Revealing and Mitigating the Local Pattern Shortcuts of Mamba

Wangjie You'*, Zecheng Tang'*, Juntao Li'’, Lili Yao?, Min Zhang'
1School of Computer Science and Technology, Soochow University
2Machine learning platform department, Tencent
{wjyouuu, zctang}@stu.suda.edu.cn

{1jt,minzhang}@suda.edu.cn;

Abstract

Large language models (LLMs) have advanced
significantly due to the attention mechanism,
but their quadratic complexity and linear mem-
ory demands limit their performance on long-
context tasks. Recently, researchers intro-
duced Mamba, an advanced model built upon
State Space Models (SSMs) that offers linear
complexity and constant memory. Although
Mamba is reported to match or surpass the per-
formance of attention-based models, our analy-
sis reveals a performance gap: Mamba excels
in tasks that involve localized key information
but faces challenges with tasks that require han-
dling distributed key information. Our con-
trolled experiments suggest that the inconsis-
tency arises from Mamba’s reliance on local
pattern shortcuts across model scales (10M to
1.4B), which enable Mamba to remember local
key information within its limited memory but
hinder its ability to retain more dispersed infor-
mation. Therefore, we introduce a global gate
module into the Mamba model to address this
issue. Experiments on extensive synthetic tasks,
as well as real-world tasks, demonstrate the ef-
fectiveness of our method. Notably, with the
introduction of only 4M extra parameters, our
approach enables the Mamba model (130M)
to achieve a significant improvement on tasks
with distributed information, increasing its per-
formance from below 5% to 80%.

1 Introduction

In recent years, State Space Model (SSM) has
emerged as a promising successor to the attention-
based models (Vaswani et al., 2017) for long se-
quence modeling due to its linear computational
complexity and constant memory requirements (Gu
et al., 2022a; Gupta et al., 2022; Gu et al., 2022b;
Smith et al., 2023; Dao and Gu, 2024). Differ-
ent from the attention mechanism, which stores

* Equal Contribution.
¥ Corresponding author.

liliyao@tencent.com

100 # Key-Value Pairs = 1 (98.50)
95.00
90.00 .
75 81.25 Testing Length = 4k
73.12
50
38.75
25
ol oo 89 156 031 000
2 4 8 16 32 64 128 256 512

(a) Performance as key-value pairs numbers increase.

100
3 # Key-Value Pairs = 1
75

50 # Key-Value Pairs = 32

7 Butuies)

yibua

25

o # Key-Value Pairs = 64
Key-Value Pairs = 128

05k 10k 20k 30k 40k 50k 60k

(b) Performance as testing length increases.

Figure 1: Mamba exhibits two distinct trends under
different settings. The y-axis represents accuracy, while
the x-axis in Fig.(a) shows the number of key-value pairs
in the context with a testing length of 4K. In Fig.(b), the
x-axis represents the testing length.

information for each token and performs pairwise
computations between them, SSMs use a fixed-size
state space to store history. This allows all com-
putations to involve only the constant-sized state
space. Mamba (Gu and Dao, 2023), built upon
SSMs, is claimed to have achieved performance on
par with, or even surpassing, that of attention-based
models with the same parameters across language
modeling and various synthetic tasks (Dao and Gu,
2024; Waleffe et al., 2024; Chen et al., 2024).
However, we observe an intriguing discrepancy
in Mamba’s performance on two settings of the
MQAR! task: one requires the model to retrieve in-
formation from a local segment (single Key-Value
pair) within the context, while the other requires re-
trieving dispersed information (multiple Key-Value
pairs) from the context. As shown in Fig 1(a),

'A synthetic task for testing a model’s retrieval capability.

12156

Findings of the Association for Computational Linguistics: ACL 2025, pages 12156-12178
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Mamba can effectively retrieve information from
the local segment (single Key-Value pair within a
4K context), even with a context length of up to
60K. However, in tasks that require extracting dis-
persed (a few Key-Value pairs within a 4K context)
or locally dense information (a large number of
Key-Value pairs within a 4K context), Mamba’s
performance is significantly affected and deterio-
rates sharply as the information density and disper-
sion increase. Additionally, as shown in Fig 1(b),
compared to the effects of information density and
dispersion within the context, Mamba is relatively
less affected by the context length.

In this paper, we conduct a controlled study to
better understand the characteristics of Mamba un-
der different context settings. We start by analyzing
Mamba’s performance on different synthetic tasks,
covering different information densities and disper-
sions. Our findings reveal that Mamba relies on
local pattern shortcuts to extract the desired infor-
mation from the context, which manifests in two as-
pects: (1) positional shortcuts, i.e., Mamba tends
to extract information from specific positions; and
(2) n-gram shortcuts, i.e., Mamba tends to utilize
specific high-frequent training templates to locate
information. These shortcuts make the model less
robust to perturbed inputs, thereby further limiting
Mamba’s ability to generalize to complex tasks.
As a result, as previous works revealed (Amos
et al., 2023; Park et al., 2024; Ben-Kish et al., 2024,
Arora et al., 2024c), Mamba performs well on tasks
it trained on but struggles significantly on unseen
tasks. Furthermore, we explain potential reasons
for these shortcuts from two perspectives: the lim-
ited recurrent state size of the Mamba model and
the constrained selectivity mechanism of SSMs.

To mitigate the aforementioned issues, we pro-
pose a global gate mechanism for the Mamba
model. Specifically, we design an input-dependent
global gating module for Mamba and observe sig-
nificant improvements in its performance on com-
plex synthetic tasks and the language modeling
task. Notably, by introducing just 4M additional
parameters to the 130M-sized Mamba model,
Mamba can achieve a breakthrough from below
5% to 80% on high information density synthetic
tasks, significantly narrowing the performance gap
between Mamba and attention-based models.

2 Background

2.1 State Space Model (SSM)

Structured state space sequence models (S4) (Gu
et al., 2021, 2022b; Goel et al., 2022; Ma et al.,
2023; Hasani et al., 2023; Smith et al., 2023), rep-
resent a recent class of sequence models closely
related to classical state space models. These mod-
els are inspired by a specific continuous system that
facilitates the mapping of a one-dimensional func-
tion or sequence z(t) € R to an output y(¢) € R
through an implicit latent state h(t) € RY. Con-
cretely, S4 models are characterized by four pa-
rameters (A, A, B, C'), which define a sequence-
to-sequence transformation as follows:

W (t) = Ah(t — 1) + Bax(t) ”
y(t) = Ch(t)
where (A, A, B) are the discrete parameters, A €
RV*N B ¢ RVX1 0 e RN, A = f4(A, A),
B = fp(A, A, B). Additionally, f4(-), f(-) are
the pre-defined discretization functions.

2.2 Selective State Space Model (Mamba)

Selective State Space Model, as known as Mamba,
is different from previous SSMs where the model’s
dynamics remain constant over time, it can effi-
ciently update its hidden state based on the current
input by introducing selective parameters. Specifi-
cally, Mamba accomplishes this by employing spe-
cialized trainable linear layers that map the input
to the matrices B, C, and the time step At for
each processing step. Mamba conditions the dis-
crete time-variant matrices dynamically based on
the input as follows:

At = ’7'(SA)(,5)7 Et = SBXt,
Zt = exp(AtAt),

6f = (Sch)T7 (2)
B;=BA (3

where At represents the discretization step, 7 de-
notes the softplus function, and Sa, Sp, and S¢
are linear transformation functions. This enhance-
ment empowers Mamba to execute more flexible se-
quence modeling, particularly for tasks demanding
extensive historical information e.g., the Selective
Copying task (Arjovsky et al., 2016) and the Induc-
tion Heads task (Olsson et al., 2022), surpassing
the performance of other SSMs. Further discus-
sions on other SSM variants and efficient model
structures can be found in Appendix A.2.

12157

I Context (C) |

klvlkzvzksvapp"'ppqz?'-'qa?ppql?p"'B
Key-Value Pairs (KV) Paddings (P) + Queries (Q) Mode's Output (0)
(Begining) (Remaining positions) (Random positions) (After queries)

Figure 2: Ilustration of MQAR Task.

2.3 Multi-Query Associative Recall

To make evaluations more controllable and elimi-
nate the influence of the models’ intrinsic knowl-
edge, synthetic tasks are often employed (Hsiech
et al., 2024). We conduct a further discussion of
the synthetic tasks in Appendix A.1. Among them,
the Multi-Query Associative Recall (MQAR) is a
widely adopted synthetic task for SSMs. In MQAR,
an input x is structured as a sequence of bigrams
representing key-value pairs, which are randomly
drawn from a predefined dictionary. Queries, i.e.,
the keys of key-value pairs, are then appended to
this sequence, requiring the model to retrieve the
corresponding value for the queried key. As de-
picted in Fig. 2, formally, the input context C =
(co,...,cn—1) consists of N tokens, where ¢; € V
and V is the vocabulary of the model. We define NV
as the context length, representing the length of the
input sequence. The input sequence C can be di-
vided into three parts: key-value pairs KV, queries
Q, and padding tokens P. The key-value pairs are
KV = {(kfl, Ul), (k‘g, Ug), ey (k?n, Un)}, where n
is the predefined number of key-value pairs. In
the standard MQAR task, these key-value pairs are
placed at the beginning of the sequence. Queries
are represented as Q@ = {q1,¢2,...,qn}, Where
q; = k;, and are inserted at random positions after
the key-value pairs. Padding tokens are defined as
P =C\ (QU KV), and they occupy the remain-
ing positions in C, filled with random tokens. The
objective of the MQAR task is to predict:

O; = argmax fy(oi | a1, KV, P),

where the model aims to output the most probable
token o; from the vocabulary, given the padding
tokens, key-value pairs, and the query q;. MQAR
requires models to memorize key-value pairs in
their hidden state, which presents a significant chal-
lenge for rnn-based models, as they maintain a
fixed-size state to handle all historical information.

3 Analysis of Local Pattern Shortcuts in
Mamba

Previous studies (Gu and Dao, 2023; Arora et al.,
2024a,b) have shown that Mamba’s success stems
from its data-dependent features, where Mamba
can dynamically gate the previous information
based on the current input. However, based on our
preliminary study (as shown in Fig. 1), we observe
that Mamba performs poorly when the key infor-
mation with the context becomes denser or more
dispersed, regardless of various context lengths.
To discover the underlying reasons, we study the
changes in the state space of the Mamba model dur-
ing the inference process. In Sec. 3.1, we first refor-
mulate Mamba’s process of assigning weights to
each token into an attention-like matrix. Then, we
test the mamba model with the synthetic retrieval
tasks and analyze the model’s state space during
the inference process. Specifically, we utilize the
130M version of Mamba in all the experiments
and design three different testing sets based on the
MOQAR task: (1) Positional Pattern Change, which
alters the distribution of information in the con-
text, moving beyond the previous MQAR task that
places key information at the beginning (Sec. 3.3);
(2) N-gram Gathering, which controls the degree of
aggregation of key information in the context by in-
troducing more information within local segments,
rather than solely testing the model’s recall ability
of single token (Sec. 3.2); and (3) Noise Injection,
which adds noise tokens into the key information
to perturb the model predictions, aiming to test the
robustness of Mamba model (Sec. 3.4).

