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Abstract

Vision-Language Models (VLMs) have made
rapid progress in reasoning across visual and
textual data. While VLMs perform well on
vision tasks that they are trained on, our re-
sults highlight key challenges in abstract pat-
tern recognition. We present GlyphPattern, a
954 item dataset that pairs 318 human-written
descriptions of visual patterns from 40 writing
systems with three visual presentation styles.

GlyphPattern evaluates abstract pattern recogni-
tion in VLMs, requiring models to understand
and judge natural language descriptions of vi-
sual patterns. GlyphPattern patterns are drawn
from a large-scale cognitive science investiga-
tion of human writing systems; as a result, they
are rich in spatial reference and compositional-
ity. Our experiments show that GlyphPattern is
challenging for state-of-the-art VLMs (GPT-4o
achieves only 55% accuracy), with marginal
gains from few-shot prompting. Our detailed
analysis reveals errors at multiple levels, includ-
ing visual processing, natural language under-
standing, and pattern generalization.

1 Introduction

A key aspect of intelligence is the ability to recog-
nize abstract patterns. Bongard (1967) proposed
a task to measure abstract pattern recognition in
artificial intelligence using a kind of partitioned
diagram, now known as a Bongard problem. Each
diagram shows two sets of items; the goal is to de-
scribe the pattern that distinguishes them. Bongard
problems have inspired a number of visual bench-
marks (Nie et al., 2020; Jiang et al., 2022; Spratley
et al., 2023; Wu et al., 2024b). However, existing
benchmarks are easier than classical Bongard prob-
lems because they do not involve a natural language
description of the pattern.

We present GlyphPattern, an abstract pattern
recognition benchmark for vision-language mod-
els (VLMs) that challenges models to understand

Characters on the right side in the image are
characters that contain a loop or circular shape.

Figure 1: Example GlyphPattern item in the left-right
visual style. The writing system is Avestan.

natural language pattern descriptions. GlyphPat-
tern tests the ability of VLMs to recognize visual
properties that distinguish two groups of symbols,
pairing together human-written and human-verified
patterns with three different visual styles designed
to test the robustness of abstract pattern recognition
in VLMs, for a benchmark of 954 items.

A key feature of GlyphPattern is that it builds
upon the Glyph project (Kim et al., 2024), a cogni-
tive science investigation of cross-linguistic univer-
sals in human writing systems that collects human-
written patterns in a gamified web-based experi-
ment. Glyph provides a high quality data source
since each rule is validated by multiple players.

Figure 1 shows an example item from GlyphPat-
tern. Each human-written rule describes a visual
property of a subset of the characters in the writing
system: in this case, the characters on the right
of the image contain a loop, while the characters
on the left do not. We test three different visual
styles: a left-right partition, a circular boundary,
and a color contrast (Figure 2).

We use GlyphPattern to test the pattern recogni-
tion ability of eight VLMs in a multiple choice task.
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(a) Circular partition style.

(b) Color contrast style.

(c) Left-right partition style.

Figure 2: GlyphPattern’s three visual styles for the Lao pattern Characters that are symmetrical around a vertical
axis.

Our zero-shot results show that this is a challeng-
ing task for all models: the state-of-the-art GPT-4o
model achieves only 55.6% accuracy. We find that
although few-shot prompting does not help GPT-4o,
it enables Gemini-1.5 to match GPT-4o’s perfor-
mance. For the best-performing models, we also
explore a free response format and find that models
generate valid rules less than 16% of the time.

GlyphPattern’s rich human-written pattern set
and multiple visual styles allow us to explore the
impact of different aspects of the task, including
the length and syntactic complexity of the rules,
the visual saliency of different writing systems,
and the visual presentation style. Our fine-grained
error analysis reveals that models “fail to see” key
portions of the image and fail to understand certain
terms in the natural language descriptions. We
hope that GlyphPattern will guide improvements
in VLMs by highlighting weaknesses in both the
vision and language capabilities of current models.
Our key contributions are as follows:

• A 954 item abstract pattern recognition bench-
mark for VLMs based on human-written de-
scriptions of patterns in visual properties of
writing system characters.

• Benchmarking results for eight VLMs, show-
ing that GlyphPattern is challenging for state-
of-the-art models: Gemini-1.5 and GPT-4o
achieve accuracy around 55%.

• A comparison of zero-shot, few-shot, chain-

of-thought, and free response results for the
two best-performing models.

• A detailed analysis of the impact of im-
age style, pattern complexity, and human-
identified cross-linguistic pattern types.

• An exploration of error sources, revealing
mistakes that arise at multiple stages, includ-
ing image-processing, language understand-
ing, and abstract pattern reasoning.

2 Related Work

There is a long history of assessing intelligence
through the ability to recognize abstract patterns,
both in non-verbal tests of human intelligence and
in AI. Bongard (1967)’s influential work on pattern
recognition in AI proposed a test using a diagram
that partitions items into two groups. So-called
Bongard problems evaluate an agent’s few-shot pat-
tern recognition ability: the goal is to recognize and
describe the pattern from a handful of examples.

2.1 Abstract Pattern Recognition Benchmarks
General-purpose visual understanding requires the
ability to recognize patterns from a handful of
examples. Consequently, it is important to un-
derstand the abstract reasoning abilities of VLMs
alongside their real-world, domain-specific perfor-
mance (Hudson and Manning, 2019; Yue et al.,
2024).

A number of abstract pattern recognition bench-
marks for few-shot image classification have been
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inspired by intelligence tests. Barrett et al. (2018)
adapt IQ test items to measure few-shot pattern
recognition in computer vision models. The model
is prompted with a grid of example images, and
asked to select the next member of the sequence.
Zhang et al. (2019) and Teney et al. (2020) use
a similar format inspired by Raven’s Progressive
Matrices (Raven, 1936). Zerroug et al. (2022), by
contrast, use an odd-one-out classification task.

There are several Bongard-inspired image clas-
sification benchmarks. Nie et al. (2020) propose
Bongard-Logo, a benchmark where models classify
images as members or non-members of a pattern.
Bongard-HOI (Jiang et al., 2022) and Bongard-
OpenWorld (Wu et al., 2024b) use real-world im-
ages. Most similar to our work, Spratley et al.
(2023) present a dataset of Unicode character pat-
terns; unlike our patterns, which are easily solved
by humans, their automatically-identified patterns
have only a 55% human solve rate.

These benchmarks are a simplification of Bon-
gard’s original task, because they test whether the
model can continue a pattern rather than describe
it. Our GlyphPattern benchmark comes closer by
challenging VLMs to understand and even produce
natural language descriptions of abstract patterns.

2.2 Benchmarking Vision-Language Models

Our focus is on benchmarking VLMs, which may
struggle with image processing, natural language
understanding, or relating the two modalities.

Compositionality in VLMs An important fea-
ture of GlyphPattern is that its human-written pat-
terns are linguistically rich in compositionality and
spatial relations. Compositionality is a key eval-
uation area for VLMs. Existing benchmarks ex-
plore compositionality in object attributes (Ray
et al., 2023), spatial relations (Liu et al., 2023; Ka-
math et al., 2023), and visual concepts (Suhr et al.,
2019; Ma et al., 2023). A popular benchmark is
Winoground (Thrush et al., 2022), which targets
linguistic compositionality with pairs of captions
containing the same words in different syntactic
structures. Diwan et al. (2022) argue that it is text-
image linking that makes Winoground challenging.

Abstract Pattern Recognition in VLMs The in-
creasing prominence of LLM-based systems has
led to widespread interest in multimodality. How-
ever, recent work on abstract pattern recognition
reveals surprising weaknesses of VLMs. Ji et al.

(2022) find poor zero-shot performance on tan-
gram puzzle-based tasks. Rahmanzadehgervi et al.
(2024) show that VLMs struggle with extremely
easy visual reasoning tasks, like judging if circles
overlap, which they attribute to visual processing
issues. Wu et al. (2024a) ask VLMs to verify cap-
tions for displays of geometric shapes from the
NLVR dataset (Suhr et al., 2017), and find that
even state-of-the-art models perform little better
than randomly.

Our findings converge with and expand on Wu
et al. (2024a)’s findings: using a different task and
data domain, we find similar weaknesses, includ-
ing inconsistent gains from few-shot prompting.
However, our fine-grained analysis allows us to dig
deeper into the sources of errors.

Computer Vision and Writing Systems Glyph-
Pattern items come from a diverse set of human
writing systems. There is previous work on com-
puter vision systems for recognizing characters
in writing systems, including Magre and Brown
(2022)’s MNIST (Deng, 2012) inspired dataset and
Lake et al. (2015)’s work on discovering schemas
for recognizing characters. Our goal is to probe
abstract pattern recognition in VLMs, rather than to
improve their ability to transcribe writing systems.

3 Dataset

GlyphPattern uses patterns from human writing sys-
tems to benchmark abstract pattern recognition in
VLMs. It pairs 318 human-written descriptions of
patterns that partition characters in 40 human writ-
ing systems with three different visual presentation
styles, for a total of 954 items.1

3.1 Online Data Collection
We draw on human-written patterns collected as
part of the online applet Glyph created by the Minds
and Traditions Max Planck Independent Research
Group, which explores cross-linguistic universals
in the visual properties of human writing systems.
We use the publicly-available data collected from
the online applet.

In Glyph, players select a subset of characters
in an unfamiliar writing system and write a de-
scription of the pattern that separates the selected
characters (the included characters) from the rest
of the script (the excluded characters). Players
must verify their rule by re-selecting the included

1The dataset and support code are available at https://
github.com/Wellesley-EASEL-lab/GlyphPattern.
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characters after at least three minutes using their
previously written rule.

3.2 Data Cleaning
We use a subset of 318 filtered, validated, and
standardized player-written rules produced by the
Glyph team. Rules were independently validated by
five researchers, who identified redundant rules and
grouped the rules into categories. Rules were then
summarized by ChatGPT in order to standardize
wording. We use this publicly-available subset of
rules, but have an additional rewording step so that
all rules are compatible with our prompt prefixes.

