024). We calculate GenPPL on correct samples
from the Spoken Story-Cloze dataset.

Finally, for our final models, we also compute
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GPTScore. Given a speech prompt and a generated
continuation, we transcribe both and use GPT-4o
to judge the quality of the continuation given the
prompt, on a scale of 1 to 5. We follow the same
setup and prompt as Lin et al. (2024) for the metric.
We use this metric as the final form of evaluation,
as it is the most costly to run.

Software Efficiency. To maximise performance
within 24 hours of model training, we leverage mul-
tiple efficient implementations. Through extensive
performance testing, we found that using bfloat16
(Kalamkar et al., 2019) alongside FlashAttention2
(Dao, 2023) and data packing provided the most
efficient compute performance in our setup. We
also experimented with model compilation using
torch.compile (Ansel et al., 2024), but it lacked
native compatibility with FlashAttention2 at the
time of our study, and its performance without
FlashAttention2 was subpar. Future work could
investigate this further with more efficient attention
implementations (Shah et al., 2024; Li et al., 2024).

To enable rapid and scalable experimentation,
we developed a specialised library for SLM training
that supports various model architectures, training
objectives, and evaluation metrics. It accommo-
dates TWIST-style training, text-speech interleav-
ing, preference optimisation, etc. We open-source
this package along with all model weights and train-
ing recipes, aiming to empower the community to
further explore SLMs.

4 Investigations

With this setup, we systematically analyse and ab-
late each component of the training pipeline, ulti-
mately refining an optimised cook-book for train-
ing SLMs. We specifically examine the influence
of model family, initialisation, size, and architec-
tural choices (e.g., dropout, positional embedding,
etc.). We analyse optimisation parameters and data
characteristics. Lastly, we explore alternative train-
ing objectives beyond standard next-token predic-
tion, including speech-text interleaving and direct
preference optimisation using synthetic data.

4.1 Model & Optimisation

Hyper-parameters. Unless specified otherwise,
we use a context length of 512 tokens and an ef-
fective batch size of 256, employing gradient ac-
cumulation when necessary, as preliminary results
indicated this configuration yields the best overall
performance. We set the peak learning rate to 1e−3
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Figure 2: Comparing validation PPL of different models
of similar parameter count, with and without TWIST
initialisation.

to enhance training speed and use a warmup pe-
riod of 1% of the total training steps, as this proved
more effective than the fixed 100-step warmup used
in the original TWIST. To improve training stabil-
ity, particularly with large learning rates, we apply
gradient normalisation with a norm of 0.5 at no
additional cost, following Geiping and Goldstein
(2023). Unless modified later in our investigation,
we use an inverse-square root scheduler and the
AdamW optimiser (Loshchilov, 2017). Likewise,
this sub-section uses the common Libri-Speech
And Libri-Light datasets for training, until further
investigated in Section 4.2.

Initialisation. Hassid et al. (2024) empirically
demonstrated that initialising SLMs with pre-
trained text LMs can enhance convergence speed
and improve model performance. We examine the
effect of this initialisation within our setup across
different model types. To do so, we train multiple
models, both with and without TWIST initialisa-
tion, while staying within our compute budget. As
shown in Figure 2, TWIST initialisation benefits
all evaluated models at the beginning of training,
though its overall impact by the end varies. Notice,
the x-axis in Figure 2 represents theoretical FLOPs,
calculated as 6 ∗Nparams ∗Dtokens following Hoff-
mann et al. (2022). However, due to variations in
model architecture and implementation, practical
efficiency differs, leading to varying amounts of
compute processed within 24 hours.

Results suggest that benefits of TWIST ini-
tialisation can be substantial, especially for top-
performing models like Qwen2.5. As a result,
we prioritise investigations based on existing pre-
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Figure 3: Comparing PPL of different models under
TWIST initialisation.

trained text LMs. Interestingly, the results in Fig-
ure 2 demonstrate that Qwen2.5 outperforms other
models even without TWIST initialisation, perhaps
suggesting that their architectural design choices
or size might also provide some benefit.

