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Abstract

Proprietary Large Language Models (LLMs)
such as GPT-4 and Gemini have demonstrated
promising capabilities in clinical text summa-
rization tasks. However, due to patient data pri-
vacy concerns and computational costs, many
healthcare providers prefer using small, locally-
hosted models over external generic LLMs.
This study presents a comprehensive domain-
and task-specific adaptation process for the
open-source LLaMA-2 13 billion parameter
model, enabling it to generate high-quality clin-
ical notes from outpatient patient-doctor dia-
logues. Our process incorporates continued
pretraining, supervised fine-tuning, and rein-
forcement learning from both AI and human
feedback. We introduced a new approach,
DistillDirect, for performing on-policy rein-
forcement learning with Gemini 1.0 Pro as the
teacher model. Our resulting model, LLaMA-
Clinic, can generate clinical notes compara-
ble in quality to those authored by physicians.
In a blinded physician reader study, the ma-
jority (92.8%) of individual evaluations rated
the notes generated by LLaMA-Clinic as “ac-
ceptable” or higher across three criteria: real-
world readiness, completeness, and accuracy.
In the more challenging “Assessment and Plan”
section, LLaMA-Clinic matched physician-
authored notes in real-world readiness score.
We highlight key considerations for future clin-
ical note-generation tasks, emphasizing the im-
portance of pre-defining a “best practice” note
format, rather than relying on LLMs to deter-
mine this for clinical practice. 1

1 Introduction

Recent advancements in LLMs have transformed
the field of natural language processing (NLP).
However, the application of LLMs in the medical
domain is still in its early stages (He et al., 2023;
Zhou et al., 2023b). Proprietary LLMs, such as

1Our code and data are available at https://github.
com/hanyin88/llama-clinic.

GPT-4 and Med-PaLM, have demonstrated impres-
sive capabilities in medical knowledge and clinical
NLP tasks (Nori et al., 2023; Singhal et al., 2023;
Van Veen et al., 2023). However, most proprietary
LLMs have limited flexibility for domain-specific
fine-tuning, primarily due to restricted access to
model weights. Additionally, proprietary LLMs
raise several concerns pertinent to the healthcare
sector, including HIPAA compliance, data security,
cost, and transparency of training data (Marks and
Haupt, 2023; Clusmann et al., 2023; Adimi, 2024;
Michael M. Grynbaum, 2023).

The emergence of powerful open-source LLMs
has opened up opportunities for domain-specific
fine-tuning within the clinical field, yielding
promising results (Han et al., 2023; Wang et al.,
2023; Yunxiang et al., 2023; Wu et al., 2023a; Toma
et al., 2023; Chen et al., 2023). However, most re-
search on open-source models has concentrated on
medical knowledge injection rather than practical
applications in real-world clinical workflow such
as clinical note generation.

In this work, we address a practical question
clinicians face in their everyday routine: How can
we best adapt an open-source LLM for the spe-
cific use case of clinical note generation? Clinical
note documentation represents a significant bur-
den for healthcare practitioners (Ammenwerth and
Spötl, 2009) and appears to be a natural applica-
tion for LLMs, given their remarkable generative
capabilities (Lee et al., 2023). Recent research on
LLMs for clinical text summarization found that
LLM-generated outputs are preferred over human
summaries for their completeness and accuracy
(Van Veen et al., 2023).

The 2023 ACL ClinicalNLP and CLEFImage
workshops explored the generation of clinical notes
from patient-doctor conversations using the newly
released Ambient Clinical Intelligence Benchmark
(ACI-BENCH) dataset (Abacha et al., 2023; Yim
et al., 2023a). The most notable results were
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Figure 1: Overview of Study Design. We conducted a comprehensive domain- and task-specific adaptation
process for the LLaMA-2-13B model. This process included continued pretraining, supervised fine-tuning, and
reinforcement learning from AI and human feedback. Finally, we evaluated our model’s outputs against those
created by physicians and Gemini Pro through a blinded expert evaluation. We used Gemini 1.0 Pro as the teacher
model in this study.

achieved using GPT-4 along with few-shot in-
context learning (Giorgi et al., 2023; Van Veen
et al., 2023). However, these initial exploratory
studies for clinical note generation with LLMs re-
vealed significant limitations:

• Issue with metrics: The evaluation relied solely
on automatic metrics of lexical similarity to the
“reference” notes, such as ROUGE scores, which
may not accurately reflect human preferences
(Moramarco et al., 2022; Van Veen et al., 2023).

• Variation in ground-truth quality: There was
considerable variation in the quality, format, and
style of “reference notes”, suggesting that a note
similar to a reference note might not necessarily
be of high quality for real-world clinical applica-
tions.

• Limited fine-tuning datasets: Previous studies
conducted only limited supervised fine-tuning
(SFT) of open-source LLMs using small train-
ing datasets, thereby not fully exploring their po-
tential for domain- and task-specific adaptation
(Abacha et al., 2023; Yim et al., 2023a; Van Veen
et al., 2023).

• Lack of advanced training strategy: The po-
tential of data augmentation and reinforcement
learning remains unexplored.

In this study, we revisit the task of outpatient
note generation, focusing on adapting an open-
source LLM—the LLaMA-2 13 billion parameter

model. We thoroughly evaluated techniques for
domain- and task-specific adaptation, ranging from
continued pretraining and SFT to reinforcement
learning informed from both AI and human feed-
back (Figure 1). This work makes several specific
contributions:

1. Clinical LLM fine-tuning playbook: Our rela-
tively compact, open-source LLM demonstrated
expert-level performance, achieving the same
quality as physician-authored notes in the “As-
sessment and Plan" section. We provide a com-
prehensive guide for healthcare organizations to
fine-tune local LLMs on their own data.

2. DistillDirect: We are among the first groups
to explore the role of reinforcement learning
in clinical note generation. We proposed Dis-
tillDirect, a strategy to ensure on-policy learning
during direct preference optimization (DPO) for
model distillation.

3. Open datasets: We have made our newly cre-
ated synthetic clinic dialogue-note dataset and
physician feedback dataset publicly available.

4. Key considerations for future clinical note-
generation tasks: We underscored the impor-
tance of pre-defining a “best practice” note for-
mat, rather than relying on LLMs to determine
this for clinical practice. We also recommend
a workflow for physicians to work with AI-
generated notes in real-world practice, ensuring
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physicians’ full oversight and ultimate account-
ability for the AI-generated content.

2 Background and Related Work

2.1 Problem Formation

Given a recorded dialogue from a patient-doctor
clinic encounter, we task LLMs to generate a high-
quality outpatient note akin to one written by a
clinician. This scenario is becoming increasingly
prevalent due to the rising popularity of ambient
AI scribe products (Yim et al., 2023b; Barr et al.,
2024). Our research focus is on generating the
“Subjective” and “Assessment and Plan” sections
of outpatient notes. This decision is based on feed-
back from our physician coauthors, which indicates
that discussing all details of the “Objective” section,
such as physical examination results, is impracti-
cal during real-world clinical encounters. Further-
more, much of the objective data, including lab and
imaging results, are directly integrated into Elec-
tronic Medical Records (EMR), making clinical
notes generation for those sections easy and some-
times unnecessary. Our research is also related
to prior work on generating clinical assessments
within notes (Yang and Yu, 2020) and on generating
doctor-patient conversations (Wang et al., 2024c).

2.2 ACI-BENCH

ACI-BENCH represents the largest clinic dialogue-
note dataset publicly available to date, comprising
207 cases (Yim et al., 2023b). The dataset’s dia-
logues were crafted by a team with medical exper-
tise, and its clinical notes were initially generated
using an automatic note generation system, then
reviewed and revised by domain experts (Yim et al.,
2023b). The ACI-BENCH dataset was previously
utilized to benchmark the performance of outpa-
tient note generation systems using automatic met-
rics that evaluate lexical similarity (Abacha et al.,
2023; Yim et al., 2023a). Importantly, we observed
notable variation in the format, style, and quality
of the “reference notes” within ACI-BENCH, es-
pecially in the section of “Assessment and Plan”.
While this diversity mirrors the reality of clini-
cal practice, where different doctors may produce
vastly different notes, it presents a challenge to use
these notes as a “gold standard” for training an
LLM to replicate.

2.3 Distilled DPO
DPO begins by collecting a preference dataset D =
{(xi,y

+
i ,y

−
i )}Ni=1, where for each prompt x, there

is a preferred answer y+ and a rejected answer y−

(Rafailov et al., 2023). Following the notations as
in (Guo et al., 2024), DPO optimizes the language
model (target policy πθ) using the following loss
function:

− log σ

(
β log

πθ(y
+|x)πθ0(y−|x)

πθ0(y+|x)πθ(y−|x)

)
(1)

Here, πθ0 represents the SFT baseline used as a
reference, σ denotes the logistic function, and β is
introduced as a scalar hyperparameter.