3.1 Reformulating Selection Process of
Mamba into Attention-like Matrix

Ali et al. suggests that Mamba’s selection pro-
cess can be reformulated into an attention-like
matrix. Specifically, give the sequence Y
{y1,y2,- -+ ,yr} that contains L tokens, we lever-
age Eq. 1 to calculate each y; and reformulate
the calculation process into matrix multiplication,

12158

Standard|g, | vy |y | v, - al 2 @l 2
iPosiﬂon: what if key-value pairs are not at the begining?
Last ky|vi)ka|va[= = = g2 ? a2
Shuffle k] V1 kz V2 LI] q1|? q2 | ?

Figure 3: MQAR task with different positional patterns.

which can be written as:

x

Y1 Q1,1 01,2 Q1L 1

Y2 Q21 Q22 v Q2L T2
y="1=1. .. 7] @

' aLy aLe - oL '

YL TL

where o; ; = C; (szjﬂ flk> Bj (i,j € [1,L]).
Then, we can transform Eq. 4 into an attention-
like matrix by substituting and expanding o; ;:

n C1By 0 0 T
Y2 CaA2By C2 B2 0 X2

. . . 0

CrTf—y AxB1 CLI1f—3 ArB2 -+ CLBL L
(%)

where the portion enclosed by the underbrace rep-

resents the weights allocated by Mamba across

the sequence, and we visualize this part to explore

Mamba’s state space.

yrL

3.2 Positional Pattern Change

Task Description As depicted in Fig. 3, in the
standard MQAR task, all Key-Value pairs are placed
at the beginning of the sequence. This setup may
lead the model to learn that it only requires “re-
membering” content from the initial portion of the
sequence during training. To avoid such a fixed
pattern of information distribution, we concentrate
them at the end of the sequence (Last) as well as dis-
perse the key-value pairs from the beginning to ar-
bitrary positions throughout the sequence (Shuffle).
As depicted in Fig. 3, after adopting the aforemen-
tioned settings, i.e., Last and Shuffle, queries (Q)
are inserted at the random positions in the remain-
ing padding sequence (P). Then, we train the
Mamba model separately with training data con-
taining three different positional patterns and eval-
uate it on all three test sets.

Results As shown in Table 1, we can observe that
when trained on the standard MQAR setup, Mamba
achieved near-perfect accuracy on the in-domain

Test\ Train | Standard | Last | Shuffle

Standard | 99.72 | 82.64 | 90.80
Last | 1544 | 99.35 | 78.09
Shuffie | 2237 | 5408 | 80.98

Table 1: Model performance on the Positional Pattern
Change setting, where we report the prediction accuracy.

test set (standard), achieving 99.72 points. In the
other test settings, i.e., Last and Shuffle, Mamba
only managed 15.44% and 22.37% accuracy, re-
spectively. However, when experimenting with
the Mamba model on other settings, e.g., training
with Shuffle data and testing with all three test-
ing sets, Mamba performs consistently across all
test settings, achieving or exceeding 50% accu-
racy. This finding reveals that Mamba tends to
leverage information position patterns from the
training data, allowing it to excel in tasks where
the training and testing phases follow the same
fixed template. The visualized attention matrix
of Mamba trained on the standard and test on all
three position patterns, as depicted in Fig. 4, further
supports this conclusion. The attention matrix rep-
resents the weights allocated by Mamba across the
sequence, despite the relocation of the key-value
pairs, Mamba consistently attends to the beginning
of the sequence, a behavior aligned with its training
pattern but misaligned with the actual key-value
pairs’ position pattern. This results in near-perfect
performance in the in-domain i.e., standard setting,
but a noticeable decline in out-of-domain patterns.

3.3 N-gram Gathering

Task Description In the standard MQAR task,
models are required to predict the correct value
given a key, where both the key and value are sin-
gle tokens, i.e., (k;,v;) € KV and |k;| = |v;| = 1.
We refer to this configuration as the K/V1 setting,
primarily evaluating the model’s 2-gram recall ca-
pability. However, addressing only 2-gram recall
is insufficient, as the amount of information to be
recalled is minimal, and learning specific 2-gram
pairings is relatively easy. Moreover, most real-
world entities involve multiple tokens, and test-
ing 2-gram capability alone fails to reflect per-
formance on other tasks. Therefore, to increase
the amount of information to be recalled, we pro-
pose the N-gram Gathering setting. As shown in
Fig. 5, we increase the number of tokens required
for recall in both the Key and Value portions, i.e.,

12159

Key-value Pairs
| ==Attention (Major)

- -

v
Y
1
1
21
Ll |
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
|

0 10 20 30 40 50 60
(a) Standard-Standard

| ==Attention (Major)I

20 30 40 50 60
(b) Standard-Last

Key-Value Pairs
| ==Attention (Major)

Key-Value Pairs

0 10 20 30 40 50 60
(c) Standard-Shuffle

Figure 4: The attention-like matrices of Mamba-130M that are trained on standard MQAR task and are tested on all
three testing sets, i.e., Standard, Last, and Shuffle. We plot the results of the 22nd layer of the model. Lighter colors
indicate higher attention scores at specific positions. The red dashed line represents the location of the key-value
pairs, while the yellow dashed line indicates where the model attends to the most.

K1V1 |k |vi]ks | v2 = q1|? q2| ?

H N-gram: what if key-value pairs are not 2-gram?
K1V2 |k} ol | 2[R} v} [s lgiaf 22| |a3 2|2
K2v2 (82| of | o3[B3 o[03] = = = |adlad] | |ad\ad

Figure 5: MQAR task with different n-gram patterns.

|ki| = N,|jvi|] = M (N > 1,M > 1) We re-
fer to such a configuration as the KNVM setting.
Specifically, we set up three data configurations:
Ki1V1,K1V2, K2V2. We train the model on each
of these settings separately and then evaluate it
across all three testing sets.

Results As shown in Table 2, Mamba exhibits
strong performance when the number of key-value
tokens in the training set matches or exceeds those
in the test set, e.g., training with K1V71 or K1V2
and testing with K1 V1. However, its performance
deteriorates significantly when the number of value
tokens in the test set surpasses those encountered
during training, e.g., training with K1 V1 and test-
ing with K1V2 or K2V2. This indicates that
Mamba tends to learn simple patterns in tasks, e.g.,
learning to respond based on the single anchor to-
ken in N key tokens, which hinders its generaliza-
tion ability on other complex tasks. Furthermore,
Mamba’s success would not be due to true n-gram
recall but rather an over-reliance on the struc-
tural cues provided by the special characters
or templates, which can also explain its failure
in out-of-domain n-gram setting. We refer to this
phenomenon as the n-gram shortcut of Mamba.

Test\ Train | K1V1 | K1V2 | K2V2

KIVI | 99.95 | 99.81 | 66.82
KIV2 | 000 | 99.96 | 96.66
K2V2 | 000 | 99.90 | 99.98

Table 2: Model performance on the N-gram Gathering
setting, where we report the prediction accuracy.

3.4 Noise Injection

Task Description We further explore Mamba’s
robustness, specifically its ability to generalize be-
yond the shortcuts mentioned above. As shown
in Fig. 6, we place n sets of Key-Value pairs
at the beginning of the sequence and divide
these Key-Value pairs into four regions: KV =
{(k‘l, Ul), (k‘z, UQ), (k‘g, Ug), (/{74, U4)}. Then, two
settings are adopted: K1V1* and K2V2*. 1In
K1V1*, all the keys k; are identical, i.e., k1 =
ky = k3 = k4, and we utilize symbol k; to de-
note those tokens. In K2V2*, the last token of k;
are identical. All the values v; are different in the
above two settings. Then, we let the model predict
the corresponding value by providing k;.

Results As shown in Fig. 6(a), in terms of the
K1V1* setting, we observe that the model’s per-
formance during testing closely aligns with the
training patterns. Specifically, when all tokens
are placed at the beginning of the sequence dur-
ing training (Standard MQAR), the model tends to
retrieve information from the front, primarily focus-
ing on the first 25% of the sequence. Conversely,
if all key information is positioned toward the end
of the sequence during training (Last MQAR), the

12160

Kivi k1 V1 kg V2 == Q| ? @ ?
@ 25% 50% _75% 100%
K1vi*| % vi| % |va| & 03| B |va] = = = ql»

Robustness: what if adding noise in key-value pairs?

kava |F1|kE| ot | ol [R5 | k5 v} 03| = = = |ai|ai|2 |2 [ad|a5|2 |2

@ ’Shured Token:

s\
szz*klﬁv}vszﬁv;vg"'Q1l7??QZE? ?

Figure 6: MQAR task with the injection of noise. * de-
notes the robustness setting.

model tends to retrieve information from the latter
parts of the sequence, concentrating mainly on the
75% to 100% regions. This behavior highlights
Mamba’s over-fitting to the positional patterns
learned during training, which may lead to a re-
liance on positional shortcuts rather than recall
capability. Besides, as shown in Fig. 6(b), we can
observe that as the number of Key-Value pairs in-
creases, Mamba maintains an accuracy exceeding
90% in the presence of noise when there are four
Key-Value pairs. However, as the amount of noisy
Key-Value pairs increases, Mamba’s performance
declines sharply. This indicates that Mamba relies
on the partial high-frequent information within the
keys for its predictions. Therefore, when noise
overwhelms this critical information, the model’s
performance declines dramatically.