Optimal Model Size & Family. Cuervo and
Marxer (2024) conducted a scaling analysis on
GSLM-style SLMs, estimating the optimal model
size and token count for a compute-efficient model.
However, using a text LM initialisation might im-
pact these findings. As we observe, TWIST ini-
tialisation greatly impact model performance, sug-
gesting that prioritising larger models may be more
effective than simply increasing the dataset size.
Additionally, various model families gain different
advantages from TWIST initialisation; for example,
Qwen2.5 models show significantly better perfor-
mance compared to OPT models. In Figure 3, we
compare the results under the pre-defined compute
budget within model families1. We note that the
best model sizes for MobileLLM (Liu et al., 2024b),
SmolLM2 (Allal et al., 2025) and Pythia (Bider-
man et al., 2023) are ∼ 300M parameters, while
for OPT the best is 125M. According to Cuervo and
Marxer (2024), the estimated optimal model size
is approximately 66M parameters. However, the
best-performing model, Qwen2.5, is significantly
larger. Since there are no smaller models in this
family, it is difficult to determine whether this de-
viation is due to the quality of the initialisation or
other factors. Moving forward, we proceed with

1We use the text LM original names for clarity, but note
that the actual size will be notably smaller due to reduced
vocabulary size, e.g Qwen2.5-0.5B has 358M parameters.
Full model sizes can be found in Appendix B.
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both OPT-125M and Qwen2.5-0.5B.

Dropout. The original OPT models includes
dropout to mitigate overfitting. Although dropout is
beneficial for regularisation, it effectively decreases
the number of gradient updates per parameter with-
out shortening the update-step wall time. Hence,
reduces the number of parameter updates per sec-
ond. Following Geiping and Goldstein (2023), we
experiment with removing dropout and observed
improved performance in our setup.

Positional Encoding. Transformers rely on posi-
tional encoding to capture the order of input tokens.
Many modern LMs, including the Qwen models,
use Rotary Position Embedding (Su et al., 2024).
This method uses a hyperparameter, θ, to control
the trade-off between granularity and the ability
to handle long contexts. θ is often tuned to ac-
commodate longer context lengths (Yang et al.,
2024a; Roziere et al., 2023). Since our context
length is significantly shorter than that of the origi-
nal LLM, we explore reducing θ for potential per-
formance gains. Our findings show that setting
θ = 10, 000 with a context length of 1024 en-
hances performance, so we adopt this configuration
moving forward. We note that since we increase
the context length (from 512 to 1024), we need to
reduce the batch size as well, to not run into mem-
ory problems when training. We reduce the batch
size by a half and keep the same amount of gradi-
ent accumulation steps, which gives us an effective
batch size of 128. An ablation of this adaptation is
provided in Appendix D.1

Optimiser and Scheduler. Various optimisers and
schedulers have been developed to enhance train-
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ing efficiency, reduce memory usage (Shazeer and
Stern, 2018; Dettmers et al., 2022), or accelerate
convergence (Pagliardini et al., 2024; Chen et al.,
2023). With limited compute, these aspects be-
come especially important. We first consider effi-
cient optimisers, specifically AdamW with fused
kernels, and 8-bit AdamW, but observe no notable
improvements in batch size or runtime compared
to standard AdamW. This could do with the rel-
atively small model size, resulting in a minimal
memory footprint of the optimisers. We then com-
pare AdamW with two state-of-the-art optimis-
ers: AdaLomo (Lv et al., 2023) and AdEMAMeix
(Pagliardini et al., 2024). Results, presented in Fig-
ure 4, suggest that with the original InverseSqrt
scheduler used by Hassid et al. (2024), using AdE-
MAMeix improves validation loss, compared to
AdamW, with AdaLomo far behind.

Next, we analyse a cosine decay learning
rate scheduler, in place of the original Invers-
eSqrt as this was shown to improve convergence
(Loshchilov and Hutter, 2016). We consider the
previous optimisers, and provide the validation loss
throughout training in Figure 4. We see that this
notably improved the loss for AdamW, and slightly
harmed results for AdEMAMeix. Overall, AdamW
with a cosine schedule provide the best setup, far
outperforming the original setup.