Given the significant time and financial costs
associated with collecting preference data, utiliz-
ing pre-collected preference datasets, such as those
employed in distilled DPO, is a common practice.
Distilled DPO involves generating a collection of
responses for each prompt from various LLMs (Fig-
ure 2A) (Tunstall et al., 2023). These responses
are then evaluated by a teacher model (e.g., GPT-
4) to provide preference feedback. Applying rein-
forcement learning with AI feedback (RLAIF) with
distilled DPO has yielded encouraging outcomes
(Tunstall et al., 2023). However, distilled DPO’s
reliance on a pre-collected preference dataset ren-
ders it suboptimal due to the off-policy and offline
characteristics.

3 DistillDirect

3.1 Comparison of Online vs. Offline and
On-Policy vs. Off-Policy Training

When creating a preference dataset D, for any given
prompt x, initially, two responses y1 and y2 are
generated from an LLM denoted as ρ. These re-
sponses are then assessed for preference by humans
or AI, being labeled as y+ (preferred) and y− (re-
jected). In this context, training is considered on-
policy if ρ = πθ, or when the generated responses
are sampled from the latest version of the LLM dur-
ing RLAIF training. Off-policy training indicates
otherwise. Learning is deemed online if the prefer-
ence labeling and training is conducted in real-time,
directly on the outputs from the currently trained
policy. It is considered offline if preference label-
ing and training are performed in separate, discrete
steps.

A critical caveat of employing a pre-collected
preference dataset for offline and off-policy train-
ing, such as Distilled DPO, is distribution shifts
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(Guo et al., 2024). More specifically, distribution
shifts arise at time step t because the preferred
and rejected response is sampled from a policy ρ,
where ρ ̸= πθt . Research has shown that online
RLAIF systems, which are designed to mitigate
these distribution shifts, significantly surpass the
effectiveness of offline DPO methodologies (Guo
et al., 2024).

3.2 RLAIF with DistillDirect

We introduce an improved approach based on dis-
tilled DPO, termed DistillDirect, specifically de-
signed to ensure on-policy learning on a distilled
dataset. This approach is inspired by recent de-
velopments in adversarial preference optimization
(Cheng et al., 2023), online AI feedback (Guo et al.,
2024), iterative DPO (Pang et al., 2024; Xiong
et al., 2024) and SPIN (Chen et al., 2024). In each
training cycle, we begin by sampling a response
from the current policy πθt , ensuring that the learn-
ing process remains strictly on-policy. This sam-
pled response is then designated as the rejected
response, while a reference response from Gemini
Pro (the teacher model) is considered the preferred
outcome (Figure 2B). This approach implicitly as-
sumes that the response from πθt is generally less
favored than that from the teacher model—an as-
sumption that we validated through manual review
in each round of training.

In our study, we employed RLAIF with Dis-
tillDirect, followed by Reinforcement Learning
from Human Feedback (RLHF), which provides
several advantages. First, for each iteration of Dis-
tillDirect, we used the target policy’s outputs as
“reject samples” to inform feedback, ensuring on-
policy learning as opposed to the off-policy training
in previous work (Tunstall et al., 2023). Second,
during the RLHF phase, we gathered human prefer-
ences on responses generated by the target policy,
promoting online and on-policy training (Figure
2C).

4 Experiments

4.1 Experimental Design

Model Selection: We selected Meta’s LLaMA-2-
13B and conducted experiments using both the base
and chat models (Touvron et al., 2023). Gemini 1.0
Pro (hereafter referred to as Gemini Pro) by Google
was selected as the teacher model for generating
reference notes (Team et al., 2023).
Experiments Overview: We demonstrated the ex-

Figure 2: Comparison of Distilled DPO, DistillDirect,
and RLHF. A. Distilled DPO: Preference dataset is
generated and labeled by external LLMs rather than
by the target policy, resulting in off-policy and offline
training. B. DistillDirect: A response is generated
from the target policy for each prompt, thereby making
training on-policy. Additionally, another response is
generated from an external LLM serving as the teacher
model. C. RLHF: All responses are generated by the
target policy, and preference labeling is completed by
humans. Consequently, the training process is on-policy
and online. In our study, we utilized DistillDirect for
on-policy learning of RLAIF followed by further online
and on-policy learning using RLHF.

periments pipeline in Figure 1. First, we under-
took domain-specific adaptation of LLaMA-2-13B
through continued pretraining on discharge sum-
maries from MIMIC-IV. This was followed by task-
specific fine-tuning with SFT through instruction
tuning. Next, we conducted RLAIF using Dis-
tillDirect, our enhanced approach to performing
DPO on a distilled dataset. We then selected the
model that performed best after SFT and RLAIF,
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as measured by ROUGE scores against reference
notes, for RLHF via DPO. Finally, a panel of physi-
cians conducted a blinded evaluation of the notes
authored by our LLaMA-Clinic model, Gemini Pro,
and other physicians. All training was performed
using low-rank adaptation (LoRA).

4.2 Dataset and Preprocessing
Modified ACI-BENCH: Given above mentioned
limitation of ACI-BENCH, we established a sim-
ple yet specific note format, recognized as a “best
practice” by a panel of licensed internal medicine
physicians, to standardize our training approach.
For model training, we retained only the dialogue
section from ACI-BENCH and employed Gemini
Pro to generate notes based on the “best practice”
format, serving as our reference notes. We demon-
strated two examples of clinical notes before and
after the change in Appendix Figure 7.
Dialogue-G: We created a synthetic dataset of clin-
ical dialogue-note pairs using Gemini Pro. This
dataset, named Dialogue-G, comprises 1,291 cases.
We first compiled transcribed outpatient notes from
the publicly available synthetic MTSamples dataset
(MTSamples; Hu et al., 2024) and utilized Gemini
Pro to transform these notes into dialogues. Sub-
sequently, we used these dialogues as inputs for
Gemini Pro once again, this time to generate clini-
cal notes based on the “best practice” format.
MIMIC-IV: MIMIC-IV encompasses 431,231
unique hospital admissions from Beth Israel Dea-
coness Medical Center in Boston, Massachusetts
(Johnson et al., 2023). We utilized discharge sum-
maries from MIMIC-IV for continued pretraining.
Notably, the “brief hospital course” section of the
discharge summaries is structurally akin to the “as-
sessment and plan” section in outpatient notes. We
compiled a subset of discharge summaries with
only the “brief hospital course” using methods
detailed in (Wang et al., 2024a), referred to as
Discharge-short. We denoted the complete dis-
charge summaries dataset as Discharge-long.

4.3 Experiment setup
Continued pretraining: We explored both the
Discharge-long dataset (1.2 billion tokens) and the
Discharge-short dataset (0.2 billion tokens).
Dataset Split for SFT, RLAIF and RLHF: We
combined the training subsets from ACI-BENCH
(dialogue n = 67) and Dialogue-G (dialogue n =
1291), then split this data equally for SFT and
RLAIF, stratified by the data source. For RLHF,

we utilized dialogues from the training, test2, and
test3 subsets of ACI-BENCH (dialogue n = 147).
Physician Preference Data Collection: In each
round of RLHF, for a specific prompt x, three re-
sponses are generated from πθt and evaluated by
our physician reviewers. Three licensed internal
medicine physicians are tasked with providing pref-
erence feedback by selecting the most and least pre-
ferred responses, with criteria focusing on clinical
readiness, correctness, and adherence to the desired
format. A notable adaptation in our approach is that
reviewers are also instructed to make adjustments
to improve the quality of the preferred responses,
such as correcting factual inaccuracies.
Physician Reader Study: The three internal
medicine physicians engaged in preference data
collection were tasked with writing clinical notes
based on conversations from the ACI-BENCH
test1 subset (dialogue n = 40), adhering to the
pre-defined “best practice” format. The physician-
authored notes, alongside those generated by Gem-
ini Pro and LLaMA-Clinic, were reviewed by an-
other four physicians, who were not involved in the
preference labeling.

5 Results

5.1 Analysis of Continued Pretraining

We presented the training loss curve in Figure 3.
Across all experiments, the training loss rapidly
decreased after the initial few hundred steps, then
leveled off, showing minimal improvement there-
after. The lowest training loss achieved with
the Discharge-long dataset is approximately 0.9,
whereas, with the Discharge-short dataset, it re-
mained around 1.4. The trajectories of training
loss were similar for both the chat and base models.
When experimenting with various training strate-
gies and hyperparameters, we frequently observed
loss spikes that were slow to recover, as shown
in Appendix Figure 1. We proceeded with check-
points that did not exhibit loss spikes for SFT and
RLAIF.