4 Mitigating the Shortcuts of Mamba

4.1 Key to Selectivity of Mamba

For attention-based models, the recurrent state
grows with the length of the sequence, enabling
perfect recall accuracy but at the cost of efficiency.
In contrast, RNN-based models maintain a fixed
recurrent state size, which makes it critical to op-
timize the use of their limited memory resources.
Mamba distinguishes itself by efficiently balanc-
ing the memory-recall trade-off through its data-
dependent design. However, our previous experi-
ments revealed that this selective mechanism can in-
advertently introduce shortcuts. So the question is:
how can we mitigate the shortcut phenomenon
while preserving the advantage of Mamba’s
fixed state-space size? To better understand this,
let us revisit Mamba’s state-space update equation:

hi = Ahy_1 + Bay = ehy 1 + AtBxy, (6)

100 s Standard 100
Last
80 80
60 60
40 40
20 201 —a— K2V2
K2Vv2*
0 0
25% 50% 75% 100% 1 2 4 8 16 32
Results Regions Number of Key-Value Pairs
(a) K1V1™ (b) K2v2*

Figure 7: (a) Results under the K1V1™ setting after
training with different position modes (Standard MQAR
and Last MQAR), where the x-axis represents the region
ratios. (b) Results under the K2V2* setting, with the x-
axis indicating the number of key-value pairs for models
trained on standard K2V2 data.

where A; = 7(SAX;). Here, A; is central to
Mamba’s selectivity as it simultaneously governs
the behavior of the matrices A and B through a lin-
ear transformation, ultimately determining how the
recurrent state is updated. In the original Mamba,
Ay is generated from the current input via a short
convolution function followed by two linear trans-
formations. The primary goal of this process is to
extract local features and establish contextual re-
lationships among tokens before entering the state
space module. However, as the short convolution
only captures relationships within a limited scope,
its reliance can lead to shortcuts in scenarios where
important information is distributed across distant
positions. In such cases, the model may overly
depend on simple features learned during training
(e.g., positional cues) rather than capturing deeper,
more meaningful dependencies.

4.2 Incorporating Global Gate Mechanism

To address the shortcut issue, we propose incor-
porating additional global information into A,
through a fine-grained global gate mechanism.
Specifically, we introduce a long convolution mod-
ule to capture distant contextual information and
integrate its output with the original A,. This en-
hanced process is formulated as follows:

A, = T((Wz o (W - Convshon(Xt))) -
® J(Convlong(Xt))) ,

where Convgpore and Convye,e denote the short and
long convolution operations, respectively. The
function 7 represents the softplus activation func-
tion, W1 and Wy, are linear transformation matri-
ces, o is the nonlinear activation function (specif-
ically SiLU (Ramachandran et al., 2017)), and ®

12161

Models Scale | Shuffle Std-Last Std-Shuffie ~ K2V2 K2V2-Robustness K4V8-Shuffle
Pythia (Biderman et al., 2023) 133m | 99.82 93.75 94.31 99.99 99.99 99.99
Hyena (Poli et al., 2023) 153m X X 77.62 65.92 2251
RWKV (Peng et al., 2023) 153m X X 85.99 72.62 6.57
Mamba (Gu and Dao, 2023) 129m | 80.98 15.44 2237 99.98 66.01 X

w/ mimetic_init (Trockman et al., 2024) 129m 82.57 16.11 20.42 99.96 80.37 X

w/ 2x State Size 130m | 88.57 40.22 31.88 99.84 78.90 X

w/ 4x State Size 134m | 96.92 35.89 32.88 99.84 57.11 X

w/ Global Gate 133m | 9045 4197 35.73 99.06 81.46 80.54

Table 3: Performance of models on variations of MQAR tasks. Xdenotes that the model fails with this setting with
an accuracy lower than 5%. Xindicates that the model fails in this setting, with an accuracy lower than 5%. State
Size refers to the Mamba model with an increased state space size, which was originally set to 16.

Models Scale | Std-Std | Std-Last | Std-Shuffle
Mamba 13.8m 98.94 17.48 20.81
w/ GA 14.3m 99.33 23.21 36.33
Mamba 370m 99.94 18.66 23.62
w/ GA 384m 100.0 30.10 47.52
Mamba 1.4b 99.64 21.21 26.73
w/ GA 1.4b 99.61 32.16 48.84

Table 4: The results of Mamba model at three differ-
ent model scales i.e.,13m, 370m, and 1.4b on position
change tasks, GA denotes the global gate strategy.

denotes element-wise multiplication.

The output of the long convolution serves as a
gating mechanism that applies a global gate to the
original A;. By incorporating this global informa-
tion, Mamba’s selectivity becomes better aligned
with global decision-making rather than being con-
strained to local patterns. This refinement enables
the model to mitigate shortcut dependencies and
capture more meaningful long-range relationships.

5 Experiment

5.1 Experimential Settings

Datasets We selected tasks where the original
Mamba exhibited clear shortcuts and performed
poorly. The settings are the same as outlined in
Sec. 3. For the Shuffle and K2V2 settings, models
are trained and tested on the same corresponding
setting. We evaluate the model’s in-domain capa-
bilities in scenarios with increased information den-
sity and dispersion. In contrast, the Last and Std-
Shuffle tasks test the model’s out-of-domain perfor-
mance, where the testing mode is inconsistent with
the training one, i.e., training on the standard posi-
tion pattern and testing on the Last and Shuffle pat-
tern. In the K2V 2-Robustness and K4 V§-Shuffle
settings, we evaluate whether the models can miti-
gate the influence of noise as well as handle tasks
with both high information density and divergence.

We further investigate the impact of the global gate
strategy on downstream task performance, addi-
tional details can be found in Appendix B.

Baselines We adopt one representative attention-
based model, Pythia (Biderman et al., 2023), along
with two RNN-based models, Hyena (Poli et al.,
2023) and RWKV (Peng et al., 2023), at a com-
parable scale. Our goal is to investigate whether
models with different architectures exhibit similar
local pattern shortcuts as Mamba. For Mamba mod-
els, Trockman et al. (2024) introduced a mimetic
initialization technique to enhance Mamba’s recall
ability, which we adopt as a baseline. Addition-
ally, increasing the state size intuitively allows the
model to retain more historical information, reduc-
ing past data compression and thereby decreasing
reliance on shortcuts. More details on model train-
ing hyperparameters can be found in Appendix H.

5.2 Main Result

Syntactic Tasks Table 3 presents the results on
syntactic tasks, with particular focus on short-
cut scenarios. The attention-based model, Pythia,
achieves near-perfect performance across all tasks
by effectively capturing long-range token-to-token
dependencies. In contrast, RNN-based models
such as Hyena and RWKYV struggle on the MQAR
task due to their fixed state sizes. Notably, neither
Hyena nor RWKYV exhibits the positional pattern
shortcut observed in Mamba, as they do not display
a significant gap between in-domain and out-of-
domain performance. Moreover, although both
models trail Mamba in standard K2V 2 tasks, they
perform comparably in the K2V2-Robustness set-
ting, suggesting that Mamba is more susceptible to
noise—likely due to its reliance on n-gram short-
cuts. These findings imply that Mamba’s short-
cut behavior is closely tied to its unique selective
mechanism, which prioritizes local patterns over

12162

Scale Models | Wiki. | LAMBDA PIQA Hella. Wino. ARC-e ARC-c¢c Openbook.
ppld acc T acc T acc T acc T acc T acc T acc T
130M Params Pythia 40.94 22.96 61.21 2790 51.14 43.60 18.09 14.20
3B tokens Mamba2 | 43.18 20.80 60.55 28.17 5249 39.98 18.69 16.60
Mamba 40.46 21.91 62.13 28.70 52.25 43.60 18.52 14.80
w/ GA | 38.92 22.80 62.62 28.79 52.41 42.38 18.69 16.20
370M Params Pythia 24.25 35.36 65.78 3241 51.70 51.47 19.88 18.80
15B tokens Mamba2 | 28.23 32.48 66.70 31.82 51.17 49.07 20.31 19.20
Mamba 23.48 34.29 68.77 35.13 5146 51.30 21.33 19.20
w/ GA | 22.43 35.07 6790 35.16 51.14 53.24 22.70 20.80
790M Params Pythia 23.12 40.46 69.32 34.68 53.35 56.34 23.78 18.60
30B tokens Mamba2 | 23.02 36.13 68.77 3549 5225 54.12 21.84 21.40
Mamba 23.25 37.47 68.99 3521 51.54 54.17 23.72 20.80
w/GA | 21.33 39.84 69.64 36.55 5249 56.73 24.40 19.00

Table 5: The results of models on downstream tasks, GA denotes the global gate strategy.

the global context because of the constrained A;.
Regarding Mamba models, while increasing the re-
current state size generally enhances performance,
the gains are not consistently proportional, and the
mimetic initialization method does not yield a sig-
nificant boost. In contrast, integrating global infor-
mation via the Global Gate consistently improves
robustness without inflating the parameter count.
The Global Gate strategy outperforms the original
Mamba on all tasks and excels in out-of-domain
scenarios, achieving 81.46% in K2V2-Robustness
and 80.54% in K4 V8-Shuffle, thereby effectively
mitigating reliance on local shortcuts while han-
dling high-information-density tasks.

Mamba Shortcuts across Model Scales We ex-
tend our analysis to include a broader range of
model scales, beyond the 130M parameter config-
uration, to better understand how these shortcuts
behave across different model capacities. Specif-
ically, we select a small (10M parameters) and
a large (1.4B parameters) version of Mamba and
test them in the positional pattern change scenario,
where we observe significant shortcut phenomena.

All models are trained on the standard position
pattern and tested on three different position pat-
terns. The results are shown in Table 4. It can
be observed that the shortcut phenomenon occurs
across Mamba models of different scales, and this
phenomenon does not diminish as the model size
increases. On the contrary, interestingly, we find
that the impact of shortcuts may become more pro-
nounced in larger models. For example, in the
Std-Last task, the 13M Mamba outperforms the
370M Mamba. We attribute this to overparameter-
ization, which aligns with the ideas presented by
Chen et al.. They suggest that Mamba models may
fail to generalize beyond the training length due to

the excessive state capacity. Notably, global gate al-
leviates the shortcut phenomenon across all model
scales, demonstrating the robustness of our method.
We further investigate the performance of our pro-
posed global gate strategy on downstream tasks
in Appendix B and provide insight analysis of the
trade-off between the local and global gate mecha-
nisms on information processing in Appendix D.

Downstream Tasks As shown in Table 5,
Mamba has already demonstrated notable success
in downstream tasks, outperforming the attention-
based baseline model, Pythia. The introduction
of Global Gate further strengthens Mamba’s capa-
bilities in language modeling and commonsense
reasoning. The Global Gate mechanism consis-
tently delivers improvements across all evaluated
tasks, highlighting its effectiveness in diverse do-
mains. The most significant gains are observed
in language modeling, where the perplexity is re-
duced by 1.54 compared to the original Mamba.
This reduction underscores the model’s enhanced
ability to capture long-range dependencies while
mitigating over-reliance on local patterns. Further
exploration of downstream tasks, especially recall-
intensive tasks, is presented in Appendix B, with a
detailed case study provided in Appendix D.