4.2 Data

Next, we examine how the training data-mix influ-
ences performance in a compute-constrained set-
ting. Specifically, we explore whether diversity
in accents, speaking styles, etc. is beneficial and
assess if synthetic data can enhance semantic abili-

Model Data Metric

Div. Syn. sBLIMP↑ sSC↑ tSC↑ GenPPL↓
OPT125M ✗ ✓ 55.28 55.46 75.18 96.8

✓ ✓ 55.06 55.00 74.83 116.6
✗ ✗ 55.88 54.52 70.82 160.3
✓ ✗ 55.65 54.78 70.18 172.7

Qwen-0.5B ✗ ✓ 56.45 55.59 78.01 88.3
✓ ✓ 56.17 55.37 77.13 101.3
✗ ✗ 56.60 53.50 71.14 145.4
✓ ✗ 56.10 53.72 70.66 161.8

Table 1: Analysing impact of training data diversity and
synthetic data on SLM performance. The default Slam
recipe does not use diverse data (only Libri-light and
LibriSpeech), but uses the synthetic sTinyStories data.

ties. We provide exact statistics for each dataset in
Appendix C.

Diverse Data. We begin by examining how dataset
diversity impacts model performance. Many lead-
ing speech datasets, such as those based on audio-
books (Panayotov et al., 2015; Kahn et al., 2020),
consist of relatively clean, single-speaker record-
ings within a specific content domain. To introduce
greater diversity in speaking styles and content,
we curate additional datasets, including VoxPopuli
(Wang et al., 2021b), Tedlium (Hernandez et al.,
2018), PeopleSpeech (Galvez et al., 2021), and
SWC (Baumann et al., 2018). For all mentioned
datasets, we use the official data cleaning and pre-
processing scripts when available. Specifically, for
Libri-light, we apply the official Voice Activity
Detection model to remove silences and generate
smaller audio segments. To evaluate the impact of
dataset diversity, we compare the performance of
SLMs trained using our best training recipes using
a subset of LibriSpeech and Libri-light against all
curated datasets. This comparison is conducted for
both OPT-125M, which processes a large number
of tokens during training, and Qwen-0.5B, which
encounters significantly less data due to model size.
Results are summarised in Table 1. We observe
that dataset diversity has an overall negative ef-
fect on model performance. We hypothesise this is
due to the models struggling in modelling rich and
complex audio under such low compute resources.

Synthetic Data. Recent studies have highlighted
the potential of synthetic data generated through
Text-to-Speech (TTS) (Cuervo and Marxer, 2024)
or direct text-to-unit conversion (Zeng et al., 2024).
Hence, we examine the impact of including syn-
thetically generated speech within our constrained
compute setup. To do so, we synthesised the
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C (GPU days) Params sBLIMP↑ SSC ↑ TSC ↑ GenPPL↓ BLEU↓
TWIST-350M (Hassid et al., 2024) 40*V100 305M 56.20 ∅ ∅ 137.3 3.46
TWIST-1.3B (Hassid et al., 2024) 160*V100 1B 57.00 52.4 70.6 131.8 3.20
TWIST-7B (Hassid et al., 2024) ∅ 7B 59.00 55.3 74.1 93.7 3.06
TWIST-13B (Hassid et al., 2024) ∅ 13B 59.20 55.4 76.4 ∅ ∅
Scaled Optimal (Cuervo and Marxer, 2024) ∅ 823M 61.3 56.7 78.0 ∅ ∅
Predicted Optimal (Cuervo and Marxer, 2024) 1*A5000 78M 56.85 54.09 70.49 ∅ ∅
TWIST-350M (Original recipe) 1*A5000 305M 51.52 ±.19 53.65 ±.57 68.80 ±.47 259.2 ±6.7 3.26 ±.46
TWIST-350M + sTinyStories 1*A5000 305M 51.21 ±.26 54.17 ±.54 72.40 ±.18 159.0 ±6.0 4.18 ±.24
Slam (-DPO) (ours) 1*A5000 358M 56.45 ±.17 55.59 ±.30 78.01 ±.27 88.3 ±1.0 3.47 ±.17
Slam (ours) 1*A5000 358M 58.86 ±.20 58.04 ±.51 82.04 ±.21 62.8 ±4.1 3.88 ±.11

Table 2: Comparing slamming to leading SLMs, and predicted optimal performance for the compute. We also
consider TWIST-350M using our code and compute budget, but with the original training recipe. ± indicates
distance to min/max of 3 seeds. BLEU is Auto-BLEU.