3.3 Image Construction
The Glyph dataset associates each rule with a script
and a partition of characters. We retrieve the Uni-
code symbols for the included and excluded char-
acters, and generate images in three visual styles
(Figure 2). In the color style, the included charac-
ters are shown in red, while the excluded are black.
In the left-right style, a dashed line partitions the
image into two halves. The included characters are
on the right side and the excluded on the left. In the
circle style, the characters are arranged along the
circumference of a circle: the included characters
are inside and the excluded outside.

Exploring three ways of visualizing the partition
allows us to measure how sensitive VLMs are to
visual properties of the images. If a model per-
forms well on one style but not the others, it would
indicate that the model understands the pattern, but
fails to apply it to certain kinds of images.

3.4 Benchmark Construction
We present GlyphPattern as a multiple choice Vi-
sual Question Answering task. Given an image
and a multiple choice question with four pattern
options, the goal is to pick the pattern that explains
which characters are included and excluded. We
randomly sample the three other answer options
and manually verify that they are not correct pat-
terns for the image, replacing them if so.

4 Experiments

We use GlyphPattern to evaluate eight VLMs. All
experiments are run with greedy decoding on a
single A100 GPU. We evaluate eight models,2 both
open and closed-source state-of-the-art VLMs:

2We also experimented with Kosmos-2 (Peng et al., 2024)
and OpenFlamingo (Awadalla et al., 2023), but found that they
did not understand the multiple choice task (Appendix C.1).

• GPT-4o (Achiam et al., 2023) is a closed-
source multimodal chat model.

• Gemini-1.5 Pro (Reid et al., 2024) is a 1.5T
closed-source multimodal chat model.

• Idefics2 (Laurençon et al., 2024) is an 8B
open-source multimodal chat model.

• Idefics3 is an improved version of Idefics2.

• LLaVA-NeXT (Liu et al., 2024) is an
open-source multimodal LLaVA model with
Mistral-7B-Instruct-v0.2.

• InstructBLIP (Dai et al., 2024) is an open-
source vision-language model that uses BLIP-
2 with Vicuna-7b.

• Molmo (Deitke et al., 2024) is a family of
open-source multimodal language models; we
benchmark Molmo-7B-O and Molmo-7B-D.

4.1 Multiple Choice Experiments

We benchmark all models using the multiple choice
format of GlyphPattern. We use a chat template for
chat models, with a system prompt explaining the
task. For non-chat models, we suffix the instruc-
tions to the prompt.

Answers-Only Baseline In multiple choice tasks,
information about the correct answer may be
gleaned from the answer options. We measure
this in a pre-experiment: we prompt GPT-4o with
the answer choices alone, excluding the question
and using an empty image. Accuracy is close to
random. We call this the Answers-Only baseline.

Zero-Shot Prompting We conduct zero-shot ex-
periments by presenting the model with question
and answer options, followed by the image.

Few-Shot Prompting For models that support
few-shot prompting, we explore prompting with
one, three, and five examples. We format the few-
shot prompt as a multi-turn message series. To
avoid biasing the model, we use as examples pat-
terns that do not reoccur in other writing systems.
For example, we use a rule from the Zanabazar
Square script, Characters that contain at least
one enclosed rectangle, rather than the commonly-
occurring rule Characters with enclosed loop or
circle.

Chain-of-Thought Reasoning We also explored
chain-of-thought reasoning in two models: GPT-4o
and Gemini-1.5; details are in Appendix C.3.1.
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Figure 3: Model results by visual style. Random baseline is plotted as a dashed line.

Model 0-shot 1 3 5
Gemini-1.5 47.1 52.0 53.7 53.4
Gemini-1.5 CoT 46.6 - 39.3 -
GPT-4o 55.6 53.4 55.4 52.9
GPT-4o CoT 50.0 - 49.1 -
Idefics2 31.5 30.1 31.2 30.0
Idefics3 34.3 33.5 32.7 33.3
InstructBLIP 24.1 - - -
LLaVA-NeXT 32.9 27.0 28.0 26.8
Molmo-O 42.6 - - -
Molmo-D 46.0 - - -

Table 1: Zero-shot and few-shot accuracy by model.

4.2 Free Response Pattern Generation

We also conduct a pattern description generation
experiment with the two best-performing models.
We prompt models with three image/pattern pairs
and ask them to produce a rule for a fourth image.

5 Results

We use GlyphPattern to measure abstract pattern
understanding in eight VLMs. We test statistical
reliability at a significance threshold of α=0.05
using mixed-effects logistic regression models for
each VLM (see Appendix D.7).

5.1 Zero-shot Results

We benchmark eight VLMs on GlyphPattern using
the zero-shot multiple choice format. The bench-
mark is challenging for all models: even the best
model, GPT-4o, selects the correct pattern little
more than half of the time, showing that there is
significant room for improvement in the abstract
pattern recognition abilities of VLMs.

Table 1 shows the zero-shot multiple choice
results. GPT-4o is the best-performing model,
followed by Gemini-1.5. Molmo-D is competi-
tive with Gemini-1.5. The open-source Idefics2,

Model Circle Color L/R Total
GPT-4o 12.3 18.1 17.2 15.9
Gemini-1.5 6.9 8.3 9.9 8.4

Table 2: Validity of generated patterns by visual styles.

Idefics3, and LLaVA-NeXT models perform less
well, but still better than chance. InstructBLIP does
not outperform the answers-only baseline.

Figure 3 displays the zero-shot results by visual
style. For most models, the circular partition is the
most challenging, with a particularly substantial
performance gap for Gemini-1.5 (∼10%; p=0.006).
The difference is smaller but statistically reliable
for GPT-4o (∼6%; p=0.03). For Idefics2, the left-
right style is slightly more challenging.

5.2 Does Few-shot Prompting Help?

Table 1 shows the few-shot multiple choice results
for models that support it.3 The impact of few-
shot prompting is inconsistent: GPT-4o shows no
improvement and performance drops for Idefics2,
Idefics3, and LLaVA-NeXT. However, few-shot
prompting benefits Gemini-1.5, bringing its perfor-
mance close to GPT-4o. The impact was greater
for Gemini-1.5’s performance on the circle and left-
right visual styles. Surprisingly, more examples do
not always help: Gemini-1.5 does best with three.

The inconsistent gains that we observe for few-
shot prompting may be surprising, but similar find-
ings have been reported for other VLM bench-
marks, such as Wu et al. (2024a). Wu et al. (2024a)
find that Gemini benefits from few-shot prompt-
ing, while Idefics and GPT-4V do not. Given the
converging evidence from different benchmarks,
we think that this indicates an actual limitation of
existing VLMs.

3Molmo and InstructBLIP do not support few-shot.
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Figure 4: Accuracy by pattern length.

5.3 Does Chain-of-Thought Reasoning Help?

We also tested whether chain-of-thought reason-
ing improved the performance of the best models,
Gemini-1.5 and GPT-4o. We find that it actually
hurts performance (Table 1), likely because, as we
discuss in Section 6.5, models often produce incor-
rect reasoning.

5.4 Can Models Describe Patterns?

The multiple choice version of GlyphPattern ex-
plores whether VLMs can understand and assess
patterns described in natural language. We can
also use GlyphPattern to assess whether models
can describe patterns.

We explore the pattern description ability of the
two best-performing VLMs, GPT-4o and Gemini-
1.5, in a generation task. We prompt models with
three image/pattern pairs and ask them to produce a
rule for a fourth image. The authors independently
assessed the validity of the patterns, with inter-
annotator agreement of κ=0.89 for GPT-4o and
0.88 for Gemini-1.5.

Table 2 presents the results, averaged over anno-
tators. We find that GPT-4o is able to generate valid
patterns for just 15.9% of the images, and Gemini-
1.5 for 8.4%. We also find that models struggle
with the same visual styles in pattern generation as
in the multiple-choice task.

Manual inspection reveals that models typically
generate patterns similar to human ones: both mod-
els generated rules related to enclosed spaces, sym-
metry, and line type, which are common in Glyph-
Pattern. Despite generating human-like rules, mod-
els struggle to apply them. This points to issues in
pattern recognition or in text/image mapping.
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Figure 5: Accuracy by pattern parse tree depth.

6 Exploring Model Errors

We have shown that GlyphPattern is a challenging
benchmark for VLMs. The rich human-written
rules and multiple visual styles of GlyphPattern
allow us to explore how various aspects of the task
impact performance. In this section, we highlight
key challenges that VLMs face in abstract pattern
recognition, focusing on the two best-performing
models, Gemini-1.5 and GPT-4o.

6.1 Are Complex Descriptions Harder?

One potential source of error is in understanding
textual descriptions of patterns. A model may be
able to distinguish visual properties of included
versus excluded characters, but fail to understand
how they are described in text. To explore this pos-
sibility, we investigate the complexity of the pattern
descriptions. Are simpler descriptions easier?

Figure 4 plots the performance of the two best-
performing models against the number of charac-
ters in each rule as a proxy for complexity. Con-
trary to expectations, we observe that accuracy in-
creases slightly with description length, suggest-
ing that longer patterns are not more challenging.
Mixed-effects models reveal a weak but statistically
reliable correlation for both Gemini-1.5 (β̂=0.003;
p=0.001) and GPT-4o (β̂=0.003; p=0.002).

Another possibility is that models struggle with
compositional language in the patterns. We quan-
tify the syntactic complexity of each rule as the
maximum depth of their dependency parse tree.
Figure 5 shows the performance of Gemini-1.5 and
GPT-4o by parse tree depth. We see no strong cor-
relation in performance for either model, though
GPT-4o performs best on very simple rules.
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Figure 6: Accuracy by cross-linguistic pattern

6.2 Do Models Understand
Cross-linguistically Common Patterns?

The Glyph project aims to explore cross-linguistic
universals in visual properties of human writing
systems. Towards this end, they have identified
categories of rules that players commonly propose
across languages. These categories represent visual
properties of writing systems that are salient for
humans. Are they also visually salient to VLMs?

Figure 6 plots performance by rule category for
the two best-performing models. We observe signif-
icant variation in accuracy by rule category, show-
ing that many rule categories commonly identified
by humans pose challenges for models.

The easiest kind of patterns for GPT-4o involve
specific character mentions: for instance, Resem-
ble the letter E. Compared to rules that did not
belong to a category, accuracy was higher (β̂=0.37;
p<0.001). For Gemini-1.5, the easiest pattern was
vertical lines (β̂=0.28; p=0.009).