5.2 Analysis of SFT and RLAIF

Since the primary objective of SFT and RLAIF is to
align LLaMA-2’s output with Gemini Pro, we eval-
uated ROUGE scores—a measure of lexical similar-
ity—against reference notes generated by Gemini
Pro. We reported ROUGE scores (Lin, 2004) post-
SFT and RLAIF, alongside those from baseline
models in Table 1. Interestingly, at baseline, med-
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Subjective Assessment and Plan
Model ROUGE-1 ROUGE-2 ROUGE-L ROUGE-LSUM ROUGE-1 ROUGE-2 ROUGE-L ROUGE-LSUM

Baseline: Out-of-Box LLaMA-2 and Medical LLMs

13B 0.0329 0.0033 0.0211 0.0268 0.0100 0.0006 0.0058 0.0085
13B-chat 0.3585 0.1281 0.2103 0.2890 0.4543 0.1778 0.2898 0.4261
Meditron-7B 0.1249 0.0052 0.0678 0.0957 0.0895 0.0032 0.0527 0.0810
LLaMA3-Med42-8B 0.2496 0.0662 0.1392 0.2056 0.2372 0.0577 0.1426 0.2187
MeLLaMA-13B-chat 0.2756 0.1268 0.1925 0.2329 0.2655 0.0964 0.1865 0.2522

SFT + RLAIF Models (No Pretraining)

13B
SFT 0.2813 0.1166 0.1975 0.2248 0.2977 0.1059 0.1963 0.2677
SFT + DistillDirect 0.4994 0.2633 0.3425 0.3964 0.4941 0.2398 0.3476 0.4650

13B-chat
SFT 0.2874 0.1179 0.2022 0.2285 0.3301 0.1191 0.2231 0.2992
SFT + DistillDirect 0.4783 0.2472 0.3252 0.3738 0.4893 0.2411 0.3674 0.4599

Continued Pretraining + SFT + RLAIF Models

13B-long
CP 0.1612 0.0139 0.0754 0.1378 0.1289 0.0108 0.0598 0.1178
CP + SFT 0.2525 0.1034 0.1714 0.2044 0.2565 0.0775 0.1651 0.2276
CP + SFT + DistillDirect 0.4494 0.2471 0.3224 0.3618 0.4578 0.2086 0.3272 0.4241

13B-short
CP 0.1488 0.0106 0.0712 0.1149 0.0899 0.0060 0.0449 0.0806
CP + SFT 0.2463 0.0858 0.1638 0.1951 0.2277 0.0619 0.1396 0.1960
CP + SFT + DistillDirect 0.4775 0.2561 0.3452 0.3842 0.4956 0.2328 0.3526 0.4663

13B-chat-long
CP 0.1708 0.0151 0.0792 0.1321 0.1536 0.0130 0.0746 0.1424
CP + SFT 0.3463 0.1591 0.2525 0.2837 0.3620 0.1237 0.2401 0.3290
CP + SFT + DistillDirect 0.4601 0.2504 0.3325 0.3773 0.4662 0.2395 0.3484 0.4498

13B-chat-short
CP 0.1520 0.0116 0.0725 0.1085 0.1162 0.0107 0.0630 0.1032
CP + SFT 0.3475 0.1310 0.2230 0.2711 0.3055 0.1036 0.2009 0.2824
CP + SFT + DistillDirect 0.4878 0.2613 0.3410 0.3883 0.5182 0.2689 0.3933 0.4915

Table 1: ROUGE Scores Following Continued Pretraining (CP), Supervised Fine-Tuning (SFT), and Rein-
forcement Learning from AI Feedback (RLAIF). All evaluations were conducted on the validation subset of
the modified ACI-BENCH. The “13B” models represent the LLaMA-2 base models, while the “13B-chat” models
correspond to the LLaMA-2 chat models. Models with the suffix “long” were pretrained using the Discharge-long
dataset, and those with the suffix “short” were pretrained using the Discharge-short dataset. Bolded scores represent
the top two scores for each metric. Continued pretraining with MIMIC-IV discharge summaries initially resulted in
performance deterioration, whereas SFT and DistillDirect significantly improved the performance across all models.

ical LLMs fine-tuned on biomedical literature or
clinical notes (Chen et al., 2023; Christophe et al.,
2024; Xie et al., 2024) underperform compared to
the vanilla LLaMA-2 chat model. This suggests
that generating notes aligned with our “best prac-
tice” format presents an out-of-distribution chal-
lenge for medical LLMs. As expected, continued
pretraining with MIMIC-IV discharge summaries
compromised the chat model’s capacity to follow
instructions. SFT notably enhanced performance,
particularly for the chat model compared to the
base model. The application of RLAIF with Dis-
tillDirect significantly boosted performance across
all models. In many cases, the gains achieved
through RLAIF surpassed those from SFT, as
reflected by the delta improvement in ROUGE
scores (e.g., 13B-short). Notably, our training
with DistillDirect frequently encountered insta-

bility—a well-known challenge in reinforcement
learning (Ding and Dong, 2020). With carefully
selected training hyperparameters, DistillDirect
could achieve performance improvements without
overfitting, despite the limited training data and
repetitive use of the same prompts in each training
cycle (see Appendix Table 4). We have detailed
our experiments, including ablation studies, to find
a stable training setup in Appendix Method A.3.

When comparing models pretrained with
Discharge-long and Discharge-short, the latter con-
sistently achieved higher ROUGE scores, despite
exhibiting higher training loss during the pretrain-
ing phase. The chat model pretrained with the
Discharge-short dataset (13B-chat-short) emerged
as the top performer for the final RLHF stage. In-
terestingly, the model trained with SFT and RLAIF,
without continued pretraining, demonstrated strong
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Figure 3: Training Loss Curve from Continued Pre-
training. A. Training with the Discharge-long dataset
(1.2 billion tokens). B. Training with the Discharge-
short dataset (0.2 billion tokens). The X-axis represents
processed training tokens, and the Y-axis represents
training loss. The figures illustrate results from mixed
precision training with a cosine learning rate scheduler.
All experiments were trained for 1 epoch on their re-
spective training datasets. The loss curve in the solid
line was smoothed with an exponential moving average
and a window size of 250 steps. The original loss values
are shown as the faded background.

performance, including the highest score for “Sub-
jective.” This raises questions about the benefits
of continued pretraining, particularly considering
its substantial computational demands (Appendix
Figure 6A).

5.3 Analysis of RLHF

We collected quantitative feedback from physician
reviewers, who identified inaccurate information
and hallucinations as the most common issues in
the LLM-generated notes. Two out of three review-
ers noted a significant improvement in the quality
of the notes, with fewer hallucinations after one
round of DPO. Consequently, we conducted only
two rounds of DPO, mindful of its time-intensive
nature (Appendix Figure 6A). We present a qual-
itative analysis of a specific case across different
stages of model training, as shown in Appendix
Figure 5. This example illustrates that RLHF in-
troduced more granular changes, building on the
outcomes of RLAIF while preserving the original

style and structure. We named the model after our
RLHF step as LLaMA-Clinic.

5.4 Analysis of Physician Reader Study
We presented the results from the physician reader
study in Figure 4. Gemini Pro achieved the highest
scores across all three criteria (Figure 4B). Remark-
ably, the majority (92.8%) of the individual evalua-
tions rated the notes generated by LLaMA-Clinic
as “acceptable” or higher across all three criteria
(Figure 4C). Furthermore, the overall distribution
of scores was also similar among the three groups.
This aligns with qualitative feedback from three
out of four reviewers, who stated that the quality
of notes was, for the majority of the time, indis-
tinguishable among the groups, particularly in the
“Subjective” section.

The metric of real-world readiness yielded in-
triguing observations. Physicians were asked to
evaluate the notes as though they would be uti-
lized in everyday clinical practice, assuming the
physicians would proofread and make necessary
edits. LLaMA-Clinic achieved comparable overall
readiness scores to physician-authored notes, in-
cluding in the more complex “Assessment and Plan”
section, as shown in Figure 4B. Overall, LLaMA-
Clinic received higher completeness scores but
lower accuracy scores compared to physician-
authored notes. This finding suggests that physi-
cians might be more tolerant of minor factual inac-
curacies in a real-world setting if the notes require
fewer edits.

5.5 Cost Analysis for Model Development and
Inference

As shown in Appendix Figure 6A, the majority of
compute hours for developing LLaMA-Clinic were
required during the continued pretraining stage.
However, unsurprisingly, the most time-consuming
step overall involved physician labeling during
RLHF. Based on pricing information from May
2024, LLaMA-Clinic showed a 3.75-fold reduction
in inference costs compared to its teacher model,
Gemini 1.0 Pro (Appendix Figure 6B).