TinyStories dataset (Eldan and Li, 2023) using a
single-speaker TTS model (Wang et al., 2021a),
as it is computationally efficient. Additionally,
prior research has shown that HuBERT units
largely remove speaker information (Maimon and
Adi, 2023). TinyStories has been demonstrated
to enhance text LM performance and improve
SLMs (Cuervo and Marxer, 2024). Results are
presented in Table 1. Results indicate that incorpo-
rating such synthetic data into the training data-mix
significantly boosts both modelling and generative
performance metrics, across all evaluated setups.
We also consider adding the synthetic data to the
original TWIST recipe, and the results in the bot-
tom of Table 2 suggests that while this helps with
semantic metrics, it is far from enough without
other optimisations we introduced. As a further
ablation, we assess the performance of SLM when
trained exclusively on synthetic data. Results sug-
gest, perhaps unsurprisingly, this leads to a signif-
icant drop in performance relative to our baseline
model, which uses both real and synthetic data.
Specifically, the model trained only on synthetic
data scores 52.35 on sBLIMP, compared to 56.45
for the baseline, and exhibits a notably higher vali-
dation loss on real data (2.8 vs. 1.65). We observe
this across all datasets, and specifically with our
best mixture Libri-Light, LibriSpeech and sTinyS-
tories, Qwen-0.5B outperforms OPT-125M so we
continue with it to the final stages. These findings
reinforce the importance of incorporating both real
and synthetic data during training.

4.3 Text Interleaving

Several recent SLMs combine both speech and text
modalities, either predicting both simultaneously
(Défossez et al., 2024; Fang et al., 2024; Xie and
Wu, 2024) or training on interleaved data (Nguyen

et al., 2025; Zeng et al., 2024). Beyond enhancing
cross-modal abilities, this has been shown to im-
prove the semantic capabilities of SLMs, even in
speech-only evaluations. Building on these studies,
we investigate whether speech-text interleaving can
enhance semantic ability in speech-only tasks, even
under strict computational constraints.

For this we use Whisper-large-v3-turbo to get
aligned transcriptions of our data, except sTinyS-
tories for which we get alignment from the TTS.
We follow Zeng et al. (2024) by selecting speech
spans with length from a Poisson distribution with
λ = 10 totalling 30% of the interleaved data. Fol-
lowing Nguyen et al. (2025) we train with balanced
batches with respect to token count between text
data, speech data and interleaved data. We use a
subset of RedPajama (Weber et al., 2024) filtered
by Gopher (Rae et al., 2021) rules as our text data.

The SLM trained with interleaving with the ex-
act same setup as the speech only variant slightly
underperformed compared to the speech only. We
report results as the mean of three training runs.
Specifically, it achieved TSC of 73.36 (compared
to 78.01 for the speech only equivalent), SSC of
55.76 (vs 55.59) and sBLIMP of 55.71 (vs 56.45).
We note that the interleaved SLM has much larger
vocabulary which in turn means that the model has
more parameters (∼ 500M vs ∼ 360M ), which in
turn means that each update step takes longer. For
our budget the interleaved model only performed
∼ 11k steps vs ∼ 18k for speech only. Further-
more, out of all training tokens only about 40% are
speech tokens in the interleaved setting. This could
perhaps explain the slightly worse performance,
and we leave for future work to find the minimal
compute budget to benefit from text-interleaving.
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GPUs Params Num tokens sBLIMP↑ SSC ↑ TSC ↑ GenPPL↓ BLEU↓ GPTScore↑
Speech only pre-training
GSLM (Lakhotia et al., 2021) 8*V100 100M 1B 54.2 53.3 66.6 ∅ ∅ ∅
SyllableLM (Baade et al., 2024) 4*A40 300M 16B 63.7 ∅ 75.4 ∅ ∅ ∅
TWIST-350M (Hassid et al., 2024) 8*V100 305M 10.8B 56.20 ∅ ∅ 137.3 3.46 ∅
TWIST-1.3B (Hassid et al., 2024) 32*V100 1B 10.8B 57.00 52.4 70.6 131.8 3.20 1.82
TWIST-7B (Hassid et al., 2024) 32*V100 7B 36B 59.00 55.3 74.1 93.74 3.06 2.71
TWIST-13B (Hassid et al., 2024) 32*V100 13B 36B 59.20 55.4 76.4 ∅ ∅ ∅
Cuervo and Marxer (2024) ∅ 823M 82B 61.3 56.7 78.0 ∅ ∅ ∅
Moshi (Défossez et al., 2024) ?*H100 7B ∅ 58.9 58.7 81.8 ∅ ∅ ∅
SpiritLM (Nguyen et al., 2025) 64*A100 7B 100B 58.0 54.8 72.9 ∅ ∅ ∅
Joint speech-text pre-training / preference optimisation
Zeng et al. (2024) ∅ 9B ∼1T ∅ 62.4 82.9 ∅ ∅ ∅
Moshi (Défossez et al., 2024) ?*H100 7B ∼720B 58.8 60.8 83.0 ∅ ∅ ∅
SpiritLM (Nguyen et al., 2025) 64*A100 7B 100B 58.3 61.0 82.9 ∅ ∅ ∅
AlignSLM-1.3B (Lin et al., 2024) 64*A100 1B 10.8B + ∼158B 59.8 55.0 80.0 ∅ ∅ 2.43
AlignSLM-7B (Lin et al., 2024) 64*A100 7B 36B + ∼158B 62.3 61.1 86.8 ∅ ∅ 3.50