6 Conclusion

In this work, we extend the MQAR task to inves-
tigate the underlying behavior of Mamba. Our
controlled experiments reveal that Mamba relies on
local pattern shortcuts at different model scales. To
address this issue, we introduce a fine-grained se-
lection mechanism in the Mamba model by incorpo-
rating global information into the decision-making
factor A;. Experiments on both existing and newly

12163

proposed synthetic tasks show that our method
effectively mitigates the shortcut phenomenon in
Mamba across model scales ranging from 13.8M
to 1.4B parameters. Further experiments on real-
world tasks further demonstrate the effectiveness of
our approach. Our findings suggest that for RNN-
based models with a fixed recurrent state size, ef-
ficiently utilizing the available state space is far
more critical than simply increasing capacity.

Limitation

Our approach is primarily focused on experi-
mentally analyzing the shortcut phenomenon in
Mambea; further exploration of theoretical insights
is needed. The proposed method aims to address
the shortcut issues observed in Mamba on synthetic
tasks. However, further improving performance on
downstream tasks may require additional adapta-
tions and comprehensive testing across a wider
range of models with varying scales. While pre-
liminary results indicate that similar shortcuts were
not present in other rnn-based models, further vali-
dation is needed to determine whether our findings
generalize across diverse architectures.

Acknowledgements

We want to thank all the anonymous reviewers
for their valuable comments. This work was sup-
ported by the National Science Foundation of
China (NSFC No. 62206194), the Natural Sci-
ence Foundation of Jiangsu Province, China (Grant
No. BK20220488), and the Young Elite Scientists
Sponsorship Program by CAST (2023QNRC001).

References

Ameen Ali, Itamar Zimerman, and Lior Wolf. 2024.
The hidden attention of mamba models. Preprint,
arXiv:2403.01590.

Ido Amos, Jonathan Berant, and Ankit Gupta. 2023.
Never train from scratch: Fair comparison of long-
sequence models requires data-driven priors. arXiv
preprint arXiv:2310.02980.

Martin Arjovsky, Amar Shah, and Yoshua Bengio. 2016.
Unitary evolution recurrent neural networks. In
The International Conference on Machine Learning
(ICML), pages 1120-1128.

Simran Arora, Sabri Eyuboglu, Aman Timalsina, Isys
Johnson, Michael Poli, James Zou, Atri Rudra, and
Christopher Ré. 2024a. Zoology: Measuring and
improving recall in efficient language models. In The
International Conference on Learning Representa-
tions (ICLR).

Simran Arora, Sabri Eyuboglu, Michael Zhang, Aman
Timalsina, Silas Alberti, Dylan Zinsley, James Zou,
Atri Rudra, and Christopher Ré. 2024b. Simple
linear attention language models balance the recall-
throughput tradeoff. In The International Conference
on Machine Learning (ICML).

Simran Arora, Aman Timalsina, Aaryan Singhal, Ben-
jamin Spector, Sabri Eyuboglu, Xinyi Zhao, Ashish
Rao, Atri Rudra, and Christopher Ré. 2024c. Just
read twice: closing the recall gap for recurrent lan-
guage models. arXiv preprint arXiv:2407.05483.

Jimmy Ba, Geoffrey E Hinton, Volodymyr Mnih, Joel Z
Leibo, and Catalin Ionescu. 2016. Using fast weights
to attend to the recent past. Advances in Neural
Information Processing Systems (NeurIPS), 29.

Assaf Ben-Kish, Itamar Zimerman, Shady Abu-Hussein,
Nadav Cohen, Amir Globerson, Lior Wolf, and
Raja Giryes. 2024. Decimamba: Exploring the
length extrapolation potential of mamba. Preprint,
arXiv:2406.14528.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory
Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit,
USVSN Sai Prashanth, Edward Raff, et al. 2023.
Pythia: A suite for analyzing large language models
across training and scaling. In The International Con-
ference on Machine Learning (ICML), pages 2397—
2430. PMLR.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,
et al. 2020. PIQA: Reasoning about physical com-
monsense in natural language. In Proceedings of
the AAAI conference on Artificial Intelligence, vol-
ume 34.

Yingfa Chen, Xinrong Zhang, Shengding Hu, Xu Han,
Zhiyuan Liu, and Maosong Sun. 2024. Stuffed
mamba: State collapse and state capacity of
rnn-based long-context modeling. Preprint,
arXiv:2410.07145.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try ARC, the AI2 reasoning challenge.
arXiv preprint arXiv:1803.05457.

Tri Dao and Albert Gu. 2024. Transformers are
ssms: Generalized models and efficient algorithms

through structured state space duality. Preprint,
arXiv:2405.21060.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom
Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly,
Nova DasSarma, Dawn Drain, Deep Ganguli, Zac
Hatfield-Dodds, Danny Hernandez, Andy Jones,
Jackson Kernion, Liane Lovitt, Kamal Ndousse,
Dario Amodei, Tom Brown, Jack Clark, Jared Ka-
plan, Sam McCandlish, and Chris Olah. 2021. A
mathematical framework for Transformer circuits.
Transformer Circuits Thread. Https://transformer-
circuits.pub/202 1/framework/index.html.

12164

https://arxiv.org/abs/2403.01590
https://arxiv.org/abs/2406.14528
https://arxiv.org/abs/2406.14528
https://arxiv.org/abs/2410.07145
https://arxiv.org/abs/2410.07145
https://arxiv.org/abs/2410.07145
https://arxiv.org/abs/2405.21060
https://arxiv.org/abs/2405.21060
https://arxiv.org/abs/2405.21060

Daniel Y Fu, Tri Dao, Khaled Kamal Saab, Armin W
Thomas, Atri Rudra, and Christopher Re. 2023. Hun-
gry hungry hippos: Towards language modeling with
state space models. In The Eleventh International
Conference on Learning Representations.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black,
Anthony DiPofi, Charles Foster, Laurence Golding,
Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff,
Jason Phang, Laria Reynolds, Eric Tang, Anish Thite,
Ben Wang, Kevin Wang, and Andy Zou. 2021. A
framework for few-shot language model evaluation.

Karan Goel, Albert Gu, Chris Donahue, and Christopher
Ré. 2022. It’s raw! audio generation with state-space
models. In The International Conference on Machine
Learning (ICML).

Alex Graves, Greg Wayne, and Ivo Danihelka.
2014. Neural turing machines. arXiv preprint
arXiv:1410.5401.

Albert Gu and Tri Dao. 2023. Mamba: Linear-time
sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752.

Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and
Christopher Ré. 2020. Hippo: Recurrent mem-
ory with optimal polynomial projections. Advances

in neural information processing systems, 33:1474—
1487.

Albert Gu, Karan Goel, and Christopher Re. 2022a. Ef-
ficiently modeling long sequences with structured
state spaces. In International Conference on Learn-
ing Representations.

Albert Gu, Karan Goel, and Christopher Re. 2022b. Ef-
ficiently modeling long sequences with structured
state spaces. In International Conference on Learn-
ing Representations.

Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri
Dao, Atri Rudra, and Christopher Ré. 2021. Com-
bining recurrent, convolutional, and continuous-time
models with linear state space layers. Advances in
neural information processing systems, 34:572-585.

Ankit Gupta, Albert Gu, and Jonathan Berant. 2022.
Diagonal state spaces are as effective as structured
state spaces. In Advances in Neural Information
Processing Systems.

Ramin Hasani, Mathias Lechner, Tsun-Hsuan Wang,
Makram Chahine, Alexander Amini, and Daniela
Rus. 2023. Liquid structural state-space models. In
The International Conference on Learning Represen-
tations (ICLR).

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shan-
tanu Acharya, Dima Rekesh, Fei Jia, and Boris Gins-
burg. 2024. RULER: What’s the real context size of
your long-context language models? In First Confer-
ence on Language Modeling.

Li Jing, Caglar Gulcehre, John Peurifoy, Yichen Shen,
Max Tegmark, Marin Soljacic, and Yoshua Bengio.
2019. Gated orthogonal recurrent units: On learning
to forget. Neural Computation, 31(4):765-783.

Gregory Kamradt. 2023. Needle In A Haystack - pres-
sure testing LLMs. Github.

Colin Lockard, Prashant Shiralkar, and Xin Luna Dong.
2019. Openceres: When open information extraction
meets the semi-structured web. In Proceedings of the
2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and
Short Papers), pages 3047-3056.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He,
Liangke Gui, Graham Neubig, Jonathan May, and
Luke Zettlemoyer. 2023. Mega: Moving average
equipped gated attention. In The International Con-
ference on Learning Representations (ICLR).

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. Preprint, arXiv:1609.07843.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question answer-
ing. arXiv preprint arXiv:1809.02789.

Amirkeivan Mohtashami and Martin Jaggi. 2023. Land-
mark attention: Random-access infinite context
length for Transformers. In Workshop on Efficient
Systems for Foundation Models @ ICML.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas
Joseph, Nova DasSarma, Tom Henighan, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Con-
erly, Dawn Drain, Deep Ganguli, Zac Hatfield-Dodds,
Danny Hernandez, Scott Johnston, Andy Jones, Jack-
son Kernion, Liane Lovitt, Kamal Ndousse, Dario
Amodei, Tom Brown, Jack Clark, Jared Kaplan,
Sam McCandlish, and Chris Olah. 2022. In-context
learning and induction heads. Transformer Circuits
Thread. Https://transformer-circuits.pub/2022/in-
context-learning-and-induction-heads/index.html.

Denis Paperno, German Kruszewski, Angeliki Lazari-
dou, Ngoc-Quan Pham, Raffaella Bernardi, Sandro
Pezzelle, Marco Baroni, Gemma Boleda, and Raquel
Fernandez. 2016. The LAMBADA dataset: Word
prediction requiring a broad discourse context. In
Proceedings of the 54th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1525—
1534.

Jongho Park, Jaeseung Park, Zheyang Xiong, Nayoung
Lee, Jaewoong Cho, Samet Oymak, Kangwook Lee,
and Dimitris Papailiopoulos. 2024. Can mamba learn
how to learn? a comparative study on in-context
learning tasks. In The International Conference on
Machine Learning (ICML).

12165

https://doi.org/10.5281/zenodo.5371628
https://doi.org/10.5281/zenodo.5371628
https://openreview.net/forum?id=uYLFoz1vlAC
https://openreview.net/forum?id=uYLFoz1vlAC
https://openreview.net/forum?id=uYLFoz1vlAC
https://openreview.net/forum?id=kIoBbc76Sy
https://openreview.net/forum?id=kIoBbc76Sy
https://github.com/gkamradt/LLMTest_NeedleInAHaystack/tree/main
https://github.com/gkamradt/LLMTest_NeedleInAHaystack/tree/main
https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/1609.07843

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak,
Samuel Arcadinho, Huanqi Cao, Xin Cheng, Michael
Chung, Matteo Grella, Kranthi Kiran GV, et al. 2023.
RWKYV: Reinventing RNNs for the Transformer era.
arXiv preprint arXiv:2305.13048.

Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y
Fu, Tri Dao, Stephen Baccus, Yoshua Bengio, Ste-
fano Ermon, and Christopher Ré. 2023. Hyena hierar-
chy: Towards larger convolutional language models.
arXiv preprint arXiv:2302.10866.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable questions
for squad. arXiv preprint arXiv:1806.03822.

Prajit Ramachandran, Barret Zoph, and Quoc V Le.
2017. Swish: A self-gated activation function. arXiv
preprint arXiv:1710.05941, 7(1):5.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2021. Winogrande: An adver-
sarial Winograd schema challenge at scale. Commu-
nications of the ACM, 64(9):99-106.

Jimmy TH Smith, Andrew Warrington, and Scott W
Linderman. 2023. Simplified state space layers for
sequence modeling. In The International Conference
on Learning Representations (ICLR).

Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Ja-
cob R Steeves, Joel Hestness, and Nolan Dey. 2023.
SlimPajama: A 627B token cleaned and deduplicated
version of RedPajama.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Asher Trockman, Hrayr Harutyunyan, J Zico Kolter,
Sanjiv Kumar, and Srinadh Bhojanapalli. 2024.
Mimetic initialization helps state space models learn
to recall. arXiv preprint arXiv:2410.11135.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems (NeurlPS).

Roger Waleffe, Wonmin Byeon, Duncan Riach, Bran-
don Norick, Vijay Korthikanti, Tri Dao, Albert
Gu, Ali Hatamizadeh, Sudhakar Singh, Deepak
Narayanan, et al. 2024. An empirical study of
mamba-based language models. arXiv preprint
arXiv:2406.07887.

Shida Wang and Qianxiao Li. 2024. Stablessm: Al-
leviating the curse of memory in state-space mod-
els through stable reparameterization. Preprint,
arXiv:2311.14495.

Songlin Yang, Bailin Wang, Yikang Shen, Rameswar
Panda, and Yoon Kim. 2024. Gated Linear Attention
Transformers with hardware-efficient training. In
The International Conference on Machine Learning

(ICML).

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. HellaSwag: Can
a machine really finish your sentence? In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics.

Wei Zhang and Bowen Zhou. 2017. Learning to up-
date auto-associative memory in recurrent neural net-
works for improving sequence memorization. arXiv
preprint arXiv:1709.06493.

12166

https://arxiv.org/abs/2311.14495
https://arxiv.org/abs/2311.14495
https://arxiv.org/abs/2311.14495

A Related Work
A.1 Synthetic Task

Synthetic tasks have played a crucial role in advanc-
ing language modeling, serving as controlled, sim-
plified, and purposefully constructed benchmarks
for assessing specific model capabilities. By pro-
viding a controlled environment, these tasks en-
able researchers to isolate particular challenges
and evaluate how models handle them, offering
deeper insights into their underlying mechanisms.
Such tasks not only facilitate the identification of
strengths and weaknesses in language models but
also drive innovation and optimization in model
architecture and training strategies. In contrast to
more complex and realistic benchmarks, synthetic
tasks offer greater flexibility in regulating various
factors like sequence length, task complexity, and
input structure. This flexibility makes them invalu-
able for probing specific behaviors of language
models without interference from large-scale para-
metric knowledge or the unpredictability of real-
world data. As a result, they serve as ideal testing
grounds for understanding how models manage
tasks that require attention over long sequences or
the processing of intricate patterns.

Numerous synthetic tasks have been devel-
oped to test different dimensions of model perfor-
mance. For example, copying and selective copy-
ing tasks (Jing et al., 2019) evaluate a model’s mem-
ory retention and replication abilities, while tasks
involving induction heads (Olsson et al., 2022) ex-
amine its capacity to infer relationships in con-
text. Others, such as passkey retrieval (Mohtashami
and Jaggi, 2023), needle-in-a-haystack (Kamradt,
2023), and associative recall (Graves et al., 2014,
Ba et al., 2016), have been instrumental in testing
how well large language models (LLMs) handle
long-range dependencies, particularly in extremely
long sequence contexts. In addition, Hsieh et al.
propose a novel synthetic benchmark RULER to
evaluate long-context language models.

The associative recall (AR) task, inspired by
psychological models of how humans associate
and retrieve information, has been a focal point of
early neural network research aimed at developing
systems capable of associative recall. With the ad-
vent of large language models, many researchers
have argued that the ability of LLMs to perform
in-context learning is, at least in part, attributable
to the associative recall capabilities embedded in
attention mechanisms (Elhage et al., 2021; Ols-

son et al., 2022). More recently, several notable
recurrent neural network architectures have been
evaluated using synthetic versions of the associa-
tive recall task (Graves et al., 2014; Ba et al., 2016;
Zhang and Zhou, 2017, inter alia).

Our work builds upon and extends one of these
tasks, specifically the Multi-Query Associative Re-
call (MQAR) (Arora et al., 2024a). In contrast
to the standard associative recall task, MQAR is
designed to more closely resemble the complexi-
ties of natural language processing. It introduces
multiple key-value pairs and challenges models to
retrieve the correct associations despite distractors,
thereby offering a more rigorous test of a model’s
ability to manage selective attention and long-range
dependencies within dynamic, varied input struc-
tures. This task pushes the boundaries of synthetic
evaluations by bridging the gap between controlled
experimental setups and the intricate nature of real-
world language tasks. In this work, we extended the
MQAR task by introducing variations in positional
and n-gram patterns to investigate Mamba’s under-
lying behavior. This analysis framework can also
be adapted for evaluating other models, providing
a broader tool for identifying similar issues.

A.2 Efficient Model Architecture

Efficient model architectures (e.g., State-Space
Models and Linear Attentions) have become in-
creasingly popular due to their ability to scale to
long sequences while maintaining competitive per-
formance. In this section, we focus on several key
models that illustrate different strategies for im-
proving efficiency.

S4 (Gu et al., 2021) introduced a novel class of
sequence models designed to capture long-range
dependencies using a state-space model (SSM)
framework, typically formulated in continuous
time. S4 introduces three key mechanisms to
achieve this: (1) the Higher-Order Polynomial Pro-
jection Operator (HiPPO) (Gu et al., 2020), which
efficiently memorizes signal history by operating
on state and input transition matrices, (2) a diagonal
plus low-rank (DPLR) parametrization that stabi-
lizes the SSM matrix (A) by adding a low-rank
correction, ensuring both diagonalizability and sta-
bility, and (3) efficient kernel computation through
Fast Fourier Transforms (FFT) and inverse FFTs,
reducing the overall complexity to O(N log N).
By leveraging these innovations, S4 significantly
improves the handling of long-range dependencies,
offering a more scalable alternative to traditional

12167

models. The SSM parameters in S4 (Gu et al.,
2022b) and S5 (Smith et al., 2023) are fixed after
training, resulting in data-independent configura-
tions that significantly limit the overall expressiv-
ity of models. In contrast, Mamba (Gu and Dao,
2023) addresses this limitation by introducing data-
dependent parameters for S4.

Hyena (Poli et al., 2023) was designed to close
the perplexity gap between attention-based Trans-
formers and sub-quadratic alternatives. While tra-
ditional attention mechanisms face quadratic com-
plexity with increasing sequence length, Hyena
overcomes this by using implicitly parameterized
long convolutions and data-gating, achieving sub-
quadratic complexity. The model also shows that
previous sub-quadratic attention approaches, such
as those based on low-rank or sparse approxima-
tions, often still rely on dense attention layers to
reach Transformer-level performance.

RWKY (Peng et al., 2023) is a recent RNN ar-
chitecture designed specifically for language mod-
eling, featuring a linear attention approximation
mechanism called the "WKV" mechanism. RWKV
utilizes linear time-invariant recurrences and can be
viewed as the ratio of two state space models. Un-
like traditional Transformers, which have quadratic
complexity in terms of computation and memory,
RWKYV offers linear scalability, combining the ef-
ficiency of RNNs with the performance of Trans-
formers. While RWKYV is presented as a hybrid
model of RNNs and Transformers, it primarily re-
lies on linear attention and lacks the recurrent prop-
erties of traditional RNNs, making it more similar
to attention-based models.

Based (Arora et al., 2024b) is a simple yet flexi-
ble architecture that integrates linear attention with
sliding window mechanisms. By varying the win-
dow size and the feature dimension of the linear
attention layer, Based can navigate the Pareto fron-
tier of the recall-memory tradeoff. This allows it
to effectively achieve full attention-like quality on
one end while providing a compact state size for
memory-efficient alternatives on the other.

GLA (Yang et al., 2024) introduces an efficient
training algorithm for linear attention Transformers
that integrates data-dependent gating mechanisms.
This algorithm strikes a balance between floating-
point operations (FLOPs) and parallelism, enabling
the use of half-precision matrix multiplications
to leverage modern GPU tensor cores. GLA ex-
hibits competitive performance on language model-
ing tasks, demonstrating that gated linear attention

Transformers can compete with strong baselines
while ensuring computational efficiency.

Mamba-based Methods Mamba has recently
garnered significant attention due to its efficient
performance and ability to match or even surpass
Transformers. However, some studies have high-
lighted its limitations in certain tasks, such as recall-
based tasks, where its performance lags behind
Transformer models. This limitation primarily
stems from Mamba’s fixed state size, which does
not scale with input sequence length. To address
this, Ben-Kish et al. (2024) proposed DeciMamba,
a context-extension method aimed at improving
Mamba’s length generalization. This approach en-
ables the model to effectively extrapolate to longer
sequences without additional training, thereby mit-
igating the challenges associated with fixed state
sizes. Additionally, Trockman et al. (2024) intro-
duced a mimetic initialization technique, which
optimizes the initialization of state-space model pa-
rameters to better mimic the behavior of attention-
based models. This method enhances Mamba’s
recall capabilities by improving its ability to re-
tain and retrieve long-range dependencies. More-
over, Wang and Li (2024) proposed StableSSM, a
reparameterization technique designed to alleviate
memory limitations in state-space models. By sta-
bilizing the recurrent weights, StableSSM enhances
the model’s ability to capture long-term dependen-
cies, thereby improving performance in tasks that
require extended memory retention. Furthermore,
Chen et al. (2024) identified a phenomenon termed
"state collapse," where Mamba’s performance de-
grades on sequences longer than those seen during
training. To mitigate this, they proposed three tech-
niques to enhance Mamba’s length generalization,
enabling it to process sequences beyond training
length while preventing state collapse.