6 Discussion

Our methodology for adapting LLMs to clinical
note generation revealed several key considera-
tions. We initiated this process by establishing a
“best practice” note format informed by a consensus
among our physician authors. This approach tack-
les the variability in the style, format, and quality
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Figure 4: Physician Reader Study. A. Survey questions assessing each clinical note on three criteria: real-world
readiness, completeness, and accuracy. B. Bar charts displaying the mean score among evaluators across different
sections of the note. The error bars represent standard errors. The X-axis represents various metrics, and the Y-axis
shows the mean scores. The subfigure labeled “All” displays the combined results. C. Bar charts displaying the
distribution of scores across all criteria. The X-axis represents different scores, and the Y-axis shows total counts.

of physician notes, which could otherwise com-
promise the training of LLMs. Instead of relying
on the LLM to identify the most effective note
structure, we advocate for healthcare providers to
set these standards themselves. It is important to
acknowledge that the “best practice” note format
employed in this study reflects the consensus of
a group of internal medicine physicians within a
single organization. This format may not be gener-
alizable to other specialties or other organizations,
such as orthopedic surgery. Furthermore, we ex-
amined a workflow in which providers critically
review and refine AI-generated notes prior to their
filing. Under such a workflow, physician prefer-
ences may shift toward notes requiring fewer revi-
sions and edits, with a higher tolerance for minor
inaccuracies.

7 Conclusions

Our research highlights the potential of training
an open-source LLM for outpatient note genera-
tion, showing strong promise for real-world clin-
ical applications. Healthcare institutions are in a
privileged position to undertake such endeavors,
given their access to extensive EMR data and a
wealth of domain expertise critical for implement-
ing RLHF. Our work was based on fewer than 1,500
patient-doctor dialogues and limited physician pref-
erence data. When implementing a similar project
in a healthcare institution, the training data could
be scaled up significantly, potentially leading to
further performance improvements. Lastly, the
prospect of extending this work to other clinical
note-generation tasks, such as creating discharge
summaries for hospitalized patients, is particularly
exciting.
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9 Ethical Considerations

We followed the same approach as in (Van Veen
et al., 2023; Walsh et al., 2017) to assess the po-
tential consequences of factual errors. One physi-
cian evaluated the likelihood and severity of harm
associated with notes that received an accuracy
or completeness score below 5 in his review (n
= 22, 31 and 39 for Gemini Pro, LLaMA-Clinic,
and Physician, respectively). All notes within the
LLaMA-clinic and physician groups were assigned
scores of “None” for the extent of harm and “Low”
for the likelihood of harm. In contrast, the Gem-
ini Pro group contained a single case rated with
“Mild to Moderate” extent of harm and a “Medium”
likelihood of harm.

10 Limitations

Our study serves as a proof of concept and encoun-
ters limitations, notably the scarcity of publicly
available patient-doctor dialogues for model train-
ing, with the largest ACI-BENCH dataset com-
prising fewer than 300 cases. Additionally, the
effectiveness of outpatient note generation is fun-
damentally linked to the content of patient-doctor
dialogues. Although the ACI-BENCH data may
have synthesized dialogues to encapsulate all nec-
essary information for composing a comprehensive
note, such ideal conditions may not always reflect
real-world scenarios. For instance, time constraints
may prevent physicians from discussing every de-
tail of medical reasoning with patients, potentially
degrading the quality of the generated notes due to
the suboptimal input dialogue. Our research was
also constrained by limited availability of physician
evaluators, which restricted our ability to conduct
extensive hyperparameter searches or additional
rounds of RLHF. Our final evaluation was con-
ducted with only four physicians due to the task’s
time-intensive nature.
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A Experiment Chronicles

A.1 Overview

Our objective is to perform domain- and task-
specific adaptation of LLaMA-2 for generating out-
patient clinical notes based on patient-physician
dialogues. This process is structured around four
sequential steps: continued pretraining (CP), su-
pervised finetuning (SFT), reinforcement learning
from AI feedback (RLAIF), and reinforcement
learning from human feedback (RLHF). Here, we
detailed the trial-and-error process throughout our
experiments.

A.2 Continued Pretaining (CP)

A.2.1 CP Experiment 1
Models: LLaMA-2-13B base and chat models with
Low-Rank Adaptation (LoRA).
Dataset: We conducted experiments on two
datasets: the complete discharge summary from
MIMIC-IV (Discharge-long) and the extracted
“Hospital Course” section from discharge sum-
maries (Discharge-short).
Approach: In this experiment, we evaluated the
efficacy of pure bf16 training while adhering to
the majority of the default hyperparameters spec-
ified in the LLaMA-recipes. We used a learning
rate (LR) of 3e-4 without a scheduler. Other hy-
perparameters were selected based on computing
resource available at the time of experiments (4
x A6000 or 4 x A100 GPUs), including a global
batch size of 16 without gradient accumulation.
Results: We ran into training loss spike on 13B
base model that never fully recovered (Appendix
Figure 1 A).
Solution: Restarted pretraining using a mixed pre-
cision strategy.

A.2.2 CP Experiment 2
Models and Dataset: Same as experiment 1.
Approach: In this experiment, we implemented
mixed precision training, wherein weights and gra-
dients were stored in bf16 format, and optimizer
states in fp32. This decision was based on the hy-
pothesis that training with pure bf16 might pose
challenges in achieving convergence (Zamirai et al.,
2020). The remaining setup parameters were con-
sistent with those outlined in Experiment 1.
Results: During the course of training the 13B-
base model, we encountered another spike in train-
ing loss, notably in the early stages of the training
process (Appendix Figure 1B). Although the loss

Appendix Figure 1: Training Loss Spikes for 13B
Models during Continued Pretraining. A. Loss curve
for base model with bf16 training on vanilla LLaMA-
recipes without a LR scheduler. B. Loss curve for base
model with mixed precision training without a LR sched-
uler. C. Loss curve for chat model with a LR scheduler
and bf16 training. All experiments were performed
on Discharge-long dataset. The X-axis represents pro-
cessed training tokens, and the Y-axis represents training
loss. Original loss curves were shown without smooth-
ing.

quick recovered, it did not revert to its baseline
level. For runs that were completed successfully,
the outcomes were comparable to those observed
in Experiment 1.
Solution: Restarted pretraining using a LR sched-
uler.

A.2.3 CP Experiment 3

Models and Dataset: Same as experiment 1.
Approach: The standard LLaMA-recipes library
does not incorporate a LR scheduler at the time
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of our work, resulting in a constant LR for each
epoch in the previous two experiments. In this
iteration, we maintained mixed precision training
and introduced a cosine LR scheduler with 200
warm-up steps, followed by a decay to 0% of the
peak LR.
Results: All runs were completed successfully,
with the loss curve presented in Figure 3. We
observed a significant reduction in training loss
when using the Discharge-long dataset, with losses
dropping to the 0.9 range. Conversely, for the
Discharge-short dataset, the training loss plateaued
around 1.4. We utilized checkpoints from this
experiment for SFT and RLAIF.

A.2.4 CP Experiment 4
Models and Dataset: Same as experiment 1.
Approach: In this experiment, we explored the
implementation of pure bf16 training, utilizing the
same cosine scheduler as in Experiment 3. Our aim
was to ascertain whether this approach could stabi-
lize pure bf16 training, which offers the advantage
of reduced VRAM requirements.
Results: A spike in training loss was observed
in the 13B-chat model during training with the
Discharge-Long dataset (Appendix Figure 1C).

A.2.5 CP Experiment 5
Models: LLaMA-2-7B base and chat models with
full parameter training.
Dataset: Same as experiment 1.
Approach: Motivated by the inferior performance
of LoRA compared to full parameter training across
various benchmarks (Han et al., 2023), we explored
the implementation of full parameter training on
7B models, considering their similar VRAM re-
quirements (compared to LoRA training on the
13B models).
Results: In the 7B-chat model runs, we observed a
spike in training loss for both mixed precision and
pure bf16 training modalities, despite employing a
cosine LR scheduler.
Solution: Lowered LR.

A.2.6 CP Experiment 6
Models: Same as experiment 5.
Dataset: Same as experiment 1.
Approach: We reduced LR to 2e-5, down from 3e-
4 in the previous experiment. Of note, the vanilla
LLaMA-2 7B model’s used a LR of 3e-4 for pre-
training (Touvron et al., 2023).
Results: With the adjusted LR, along with the im-
plementation of pure BF16 training and a cosine

LR scheduler, we were able to successfully com-
plete all runs. Checkpoints from these runs were
utilized for SFT and RLAIF.

A.3 SFT and RLAIF
A.3.1 SFT Experiment 1
Models: We utilized the four 13-B checkpoints
(base-model/chat-model trained with Discharge-
long/Discharge-short) from CP Experiment 3 em-
ploying LoRA, and the four 7-B checkpoints from
CP Experiment 6 with full parameter training.
Dataset: We combined the training subsets from
ACI-BENCH (dialogue n = 67) and Dialogue-G
(dialogue n = 1291), then split this data equally for
SFT and RLAIF, stratified by data source. Notably,
for each dialogue we ask model to generate “Sub-
jective” and “Assessment and Plan” in two separate
prompts (therefore two data points per dialogue).
Approach: Instruction tuning was applied to the
SFT dataset over 3 epochs, with a LR of 2e-5 for
all models, maintaining a fixed LR.
Results: The performance metrics post-SFT are
presented in Appendix Table 1, under the column
labeled “R0”. Interestingly, the models, after under-
going pretraining and SFT, exhibited inferior per-
formance compared to the out-of-the-box LLaMA-
2-chat models. This decline in performance may
be attributed to catastrophic forgetting observed
during the CP phase.