Slam (-DPO) 2*A100 358M 16.7B 58.53 58.15 80.71 67.3 3.25 ∅
Slam 1*A5000 358M 1.4B + 5M 58.86 58.04 82.04 62.8 3.88 2.09
Slam (scaled) 2*A100 358M 16.7B + 9M 61.11 61.30 84.18 46.6 3.75 2.69
Slam (large) 2*A100 1.3B 6.1B + 9M 61.43 61.52 85.30 41.2 3.89 2.79

Table 3: Analysing the effect of scaling up compute for Slam. # tokens refers to total, not unique, tokens used for
training (estimated from provided information). We separately mark DPO tokens with a +. BLEU is Auto-BLEU.

4.4 Synthetic Data Preference Optimisation

Preference optimisation methods have been shown
to enhance the performance of text LLMs (Ouyang
et al., 2022) and, more recently, SLMs (Lin et al.,
2024). With preference optimisation, we aim to
train our model to generate outputs that better align
with a specified reward function or preference set.

We evaluate how preference optimisation af-
fects SLM performance while considering our con-
strained computational budget. Using an off-policy
approach with pre-generated preference data, we
apply DPO to enhance training efficiency. Specifi-
cally, we synthetically generate the SWAG (Zellers
et al., 2018) text corpus for evaluating semantic
knowledge. SWAG consists of text prefixes paired
with multiple possible suffixes, where only one is
semantically plausible. For preference data, we use
the first sentence as the prompt, the correct suffix
as the positive continuation, and a randomly cho-
sen incorrect suffix as the rejected continuation. To
ensure quality, we filter out samples with repetitive
patterns, identified by an auto-BLEU score above
0.3. We generate all recordings using Kokoro TTS
(Hexgrad, 2025), incorporating four speakers (two
male and two female), evenly split between British
and American accents. This process results in a
total of 47k SWAG preference pairs.

For DPO we use β = 0.1 (see Appendix A for
full hyperparameters). In initial tests, we observe
that after DPO training, the model shows increased
likelihood at the cost of repeated patterns, a known

issue with DPO (Lanchantin et al., 2025). To ad-
dress this, we apply a repetition penalty with a fac-
tor of 1.1, following the approach of Keskar et al.
(2019), and find that it helps mitigate the problem.
Future work could explore alternative solutions,
such as proposed by Lanchantin et al. (2025).

We begin by examining how the allocation of
budget for DPO impacts performance, particularly
when it comes at the cost of a shorter pre-training
phase. Figure 5 depicts the results. We observe
significant improvements across all metrics when
applying DPO for at least 30 minutes compared
to not using DPO at all. However, allocating a
higher proportion of the budget to DPO does not
yield further gains and can even degrade model
performance. Thus we stick to 30 minutes out of
24 hours for DPO, using the rest for pre-training.

5 Final Recipe

Building on these empirical findings, we develop
the final Slam recipe. Using it, we train SLMs
based on Qwen2.5-0.5B. We then compare Slam
to the TWIST model family across various sizes:
350M, 1.3B, 7B, and 13B. We also present results
for TWIST-350M using our computational con-
straints but following TWIST’s original training
recipe, along with our synthetic data. Finally, we
report results for the top-performing model from
(Cuervo and Marxer, 2024), including their pre-
dicted optimal performance under our compute
budget based on SLM scaling laws. Results are
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reported in Table 2. The results indicate that Slam
delivers performance that is either superior or on
par with baseline models while requiring signifi-
cantly fewer computational resources (e.g., a single
A5000 for a day compared to 160 days on a V100).
Transcribed generated examples by Slam can be
seen in Appendix D.4.