B Performance on Downstream Tasks

While the synthetic tasks provide valuable insights
into how Global Gate mitigates shortcut behavior
in Mamba, it is critical to assess how these im-
provements transform into real-world downstream
tasks. For downstream evaluation, we use the LM
evaluation harness from EleutherAl (Gao et al.,
2021), following the approach of previous works.
All models are trained on the same subset of the
SlimPajama (Soboleva et al., 2023) dataset, using
the GPT-NeoX tokenizer with a context length of
2048 for downstream tasks. We evaluate the fol-

12168

Scale Models | FDA | SWDE | SQUAD
130M Params Pythia 28.22 20.24 12.23
3B tokens Mamba 1.72 6.66 14.68
w/GA | 245 7.11 16.66
340M Params Pythia 55.26 | 61.57 22.82
15B tokens Mamba 8.80 17.37 25.67
w/ GA | 9.53 19.98 26.44
790M Params Pythia 62.96 66.14 28.16
30B tokens Mamba 6.72 20.43 26.78
w/ GA | 8.17 21.78 30.13

Table 6: The results of models on three recall-intensive
tasks, GA denotes the global gate strategy.

lowing tasks and datasets, which assess language
modeling and common-sense reasoning capabili-
ties:

» Wikitext (Merity et al., 2016)

LAMBADA (Paperno et al., 2016)

PIQA (Bisk et al., 2020)

L]

HellaSwag (Zellers et al., 2019)

* WinoGrande (Sakaguchi et al., 2021)

* ARC-challenge (Clark et al., 2018)

* ARC-easy: an easier subset of ARC-challenge
* OpenbookQA (Mihaylov et al., 2018)

Following the work of Arora et al. and Yang
et al., we also evaluate our models on three
recall-intensive tasks: FDA (Arora et al., 2024b),
SWDE (Lockard et al., 2019), and SQUAD (Ra-
jpurkar et al., 2018). These tasks focus on informa-
tion extraction and reading comprehension, which
can be viewed as real-world downstream tasks sim-
ilar to MQAR. As shown in Table 6, while GA
improves Mamba’s performance across all tasks,
subquadratic Mamba models significantly under-
perform attention-based model on both FDA and
SWDE, which are information extraction tasks.

C Computational Cost

The original Mamba model utilizes a short con-
volution operation, whereas our proposed global
gate strategy introduces an additional long convo-
lution step. While this modification enhances the
model’s ability to capture long-range dependen-
cies, it may also increase computational overhead.

Training throughput GPU memory usage

IS
S
oW

S & S

Gigabyte (GB)
5 & 8

Tokens per second (Kt/s)

o o

2048/8 4096/4 8192/2 16384/1 2048/8 4096/4 8192/2 16384/1
Training length/Batch size Training length/Batch size

(Do Mamba__ [l Mambags(convid) (o Mambags(ff0)]

Figure 8: Training throughput and memory footprint of
130M scale Mamba on an Nvidia-A100 40GB GPU.

Figure 8 provides a detailed comparison of train-
ing throughput and GPU memory usage as a func-
tion of sequence length and batch size for differ-
ent model configurations at the 130M model scale,
evaluated on a single Nvidia A100-40GB GPU.
Mamba refers to the original Mamba architecture,
which uses the Hugging Face PyTorch implemen-
tation. Mambag 4 (convld) and Mambag 4 (fft)
denote the Mamba model with the global gate strat-
egy, where “convld” refers to the nn.convid im-
plementation and “fft” refers to the fast Fourier
transforms implementation.

In terms of training throughput, although the GS
strategy incurs some loss in throughput, this degra-
dation is relatively small and remains within an
acceptable range, particularly when using the FFT-
based implementation. As for GPU memory usage,
the fft implementation results in higher memory
consumption, while the convid implementation
leads to a more modest increase in memory con-
sumption Nevertheless, both implementations oper-
ate within reasonable memory limits, ensuring the
practicality of the approach for large-scale models.

The original Mamba model is optimized with a
hardware-aware algorithm, which is designed to
accelerate on specific hardware platforms. Theo-
retically, our proposed long convolution step could
be integrated into this process to further improve
efficiency. However, this is not the focus of our
current work, and we leave it for future research.

Further computational analysis at larger model
scales is presented in Table 7. Each column rep-
resents different combinations of batch size and
sequence length, with cell values indicating train-
ing throughput (tokens/s) and GPU memory usage
(GB). The results are obtained using an FFT-based
implementation of GA on a single Nvidia H20
GPU. While the global gate mechanism introduces
some computational overhead, it effectively miti-
gates shortcut learning by enhancing the model’s

12169

Models | 1-8192 | 2-4096 | 4-2048 | 8-1024

370M Mamba | 19574/27.33 | 18049/27.33 | 18157/27.33 | 17965 /26.64
+ GA 17559 /31.72 | 16258 /31.34 | 16400/31.20 | 16260 /30.40

1.4B Mamba 7936 /53.11 7414 /53.11 7426 /53.11 7364 /50.53
+ GA 7007 / 62.64 6593 /61.89 6620/ 61.60 6577/ 58.63

Table 7: Training throughput and memory footprint of larger scale Mamba and GA.

ability to leverage global information.

D Trade-off between Local and Global
Gate

Performance on In-Domain Tasks Our exper-
iments demonstrate that incorporating a Global
Gate (GA) into Mamba enhances performance on
various shortcut-related generalization challenges.
However, for in-domain tasks that do not rely
on long-range dependencies, introducing a global
shortcut can slightly degrade performance.

Table 8 provides a detailed analysis of the trade-
offs introduced by GA in in-domain tasks, par-
ticularly in scenarios where shortcut phenomena
are less pronounced. The results indicate that in-
corporating global information primarily benefits
shuffling-based tasks, likely due to the absence
of identical patterns between training and testing
phases. However, in most settings, GA leads to
a slight performance drop. Notably, the Last set-
ting inherently includes the Std configuration when
the number of key-value pairs is sufficient to fill
the entire context length, which explains the rela-
tively strong performance of Last-Std. Meanwhile,
the Shuffle setting represents the most generalized
case, where performance tends to vary significantly.
This effect is particularly pronounced in the N-
gram Gathering setting, where fine-grained local
information is critical. We hypothesize that while
GA provides additional global context, it may also
diminish the model’s sensitivity to local details,
thereby negatively impacting performance on tasks
that rely heavily on fine-grained information.

Performance on K4V8-Shuffle Task In the
K4V8-Shuffle variant, our experimental results
show that the original Mamba struggles to perform
effectively on this task. However, by introducing
our proposed global gate strategy, we achieve a
significant improvement in accuracy, boosting it
from below 5% to 80%. The following case study,
shown in Table 9, illustrates this enhancement. In
this example, the original Mamba correctly predicts
the first few tokens but fails to predict the entire

value accurately. Since our evaluation method as-
sesses the correctness of the entire output sequence,
the original Mamba receives a low score. The issue
stems from the limited convolution module in the
original Mamba, where the convolution length is
restricted to 4, insufficient to cover the key-value
pairs in the K4V 8 case. This limitation partially ex-
plains why the original model performs relatively
better in K1V1 and K2V?2 settings.

Performance on Real-World Downstream Tasks
To illustrate the utility of global information pro-
cessing in downstream tasks, we provide two ex-
amples where the original Mamba failed, but the
GA model succeeded.

Example 1: Lambda Task

"She and Zach were covered in dust and
sweat when Helen found them. *Wow,
Lexi! You rock.’ Lexi groaned at the bad
pun. Helen surveyed the work, which
was nearly complete. ’How did you do
this?’ Lexi shrugged. 'Don’t know.” ’It’s
her gift, said __"

The target entity in this example is Zach, which
appears only at the beginning of the passage. With-
out global information processing, the model loses
track of this reference in broader contexts, often
misattributing the subject to more recently men-
tioned entities such as "Lexi" or "Helen." In con-
trast, the GA-enhanced model effectively retains
long-range dependencies and correctly identifies
"Zach."
Example 2: ARC-Challenge

"There are a total of eight planets that
orbit the Sun. How many of the other
planets orbit in the same direction as
Earth?"

Choices: A.0 B.1 C.4 D.7

The correct answer is D. Answering this ques-
tion requires the model to simultaneously consider
information from the context ("a total of eight plan-
ets") and the question ("the other planets orbit in

12170

Models | Standard | Last | Last-Std | Last-Shuffle | Shuffle | Shuffle-Std | Shuffle-Last | K1V1 | K1V2 | K2V2
Mamba 99.72 99.35 82.99 50.24 80.98 95.41 87.49 99.95 99.96 99.98
Mamba w/ GA 99.62 99.66 85.94 51.88 90.45 95.94 87.09 96.62 97.27 99.06

Table 8: Performance comparison of Mamba and Mamba with GA across different settings.

K4V8-Shuffle

Key: [1599, 7262, 5493, 4221]

Value:

Mamba Prediction:
Mamba GA Prediction:

[16301, 10098, 19263, 13834, 10106, 15846, 12555, 10962]

[16301, 10098, 19263, 13834, 12138, 11048, 10309, 19894]
[16301, 10098, 19263, 13834, 10106, 15846, 12555, 10962]

Table 9: A case of Mamba and Mamba with GA for the K4V8-Shuffle task. Value denotes the ground-truth tokens.
The token highlighted in blue denotes the correct predictions.

the same direction as Earth"). The global informa-
tion mechanism enables the model to capture and
integrate these interdependent details across both
the context and the question, leading to the correct
response.

E Ablation Study

Effect of Global Window Sizes We conducted
ablation studies on different global context window
sizes using a synthetic task. Specifically, we ex-
perimented with Tiny Mamba using four different
window sizes: 64, 128, 256, and 512. The results
are presented in Table 10.

Model | Std-Std | Std-Last | Std-Shuffle
Mamba 99.03 12.07 14.31
GA-64 98.69 18.12 20.61
GA-128 98.50 15.81 22.46
GA-256 96.91 18.78 20.01
GA-512 97.95 14.20 20.70

Table 10: Performance of different global context win-
dow sizes on synthetic tasks.

While varying the global context window size
leads to differences in performance, all configura-
tions demonstrate a clear benefit in mitigating the
shortcut problem compared to the original Mamba
model.

Effect of Removing the ConvlD Layer We eval-
uated the impact of removing the Conv1D layer
on synthetic tasks and observed that Mamba fails
across all settings. This suggests that the absence of
a token mixing mechanism significantly degrades
performance.

Effect of Changing the Filter Size To further
examine the role of the Conv1D layer, we exper-

imented with different filter sizes and configura-
tions, as shown in Table 11.

Configuration | Std-Std | Std-Last | Std-Shuffle

Replace with global convolution 99.03 22.70 31.56
Increasing filter size to 8 99.60 20.09 24.37
Increasing filter size to 16 99.57 22.93 27.10
Increasing filter size to 32 99.58 24.70 29.48

+ Global Gating mechanism 99.33 23.21 36.33

Table 11: Performance impact of different Conv1D filter
sizes and modifications.