One surprising finding is the large difference for
both models between vertical and horizontal lines.
Accuracy was low in the horizontal category for
both models, though only significantly different
for GPT-4o (Gemini-1.5: β̂=-0.08; p=0.45; GPT-
4o: β̂=-0.23; p=0.03). It is not clear why this line
orientation is so challenging. Our results show that
symmetry is also a difficult property.

It is less surprising that models struggle with the
Stroke category, which describes how many pen
strokes it would take to draw the character. These
rules are grounded in the experience of drawing
letters by hand, which VLMs lack.

6.3 What Patterns Do Models Produce Well?

Our free response experiment allows us to exam-
ine what kinds of patterns Gemini-1.5 and GPT-4o
are most successful at generating. As discussed
in Section 5.4, models often generate rules using
similar language as humans even though their rules
are usually incorrect for the target image.

We categorize the valid patterns generated by
each model according to the cross-linguistically
common categories from Section 6.2 (full results
in Appendix D.5). We find that the most common
correctly generated patterns are ones that refer to
enclosed spaces or specific characters. Gemini-1.5
is more successful at identifying symmetry than
GPT-4o.

Qualitatively, we note that models seem to strug-
gle especially to generate relative spatial terms.
There are many generated patterns that would be
correct if “horizontal” and “vertical” or “left” and
“right” were swapped. This suggests that relative
spatial language remains a challenge. Alternatively,
these struggles could spring from a loss of spatial
information in image-processing.

6.4 Which Writing Systems Are Challenging?

We also explore whether certain writing systems
are more challenging for VLMs. Figure 7 shows
the performance of Gemini-1.5 and GPT-4o by writ-
ing system. We see that some scripts are harder for
them than others: GPT-4o struggles with Grantha
(β̂=-0.4; p=0.02) and Meroitic Cursive (β̂=-0.5;
p=0.03). This suggests that the visual properties of
these writing systems are less salient for VLMs.

6.5 How Does Reasoning Go Awry?

When VLMs make mistakes, they can stem from
issues in natural language understanding, image
processing, or the vision-language mapping. To
explore sources of error in GlyphPattern decisions,
we prompt Gemini-1.5 and GPT-4o to explain their
reasoning for the multiple-choice task and manu-
ally inspect the results. We find issues stemming
from multiple aspects of the task:

Errors in image-processing In one case, GPT-
4o correctly identifies the four excluded characters
when presented in the color style. However, in the
circle style, GPT-4o lists all 22 characters in the
script as falling inside the circle, indicating an error
in recognizing the circle itself (see Appendix D.2).
This is similar to the image-processing errors in
Rahmanzadehgervi et al. (2024).
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Figure 7: Accuracy by writing system.

Target Pattern: Characters that have exactly one
closed end.
Gemini-1.5: The characters ‘S’, ‘2’, ‘C’, and ‘3’
have exactly one closed end, but they are not col-
ored red.
GPT-4o: The red characters do not have exactly
one closed end. They have loops, which means they
have more than one closed end.

Figure 8: Ex. natural language understanding failure

Errors in natural language understanding In
other cases, models fail to understand the language
that human pattern writers use. For the example in
Figure 8, GPT-4o is able to map the included char-
acters to their Unicode symbols and identify that
these characters contain loops. However, GPT-4o
rejects the correct option because it does not under-
stand “closed end” as the human writer intended.
Gemini-1.5 also misunderstands this description
and incorrectly identifies it as applying to multiple
characters in the excluded set.

Text/image mapping issues Models sometimes
fail to map the properties described in natural lan-
guage to the character images. For the curved bot-
tom pattern in Figure 9, Gemini-1.5 correctly picks
out a red character that is similar to “O”, but does
not seem to understand the visual properties of the
character or its Latin equivalent. GPT-4o makes
a similar mistake for the same pattern, incorrectly
deciding that the “L”-like character lacks a curved

Target Pattern: Characters that have a curved
bottom.
Gemini-1.5: While some red characters have
curved bottoms, others do not. For example, the
red character "O" does not have a curved bottom.
GPT-4o: Not all red characters have a curved
bottom. For example, the character in second row,
second column from the left (which looks like an
upside-down "L") does not have a curved bottom.

Figure 9: Ex. incorrect character property reasoning

bottom but does have “enclosed spaces or loops"
(one of the distractor options). Here, the models
either fail to understand the property description, or
to map it to the visual properties of the characters.

Reasoning errors Other errors arise from fail-
ures to reason about the excluded characters. For
instance, GPT-4o chooses the pattern Characters
that look like Latin capital letters for the item in
Figure 2. Its explanation (The characters on the
right side, “U” and “W”, look like Latin capital
letters) correctly judges that the included charac-
ters fit the pattern, but fails consider that excluded
characters do too.

Thus, GlyphPattern shows that VLM errors arise
across the image-processing, text-image mapping,
and reasoning aspects of the abstract pattern recog-
nition task.
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7 Conclusion

We present GlyphPattern, an abstract pattern recog-
nition benchmark consisting of 954 items in three
visual styles. GlyphPattern challenges models to
understand visually-presented patterns paired with
human descriptions, revealing significant gaps in
VLM capabilities. We find that even the best per-
forming models, Gemini-1.5 and GPT-4o, solve
around half of GlyphPattern problems.

GlyphPattern is based on human-written descrip-
tions of visual properties of writing systems, facili-
tating the exploration of multiple task aspects, from
pattern length, complexity, and visual presentation
style, to differences across cross-linguistically com-
mon pattern types and human writing systems. Our
detailed analysis reveals errors at multiple levels
of processing, including image-processing, natu-
ral language understanding, and reasoning. We
hope that the GlyphPattern benchmark will guide
future work on improving VLMs by providing a
challenging, targeted and diverse evaluation set.

Limitations

Our work reveals weaknesses in abstract pattern
recognition for VLMs. GlyphPattern moves closer
to Bongard’s original task by requiring models to
understand natural language pattern descriptions;
however, evaluating the ability to describe patterns
is challenging due to the lack of automated scoring.
Automating this process is unlikely to succeed in
the near-term: since our benchmark items are chal-
lenging for state-of-the-art VLMs, using LLMs to
score the rules would not be reliable.

Our few-shot evaluation of Idefics2 was limited
by GPU memory constraints. We also excluded
two VLMs due to inability to understand the task
format. It is possible that they could perform well
in other abstract pattern recognition tasks, but ide-
ally, models would be robust to task format.

Ethics Statement

Our work does not involve any data collection from
human subjects. We rely on publicly-available hu-
man data from the Glyph project, which was origi-
nally collected under the oversight of the Ethikkom-
mission affiliated with Universitätsklinikum, ensur-
ing adherence to ethical guidelines and standards.

Our findings have implications for the visual
salience of character sets across human writing sys-
tems, and we hope that they complement ongoing
cognitive scientific efforts to understand the visual

properties of human writing systems. Although our
results show that some writing systems are more
challenging for VLMs, this should not be misin-
terpreted to suggest that some writing systems are
better or more efficient than others.
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A Checklist

A2 Potential Risks: Did you discuss any potential
risks of your work? [Yes/No/NA] No

A2 Elaboration: For yes, provide a section num-
ber. For no, justify why not. The risks of this work
lie in the original dataset creation and collection,
as described by Kim et al. (2024).

B Use Or Create Scientific Artifacts: Did you
use or create scientific artifacts? [Yes/No] Yes

B1 Cite Creators Of Artifacts: Did you cite the
creators of artifacts you used? [Yes/No/NA] Yes

B1 Elaboration: For yes, provide a section num-
ber. For no, justify why not. Section 3.

B2 Discuss The License For Artifacts: Did you
discuss the license or terms for use and/or distribu-
tion of any artifacts? [Yes/No/NA] Yes

B2 Elaboration: For yes, provide a section num-
ber. For no, justify why not. Section B.1

B3 Artifact Use Consistent With Intended Use:
Did you discuss if your use of existing artifact(s)
was consistent with their intended use, provided
that it was specified? For the artifacts you create,
do you specify intended use and whether that is
compatible with the original access conditions?
[Yes/No/NA] Yes

B3 Elaboration: For yes, provide a section num-
ber. For no, justify why not. Ethics Statement

B4 Data Contains Personally Identifying Info
Or Offensive Content: Did you discuss the steps
taken to check whether the data that was col-
lected/used contains any information that names or
uniquely identifies individual people or offensive
content, and the steps taken to protect/anonymize
it? [Yes/No/NA] NA

B4 Elaboration: For yes, provide a section num-
ber. For no, justify why not.

B5 Documentation Of Artifacts: Did you pro-
vide documentation of the artifacts, e.g., cover-
age of domains, languages, and linguistic phe-
nomena, demographic groups represented, etc.?
[Yes/No/NA] Yes

B5 Elaboration: For yes, provide a section num-
ber. For no, justify why not. Section D.7.

B6 Statistics For Data: Did you report rele-
vant statistics like the number of examples, details
of train/test/dev splits, etc. for the data that you
used/created? [Yes/No/NA] Yes

B6 Elaboration: For yes, provide a section num-
ber. For no, justify why not. Section 3

C Computational Experiments: Did you run
computational experiments? [Yes/No/NA] Yes

C1 Model Size And Budget: Did you report
the number of parameters in the models used, the
total computational budget (e.g., GPU hours), and
computing infrastructure used? [Yes/No/NA] Yes

C1 Elaboration: For yes, provide a section num-
ber. For no, justify why not. Section C.2

C2 Experimental Setup And Hyperparameters:
Did you discuss the experimental setup, including
hyperparameter search and best-found hyperparam-
eter values? [Yes/No/NA] Yes

C2 Elaboration: For yes, provide a section num-
ber. For no, justify why not. Section 4.

C3 Descriptive Statistics: Did you report de-
scriptive statistics about your results (e.g., error
bars around results, summary statistics from sets of
experiments), and is it transparent whether you are
reporting the max, mean, etc. or just a single run?
[Yes/No/NA] Yes

C3 Elaboration: For yes, provide a section num-
ber. For no, justify why not. Sections 5 and D.7.