To show that the Slam models do not overfit
a single domain (audiobooks/stories), we provide
results for GenPPL on a different domain. This can
be seen in Appendix D.3.

We further evaluate the quality of the generated
audio using Mosnet (Cooper et al., 2022), simi-
larly to Align-SLM. Results are presented in Ap-
pendix D.2. As the quality of the generated audio is
mainly affected by the vocoder, which is identical
across evaluated methods, results are comparable.
Interestingly, TWIST 1.3B and TWIST 7B achieve
slightly worse scores.

6 Increasing Compute

Similarly to Geiping and Goldstein (2023), we anal-
yse whether the proposed approach holds well also
in increased compute budget. We opt for 48 hours
on 2 A100 GPUs as a reasonable academic budget
for larger scale tests, and represents ∼ 10 times
more compute than the Slamming setting. We use
exactly the same Slam recipe for more steps, and
increase the batch size times 2. We provide the full
results in Table 3. We note that the performance
continues to improve across all metrics, also out-
performing methods which have far larger compute
scales. We note that DPO training on synthetic data
for 2 epochs, notably boosts performance. Tran-
scribed generated examples by Slam (scaled) can
be seen in Appendix D.4

We also wish to assess whether our suggested
recipe holds for larger models, thus we evaluate
training a larger Qwen2.5 text LM as the base
model. We use Qwen2.5− 1.5B for the same com-
pute budget as above - i.e two A100 GPUs for
48 hours. All training details are identical, but of
course the larger model was trained for less steps
(and tokens). We provide results from this model,
denoted Slam (large) in Table 3. Results show that
this model even outperforms the smaller model for
the same compute budget. This demonstrates that
the Slam recipe holds for larger models, and re-
iterates the importance of quality models even at
the expense of less training tokens for this setup.

7 Limitations

While the SLMs trained under Slamming compute
budget performed notably well compared to other
SLMs trained with much more compute they might
perform less well in other areas. For instance, eval-
uating their abilities on acoustic or prosodic ele-
ments as in SALMon (Maimon et al., 2024) could
show further challenges of low resource settings.

Furthermore, we focus in this study on the well
used HuBERT (Hsu et al., 2021) model as a to-
keniser, and while we do not make any adjustments
specifically for it, future work might wish to inves-
tigate our cramming approach with new tokenisers,
such as Mimi (Défossez et al., 2024) and SylBoost
(Baade et al., 2024).

8 Conclusion

In this work we show that training high quality
SLMs with a very modest compute budget, is feasi-
ble. We give these main guidelines:

1. Do not skimp on the model - not all model
families are born equal and the TWIST ini-
tialisation exaggerates this, thus it is worth
selecting a stronger / bigger text-LM even if it
means less tokens. we found Qwen2.5 to be a
good choice.

2. Utilise synthetic training data - pre-training
on data generated with TTS helps a lot.

3. Go beyond next token prediction - we found
that DPO boosts performance notably even
when using synthetic data, and as little as 30
minutes training massively improves results.

4. Optimise hyper-parameters - as researchers
we often dis-regard this stage, yet we found
that tuning learning rate schedulers and op-
timising code efficiency can improve results
notably.

We hope that these insights, and open source
resources will be of use to the community in fur-
thering SLM research.

Ethical Statement

The broader impact of this study is, as in any gen-
erative model, the development of a high quality
and natural speech synthesis. We hope that allow-
ing training SLMs under low-resource settings, and
open sourcing resources to aid this goal, will have
a positive impact on inclusivity and accessibility of
SLM research beyond well funded labs.
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A Full Slam Recipe

We provide below the full training recipe, includ-
ing hyperparameters for the best, Slam recipe. In
Table 4 we see the Slam (-DPO) pre-training recipe
and in Table 5 we see the Slam DPO training recipe.
Table 6 provides the sampling hyper-parameters
used for calculating the generative metrics. Note
that some of the generated samples in the demo
page were created with a higher maximum token
limit.

Table 4: Slam (-DPO) pre-training recipe.