A.3.2 RLAIF Experiment 1
Models: We continued with the eight checkpoints
derived from SFT Experiment 1. For the 13B mod-
els, LoRA was employed, while full parameter
training was applied to the 7B models.
Dataset: The RLAIF split of the training dataset
as mentioned above.
Approach: RLAIF was conducted using Dis-
tillDirect over three rounds. In each round, we
first generated notes using our training models,
which were designated as “rejected” notes. For
ACI-BENCH, the “preferred notes” were the origi-
nal reference notes in ACI-BENCH. For Dialogue-
G, the preference notes were generated by Gemini-
pro. For subsequent rounds, we sampled from the
newly updated model checkpoint to produce a new
set of “rejected” notes, while maintaining the same
“preferred” notes. Each round consisted of three
epochs, with a LR of 2e-5 in addition to a cosine
scheduler.
Results: Performance metrics following RLAIF
Experiment 1 are presented in Appendix Table 1.
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Subjective Assessment and Plan
Models R0 R1 R2 R3 R0 R1 R2 R3

Models underwent continued pretraining, SFT and RLAIF
7B-short 0.2332 0.3373 0.3163 0.2730 0.2259 0.2209 0.3164 0.3410
7B-long 0.2308 0.3619 0.0875 0.3262 0.2030 0.1992 0.2357 0.3205
7B-chat-short 0.2644 0.3471 0.0292 0.4465 0.2531 0.2670 0.3370 0.4436
7B-chat-long 0.2322 0.4270 0.4072 0.2639 0.2305 0.2841 0.3193 0.3916
13B-short 0.1335 0.3472 0.2353 0.3757 0.1586 0.1873 0.0540 0.3079
13B-long 0.1929 0.3329 0.2234 0.2949 0.1816 0.2602 0.2367 0.2918
13B-chat-short 0.2161 0.3703 0.4168 0.2297 0.2411 0.3901 0.3629 0.3202
13B-chat-long 0.1797 0.3617 0.3342 0.4065 0.2337 0.3381 0.3944 0.3903

Out-of-box models
7B 0.0305 0.000
7B-chat 0.2808 0.3538
13B 0.0249 0.0049
13B-chat 0.3114 0.3693

Appendix Table 1: ROUGE-1 Score after RLAIF Experiment 1. Performance reported on validation subset
of original ACI-BENCH. R0 represent the model after SFT, with or without CP. R1 to R3 represents performance
after respective rounds of DistillDirect. Models ended in long were pretrained using Discharge-long dataset, while
models ended in short were pretrained using Discharge-short dataset. Bolded scores denote the best performance
with respect to the task. The experimental setup includes training on the original reference notes from ACI-BENCH
with a LR of 2e-5, and 3 epochs per training round. The temperature is set at 1.0 during generation time to calculate
ROUGE-1.

Although we achieved commendable performance
by the third round of DistillDirect (notably the best
performance came from the 7B-chat_short model),
the training process exhibited instability. For in-
stance, the performance in the second round of
DistillDirect for the 7B-chat-short model showed a
significant decline from the previous round. Across
all models, we did not observe a consistent en-
hancement in performance (as assessed by the
ROUGE-1 score on the validation set) with addi-
tional rounds of DPO training. Notably, training
accuracy reached 100% prematurely, during the
first epoch for all models with a high reward mar-
gin (as shown in Appendix Figure 2), indicating
potential overfitting.

Solution: Recognizing the instability of the cur-
rent DistillDirect setup, we considered several po-
tential causes, including issues with data qual-
ity/distribution shift, an inappropriate LR leading
to overfitting, and reward hacking, among others.
Our initial step towards addressing these concerns
involved a thorough examination of the training
data.

A.3.3 SFT Experiment 2
Models: We restarted SFT using the eight check-
points after CP as discussed in SFT experiment
1.
Dataset: Upon closely examining the ACI-
BENCH and our synthetic dataset, we observed
several key points:

1. The quality of reference notes within ACI-
BENCH is markedly variable. Certain notes
are of poor quality (for example, overly brief),
and others adopt syntax or styles not typically
found in real clinical notes (for instance, ex-
plicitly including a “medical reasoning” sec-
tion).

2. Additionally, notes from different subspecial-
ties exhibit significant variations in style and
format (e.g., a note from internal medicine
versus one from orthopedics). While the het-
erogeneity observed in ACI-BENCH likely
mirrors the diversity encountered in clinical
practice (where different physicians may write
notes very differently), it poses a challenge
to use these notes as a “gold standard” for
training a language model to replicate such
documentation.
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Appendix Figure 2: Example Training Set Accuracy
and Reward Margin during DPO with a LR of 2e-5.
Examples taken from 13B-chat-short_R3, and all other
runs have similar training curve with high accuracy and
reward margin early on with this LR.

3. Similar issues were also noted in our aug-
mented Dialogue-G dataset created using
Gemini-pro. Despite employing prompts with
clear instructions regarding note format, mi-
nor inconsistencies still emerged.

Approach: Through discussions with our physi-
cian co-authors, we concluded that before AI can
assist physicians in generating notes, the physicians
themselves must determine what constitutes a “best
practice” note format. It’s acknowledged that the
“best practice” might diverge from existing notes
for valid reasons (notably, recognizing that physi-
cians can also produce suboptimal notes). With this
perspective, we revised our prompts and provided
a single-shot example to Gemini-pro to foster “con-
strained” note generation tailored towards a specific
style. This new note style was collectively endorsed
by our physician authors as superior to many ex-
amples within ACI-BENCH. Consequently, we di-
rected Gemini-pro to generate new reference notes
from the dialogues in ACI-BENCH, resulting in
a dataset we named Modified ACI-BENCH. At
this stage, we also regenerated reference notes for
Dialogue-G using Gemini Pro. Initially, we consid-
ered having our physicians edit Gemini-pro’s notes
before employing them for training. However, we
abandoned this idea due to the time-intensive na-

ture of the task and the satisfactorily high quality of
outputs from Gemini-pro with our revised prompt.
Results: Utilizing the newly formulated modified
ACI-BENCH dataset, we performed SFT for 3
epochs, adhering to the same parameters as before.
The performance metrics post-SFT are detailed in
Appendix Table 2, under the column labeled “R0”.

A.3.4 RLAIF Experiment 2
Models: The eight checkpoints from SFT experi-
ment 2. We used LoRA for 13B models and full
parameter training for 7B models.
Dataset: New dataset as described in SFT experi-
ment 2.
Approach: Similar to RLAIF Experiment 1, but
this iteration utilized the newly generated notes
by Gemini-pro as “preferred” notes. Additionally,
to mitigate concerns of overfitting, we limited the
training to 1 epoch for each round, as opposed to
the 3 epochs per round in RLAIF Experiment 1.
Results: Several intriguing observations emerge
from this iteration (Appendix Table 2).

• 7B vs 13B models: With the current LR, the
7B models exhibited significant instability dur-
ing DistillDirect. For instance, the 7B-short
model demonstrated a notable performance
degradation from round 1 to round 2. Upon
manual evaluation of its outputs, the model
incorrectly generated “Subjective” sections
when tasked with producing “Assessment and
Plan” and frequently returned null outputs.
Given the more stable training observed with
13B models utilizing LoRA, along with their
superior performance and reduced storage re-
quirements compared to full parameter train-
ing for 7B models, we have decided to pro-
ceed exclusively with 13B models hence-
forth.