C4 Parameters For Packages: If you used exist-
ing packages (e.g., for preprocessing, for normal-
ization, or for evaluation, such as NLTK, SpaCy,
ROUGE, etc.), did you report the implementation,
model, and parameter settings used? [Yes/No/NA]
Yes

C4 Elaboration: For yes, provide a section num-
ber. For no, justify why not. Section D.1.

D Human Subjects Including Annotators: Did
you use human annotators (e.g., crowdworkers) or
research with human subjects? [Yes/No/NA] No

D1 Instructions Given To Participants: Did you
report the full text of instructions given to par-
ticipants, including e.g., screenshots, disclaimers
of any risks to participants or annotators, etc.?
[Yes/No/NA] NA

D1 Elaboration: For yes, provide a section num-
ber. For no, justify why not.

D2 Recruitment And Payment: Did you report
information about how you recruited (e.g., crowd-
sourcing platform, students) and paid participants,
and discuss if such payment is adequate given the
participants’ demographic (e.g., country of resi-
dence)? [Yes/No/NA] NA

D2 Elaboration: For yes, provide a section num-
ber. For no, justify why not.

D3 Data Consent: Did you discuss whether and
how consent was obtained from people whose data
you’re using/curating (e.g., did your instructions
explain how the data would be used)? [Yes/No/NA]
NA
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D3 Elaboration: For yes, provide a section num-
ber. For no, justify why not.

D4 Ethics Review Board Approval: Was the
data collection protocol approved (or determined
exempt) by an ethics review board? [Yes/No/NA]
NA

D4 Elaboration: For yes, provide a section num-
ber. For no, justify why not.

D5 Characteristics Of Annotators: Did you re-
port the basic demographic and geographic char-
acteristics of the annotator population that is the
source of the data? [Yes/No/NA] NA

D5 Elaboration: For yes, provide a section num-
ber. For no, justify why not.

E Ai Assistants In Research Or Writing: Did
you use AI assistants (e.g., ChatGPT, Copilot) in
your research, coding, or writing? [Yes/No] Yes

E1 Information About Use Of AI Assistants: Did
you include information about your use of AI assis-
tants? [Yes/No/NA] Yes

E1 Elaboration: For yes, provide a section num-
ber. For no, justify why not. Section E.
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B Further Details of Dataset

B.1 Licensing
The full GlyphPattern dataset and support
code are available at https://github.com/
Wellesley-EASEL-lab/GlyphPattern. The
benchmark is licensed for reuse under an MIT li-
cense.

The dataset builds on data collected as part of the
Glyph cognitive science project, which is publicly
available at https://osf.io/j9zhn.

B.2 Data Selection and Cleaning
We use the 318 cleaned rules from Kim et al.
(2024)’s Replicability Assessment datafile. We fur-
ther standardize the wording of the rules by hand,
such that all are grammatical following the pre-
fix Characters that. This is necessary in order to
consistently produce grammatical prompts.

We eliminated two scripts included in Glyph,
Afaka and Miao, due to difficulties in obtaining
font libraries containing their full character lists.

C Further Details of Experiments

C.1 Model Selection
We use the following model versions:

• GPT-4o: gpt-4o-2024-05-13

• Gemini-1.5: gemini-1.5-pro-001

• LLaVA-NeXT: llava-v1.6-mistral-7b-hf

• Idefics2: idefics2-8b

• Idefics3: Idefics3-8B-Llama3

• InstructBLIP: instructblip-vicuna-7b

For Idefics2, we used image scaling parameters
that set the longest edge of 700 and a shortest edge
of 378. This did not decrease performance com-
pared to the default Idefics2 settings (Table 3).

For Idefics3, we used image scaling parame-
ter that set the longest edge of 1092. This did
not decrease performance compared to the default
Idefics3 settings (Table 3).

Model Image Scaling Accuracy (%)
Idefics2 base 31.45
Idefics2 scaled 31.45
Idefics3 base 33.86
Idefics3 scaled 34.28

Table 3: Zeroshot accuracy for Idefics2 and Idefics3
with and without image scaling.

Model N Circle Color L/R Total
Gemini 0 40.6 51.0 49.7 47.1
Gemini 1 49.1 50.6 56.3 52.0
Gemini 3 50.3 52.2 58.5 53.7
Gemini 5 50.6 52.5 57.0 53.4
GPT-4o 0 51.3 57.6 57.9 55.6
GPT-4o 1 48.5 57.6 54.1 53.4
GPT-4o 3 49.7 57.6 59.1 55.4
GPT-4o 5 45.9 58.5 54.4 52.9
Idefics2 0 34.6 30.8 29.0 31.5
Idefics2 1 33.0 30.8 26.4 30.1
Idefics2 3 34.0 29.9 29.9 31.2
Idefics2 5 33.0 30.5 26.4 30.0
Idefics3 0 30.2 38.7 34.0 34.3
Idefics3 1 31.5 32.7 36.5 33.5
Idefics3 3 32.7 34.6 30.8 32.7
Idefics3 5 33.3 35.0 31.8 33.3
LLaVA 0 30.5 35.5 32.7 32.9
LLaVA 1 28.3 24.8 28.0 27.0
LLaVA 3 29.6 27.0 27.4 28.0
LLaVA 5 26.4 26.4 27.7 26.8

Table 4: Few-shot accuracy by number of examples (N)

We attempted to benchmark Kosmos-2 (Peng
et al., 2024) and OpenFlamingo (Awadalla et al.,
2023), but found that they struggled with the multi-
ple choice task format. Both models tended to pro-
duce additional answer options rather than select-
ing an option from among the four choices. Adding
the task explanation to the end did not address this
issue; instead, Kosmos-2 generated a new explana-
tion without an answer option, and OpenFlamingo
began generating a new set of answers starting at
A.

We also attempted to benchmark Llama3.2 Vi-
sion (AI@Meta, 2024), but found that it is safe-
guard to the extend of not providing valid response
for our test. Instead, the model respond "I’m not
able to provide that information".

C.2 Computing Resources

Experiments were run with greedy decoding on
a single A100 GPU. We estimate that the experi-
ments reported in this paper consumed less than
400 GPU hours; however, we do not know how
much GPU time was used to run the proprietary
models Gemini-1.5 and GPT-4o.
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C.3 Further Prompting Details
We ran Idefics2, Idefics3, LLaVA-NeXT, and
InstructBLIP using Hugging Face’s AutoMod-
elForVision2Seq API, following the format of their
model card.

System Prompts For multiple choice experi-
ments, we query the model with system prompt:
Reply with only the letter of the correct option.
The system prompt is provided to GPT-4o and
Gemini-1.5 through their APIs. We provide no
system prompt for Idefics2 or Idefics3. For LLaVA-
NeXT, and InstructBLIP zero-shot experiments,
we concatenated the system prompt at the end of
the question prompt for zero-shot experiments. We
do not provide a system prompt for their few-shot
experiments.

For few-shot free response experiments, we
prompt GPT-4o and Gemini-1.5 with the system in-
struction: Come up with a descriptions for all of the
characters {on the right} side in the image. Your
description should be true for all of the characters
{on the right side} and none of the characters {on
the left side}, reworded by the image’s visual style.

Few-shot Prompting For Idefics2, Idefics3,
LLaVA-NeXT, and Gemini-1.5, the image is pre-
sented before the question, followed by the answer.
For GPT-4o, the question is shown first, then the
image and the answer.

Figure 10 shows an example of few-shot mul-
tiple choice prompting with one sample question
and answer pair.

Figure 11 is an example of few-shot free re-
sponse.

C.3.1 Chain-of-Thought Reasoning
Prompting

We ran zero-shot and three-shot experiments with
chain-of-thought prompting. Two example rea-
soning chains used for chain-of-thought few-shot
prompting are shown in Figure 12.

Which characters are inside the circle in the
image? A. Characters that contain a horizontal
line and a descending curve from one end of the
line. B. Characters that have a downward curve
that resembles a bridge with two feet. C.
Characters that have two round dots. D.
Characters that contain diagonal lines and acute
angles, but no flags.
MODEL:C.

Which characters are colored red in the image? A.
Characters that contain a hook shape. B. Charac-
ters that start at the top left with a small or very
small spiral-like approach. C. Characters that can
be written with a single continuous stroke without
retracing or lifting the pen. D. Characters that
have vertical and horizontal symmetry.
MODEL:
Groundtruth:C.
Gemini-1.5 Response:C.
GPT-4o Response:D.

Figure 10: Few-shot Multiple Choice Example
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Characters on the right in the image are
characters that have two round dots.

Characters on the right in the image are
characters that contain a wavy or zigzag line.

Characters on the right in the image are
characters that contain at least one enclosed

rectangle.

Groundtruth: contain at least one diagonal line.
Gemini-1.5 Response: Characters on the right
side of the image are angled or diagonal.
GPT-4o Response: Characters on the right side
in the image are characters that contain diagonal
lines.

Figure 11: Few-shot Free Response Example

210 Left/Right: Let’s think this through step-by-
step. All of the characters on the right do contain
wavy or zigzag lines and none of the characters
on the left do, so option A is a correct description.
Some of the shapes on the right don’t have loops,
so option B is incorrect. Some of the shapes on
the right do not contain a U or a hook, so option
C is incorrect. Some of the shapes on the right do
not have a loop at the bottom, so option D is also
incorrect. Since option A is the only pattern that
describes all characters on the right and none of the
characters on the left, it must be the right answer.

298 Left/Right: Let’s think this through step-by-
step. Almost all of the characters, both on the right
and on the left, have a vertical straight line, so
option A is incorrect. All of the characters on the
right contain at least one enclosed rectangle, so
option B is possible. Also, none of the ones on
the left have an enclosed rectangle, so option B is
valid. Many of the characters on the right cannot be
drawn with a single stroke, so option C is incorrect.
Similarly, some of the characters on the right do
not have an open area facing up, so option D cannot
be the answer. Since option B is the only pattern
that describes all characters on the right and none
of the characters on the left, it must be the right
answer.

Figure 12: Chain-of-Thought Reasoning Examples for
Few-shot Prompting
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D Further Analysis

D.1 Pattern Complexity

We compute the syntactic complexity of a pattern
by taking the maximum depth of its dependency
parse tree. We parse the pattern descriptions using
SpaCy (“en_core_web_lg” model).