Parameter Value

Text Base Model Qwen2.5-0.5B
TWIST initialisation True
Data Librilight, Librispeech, sTinyStories
Train Time 23.5 hours ≃ 17625 steps
RoPE theta 10000
Context length 1024
Per device Batch Size 8
Gradient Accumulation 16
Base Learning Rate 1e− 3
Warmup Ratio 1%
Optimizer AdamW
LR Scheduler cosine with min 5e− 5
Max Grad Norm 0.5
Dtype bfloat16

Table 5: Slam DPO training recipe.

Parameter Value

Initial Model Slam (-DPO)
Data SpokenSwag with auto-bleu≤ 0.3
Train Time 0.5 hour ≃ 813 steps
RoPE theta 10000
Context length 1024
Per device Batch Size 4
Gradient Accumulation 16
Base Learning Rate 5e− 5
Optimizer AdamW
Learning Rate Scheduler inverse sqrt
Max Grad Norm 0.5
Dtype bfloat16
DPO β 0.1

Table 6: Slam sampling parameters.

Parameter Value

Temperature 0.8
Top-K 25
Max New Tokens 150
Repetition Penalty 1.1

Table 7: Model names and parameter counts after chang-
ing vocabulary to speech only units (500).

Model Name Params

MobileLLM-125M (Liu et al., 2024b) 106,492,608
MobileLLM-350M (Liu et al., 2024b) 315,117,120
OPT-125M (Zhang et al., 2022) 87,015,936
OPT-350M (Zhang et al., 2022) 305,714,176
QWEN2.5-0.5B (Yang et al., 2024a) 358,347,904
SmolLM2-135M (Allal et al., 2025) 106,492,608
SmolLM2-360M (Allal et al., 2025) 315,117,120
Pythia-160M (Biderman et al., 2023) 85,827,072
Pythia-410M (Biderman et al., 2023) 303,339,520

B Model Sizes

As mentioned, we use the original names of the
text LMs used for clarity and consistency, but note
that the actual parameter counts after resizing the
vocabulary to speech-units only can be very dif-
ferent. In Table 7 we provide an extensive list of
models and sizes.

C Dataset Statistics

We use and synthesise several datasets. In this
section we give exact details of number of samples,
splits used, domains etc.

For pre-training we use Libri-Light (Kahn et al.,
2020) and LibriSpeech (Panayotov et al., 2015).
For Libri-Light we randonly select one percent
of samples as validation, whereas for LibriSpeech
we use the original dev-clean and dev-other splits.
Both of these datasets are English speech only, fo-
cused in the audio-book domain. We also synthe-
sise sTinyStories for pre-training which consists of
synthetically generated English short stories. We
use the official train split for training. Full dataset
sizes are in Table 8.

We also investigate diverse datasets for pre-
training: SWC (Baumann et al., 2018), Tedlium
(Hernandez et al., 2018), PeopleSpeech (Galvez
et al., 2021) and VoxPopuli (Wang et al., 2021b).
We only take English subsets for all datasets,
yet they can still contain diverse accents. These
datasets are in the following domains SWC - read
Wikipedia articles, Tedlium - short lectures, People-
Speech - diverse data including many local council
gatherings etc, VoxPopuli - from European Parlia-
ment meetings. For SWC specifically, we use the
text alignment to create chunks, remove silence
from the audio and remove mis-aligned chunks.
We use full training splits where provided, other-
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wise splitting 99% for training. The dataset sizes
are described in Table 8.

Table 8: Training set size for used datasets.

Dataset Hours Tokens

Libri-Light (Kahn et al., 2020) 50K 3.5B
LibriSpeech (Panayotov et al., 2015) 960 67M
SWC (Baumann et al., 2018) 750 19M
Tedlium (Hernandez et al., 2018) 1.6K 110M
PeopleSpeech (Galvez et al., 2021) 7K 480M
VoxPopuli (Wang et al., 2021b) 24K 1.64B
sTinyStories 30K 2.2B

For DPO we synthesise SpokenSwag based on
the SWAG (Zellers et al., 2018) dataset. We use
only the official train set and filter only the gold
standard labels. We end up with 47k sample pairs
which end up to be ∼ 4.5M tokens.