Increasing the filter size results in some perfor-
mance improvements. However, we observed that
merely expanding the original filter size is insuf-
ficient for handling more complex tasks, such as
k4v8shuffle. This further supports our claim that
Mamba requires effective modeling of both local
and global information, where the A parameter
plays a crucial role. Therefore, our modifications
focus on optimizing A rather than modifying the
Conv1D layer.

Attention-based Model Performance on MQAR
Tasks We evaluate the performance of an
attention-based model, i.e., Pythia-160M, on the ex-
periments conducted in Section 3, aiming to verify
whether transformer models exhibit similar short-
cut phenomena as observed in Mamba.

Table 12 presents the performance of Pythia-
160M under the Positional Pattern Change set-
ting. We observe that regardless of the training
mode, Pythia achieves near-perfect performance
even when evaluated on test sets with positional
patterns different from those seen during training.
This indicates that, unlike Mamba, Pythia does
not exhibit a pronounced shortcut phenomenon re-
lated to positional patterns. In the N-gram Gath-
ering setting, Pythia exhibits a performance trend

12171

Test\ Train | Standard | Last | Shuffle

Standard | 99.98 | 99.04 | 98.80
Last | 9375 | 99.96 | 99.39
Shuffie | 9431 | 99.36 | 99.60

Table 12: Performance of Pythia-160M under the Posi-
tional Pattern Change setting.

Test\Train | K1VI1 | K1V2 | K2V2

KIVI | 9995 | 9467 | 66.54
K1V2 | 000 | 99.97 | 85.20
K2V2 | 000 | 121 | 100.00

Table 13: Performance of Pythia-160M under the N-
gram Gathering setting.

similar to Mamba. The most notable case arises
when the model is trained on K1V and tested
on K2V2. While Mamba achieves near-perfect
performance in this scenario, Pythia completely
fails. This observation aligns with our previous
hypothesis: Mamba’s success is likely not due to
true n-gram recall but rather an over-reliance on
structural cues provided by special characters or
templates. This hypothesis is further supported by
its performance on the K2V2-Robustness task, as
depicted in Figure 9. Notably, compared to Mamba,
Pythia is significantly less affected by noise in the
key tokens. This suggests that in the K2V2 sce-
nario, Pythia primarily relies on both key tokens
for decision-making.

F Standard Deviation on Syntactic and
Downstream Tasks

Our observations reveal that Mamba’s training is
highly unstable and often prone to overfitting. No-
tably, the Mamba architecture lacks stochastic mod-
ules such as dropout, indicating that the instability
may be inherent to the model’s architecture. Since
it is not the focus of this work, we leave further
exploration for future work.

For synthetic tasks, we fixed the random seed to
42 during the training process. Additionally, when
constructing synthetic data, we assigned different
random seeds for different settings and data splits.
This approach ensures that there are no overlapping
key-value pairs between the training and testing
datasets, allowing for a more accurate evaluation
of the model’s recall capabilities. we trained and
evaluated the 13M model using multiple random
seeds to assess variability (due to computational

——Mamba Pythia

100
80
60
40

20

1 4 8 16 32

KvPairs Number

Figure 9: Comparison between Mamba and Pythia on
the K2V2-Robustness setting.

Model \ Std-Std \ Std-Last \ Std-Shuffle
Mamba 98.95 +0.004 | 17.45+0.013 | 20.79+0.010
w/ GA | 99.25+0068 | 23.17+0011 26.33+0.007

Table 14: Standard deviation results for the Mamba
model on position change tasks.

constraints, larger-scale models were too costly).
The results are depicted in the Table 14.

For downstream tasks, we provide the detailed
training recipe in Appendix B. The evaluation is
conducted using the Im-evaluation-harness from
EleutherAl. For these zero-shot tasks, conducting
multiple tests with different random seeds does not
result in significant variations.

G Detail for MQAR and its vanriants

This section provides additional details for the anal-
ysis experiments discussed in Sec. 3.

G.1 General Data Configuration

We utilize mixed input sequence lengths and vary-
ing key-value pair counts for the MQAR tasks. The
parameters L (sequence length), N (number of key-
value pairs), and « are employed to adjust these
properties. Unless specified otherwise, the vocabu-
lary size is set to 20,000. The training set consists
of sequence lengths L € {64, 128,256,512}, with
the corresponding number of key-value pairs N
satisfying 2V < % For empty positions, we insert
random values as padding. For each configuration,
there are 10,000 examples in the training set and
100 examples in both the validation and test sets.
All other settings are consistent with the original
MQAR task described in (Arora et al., 2024a).

12172

G.2 Positional Pattern Change

We categorize position patterns into three distinct
types: standard MQAR, last, and shuffle. For the
standard MQAR pattern, we follow Arora et al.,
where the key-value pairs are clustered at the be-
ginning of the sequence, and queries are randomly
scattered in the remaining positions. In the last pat-
tern, we divide the input sequence into two equal-
length segments, placing all key-value pairs in the
last portion of the first segment, while queries are
randomly distributed in the second segment. For
the shuffle pattern, we again split the entire input se-
quence into two equal parts, but we randomly place
key-value pairs in the first half, with queries ran-
domly scattered in the second half. Other settings
remain consistent with the general configuration.

G.3 N-gram Gathering

We refer to the original MQAR task as the klvl
pattern. To assess the model’s capability and its
tendency to rely on shortcuts in n-gram patterns,
we increase the number of tokens in both the keys
and values. In this setup, to ensure that the model
can effectively distinguish between the key and
the value, we introduce special separators between
token groups in both the key and value sequences.

Specifically, a key-value pair in the K2V2 pattern
appears as: <SEP> kg ki <SEP_KV> vy v <SEP>
Although the addition of special symbols may in-
crease the length of individual key-value pairs and
cause the model to focus on these symbols, it is
necessary. Without the special symbols, a key with
N tokens would be indistinguishable from a key
with just 1 token, as the model could rely solely
on the last token in the N-token key to retrieve
the corresponding value. Similarly, cases involving
M -token values could often be reduced to multiple
instances of M — 1 2-gram patterns, which would
fail to verify if the model truly follows the n-gram
relationship. Thus, including these special charac-
ters is crucial. It is also important to note when
the value consists of more than one token, accuracy
is measured based on the entire value sequence.
In other words, all M tokens of the value must
be predicted correctly for the key-value pair to be
considered correct.

G.4 Noise Injection

We test the robustness of the two previously men-
tioned shortcut patterns. For position robustness,
we divide the input sequence into two equal-length

segments. Then, we further split the first half into
N sections by position. In our experiments, we set
N = 4. In each of these N sections, we insert the
same key, each corresponding to a different value.
The same key is then placed as a query in the sec-
ond half of the sequence. The model is considered
correct if it recalls any of the corresponding val-
ues. This setup allows us to assess whether the
model, trained on different position patterns, ex-
hibits any positional bias when recalling key-value
pairs—specifically, whether it tends to favor key-
value pairs from certain positions.

In this configuration, the test data consists of
sequence lengths L € {64,128,256} and corre-
sponding key-value pairs N € {8,16,32}, with
100 examples per configuration.

For n-gram robustness, we introduce noisy keys
by fixing the last n — 1 tokens of the n-token key
while randomly replacing one token. This creates
n-gram noise. Specifically, in the k2v2 setup, we
fix the second position in the key, and the number
of noisy key-value pairs matches the number of
original key-value pairs.

G.5 Training and Evaluation Configuration

For all synthetic runs on MQAR and its variants,
we apply the following training protocol:

* Optimizer and Schedule: We use weight
decay of 0.1, a warmup duration of 10%,
and a linear warmup schedule. The AdamW
optimizer is employed. @ For each set-
ting, we sweep the learning rates Ir €
{3e-3, 1e-3, 8e-4, 5e-4, le-4}. All models are
trained for 30 epochs without early stopping
with 8 xA100-40GB GPU.

* Data: Each model is trained and evaluated on
10,000 training examples and 100 validation
examples per setting. The random seed for
each configuration is fixed, and the data, as
well as its order, remains constant across all
runs.

* Loss: During training, we calculate the cross-
entropy loss (CEL0SS) at all value positions
corresponding to each query. For n-gram se-
tups, where special tokens are present, we ad-
ditionally compute the loss for the last <SEP>
token. We found this helps the model under-
stand the role of special tokens in segmenting
the sequence.

12173

Evaluation: We evaluate the model using the
checkpoint that performs best on the validation
set. The training, validation, and test data are con-
structed in the same way, with identical input se-
quence lengths and numbers of key-value pairs,
differing only in the number of data points and ran-
dom seeds. However, specific settings are applied
for the robustness experiments.

A case is considered correct only if all key-value
pairs are predicted correctly. In multi-value setups
(KNVM), all M values corresponding to a key must
be predicted accurately to be considered correct.
The final results are reported as the average across
all data points.

H Detail for Model

For our experiments, we adopt the standard Mamba-
130M configuration from (Gu and Dao, 2023), as
smaller models tend to struggle with the MQAR
tasks and do not accurately reflect the shortcut
phenomenon. All models are trained on the
same subset of the SlimPajama (Soboleva et al.,
2023) dataset with the GPT-NeoX tokenizer for
downstream tasks. All models are trained with
AdamW (Loshchilov and Hutter, 2019) using a
maximum learning rate of 8e-4. All models are
trained on 3B tokens with a batch size of about
0.5M tokens. We use a cosine learning rate sched-
ule with a warmup of 10% steps. We use a weight
decay of 0.01, and gradient clipping of 1.0.
The settings for other baselines are as follows:

* Pythia-133M: We reduce the number of lay-
ers to 8 while keeping other configurations
consistent with Pythia-130M (Biderman et al.,
2023). This adjustment minimizes the number
of parameters to ensure a fair comparison in
our analysis.

* Hyena-153M: The configuration matches that
of Hyena-153M.

e RWKV-153M: We set diodel to 1024 and the
number of layers to 12, maintaining other
configurations consistent with RWKV-Pile-
430M.

* Mamba-130M: We adopt the standard config-
uration from Gu and Dao.

* Mamba-340M: We adopt the standard config-
uration from Gu and Dao.

12174

* Mamba-790M: We adopt the standard config-

uration from Gu and Dao.

Mamba-1.4B: We adopt the standard config-
uration from Gu and Dao.

Mamba-mimetic_init: Trockman et al. intro-
duced a mimetic initialization technique to en-
hance Mamba’s recall ability. Since their code
has not been released, we use our own imple-
ment based on the paper, ensuring A, A =~ 1
and WTC Wp =~ I. Specifically, we parame-
terize A as A = — exp(—cx log) with ¢ = 8,
making AgAd ~ 0in Eq. 7. Additionally, we
set Wa = 0 and ba = softplus (1) ~ 0.54,
ensuring Ay ~ 1.