D.2 Error Analysis

Figure 13 illustrates a case where the circular visual
style poses a challenge for the models. GPT-4o per-
formed correct visual recognition of the excluded
character sets on both the color and leftright visual
style, but failed on the circle visual style.

D.3 In-Depth Few-shot Results

Table 4 shows few-shot results by model and visual
style.

D.4 In-Depth Chain-of-Thought Results

Table 5 shows the chain-of-thought reasoning re-
sults by model and visual style.

Model N Circle Color L/R Total
GPT-4o 0 45.0 54.7 50.3 50.0
GPT-4o 3 40.3 51.9 55.0 49.1
Gemini-1.5 0 39.3 50.6 50.0 46.6
Gemini-1.5 3 35.2 39.0 43.7 39.3

Table 5: Chain-of-Thought Prompting Results by Model

D.5 Free Response Task

A passing pattern is true of all included characters
and false of all excluded characters. In borderline
cases, we ask whether the rule applies equally well
to a character from each set; if so, it fails, since a
human Glyph player would be unlikely to pick only
the correct characters. We measure inter-annotator
agreement using Cohen’s κ. Figures 14 and 15
show the correct patterns generated by GPT-4o and
Gemini-1.5 in the free response task, grouped by
the cross-linguistically common pattern categories
from Section 6.2.

Figure 14: GPT-4o free response results by rule
class.

Figure 15: Gemini-1.5 free response results by rule
class.

D.6 Explanation Prompting

To elicit model explanations for our manual error
analysis, we prompt Gemini-1.5 and GPT-4o for an
explanation after their answer: Reply with the letter
of the correct option, and then explain your step-by-
step reasoning through all options. Figure 16, 17,
18, 19, and 20 are five examples showing how the
models go awry in their explanations. The answer
choices can be seen in the models’ response.

D.7 Logistic Regression Results

We test the statistical reliability of various factors
that impact model performance using mixed-effects
logistic regression models. We treat correctness
as a binary outcome and include item random ef-
fects. We include fixed effects for visual style,
pattern length, pattern category (using the cross-
linguistically common patterns discussed in Sec-
tion 6.2), and writing system. We fit models to each
VLM’s results using the lme4 package in R (Bates
et al., 2015). Tables 6-21 show the results. We split
the main effects and language effects into separate
tables for length reasons, but all effects were fitted
as part of the same model.
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E Use of Generative AI

Some code for this paper was written with AI as-
sistants enabled.
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Target Pattern: Characters that have a rough triangle pointing lower-left

GPT-4o Color Explanation: The red characters in the image all have a shape that resembles
a triangle pointing towards the lower-left direction.

GPT-4o Leftright Explanation: All the characters on the right side have a rough triangle
pointing lower-left. The characters resemble "4", "9", and "A", which all have a triangular
shape pointing towards the lower-left.

GPT-4o Circle Explanation: The characters inside the circle
areABGHhTYKLMNSPRSTh. They do not all have a rough triangle pointing
lower-left.

Figure 13: Example of image-processing error
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Groundtruth:"B.Characters that contain at least one right angle."
Gemini-1.5 Response:"The answer is **D**.
* **A. Characters that contain a circular element.** Incorrect, while some red characters contain
circles, some do not. * **B. Characters that contain at least one right angle.** Incorrect, several red
characters lack right angles. * **C. Characters that exceed the average size of the character set in
height or width.** Incorrect, the red characters vary in size and are not all larger than the average.
* **D. Characters that have a right turn at the bottom of a vertical line, like an L or reversed J.**
Correct, all the red characters feature a right turn at the bottom of a vertical line.
Therefore, the characters colored red are those that have a right turn at the bottom of a vertical line,
like an L or reversed J. This pattern is consistently observed in all the red characters. "
GPT-4o Response:"The correct option is B. Characters that contain at least one right angle.
Here’s the step-by-step reasoning:
A. Characters that contain a circular element. - Some of the red characters do not contain circular
elements. For example, the red character in the first row, fourth column from the left, does not have
a circular element. Therefore, this option is incorrect.
B. Characters that contain at least one right angle. - All the red characters contain at least one right
angle. For example, the red character in the first row, fourth column from the left, has a right angle.
This option is correct.
C. Characters that exceed the average size of the character set in height or width. - Not all red
characters exceed the average size of the character set. For example, the red character in the second
row, first column from the left, does not exceed the average size. Therefore, this option is incorrect.
D. Characters that have a right turn at the bottom of a vertical line, like an L or reversed J. - Not all
red characters have a right turn at the bottom of a vertical line. For example, the red character in the
second row, fourth column from the left, does not have a right turn at the bottom of a vertical line.
Therefore, this option is incorrect.
Thus, the correct answer is B."

Figure 16: Multiple Choice Explanation Example 1
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Groundtruth:"D.Characters that have a closed loop or circular element, which may be crossed over itself
in a swirl motion or formed by a line bisecting itself."
Gemini-1.5 Response:"The answer is **D. Characters that have a closed loop or circular element, which
may be crossed over itself in a swirl motion or formed by a line bisecting itself.**
Here’s why:
* **A. Characters that have parallel vertical lines or multiple vertical lines.** While some characters on
the right have vertical lines, this isn’t a defining characteristic shared by all. * **B. Characters that have a
large, open, vertical circle curve on the left side.** This describes some characters on the *left* side of
the image, not the right. * **C. Characters that have a full-height straight line on the right side, ending
in a vertical line perpendicular to a horizontal line at the base of the character.** This pattern doesn’t
accurately describe any of the characters on the right.
**D is the most accurate:** Every character on the right side features a closed loop or circle:
* Some loops are simple circles (like the third character). * Some are more complex, with lines crossing
through (like the first and last characters). * The second character’s loop is formed by a line bisecting
itself. "
GPT-4o Response:"The correct option is D.Let’s analyze each option:
A. Characters that have parallel vertical lines or multiple vertical lines. - The characters on the right side
do not predominantly feature parallel vertical lines or multiple vertical lines. This option does not match.
B. Characters that have a large, open, vertical circle curve on the left side. - The characters on the right
side do not have a large, open, vertical circle curve on the left side. This option does not match.
C. Characters that have a full-height straight line on the right side, ending in a vertical line perpendicular
to a horizontal line at the base of the character. - The characters on the right side do not consistently have
a full-height straight line on the right side ending in a vertical line perpendicular to a horizontal line at the
base. This option does not match.
D. Characters that have a closed loop or circular element, which may be crossed over itself in a swirl
motion or formed by a line bisecting itself. - The characters on the right side do have closed loops or
circular elements, some of which are crossed over themselves or formed by a line bisecting itself. This
option matches."

Figure 17: Multiple Choice Explanation Example 2
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Groundtruth:"A. Characters that are made up of only horizontal and vertical lines with no curves or
diagonal lines and only right angles."
Gemini-1.5 Response:"B. Characters that have at least one enclosed space or loop.
Here’s why:
* **A. Characters that are made up of only horizontal and vertical lines with no curves or diagonal lines
and only right angles.** This is incorrect. Many characters on the right side have curves or diagonal lines
(e.g.,"B").
* **B. Characters that have at least one enclosed space or loop.** This is the correct answer. Every
character on the right side has at least one enclosed space or loop.
* **C. Characters that are similar to an F, with a vertical segment on the right side and two small oblique
segments descending to the right.** This is incorrect. While some characters on the right side might share
similarities with an "F", this description doesn’t fit all of them.
* **D. Characters that do not have an overhead horizontal straight line.** This is incorrect. Some
characters on the right side do have an overhead horizontal line (e.g., "B", "E")."
GPT-4o Response:"The correct option is A.
Let’s analyze each option step-by-step:
A. Characters that are made up of only horizontal and vertical lines with no curves or diagonal lines and
only right angles. - The characters on the right side of the image are composed of only horizontal and
vertical lines, with no curves or diagonal lines, and they all have right angles. This matches the description
perfectly.
B. Characters that have at least one enclosed space or loop. - Not all characters on the right side have
enclosed spaces or loops. For example, the character in the second row, first column on the right side does
not have any enclosed space or loop.
C. Characters that are similar to an F, with a vertical segment on the right side and two small oblique
segments descending to the right. - None of the characters on the right side resemble an F with a vertical
segment on the right side and two small oblique segments descending to the right.
D. Characters that do not have an overhead horizontal straight line. - Some characters on the right side do
have an overhead horizontal straight line. For example, the character in the first row, first column on the
right side has an overhead horizontal straight line.
Therefore, the correct answer is A."

Figure 18: Multiple Choice Explanation Example 3
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Groundtruth:"C. Characters that have lines that cross each other."
Gemini-1.5 Response:"The answer is **D**.
* **A. Characters that contain at least one straight vertical line.** This is incorrect because some characters
inside the circle, like "H", "D", and "O", have vertical lines, but some characters outside the circle, like
"I", "T", and "L", also have vertical lines. * **B. Characters that have a straight horizontal stroke at the
bottom or a flat bottom, or are used in font encoding.** This is incorrect because characters like "H", "O",
and "B" inside the circle do not have horizontal lines at the bottom and font encoding is not a relevant
factor. * **C. Characters that have lines that cross each other.** This is incorrect because "B", "D", "O",
and "C" are inside the circle, while "F" is outside the circle, all of them having crossing lines. * **D.
Characters that have at least one completely enclosed space or closed loop.** This is correct because
all characters inside the circle have closed loops or enclosed spaces. There are no characters outside the
circle with enclosed spaces.
Therefore, the correct answer is **D**."
GPT-4o Response:"The correct option is C. Characters that have lines that cross each other.
Step-by-step reasoning through all options:
A. Characters that contain at least one straight vertical line. - Many characters both inside and outside the
circle contain straight vertical lines. For example, the character "E" inside the circle and the character "L"
outside the circle both have straight vertical lines. This option does not distinguish between the characters
inside and outside the circle.
B. Characters that have a straight horizontal stroke at the bottom or a flat bottom, or are used in font
encoding. - This option is too broad and does not specifically apply to the characters inside the circle.
Characters both inside and outside the circle have straight horizontal strokes at the bottom or flat bottoms.
C. Characters that have lines that cross each other. - This option correctly identifies the characters inside
the circle. All characters inside the circle have lines that cross each other, such as "E", "F", and "H".
Characters outside the circle do not have lines that cross each other.
D. Characters that have at least one completely enclosed space or closed loop. - This option does not
apply to the characters inside the circle. Characters both inside and outside the circle have enclosed spaces
or closed loops, such as "O" outside the circle and "E" inside the circle.
Therefore, the correct answer is C. Characters that have lines that cross each other."