D Additional Results

D.1 Context Length and Batch Size Ablation
In Table 9 we see results for ablations of context
length and effective batch size

Table 9: Performance on sBlimp, tStoryCloze (TSC),
sStoryCloze (SSC) and validation loss across differ-
ent context lengths and effective batch sizes. using
Qwen2.5-0.5B

Context BS sBLIMP↑ tSC↑ sSC↑ Val loss↓
512 128 56.13 76.91 55.53 1.67
512 256 56.56 77.49 56.33 1.66
1024 256 56.43 78.88 55.69 1.65
1024 128 56.45 78.01 55.59 1.64

D.2 MOS Proxy Results
For completeness we also provide MOS proxy
results for our models compared to TWIST and
Align-SLM models. We follow a similar setup to
Lin et al. (2024) and use MOSnet to test the audio’s
generation quality of our models. It is important to
note that we use the same vocoder as TWIST and
Align-SLM. The results can be seen in Table 10.

D.3 GenPPL on Different Domain
In order to evaluate the generalisability of our ap-
proach to diverse domains, we calculate GenPPL
for a dataset from a different domain. We com-
pare our results to TWIST of various sizes, which
were trained on this exact dataset (perhaps even
overlapping samples as no official training set was
published). We use the same setup for GenPPL as

Table 10: MOSnet scores for various models.

Model MOSnet ↑
Ground Truth 4.28

TWIST-350M (Hassid et al., 2024) 4.07
TWIST-1.3B (Hassid et al., 2024) 3.83
TWIST-7B (Hassid et al., 2024) 3.85
Align-SLM-1.3B (Lin et al., 2024) 4.05
Align-SLM-7B (Lin et al., 2024) 4.09
Slam 4.11
Slam (scaled) 4.07
Slam (large) 4.05

described in section 3, but we use People Speech
test set (Galvez et al., 2021) as prompts. Results in
Table 11, show that Slam performs comparably or
better to TWIST models of larger scale and more
train compute, despite the fact they were explicitly
trained on this dataset. These results highlight the
efficacy of the Slam recipe beyond a single domain.

Table 11: GenPPL results on the People Speech Dataset.

Model GenPPL ↓ BLEU ↓
TWIST-350M (Hassid et al., 2024) 162.89 2.36
TWIST-1.3B (Hassid et al., 2024) 155.51 2.86
TWIST-7B (Hassid et al., 2024) 128.74 2.72
Slam 171.84 4.89
Slam (scaled) 128.78 3.99
Slam (large) 117.49 3.72

D.4 Text Generation Examples
For completeness we provide some transcriptions
for some of the generated examples (generated by
Slam and Slam (Scaled)). The prompts and the
transcriptions of the generated samples can be seen
in Table 12.

E AI Tool Usage

AI based tools may have been used in writing parts
of the code for this study, or para-phrasing some of
the writing within the paper, yet all the content was
thoroughly checked by the authors, with these only
being used as assistive tools.
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Table 12: transcriptions of generated continuations from Slam and Slam Scaled for various prompts.

Prompt Slam Slam Scaled

Johnny found an
old coin on the
subway floor. . .

and decided to bring it home. Then he
came up by a different subway floor,
which opened into a courtyard. Johnny
picked up the coin and threw it at the
doorstep of the courtyard.

He picked it up and looked at the size and
shape of the coin. It must be valuable, re-
membering his promise to Johnny, had it
put very carefully in his pocket. But now
he felt as if somebody had given him a spe-
cial coin in return.

I am a real boy
he said

He looked at Sarah Weinfeild and
smiled. It was quite impossible for
Sarah to look at him any longer, and
had no suspicions about his feelings for
a moment.

So off he went to school in the spring time,
sitting on the soft grass near the trees where
the rain fell in torrents. As the sun began
to set, the birds sang their lovely songs and
the children clapped their hands with Joe
and Jack Pensilvenya.

I had a great day
today playing

I saw a little boy playing too. He said
hello to me, I went to say hello to you.
I said hello back. I thought he was very
nice, I asked him if he wanted to play
with me? He said yes, and they played
together telling jokes and laughter in
the quiet little world. They had a great
time together, and when it was time to
go home I said bye to the little boy and
went to sleep. end.

I love playing the flute, and almost forgot
my troubles in the warm sunshine as I set
the flute for miles around in the air prac-
ticing my favorite songs. My flute singing
out in answer to the beautiful sounds from
the world around me. At length, the song
ended and I stood up and clapped my hands,
then we passed on through the forest, over
the meadow and along the river bank until
we came to a beautiful valley.
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