• Best Performer by ROUGE-1 : Among our
CP models, the 13B-chat model pre-trained
with the Discharge-short dataset emerged as
the top performer. However, the overall best
model was the 13B-chat model following SFT
and three rounds of DistillDirect, but without
CP. It achieved ROUGE-1 scores of 0.5452
for “Subjective” and 0.5597 for “Assessment
and Plan”. Naturally, this led us to question
the value of CP in our specific task. Such
skepticism seemed justified, particularly given
the differences between our training corpus
of discharge summaries and that of outpatient
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Subjective Assessment and Plan
Models R0 R1 R2 R3 R0 R1 R2 R3

Models underwent continued pretraining, SFT and RLAIF
7B-short 0.1998 0.4894 0.5198 0.3792 0.2617 0.4885 0.0917 0.4100
7B-long 0.1949 0.4688 0.0594 0.3920 0.2446 0.3705 0.3053 0.4040
7B-chat-short 0.2961 0.4816 0.4946 0.0586 0.3157 0.5201 0.4763 0.3867
7B-chat-long 0.3067 0.5051 0.0964 0.0773 0.2988 0.4907 0.4275 0.3628
13B-short 0.2463 0.5064 0.4904 0.4066 0.2277 0.5252 0.4059 0.4493
13B-long 0.2525 0.4199 0.5113 0.3309 0.2565 0.4840 0.4610 0.3566
13B-chat-short 0.3475 0.5115 0.5030 0.5441 0.3055 0.5277 0.4422 0.5422
13B-chat-long 0.3463 0.4856 0.5308 0.3863 0.3620 0.4752 0.4730 0.4633

Models underwent SFT and RLAIF without continued pretraining
13B 0.2813 0.5303 0.3967 0.5108 0.2977 0.5265 0.3510 0.5060
13B-chat 0.2874 0.5073 0.5287 0.5452 0.3301 0.5069 0.4895 0.5597

Out-of-box models
13B 0.0329 0.0100
13B-chat 0.3585 0.4543

Appendix Table 2: ROUGE-1 Score after RLAIF Experiment 2. Performance reported on validation subset of
modified ACI-BENCH. R0 represent the model after SFT, with or without CP. R1 to R3 represents performance after
respective rounds of DistillDirect. Models ended in long were pretrained using Discharge-long dataset, while models
ended in short were pretrained using Discharge-short dataset. Bolded scores denote the best performance with
respect to the task. The experimental setup includes training on the new reference notes (modified ACI-BENCH)
with a LR of 2e-5, and 3 epochs per training round. The temperature is set at 1.0 during generation time to calculate
ROUGE-1.

clinical notes, which could be deemed out-of-
distribution for our task.

• Possible Best Performer by Physician Re-
view: The quality of the notes generated
by the top-performing models (e.g., 13B-
chat_R3, 13B-short_R1, 13B-chat-short_R3,
13B-chat-long_R2) appears nearly indistin-
guishable to our physician author. Overall, we
find the “Subjective” sections of these notes
to be satisfactory and potentially suitable for
clinical application. However, the primary
deficiency in achieving clinical-ready notes
lies within the “Assessment and Plan” sec-
tions, particularly regarding medical reason-
ing and certain linguistic nuances. Although
somewhat subjective, we felt the outputs from
13B-short_r1 bear the greatest resemblance
to an actual provider’s note. This finding
underscores the limitations of quantitative
metrics in tasks involving domain-specific
language generation.

• Persistent DistillDirect Training Instabil-
ity: Despite the creation of a more uniform
dataset, DistillDirect training remained sus-

ceptible to fluctuations. This instability was
more pronounced for 7-billion parameter mod-
els but was also observed in 13-billion pa-
rameter models (Appendix Table 2). The
13B-long model serves as an example, where
the ROGUE-1 score dropped from 0.5113 in
round 2 to 0.3309 in round 3 for the “Subjec-
tive” section. Reducing the number of epochs
per DistillDirect round from three to one did
not mitigate this issue. In all DistillDirect
rounds, training set accuracy rapidly reached
a perfect score of 1.0 halfway through the first
epoch, accompanied by a high reward margin
(as illustrated in the initial third of the curve
shown in Appendix Figure 2). This observa-
tion again suggests potential overfitting. Inter-
estingly, similar rapid accuracy increases were
reported during Zephyr training, and overfit-
ting did not negatively impact performance on
downstream tasks (Tunstall et al., 2023).

• Reflection on LR Selection: The optimal LR
for DPO has yet to be established in litera-
ture, with only a limited number of LLMs
having undergone DPO training to date. No-
tably, given the small size of our training set,
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our initial LR choice of 2e-5 is larger than
those selected in Zephyr and Tulu-2, where
both models opted for an LR of 5e-7 (Ivison
et al., 2023; Tunstall et al., 2023). The Tulu-2
paper mentioned that a “slow LR... is required
for stable and effective DPO training.” Con-
versely, in another study, Gaudi-2 employed
a significantly higher LR (5e-4, compared to
an LR of 1e-4 during its SFT), despite using
the same training data as Zephyr, and still
achieved a favorable response (Intel Analytics
Software, 2023).

• Generative Parameter Matters: We investi-
gated the influence of generative parameters
on model performance. Specifically, we exper-
imented with a lower temperature setting of
0.6 compared to the baseline of 1.0 (Appendix
Table 3), while maintaining other parameters
the same (multinomial sampling with top-k =
50, top-p = 1.0, and repetition penalty = 1.2).
Lowering the temperature resulted in a con-
sistent increase in ROUGE-1 scores across all
models. This finding suggests that optimizing
generation-related hyperparameters through a
dedicated search process has the potential to
further enhance performance.

Solution: Conduct a limited LR search specifically
for DistillDirect.

A.3.5 RLAIF Experiment 3
Models: 13B model checkpoints from SFT experi-
ment 2.
Dataset: New dataset as described in SFT experi-
ment 2.
Approach: We evaluated an LR of 5e-6 and 5e-
7 and compared the effects of 1 epoch versus 3
epochs in each round across three rounds. After
each round of training, we resampled outputs from
the updated model checkpoint to serve as “rejected”
samples for the subsequent round of DPO, while
continuing to use notes produced by Gemini-pro as
the “preferred” samples.
Results:

• LR of 5e-7: Training set accuracy reached
0.98 by the end of the second epoch. After
three epochs, the reward margin only attained
a level of 0.25 (Appendix Figure 3). This very
small, albeit popular, LR was found to be in-
sufficient in our experimental setup, yielding
very slow performance improvements regard-
less of whether we conducted 1 epoch per

round or 3 epochs per round of training (Ap-
pendix Table 4).

Appendix Figure 3: Example Training Set Accuracy
and Reward Margin during DPO with a LR of 5e-7.
Examples taken from 13B-chat-short_R1. Training set
accuracy reaches 0.98 at the end of 2nd epoch. After 3
epochs, the reward margin only reaches a level of 0.25.

Appendix Figure 4: Example Training Set Accuracy
and Reward Margin During DPO with a LR of 5e-6.
Examples taken from 13B-chat-short_R1. Training set
accuracy reaches 0.98 at the end of 2nd epoch. After 3
epochs, the reward margin only reaches a level of 0.25.
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Subjective Assessment and Plan
Models R0 R1 R2 R3 R0 R1 R2 R3

Models underwent continued pretraining, SFT and RLAIF
13B-short 0.4006 0.5423 0.5186 0.4702 0.4032 0.5683 0.4039 0.5242
13B-long 0.3570 0.4799 0.5779 0.3981 0.4298 0.5266 0.4688 0.3780
13B-chat-short 0.4390 0.5455 0.5248 0.5560 0.4825 0.5565 0.5236 0.5694
13B-chat-long 0.4272 0.5149 0.5423 0.4188 0.4459 0.5487 0.5322 0.4852

Models underwent SFT and RLAIF without continued pretraining
13B 0.3671 0.5469 0.4216 0.5508 0.4335 0.5804 0.3833 0.4913
13B-chat 0.4077 0.5351 0.5582 0.5466 0.4383 0.5522 0.4907 0.5847

Appendix Table 3: ROUGE-1 Score after RLAIF Experiment 2 with Lower Temperature. Performance
reported on validation subset of modified ACI-BENCH. R0 represent the model after SFT, with or without CP. R1
to R3 represents performance after respective rounds of DistillDirect. Models ended in long were pretrained using
Discharge-long dataset, while models ended in short were pretrained using Discharge-short dataset. Bolded scores
denote the best performance with respect to the task. The experimental setup includes training on the new reference
notes (modified ACI-BENCH) with a LR of 2e-5, and 1 epoch per training round. The temperature is set at 0.6
during generation time to calculate ROUGE-1, using the same model checkpoints as in Appendix Table 2.

• LR of 5e-6: Training set accuracy reached
0.95 midway through the second epoch. After
three epochs, the reward margin achieved a
level of 12 (refer to Appendix Figure 4). Al-
though the training curve bears resemblance
to that associated with a LR of 2e-5 (see Ap-
pendix Figure 4 and Appendix Figure 2), this
lower LR demonstrated greater stability. This
was particularly evident in the experiments
conducted with 1 epoch per round of training,
where performance across all models either
exhibited steady improvement or achieved
convergence, devoid of the abrupt declines
observed with an LR of 2e-5 (Appendix Ta-
ble 4). Notably, several models reached their
performance peak in round 2, indicating that
2 to 3 rounds of training might be an optimal
range for our experiment setup.

• Impact of Temperature: Consistent with
previous experiments, model performance im-
proves when a lower temperature was applied
during generation (see Appendix Table 5).

Solution: We identified the LR of 5e-6 with a 1-
epoch per round as the stable setup for DistillDirect
in our experiment. Upon manual examination of
outputs from all model checkpoints within this con-
figuration, we selected the 13B-chat-short model
from round 3 for the next stage of RLHF (Ap-
pendix Table 4).