Figure 19: Multiple Choice Explanation Example 4
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Groundtruth:"D. Characters that contain a full-length diagonal line bottom left to top right."
Gemini-1.5 response:"The answer is **D**.
Let’s analyze each option:
* **A. Characters that cannot be drawn in a single stroke or without going over part of an existing line.**
This is not true for all characters inside the circle. For example, the character "m" can be drawn in a single
stroke. * **B. Characters that have horizontal symmetry.** This is not true for all characters inside the
circle. For example, the character "m" does not have horizontal symmetry. * **C. Characters that have
a horizontal line at the bottom.** This is not true for all characters inside the circle. For example, the
character "k" does not have a horizontal line at the bottom. * **D. Characters that contain a full length
diagonal line bottom left to top right.** This is true for all characters inside the circle. The characters "k",
"m", "g", "y", and "j" all contain a full length diagonal line bottom left to top right.
Therefore, the correct answer is **D**."
GPT-4o Response:"The correct option is A. Characters that cannot be drawn in a single stroke or without
going over part of an existing line.
Step-by-step reasoning through all options:
A. Characters that cannot be drawn in a single stroke or without going over part of an existing line. -
Inside the circle, the characters are complex and require multiple strokes to draw without lifting the pen or
going over an existing line. This matches the characters inside the circle.
B. Characters that have horizontal symmetry. - Horizontal symmetry means the character looks the same
when flipped horizontally. The characters inside the circle do not exhibit horizontal symmetry.
C. Characters that have a horizontal line at the bottom. - The characters inside the circle do not consistently
have a horizontal line at the bottom.
D. Characters that contain a full-length diagonal line bottom left to top right. - The characters inside the
circle do not consistently contain a full-length diagonal line from bottom left to top right.
Therefore, the correct answer is A."

Figure 20: Multiple Choice Explanation Example 5

1163



Fixed effects β̂ z p

(Intercept) 0.12 (± 0.15) 0.83 0.41
color 0.10 (± 0.03) 3.11 0.002
leftright 0.09 (± 0.03) 2.74 0.006
length 0.003 (± 0.001) 3.24 0.001
cross -0.31 (± 0.15) -2.08 0.04
diagonal 0.27 (± 0.15) 1.50 0.14
enclosed 0.18 (± 0.06) 2.97 0.003
horizontal -0.08 (± 0.11) -0.76 0.45
mirror -0.05 (± 0.27) -0.19 0.85
specific 0.13 (± 0.06) 2.07 0.04
stroke 0.02 (± 0.08) 0.29 0.77
symmetry -0.17 (± 0.08) -2.16 0.03
vertical 0.28 (± 0.11) 2.64 0.009

Table 6: Full logistic regression table for Gemini-1.5,
main effects

Fixed effects β̂ z p

(Intercept) 0.27 (± 0.15) 1.84 0.066
color 0.06 (± 0.03) 2.05 0.041
leftright 0.07 (± 0.03) 2.15 0.032
length 0.003 (± 0.001) 3.12 0.002
cross 0.13 (± 0.15) 0.91 0.37
diagonal 0.46 (± 0.15) 3.07 0.002
enclosed 0.24 (± 0.06) 4.17 <0.001
horizontal -0.23 (± 0.11) -2.20 0.028
mirror -0.24 (± 0.27) -0.89 0.38
specific 0.37 (± 0.06) 5.78 <0.001
stroke -0.13 (± 0.08) -1.56 0.12
symmetry -0.09 (± 0.08) -1.16 0.25
vertical 0.19 (± 0.11) 1.75 0.08

Table 7: Full logistic regression table for GPT-4o, main
effects
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Fixed effects β̂ z p

Avestan 0.01 (± 0.19) 0.08 0.94
Bamum -0.01 (± 0.20) -0.05 0.96
Bassa Vah 0.17 (± 0.18) 0.91 0.37
Batak 0.04 (± 0.19) 0.19 0.85
Buginese 0.36 (± 0.24) 1.50 0.14
Cherokee 0.24 (± 0.18) 1.32 0.19
Gothic -0.03 (± 0.22) -0.16 0.88
Grantha -0.19 (± 0.17) -1.16 0.25
Hangul 0.15 (± 0.18) 0.81 0.42
Kayah Li 0.11 (± 0.18) 0.59 0.55
Khudawadi -0.05 (± 0.22) -0.23 0.82
Lao 0.14 (± 0.17) 0.82 0.42
Lepcha 0.32 (± 0.18) 1.77 0.08
Linear B 0.01 (± 0.18) 0.05 0.96
Mandaic 0.07 (± 0.18) 0.39 0.69
Meetei Mayek 0.17 (± 0.17) 1.04 0.30
Meroitic Cursive 0.05 (± 0.24) 0.19 0.85
Mro 0.16 (± 0.20) 0.80 0.42
Multani 0.10 (± 0.17) 0.59 0.56
Nabataean 0.10 (± 0.19) 0.55 0.58
New Tai Lue 0.38 (± 0.19) 1.94 0.05
Nyiakeng Puachue Hmong 0.05 (± 0.19) 0.27 0.79
Ogham -0.05 (± 0.20) -0.25 0.80
Ol Chiki 0.22 (± 0.19) 1.17 0.24
Old Permic 0.15 (± 0.17) 0.85 0.40
Osmanya 0.07 (± 0.27) 0.25 0.80
Pau Cin Hau 0.23 (± 0.17) 1.38 0.17
Phoenician 0.24 (± 0.20) 1.16 0.25
Pracalit 0.02 (± 0.18) 0.10 0.92
Psalter Pahlavi 0.38 (± 0.20) 1.88 0.06
Runic -0.02 (± 0.17) -0.11 0.92
Shavian 0.007 (± 0.18) 0.04 0.97
Sora Sompeng 0.07 (± 0.17) 0.40 0.69
Soyombo -0.04 (± 0.17) -0.26 0.80
Syloti Nagri -0.03 (± 0.18) -0.14 0.89
Tagbanwa 0.58 (± 0.20) 2.86 0.005
Tai Viet 0.11 (± 0.19) 0.58 0.56
Warang Citi 0.26 (± 0.20) 1.34 0.18
Zanabazar Square 0.19 (± 0.17) 1.14 0.26

Table 8: Full logistic regression table for Gemini-1.5,
language effects
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Fixed effects β̂ z p

Avestan -0.08 (± 0.19) -0.43 0.67
Bamum 0.11 (± 0.20) 0.54 0.59
Bassa Vah 0.23 (± 0.18) 1.26 0.21
Batak 0.25 (± 0.19) 1.34 0.18
Buginese 0.12 (± 0.24) 0.51 0.61
Cherokee 0.21 (± 0.18) 1.17 0.24
Gothic 0.23 (± 0.22) 1.04 0.30
Grantha -0.40 (± 0.17) -2.40 0.017
Hangul 0.20 (± 0.18) 1.12 0.27
Kayah Li -0.05 (± 0.18) -0.28 0.78
Khudawadi 0.17 (± 0.22) 0.77 0.44
Lao -0.06 (± 0.17) -0.37 0.71
Lepcha 0.35 (± 0.18) 1.91 0.057
Linear B 0.09 (± 0.18) 0.52 0.60
Mandaic -0.04 (± 0.18) -0.20 0.84
Meetei Mayek 0.02 (± 0.17) 0.11 0.91
Meroitic Cursive -0.52 (± 0.24) -2.18 0.03
Mro 0.22 (± 0.19) 1.16 0.25
Multani 0.11 (± 0.17) 0.65 0.52
Nabataean -0.08 (± 0.19) -0.41 0.68
New Tai Lue 0.30 (± 0.19) 1.55 0.12
Nyiakeng Puachue Hmong -0.05 (± 0.19) -0.24 0.81
Ogham 0.10 (± 0.20) 0.49 0.63
Ol Chiki -0.05 (± 0.19) -0.27 0.79
Old Permic -0.03 (± 0.17) -0.18 0.86
Osmanya 0.28 (± 0.27) 1.02 0.31
Pau Cin Hau 0.06 (± 0.17) 0.38 0.71
Phoenician 0.07 (± 0.20) 0.36 0.72
Pracalit -0.20 (± 0.18) -1.12 0.27
Psalter Pahlavi 0.20 (± 0.20) 0.98 0.33
Runic 0.08 (± 0.17) 0.48 0.63
Shavian 0.07 (± 0.18) 0.40 0.69
Sora Sompeng -0.09 (± 0.17) -0.52 0.61
Soyombo -0.24 (± 0.17) -1.43 0.15
Syloti Nagri -0.19 (± 0.18) -1.05 0.30
Tagbanwa 0.21 (± 0.20) 1.03 0.31
Tai Viet 0.07 (± 0.19) 0.39 0.70
Warang Citi 0.19 (± 0.19) 0.96 0.34
Zanabazar Square 0.03 (± 0.17) 0.19 0.85

Table 9: Full logistic regression table for GPT-4o, lan-
guage effects
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Fixed effects β̂ z p

(Intercept) 0.25 (± 0.13) 1.96 0.05
color -0.038 (± 0.031) -1.20 0.23
leftright -0.057 (± 0.031) -1.80 0.072
length 0.0019 (± 0.00068) 2.85 0.005
cross -0.11 (± 0.13) -0.84 0.40
diagonal 0.12 (± 0.13) 0.92 0.36
enclosed 0.051 (± 0.050) 1.03 0.30
horizontal -0.097 (± 0.089) -1.09 0.28
mirror 0.23 (± 0.23) 1.00 0.32
specific 0.48 (± 0.053) 9.02 < 0.001
stroke -0.097 (± 0.068) -1.43 0.15
symmetry 0.13 (± 0.068) 1.97 0.05
vertical 0.28 (± 0.090) 3.15 0.002