Mamba-state_size: We modify the
ssm_state_size of the Mamba model,
which is originally set to 16 in the 130M
configuration, while keeping all other settings
consistent with Gu and Dao.

Mamba-Global_Selection: We define At as
the key to Mamba’s selectivity. However, it
is constrained by the short convolution and
linear transformation. To address this, we pro-
pose incorporating more global information
into At. Specifically, we introduce a long con-
volution module to model distant historical
context and use its result to gate the original
At. This is formulated as follows:

Ay = T((W2 *0 (Wl : Convshort(Xt))

8
® o (Convieng(X4))) ®

where Conv denotes the convolution opera-
tion, 7 denotes the softplus function, W repre-
sents the linear transformation operations, o is
the nonlinear activation function, specifically
the Silu (Ramachandran et al., 2017), and ©®
is the element-wise multiplication operation.
The kernel size for the short convolution is set
to 4, following (Gu and Dao, 2023), while the
kernel size for the long convolution is set to
i of the input sequence length for syntactic
tasks and the full input sequence length for
downstream tasks. For models with 790M and
1.4B parameters, we employ an FFT-based im-
plementation, whereas smaller-scale models
use a convld-based implementation. In the
analysis experiments, we add a global gate
module to every layer of Mamba, as the rela-
tively short input length ensures that the long

https://huggingface.co/Zymrael/hyena-small-150b-tok
https://huggingface.co/BlinkDL/rwkv-4-pile-430m
https://huggingface.co/BlinkDL/rwkv-4-pile-430m

convolution does not introduce excessive pa-
rameters. However, in downstream tasks, we
only incorporate global gate parameters in cer-
tain layers to maintain fairness in model pa-
rameter counts.

I More Analysis on the Selectivity of
Mamba

In this section, we provide further analysis to sup-
plement the discussion from the previous section.

Theoretical analysis of Mamba on MQAR
Based on the recurrence equation, the hidden state
at each step is updated as:

where the following components must be stored:
the previous hidden state 2[i—1,:] € R? and the pa-
rameters A;, B;, C; € R?, which are derived from
the input sequence u[0 . . . i — 1]. Consequently, the
storage requirement for each hidden state Z ZM amba
is ZM amba ¢ R44 Jeading to an overall storage
complexity of O(N - d).

Arora et al. (Arora et al., 2024b) provide a rig-
orous analysis using randomized communication
complexity by reducing an autoregressive (AR)
task to the index problem. In the index problem,
Alice holds a binary string z € {0,1}" and Bob
holds an index 7 € [N]; to correctly recover z;, any
one-way (causal) model must effectively “remem-
ber” nearly all V bits of the input. This implies that,
for causal recurrent models, the hidden state must
have a capacity of at least Q2(/V) bits, regardless of
the nominal model dimension d. In other words,
even if each parameter is stored using O(log N)
bits, the minimal effective storage per hidden state
must scale as

dim(zMemba) > Q(N). (10)

Moreover, when global information—such as
that provided by long convolutions—is introduced
to capture full-sequence context, the storage re-
quirement per hidden state increases from O(d) to
O(d + N). This extra O(N) term is necessary to
satisfy the communication complexity lower bound
and to correctly model long-range dependencies.
Thus, in a purely causal setting, the overall storage
complexity becomes O(N - (d+ N)), which, when
N dominates, is O(N?).

These theoretical conclusions not only match
the lower bounds derived via communication com-
plexity (by reduction to the index problem) but
also motivate recent architectural innovations. For
example, approaches such as “Just Read Twice”
prompting and non-causal recurrent architectures
aim to mitigate the full (V) memory requirement
by reordering the input so that only the smaller of
two sets (when the input is naturally divided into
parts) needs to be retained in memory. However,
in the standard Mamba model, which processes
input causally, the necessity to store (V) bits per
hidden state remains, leading to the O(N?) overall
storage complexity and emphasizing the inherent
tradeoff between memory efficiency and recall ca-
pability in AR tasks.

Not all layers are selective: We first examine the
attention behavior of each Mamba layer trained on
the standard MQAR task and evaluate the model’s
performance on the same pattern. The attention
matrices for all layers of Mamba on the standard
MQAR task are plotted in Figure 13. One no-
table observation is that many layers exhibit atten-
tion scores concentrated around the main diagonal,
while other regions are largely inactive (black). We
consider these layers as primarily responsible for
organizing and propagating the hidden state, rather
than making specific key-value selections. In con-
trast, certain layers demonstrate more pronounced
selectivity, such as layer 22 in Figure 13, where the
attention distribution sharply focuses on the key-
value pair regions. Clearly, these selective layers
are crucial to Mamba’s ability to identify relevant
information. Therefore, our analysis primarily fo-
cuses on these layers.

Perfectly Selective on In-domain Patterns:
Mamba performs exceptionally well on the stan-
dard pattern of the MQAR task. We investigate
whether Mamba’s perfect performance on these
patterns results from its correct selective capabili-
ties. As shown in Figures 10 and 11, these figures
depict Mamba’s attention distribution under vary-
ing input sequence lengths and different numbers
of key-value pairs. It can be observed that, regard-
less of changes in input length or key-value pair
quantity, Mamba consistently captures the correct
key-value positions, enabling accurate retrieval of
the correct answers. This observation strongly sug-
gests that the accuracy of the MQAR task is highly
dependent on Mamba’s ability to capture the cor-
rect key-value pairs. If the model can accurately

12175

Length 64, Kvpairs 4

10

20

30

40

50

60

0 10

20

30 40 50 60 0 10 20 30

Length 64, Kvpairs 8

Length 64, Kvpairs 16

40 50 60 0 10 20 60

Figure 10: The attention matrices of Mamba on MQAR tasks, where the input sequence length is 64, and the
number of key-value pairs varies from 4 to 16. Lighter colors indicate higher attention weights at specific positions.

The results are from the 22st layer of the Mamba model.

Length 64, Kvpairs 16

20

40

60

80

100

120

60

0 10 20 30 40 50 60 0 20 40

Length 128, Kvpairs 16

Length 256, Kvpairs 16

50

100

150

200

250

80 100 120 0 50 100 150 200 250

Figure 11: The attention matrices of Mamba on MQAR tasks, where the number of key-value pairs is 16, and the
input sequence length varies from 64 to 256. Lighter colors indicate higher attention weights at specific positions.

The results are from the 22nd layer of the Mamba model.

pinpoint the positions of these pairs, it has a high
probability of correctly retrieving the correspond-
ing value for any given key.

The Role of A; in Selectivity: In Mamba, the
parameters A and B play a crucial role in balanc-
ing the model’s focus between historical informa-
tion and new inputs. A key component for this
process in common is Ay, which directly governs
the model’s selective behavior. By adjusting A,
Mamba determines whether to prioritize recent in-
puts or maintain the influence of past states.

The parameter A; functions similarly to gating
mechanisms in recurrent neural networks (RNNs).
When A, is large, the model resets its internal state,
focusing on the current input and diminishing the
impact of previous information. In contrast, a small
A; preserves the existing state, allowing the model
to ignore the current input and continue prioritiz-
ing historical context. This behavior parallels the

function of gates in RNNs, where a larger gate
value highlights new information, and a smaller
gate value retains past states.

Mamba can be interpreted as a state-space model
(SSM), where A, controls the degree of continuity
in the system. A large A; indicates that the model
focuses on the current input for an extended period,
effectively discarding older information, while a
small A, implies that the input is transient and has
a reduced effect on the model’s decision-making
process. This mechanism enables Mamba to adapt
its selective attention dynamically based on the
requirements of the task at hand.

J Performance on Standard MQAR

Prior research (Arora et al., 2024a,b) has proven
that attention-based models surpass rnn-based
models on MQAR task. MQAR requires mod-
els to memorize key-value pairs in their hidden

12176

Sequence Length: 64 Sequence Length: 128 Sequence Length: 256 Sequence Length: 512

1.00 '@ 0 ®
3 0.75 et — — ; Models
g 0.50 ./ —e— Attention
O ° H
£ 0.25 ./ ./ yena

o = —8— Mamba
0.00 o= o—9
—o— RWKV
64128 256 512 64128 256 512 64128 256 512 64128 256 512

Model dimension Model dimension

Model dimension Model dimension

Figure 12: Performance of various models, including H3 (Fu et al., 2023), Hyena (Poli et al., 2023), and
RWKYV (Peng et al., 2023), alongside attention-based models (Touvron et al., 2023), across different model
dimensions on MQAR tasks. The input sequences vary from 64 to 512 tokens. Other experimental settings are

consistent with Arora et al..

state, which presents a significant challenge for
rnn-based models, as they maintain a fixed-size
state to handle all historical information. 12 depicts
performance of different models on the standard
MQAR task settings.

It is evident that rnn-based models significantly
lag behind attention-based models, particularly as
the length of the input sequence increases. Atten-
tion mechanisms, characterized by their quadratic
token interactions, excel in identifying key tokens
within the MQAR task and extracting the corre-
sponding values. Such architectures can utilize the
entire past sequence as memory, enabling effective
retrieval of prior information and precise recall of
associated values. In contrast, rnn-based models
are required to store all past information within
a single hidden state, relying on this compressed
memory to retrieve the relevant keys and values
based on the current query. As the sequence length
increases, the compressed historical information
grows, making it harder to retrieve the correspond-
ing key-value pairs, leading to worse performance.
An exception to this trend is Mamba, which con-
sistently exhibits performance comparable to atten-
tion mechanisms across most settings and signif-
icantly outperforms its rnn-based counterparts at
equivalent model dimensions. Prior works attribute
Mamba’s success to its data-dependent features.
By incorporating input-dependent matrices A (via
discretization), B, and C', Mamba effectively re-
tains essential details while discarding irrelevant
information. However, our experiments reveal that
this success may not be as intentional or precise as
it initially seems. Mamba’s success partly results
from its heavy reliance on superficial, local patterns
(e.g., attention to the beginning of the input), which
we defined as "'local pattern shortcuts" rather than
a genuine ability to recall.

12177

Layer: 1 Layer: 2 Layer: 3 Layer: 4

Layer: 5 Layer: 6 Layer: 7 Layer: 8

Layer: 9 Layer: 10 Layer: 11 Layer: 12

Layer: 13 Layer: 14 Layer: 15 Layer: 16

Layer: 17 Layer: 18 Layer: 19 Layer: 20

Layer: 21 Layer: 22 Layer: 23 Layer: 24

0 50 100 0 50 100 0 50 100

o

50 100

Figure 13: The attention matrices of all layers of Mamba on MQAR tasks, where the input sequence length is 128,
and the number of key-value pairs is 16. Lighter colors indicate higher attention weights at specific positions.

12178