A.4 RLHF
The model checkpoints selected for RLHF have
undergone training through a sequence of stages:
CP Experiment 3, followed by SFT Experiment 2,
and then RLAIF Experiment 3. During the RLHF
phase, we experimented with different temperature
settings and observed that physicians tend to pre-
fer outputs generated at lower temperatures. Con-
sequently, we decided to adopt more determinis-
tic generation parameters for the physician reader
study.
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Subjective Assessment and Plan
Models R0 R1 R2 R3 R0 R1 R2 R3

Lr: 5e-6, 3 epochs per round
13B-short 0.2463 0.5124 0.4820 0.5310 0.2277 0.5123 0.4547 0.4808
13B-long 0.2525 0.4406 0.5423 0.2974 0.2565 0.4652 0.4984 0.3316
13B-chat-short 0.3475 0.4633 0.4727 0.5422 0.3055 0.5293 0.5012 0.5086
13B-chat-long 0.3463 0.4936 0.5097 0.5327 0.3620 0.5290 0.5008 0.5247

Lr: 5e-6, 1 epoch per round
13B-short 0.2463 0.3708 0.4794 0.4775 0.2277 0.4318 0.4995 0.4956
13B-long 0.2525 0.3730 0.4427 0.4494 0.2565 0.3609 0.4750 0.4578
13B-chat-short 0.3475 0.4254 0.4804 0.4878 0.3055 0.4329 0.5140 0.5182
13B-chat-long 0.3463 0.4135 0.4600 0.4601 0.3620 0.4642 0.4843 0.4662

Lr: 5e-7, 3 epochs per round
13B-short 0.2463 0.2546 0.2655 0.2744 0.2277 0.2618 0.2573 0.3002
13B-long 0.2525 0.2151 0.2382 0.2115 0.2565 0.2458 0.3149 0.2755
13B-chat-short 0.3475 0.3518 0.3718 0.3428 0.3055 0.3398 0.3449 0.3840
13B-chat-long 0.3463 0.3311 0.2984 0.3296 0.3620 0.3310 0.3719 0.3747

Lr: 5e-7, 1 epoch per round
13B-short 0.2463 0.2864 0.2921 0.2644 0.2277 0.2599 0.2731 0.2735
13B-long 0.2525 0.2600 0.2333 0.1839 0.2565 0.2473 0.2216 0.2453
13B-chat-short 0.3475 0.3117 0.3388 0.3356 0.3055 0.3303 0.3370 0.3231
13B-chat-long 0.3463 0.3090 0.2943 0.3134 0.3620 0.3174 0.3194 0.3693

Appendix Table 4: ROUGE-1 Score after RLAIF Experiment 3. Performance reported on validation subset of
modified ACI-BENCH. R0 represent the model after CP and SFT. DistillDirect R1 to R3 represents performance
after respective rounds of DistillDirect. Models ended in long were pretrained using Discharge-long dataset, while
models ended in short were pretrained using Discharge-short dataset. Bolded scores denote the best performance
with respect to the task. The experimental setup includes training on the new reference notes (modified ACI-BENCH)
with a variable learning rates and training epochs. The temperature is set at 1.0 during generation time to calculate
ROUGE-1.
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Subjective Assessment and Plan
Models R0 R1 R2 R3 R0 R1 R2 R3

Lr: 5e-6, 3 epochs per round
13B-short 0.4006 0.5165 0.5143 0.5349 0.4032 0.5471 0.4996 0.5246
13B-long 0.3570 0.5049 0.5679 0.4289 0.4298 0.5064 0.5102 0.3976
13B-chat-short 0.4390 0.5343 0.5309 0.5614 0.4825 0.5524 0.5266 0.5575
13B-chat-long 0.4272 0.4815 0.5759 0.5605 0.4459 0.5299 0.5510 0.5294

Lr: 5e-6, 1 epoch per round
13B-short 0.4006 0.4971 0.5145 0.5200 0.4032 0.4950 0.5464 0.5222
13B-long 0.3570 0.4449 0.5126 0.5000 0.4298 0.5123 0.5190 0.5285
13B-chat-short 0.4390 0.5155 0.5167 0.5352 0.4825 0.5380 0.5392 0.5411
13B-chat-long 0.4272 0.4863 0.4980 0.5077 0.4459 0.5094 0.5255 0.5346

Lr: 5e-7, 3 epochs per round
13B-short 0.4006 0.3760 0.3771 0.4573 0.4032 0.4390 0.4281 0.4315
13B-long 0.3570 0.4022 0.3909 0.3693 0.4298 0.4154 0.4428 0.4411
13B-chat-short 0.4390 0.4434 0.4482 0.4394 0.4825 0.4761 0.4625 0.4833
13B-chat-long 0.4272 0.4398 0.4058 0.4282 0.4459 0.4763 0.4633 0.4545

Lr: 5e-7, 1 epoch per round
13B-short 0.4006 0.4241 0.4112 0.4140 0.4032 0.4345 0.4172 0.4107
13B-long 0.3570 0.4099 0.4175 0.4039 0.4298 0.3671 0.3865 0.4285
13B-chat-short 0.4390 0.4291 0.4541 0.4337 0.4825 0.4569 0.4826 0.4450
13B-chat-long 0.4272 0.4188 0.4048 0.3986 0.4459 0.4606 0.4552 0.4446

Appendix Table 5: ROUGE-1 Score after RLAIF Experiment 3 with a Lower Temperature. Performance
reported on validation subset of modified ACI-BENCH. R0 represent the model after CP and SFT. R1 to R3
represents performance after respective rounds of DistillDirect. Models ended in long were pretrained using
Discharge-long dataset, while models ended in short were pretrained using Discharge-short dataset. Bolded scores
denote the best performance with respect to the task. The experimental setup includes training on the new reference
notes (modified ACI-BENCH) with a variable learning rates and training epochs. The temperature is set at 0.6
during generation time to calculate ROUGE-1 using the same model checkpoints as in Appendix Table 4.
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B Details on Datasets

B.1 ACI-BENCH Subsets

ACI-BENCH comprises five data subsets: train,
validation, test1, test2 and test3 (Yim et al., 2023b).
Test1 and test2 corresponds to the test sets from
ACL ClinicalNLP MEDIQA-Chat 2023 TaskB and
TaskC, respectively (Abacha et al., 2023). Test3
corresponds to TaskC of CLEF MEDIQA-SUM
2023 (Yim et al., 2023a). Given the scarcity of
publicly available clinical dialogue-note datasets,
we used the train, test2, and test3 subsets for vari-
ous stages of model development in our study. The
blinded clinical reader study was performed on the
test1 subset.

B.2 MIMIC-IV

The publicly available MIMIC-IV dataset com-
prises 431,231 unique hospital admissions from
299,712 patients admitted to an ICU or the
ED of the Beth Israel Deaconess Medical Cen-
ter in Boston, Massachusetts (Johnson et al.,
2023). MIMIC-IV is deidentified according to
the Health Insurance Portability and Accountabil-
ity Act (HIPAA) Safe Harbor provision (John-
son et al., 2023). Access to MIMIC-IV can be
requested at https://physionet.org/content/
mimiciv/, which requires a signed safe usage
agreement.

C Implementation Details for Final
Experimental Steps

C.1 LoRA

We used LoRA to train LLaMA-2-13B models for
all phases of training. LoRA is a method that
involves freezing the pre-trained model weights
and only training a small percentage (<1%) of the
model weights, i.e., by incorporating trainable rank
decomposition matrices into each layer of the trans-
former architecture (Hu et al., 2021). As a quick
summary, let us assume that we have the origi-
nal weight matrix W0 ∈ Rd×k. LoRA works by
adding a low-rank matrix to the original weight ma-
trix: ∆W +W0,∆W = BA where B ∈ Rd×r

and A ∈ Rr×k. r << d, so the matrices B,A
are limited by a lower rank r, reducing the need to
train all the parameters. Training is only performed
on this ∆W , and original model weights are kept
the same. We then scale ∆W by α

r , where α is a
constant in r.

In all training steps, LoRA parameters were con-
figured with r set to 8, an α of 32, and a dropout
rate of 0.05. All attention blocks were included in
the LoRA target modules.

C.2 Medical LLMs Evaluation

We evaluated state-of-the-art medical and clin-
ical LLMs fine-tuned on biomedical literature
and clinical notes: Meditron-7B (Chen et al.,
2023), LLaMA-3-Med42-8B (Christophe et al.,
2024), and MeLLaMA-13B-chat (Xie et al., 2024).
The same generation configurations with one-shot
prompting from our main experiments were ap-
plied, except for MeLLaMA, for which we used its
default generation settings to achieve better perfor-
mance.