Table 10: Full logistic regression table for Idefics2, main
effects

Fixed effects β̂ z p

(Intercept) 0.21 (± 0.13) 1.67 0.10
color 0.08 (± 0.03) 2.55 0.01
leftright 0.04 (± 0.03) 1.13 0.26
length 0.002 (± <0.001) 3.09 0.002
cross -0.11 (± 0.13) -0.86 0.39
diagonal 0.06 (± 0.13) 0.46 0.64
enclosed 0.04 (± 0.05) 0.75 0.45
horizontal -0.10 (± 0.09) -1.07 0.28
mirror -0.03 (± 0.23) -0.14 0.89
specific 0.34 (± 0.05) 6.24 <0.001
stroke -0.06 (± 0.07) -0.87 0.39
symmetry -0.15 (± 0.07) -2.10 0.04
vertical 0.12 (± 0.09) 1.27 0.20

Table 11: Full logistic regression table for Idefics3, main
effects
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Fixed effects β̂ z p

Avestan -0.13 (± 0.16) -0.85 0.40
Bamum -0.12 (± 0.17) -0.73 0.47
Bassa Vah -0.094 (± 0.15) -0.61 0.54
Batak -0.31 (± 0.16) -1.95 0.052
Buginese 0.027 (± 0.20) 0.14 0.89
Cherokee -0.13 (± 0.15) -0.87 0.39
Gothic -0.0029 (± 0.18) -0.016 0.99
Grantha -0.23 (± 0.14) -1.64 0.10
Hangul -0.0026 (± 0.16) -0.017 0.99
Kayah Li -0.15 (± 0.15) -0.98 0.33
Khudawadi -0.020 (± 0.18) -0.11 0.91
Lao 0.11 (± 0.14) 0.75 0.45
Lepcha -0.17 (± 0.15) -1.08 0.28
Linear B -0.18 (± 0.15) -1.19 0.24
Mandaic -0.088 (± 0.15) -0.57 0.57
Meetei Mayek 0.071 (± 0.14) 0.50 0.62
Meroitic Cursive 0.052 (± 0.20) 0.26 0.80
Mro -0.10 (± 0.16) -0.62 0.54
Multani -0.26 (± 0.15) -1.78 0.08
Nabataean -0.069 (± 0.16) -0.44 0.66
New Tai Lue 0.14 (± 0.16) 0.86 0.39
Nyiakeng Puachue Hmong -0.11 (± 0.16) -0.69 0.49
Ogham -0.16 (± 0.17) -0.95 0.35
Ol Chiki -0.060 (± 0.16) -0.38 0.71
Old Permic -0.13 (± 0.14) -0.87 0.38
Osmanya -0.10 (± 0.23) -0.45 0.65
Pau Cin Hau -0.17 (± 0.14) -1.23 0.22
Phoenician -0.33 (± 0.17) -1.94 0.054
Pracalit -0.11 (± 0.15) -0.73 0.47
Psalter Pahlavi -0.13 (± 0.17) -0.76 0.45
Runic -0.17 (± 0.14) -1.23 0.22
Shavian 0.076 (± 0.15) 0.50 0.62
Sora Sompeng -0.10 (± 0.14) -0.69 0.49
Soyombo -0.18 (± 0.14) -1.26 0.21
Syloti Nagri -0.014 (± 0.15) -0.093 0.93
Tagbanwa -0.097 (± 0.17) -0.57 0.57
Tai Viet -0.037 (± 0.16) -0.24 0.81
Warang Citi 0.046 (± 0.16) 0.28 0.78
Zanabazar Square 0.039 (± 0.14) 0.28 0.78

Table 12: Full logistic regression table for Idefics2, lan-
guage effects
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Fixed effects β̂ z p

Avestan -0.11 (± 0.16) -0.66 0.51
Bamum -0.24 (± 0.17) -1.35 0.18
Bassa Vah -0.05 (± 0.16) -0.31 0.76
Batak -0.12 (± 0.16) -0.75 0.46
Buginese 0.31 (± 0.20) 1.54 0.13
Cherokee 0.22 (± 0.15) 1.45 0.15
Gothic -0.07 (± 0.19) -0.37 0.71
Grantha -0.19 (± 0.14) -1.37 0.17
Hangul -0.04 (± 0.16) -0.23 0.82
Kayah Li -0.02 (± 0.15) -0.15 0.88
Khudawadi -0.03 (± 0.19) -0.16 0.88
Lao 0.05 (± 0.15) 0.36 0.72
Lepcha -0.10 (± 0.16) -0.66 0.51
Linear B -0.22 (± 0.15) -1.48 0.14
Mandaic -0.12 (± 0.16) -0.78 0.44
Meetei Mayek -0.03 (± 0.14) -0.20 0.84
Meroitic Cursive -0.11 (± 0.21) -0.52 0.60
Mro -0.23 (± 0.17) -1.35 0.18
Multani -0.07 (± 0.15) -0.44 0.66
Nabataean -0.11 (± 0.16) -0.67 0.51
New Tai Lue 0.15 (± 0.17) 0.87 0.38
Nyiakeng Puachue Hmong 0.1016 (± 0.16) 0.63 0.53
Ogham 0.05 (± 0.17) 0.27 0.79
Ol Chiki -0.12 (± 0.16) -0.77 0.45
Old Permic -0.14 (± 0.15) -0.93 0.35
Osmanya -0.32 (± 0.23) -1.35 0.18
Pau Cin Hau 0.02 (± 0.14) 0.14 0.89
Phoenician -0.26 (± 0.17) -1.47 0.14
Pracalit -0.01 (± 0.15) -0.08 0.93
Psalter Pahlavi -0.14 (± 0.17) -0.83 0.41
Runic 0.05 (± 0.14) 0.38 0.70
Shavian -0.10 (± 0.16) -0.67 0.50
Sora Sompeng -0.10 (± 0.15) -0.67 0.51
Soyombo -0.28 (± 0.14) -1.97 0.05
Syloti Nagri -0.17 (± 0.15) -1.11 0.27
Tagbanwa -0.15 (± 0.17) -0.86 0.39
Tai Viet 0.11 (± 0.16) 0.66 0.51
Warang Citi 0.25 (± 0.17) 1.51 0.13
Zanabazar Square -0.04 (± 0.14) -0.31 0.76

Table 13: Full logistic regression table for Idefics3, lan-
guage effects
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Fixed effects β̂ z p

(Intercept) 0.33 (± 0.14) 2.5 0.02
color 0.050 (± 0.032) 1.6 0.11
leftright 0.022 (± 0.032) 0.70 0.49
length 0.0014 (± <0.001) 1.9 0.05
cross -0.18 (± 0.14) -1.3 0.18
diagonal 0.055 (± 0.14) 0.40 0.69
enclosed 0.26 (± 0.053) 4.8 <0.001
horizontal -0.031 (± 0.095) -0.32 0.75
mirror 0.52 (± 0.25) 2.1 0.04
specific 0.37 (± 0.057) 6.5 <0.001
stroke 0.026 (± 0.073) 0.36 0.72
symmetry 0.0022 (± 0.073) 0.030 0.98
vertical 0.043 (± 0.097) 0.44 0.66

Table 14: Full logistic regression table for LLaVA-
NeXT, main effects.

Fixed effects β̂ z p

(Intercept) 0.17 (± 0.12) 1.48 0.14
color 0.01 (± 0.03) 0.30 0.77
leftright 0.03 (± 0.03) 1.08 0.28
length 0.002 (±<0.001) 3.88 0.0001
cross -0.24 (± 0.12) -2.04 0.04
diagonal -0.06 (± 0.12) -0.54 0.59
enclosed 0.02 (± 0.05) 0.39 0.70
horizontal -0.09 (± 0.08) -1.15 0.25
mirror -0.06 (± 0.22) -0.26 0.80
specific 0.17 (± 0.05) 3.34 0.001
stroke -0.15 (± 0.06) -2.37 0.02
symmetry -0.04 (± 0.06) -0.64 0.52
vertical 0.06 (± 0.08) 0.71 0.48

Table 15: Full logistic regression table for InstructBLIP,
main effects.
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Fixed effects β̂ z p

Avestan -0.29 (± 0.17) -1.7 0.09
Bamum -0.098 (± 0.18) -0.54 0.59
Bassa Vah -0.32 (± 0.17) -1.9 0.05
Batak -0.19 (± 0.17) -1.1 0.25
Buginese 0.023 (± 0.21) 0.11 0.91
Cherokee -0.16 (± 0.16) -0.96 0.34
Gothic -0.39 (± 0.20) -2.0 0.05
Grantha -0.28 (± 0.15) -1.9 0.06
Hangul -0.27 (± 0.17) -1.6 0.11
Kayah Li -0.24 (± 0.16) -1.5 0.14
Khudawadi -0.24 (± 0.20) -1.2 0.21
Lao -0.066 (± 0.15) -0.43 0.67
Lepcha -0.067 (± 0.16) -0.41 0.68
Linear B -0.29 (± 0.16) -1.8 0.07
Mandaic -0.36 (± 0.17) -2.2 0.03
Meetei Mayek -0.068 (± 0.15) -0.45 0.65
Meroitic Cursive -0.25 (± 0.22) -1.1 0.25
Mro -0.32 (± 0.18) -1.8 0.07
Multani -0.27 (± 0.16) -1.7 0.09
Nabataean -0.15 (± 0.17) -0.86 0.39
New Tai Lue -0.053 (± 0.18) -0.30 0.76
Nyiakeng Puachue Hmong -0.049 (± 0.17) -0.29 0.77
Ogham -0.075 (± 0.18) -0.41 0.68
Ol Chiki -0.13 (± 0.17) -0.76 0.45
Old Permic -0.068 (± 0.15) -0.44 0.66
Osmanya -0.23 (± 0.25) -0.92 0.36
Pau Cin Hau -0.19 (± 0.15) -1.2 0.22
Phoenician -0.44 (± 0.18) -2.4 0.02
Pracalit -0.17 (± 0.16) -1.1 0.29
Psalter Pahlavi -0.069 (± 0.18) -0.37 0.71
Runic -0.25 (± 0.15) -1.7 0.10
Shavian -0.13 (± 0.16) -0.79 0.43
Sora Sompeng -0.35 (± 0.16) -2.3 0.03
Soyombo -0.49 (± 0.15) -3.2 0.001
Syloti Nagri -0.31 (± 0.16) -1.9 0.05
Tagbanwa -0.14 (± 0.18) -0.79 0.43
Tai Viet -0.13 (± 0.17) -0.76 0.45
Warang Citi -0.070 (± 0.18) -0.40 0.69
Zanabazar Square -0.0030 (± 0.15) -0.020 0.98

Table 16: Full logistic regression table for LLaVA-
NeXT, language effects
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Fixed effects β̂ z p

Avestan 0.04 (± 0.15) 0.27 0.78
Bamum 0.05 (± 0.16) 0.29 0.77
Bassa Vah -0.14 (± 0.14) -1.01 0.32
Batak -0.07 (± 0.15) -0.49 0.63
Buginese 0.36 (± 0.19) 1.95 0.05
Cherokee -0.24 (± 0.14) -1.68 0.09
Gothic -0.10 (± 0.17) -0.58 0.56
Grantha -0.16 (± 0.13) -1.23 0.22
Hangul -0.15 (± 0.15) -1.01 0.31
Kayah Li -0.15 (± 0.14) -1.11 0.27
Khudawadi -0.01 (± 0.17) -0.08 0.94
Lao -0.22 (± 0.13) -1.61 0.11
Lepcha -0.02 (± 0.14) -0.13 0.90
Linear B 0.0003 (± 0.14) 0.003 0.99
Mandaic -0.07 (± 0.14) -0.45 0.65
Meetei Mayek 0.01 (± 0.13) 0.04 0.97
Meroitic Cursive 0.10 (± 0.19) 0.54 0.59
Mro -0.16 (± 0.15) -1.06 0.29
Multani 0.01 (± 0.14) 0.06 0.95
Nabataean -0.02 (± 0.15) -0.12 0.90
New Tai Lue -0.03 (± 0.15) -0.21 0.84
Nyiakeng Puachue Hmong -0.21 (± 0.15) -1.40 0.16
Ogham -0.12 (± 0.16) -0.76 0.45
Ol Chiki -0.06 (± 0.15) -0.43 0.67
Old Permic -0.12 (± 0.13) -0.89 0.38
Osmanya -0.26 (± 0.22) -1.20 0.23
Pau Cin Hau -0.06 (± 0.13) -0.48 0.63
Phoenician -0.14 (± 0.16) -0.86 0.39
Pracalit 0.01 (± 0.14) 0.06 0.95
Psalter Pahlavi 0.01 (± 0.16) 0.09 0.93
Runic -0.03 (± 0.13) -0.24 0.81
Shavian -0.02 (± 0.14) -0.17 0.86
Sora Sompeng -0.14 (± 0.14) -1.06 0.29
Soyombo -0.12 (± 0.13) -0.90 0.37
Syloti Nagri -0.10 (± 0.14) -0.68 0.50
Tagbanwa -0.14 (± 0.16) -0.90 0.37
Tai Viet -0.10 (± 0.15) -0.68 0.50
Warang Citi -0.01 (± 0.15) -0.01 0.99
Zanabazar Square -0.08 (± 0.13) -0.64 0.52

Table 17: Full logistic regression table for InstructBLIP,
language effects.
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Fixed effects β̂ z p

(Intercept) 0.21 (± 0.15) 1.47 0.14
color 0.04 (± 0.03) 1.33 0.18
leftright 0.04 (± 0.03) 1.23 0.22
length 0.004 (± 0.001) 4.77 <0.001
cross -0.14 (± 0.15) -0.96 0.34
diagonal -0.02 (± 0.15) -0.14 0.89
enclosed 0.15 (± 0.06) 2.62 0.009
horizontal -0.19 (± 0.10) -1.89 0.060
mirror 0.45 (± 0.27) 1.70 0.089
specific 0.49 (± 0.06) 7.96 <0.001
stroke -0.13 (± 0.08) -1.59 0.11
symmetry 0.01 (± 0.08) 0.18 0.85
vertical 0.14 (± 0.10) 1.37 0.17

Table 18: Full logistic regression table for Molmo-O,
main effects.

Fixed effects β̂ z p

(Intercept) 0.070 (± 0.14) 0.49 0.63
color 0.05 (± 0.03) 1.85 0.065
leftright 0.07 (± 0.03) 2.50 0.013
length 0.005 (± <0.001) 5.84 <0.001
cross -0.20 (± 0.14) -1.36 0.18
diagonal 0.35 (± 0.15) 2.37 0.02
enclosed 0.003 (± 0.06) 0.06 0.95
horizontal -0.19 (± 0.10) -1.90 0.059
mirror 0.62 (± 0.27) 2.35 0.02
specific 0.45 (± 0.06) 7.29 <0.001
stroke -0.18 (± 0.08) -2.24 0.03
symmetry -0.29 (± 0.08) -3.64 <0.001
vertical 0.23 (± 0.10) 2.18 0.03

Table 19: Full logistic regression table for Molmo-D,
main effects.
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Fixed effects β̂ z p

Avestan -0.25 (± 0.18) -1.36 0.18
Bamum -0.13 (± 0.20) -0.67 0.50
Bassa Vah -0.05 (± 0.18) -0.26 0.79
Batak 0.01 (± 0.18) 0.05 0.96
Buginese 0.14 (± 0.23) 0.61 0.54
Cherokee -0.05 (± 0.17) -0.31 0.76
Gothic -0.18 (± 0.21) -0.84 0.40
Grantha -0.32 (± 0.16) -1.97 0.05
Hangul 0.06 (± 0.18) 0.32 0.75
Kayah Li -0.21 (± 0.17) -1.19 0.24
Khudawadi -0.32 (± 0.21) -1.51 0.13
Lao -0.10 (± 0.17) -0.61 0.54
Lepcha 0.08 (± 0.18) 0.44 0.66
Linear B -0.10 (± 0.17) -0.57 0.57
Mandaic -0.14 (± 0.18) -0.77 0.44
Meetei Mayek -0.09 (± 0.16) -0.57 0.57
Meroitic Cursive -0.09 (± 0.23) -0.37 0.71
Mro -0.32 (± 0.19) -1.71 0.09
Multani 0.01 (± 0.17) 0.08 0.94
Nabataean -0.05 (± 0.18) -0.30 0.76
New Tai Lue 0.20 (± 0.19) 1.04 0.30
Nyiakeng Puachue Hmong -0.05 (± 0.18) -0.28 0.78
Ogham 0.05 (± 0.20) 0.25 0.80
Ol Chiki 0.11 (± 0.18) 0.58 0.56
Old Permic -0.28 (± 0.17) -1.66 0.10
Osmanya 0.15 (± 0.27) 0.58 0.56
Pau Cin Hau -0.25 (± 0.16) -1.55 0.12
Phoenician -0.15 (± 0.20) -0.77 0.44
Pracalit -0.18 (± 0.17) -1.05 0.29
Psalter Pahlavi -0.04 (± 0.20) -0.22 0.83
Runic -0.12 (± 0.16) -0.71 0.48
Shavian -0.12 (± 0.18) -0.70 0.48
Sora Sompeng -0.16 (± 0.17) -0.95 0.34
Soyombo -0.02 (± 0.16) -0.10 0.92
Syloti Nagri 0.04 (± 0.17) 0.22 0.82
Tagbanwa -0.02 (± 0.20) -0.10 0.92
Tai Viet -0.05 (± 0.18) -0.28 0.78
Warang Citi -0.10 (± 0.19) -0.52 0.61
Zanabazar Square -0.003 (± 0.16) -0.02 0.99

Table 20: Full logistic regression table for Molmo-O,
language efffects.
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Fixed effects β̂ z p

Avestan 0.02 (± 0.18) 0.08 0.93
Bamum 0.05 (± 0.20) 0.24 0.81
Bassa Vah 0.06 (± 0.18) 0.34 0.73
Batak 0.28 (± 0.18) 1.56 0.12
Buginese 0.68 (± 0.23) 2.94 0.004
Cherokee 0.14 (± 0.17) 0.80 0.42
Gothic 0.18 (± 0.21) 0.84 0.40
Grantha -0.10 (± 0.16) -0.59 0.55
Hangul 0.22 (± 0.18) 1.25 0.21
Kayah Li 0.08 (± 0.17) 0.47 0.64
Khudawadi 0.07 (± 0.21) 0.33 0.74
Lao 0.05 (± 0.17) 0.28 0.78
Lepcha 0.04 (± 0.18) 0.21 0.83
Linear B 0.17 (± 0.17) 0.98 0.33
Mandaic 0.03 (± 0.18) 0.17 0.87
Meetei Mayek 0.003 (± 0.16) 0.02 0.99
Meroitic Cursive 0.13 (± 0.23) 0.55 0.58
Mro -0.10 (± 0.19) -0.51 0.61
Multani 0.08 (± 0.17) 0.50 0.62
Nabataean -0.04 (± 0.18) -0.22 0.83
New Tai Lue 0.18 (± 0.19) 0.95 0.34
Nyiakeng Puachue Hmong 0.10 (± 0.18) 0.56 0.57
Ogham 0.08 (± 0.20) 0.43 0.67
Ol Chiki 0.17 (± 0.18) 0.91 0.36
Old Permic 0.16 (± 0.17) 0.99 0.32
Osmanya -0.08 (± 0.27) -0.29 0.78
Pau Cin Hau 0.01 (± 0.16) 0.08 0.94
Phoenician -0.03 (± 0.20) -0.13 0.90
Pracalit 0.005 (± 0.17) 0.03 0.98
Psalter Pahlavi 0.29 (± 0.20) 1.47 0.14
Runic 0.03 (± 0.16) 0.20 0.84
Shavian -0.03 (± 0.18) -0.15 0.88
Sora Sompeng -0.07 (± 0.17) -0.39 0.69
Soyombo -0.06 (± 0.16) -0.35 0.73
Syloti Nagri -0.006 (± 0.17) -0.03 0.97
Tagbanwa 0.44 (± 0.20) 2.25 0.026
Tai Viet 0.02 (± 0.18) 0.08 0.93
Warang Citi 0.24 (± 0.19) 1.28 0.20
Zanabazar Square 0.21 (± 0.16) 1.31 0.19

Table 21: Full logistic regression table for Molmo-D,
language effects.
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