C.3 Continued Pretraining

We followed the training scripts outlined in Meta’s
official LLaMA recipe repository (meta-llama). We
employed mixed-precision training with a batching
strategy of packing and a context length of 4096
tokens. We utilized Fully Sharded Data Parallel
(FSDP) on either 4 Nvidia A6000 or 4 Nvidia A100
GPUs. We maintained a batch size of 4 during
training with a gradient accumulation step of 1.
Consistent with LLaMA-2, we set a peak learning
rate of 3e-4 for the continued pretraining stage.
The AdamW optimizer with a cosine learning rate
scheduler was used, and the model was trained for
one epoch. The exponential moving average of
training loss as shown in Figure 3 was calculated
using the pracma package from R with a window
size of 250.

C.4 SFT

We used a similar experiment setup as continued
pretraining, including following LLaMA-recipes to
perform mixed precision training on 4 GPUs using
FSDP (Zhao et al., 2023). For SFT, we selected
the batching strategy of padding and trained on
3 epochs. Consistent with LLaMA-2, we set a
peak learning rate of 2e-5. We truncate prompt
(including instruction and dialogue) at a max length
of 3000 tokens, and truncate note to 1000 tokens.
We set a value of -100 for labels on prompt tokens
to zero out losses from prompts.

C.5 RLAIF

We utilized the trl library from Huggingface to
conduct DistillDirect (von Werra et al.). Due to
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computational limitations, experiments were con-
ducted on a single Nvidia A100 GPU with 80GB
of graphics memory. To optimize memory usage,
pure BF16 training was utilized with a micro-batch
size of 1 and gradient accumulation steps of 8.
Following a limited learning rate search detailed
in Appendix A.3 and Appendix Table 4, a learn-
ing rate of 5e-6 was chosen. The optimizer used
was paged_adamw_32bit. Within the DPOTrainer
class, we set the beta hyperparameter to 0.1 and
passed None to ref_model. Three rounds of Dis-
tillDirect were performed, with each round involv-
ing one epoch of training.

Text generation was implemented using the
Transformers library (Wolf et al., 2019). When
generating “rejected” samples from the lat-
est model checkpoint, we consistently ap-
plied do_sample=True, top_p=1.0, tempera-
ture=1.0, top_k=50, repetition_penalty=1.2, and
use_fast_kernels=False. The maximum number of
newly generated tokens was set to 1000.

C.6 RLHF
For RLHF, we employed an experimental setup
analogous to that described in RLAIF. We con-
ducted two rounds of DPO on human preference
data. Diverging from the approach taken in RLAIF,
we executed three epochs of training in each DPO
round due to the limited size of the dataset.

Based on the findings from ablation studies de-
tailed in Appendix A.3 and Appendix Table 5, we
opted for a lower temperature setting at this stage.
In the initial round of DPO, we generated three re-
sponses using the same configuration, including a
temperature setting of 0.6, for preference labeling.
In the second round of DPO, we diversified the tem-
perature settings, resulting in three responses with
temperatures set at 0.6, 0.4, and 0.2, respectively,
for preference labeling.

Of note, we excluded data from Dialogue-G
to ensure in-distribution training during this fi-
nal stage of model development. This decision
was based on the observed perplexity of 2.79 for
Dialogue-G, in contrast to 5.62 for ACI-BENCH,
as calculated using the LLaMA-2 chat model after
continued pretraining.

C.7 Physician Reader Study
LLM-generated notes were produced by LLaMA-
Clinic and Gemini Pro, employing identical
generation-related hyperparameters (temperature
of 0.2, top_p of 0.7 and top_k of 40). To ensure

consistency in presentation across all notes, we im-
plemented a basic post-processing step. This step
standardized aspects like style, spacing, and cap-
italization to minimize any formatting discrepan-
cies between human-authored and model-generated
notes.

Four licensed physician evaluators, who spe-
cialize in general internal medicine or family
medicine, boast rich experience in outpatient prac-
tice. The notes were presented in a random order,
anonymized to remove any identifying information,
and labeled as note 1, note 2, and note 3 to mask
the origin of each note from the evaluators. Before
assessing the notes, evaluators were instructed to
read the entire patient-provider conversation. They
were then asked to rate the quality of each note
across three criteria: “accuracy,” “completeness,”
and “real-world readiness.” For each criterion, a
scoring system from 1 to 5 was used, ranging from
very poor to very good, with higher scores reflect-
ing superior quality. Specifically for “real-world
readiness,” evaluators were prompted to consider
the scenario of integrating AI-generated clinical
notes into their daily practice, including the neces-
sity to proofread and potentially edit these notes
before filing them into medical records.

C.8 Statistical Analysis
The non-parametric Kruskal-Wallis H test was
selected to compare differences in word counts
among the three-note groups, utilizing the scipy
package in Python (Virtanen et al., 2020). We
measured IRR using Gwet’s AC2 statistics imple-
mented through the irrCAC package in R (Gwet,
2014; Gwet and Gwet, 2019). We reported results
with quadratic weights for Gwet’s AC2, as this ap-
proach is reliable for ordinal data against the grey
zones (Tran et al., 2021). Due to our relatively
small reviewer pool, we chose not to conduct sta-
tistical significance testing on the physician reader
study, aligning with practices observed in the deep
learning community (Touvron et al., 2023; Stien-
non et al., 2020).

C.9 Model Development Cost Estimation
In Appendix Figure 6A, we provide cost estima-
tions for the training steps directly involved in the
development of LLaMA-Clinic. These costs should
be viewed as minimal estimates and will likely fall
short of the actual budget requirements since they
do not include the trial-and-error expenses from var-
ious experiments, such as trialing different models,
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conducting hyperparameter searches, and debug-
ging. The hours for continued pretraining are based
on training using the Discharge-short dataset. For
GPU hours, we accounted for the total number of
Nvidia A100 GPU hours utilized. For example, if
the continued pretraining stage requires 12 hours
using FSDP on four A100 GPUs, we calculate this
step as requiring 48 hours. For physician labeling
hours, we asked physicians to estimate the average
time they spent on the tasks.

C.10 Model Inference Cost Estimation

A complex array of factors influences the total cost
of deploying a model for production. These in-
clude hardware and software configurations, labor
costs associated with constructing, validating, and
refining the model, and the implementation of com-
prehensive security measures to mitigate misuse
and enhance threat detection. To ensure a fair and
apples-to-apples comparison, we calculated the in-
ference costs for both proprietary and open-source
models based on API calls. In this context, the total
annual inference cost is calculated as follows:

C = (pi × ni + po × no)×R (2)

Here, C represents the total annual inference
cost. pi denotes the price per input token, while ni

refers to the average number of input tokens per
request. Similarly, po indicates the price per output
token, and no represents the average number of
output tokens per request. The term R stands for
the total number of annual requests.

For open-source models, we assumed deploy-
ment on Fireworks.ai, a company that offers server-
less inference for customized LLMs. We sourced
pricing information from the websites of Google
AI, OpenAI, and Fireworks.ai in May 2024 for on-
demand API calls. Detailed pricing information
can be found in Appendix Table 11. We assumed
an average of 3,000 input tokens and 1,000 output
tokens per request for clinical note generation. This
estimation likely contains redundancy and leaves
room for prompt engineering, given that in a cohort
of real-world family medicine clinical encounters,
the average lengths per dialogue and note are 1505
and 683 tokens, respectively (Yim et al., 2023b).

An important consideration for production is en-
suring adequate throughput for LLMs. As an exam-
ple, Gemini 1.0 Pro has a rate limit of 360 requests
per minute, while LLaMA-Clinic, deployed with
the “Developer” plan from Fireworks.ai, allows

600 requests per minute. We consider this default
rate limit acceptable for our calculations, as shown
in Figure 5. For example, 1 million annual requests
translate into an average of approximately 5.7 re-
quests per minute (RPM), using the formula:

Average RPM =
Annual Requests
365× 8× 60

(3)

assuming an 8-hour workday. However, this cal-
culation does not account for peak demand, which
would necessitate system redundancy in a produc-
tion environment. In addition, there are other tech-
nical factors to consider for deployment in produc-
tion, such as latency and throughput variance (Art,
2024), which were not included in our analysis.

D Additional Results

D.1 Performance of LLM-as-a-Judge in
Predicting Physician Preference

We evaluated Gemini 1.0 as an LLM-as-a-judge on
our RLHF dataset. We observed a low accuracy of
43.8% in predicting physician preferences (from
three candidate notes), underscoring the challenges
LLMs encounter in predicting expert preferences
in complex domains such as medicine.

D.2 Qualitative Analysis of Model Outputs

Qualitative analysis for a specific case at different
stages of model training is presented in Appendix
Figure 5. Continued pretraining effectively adopted
the style and peculiarities from discharge sum-
maries but at the expense of diminished instruction-
following ability and increased hallucinations. The
quality of outputs significantly improved post-SFT
but remained overly verbose, while RLAIF effec-
tively refined outputs to adhere to the format of
reference notes, assisting in reducing hallucina-
tions. Upon manually reviewing outputs from all
model checkpoints post-RLAIF, our physician au-
thor noted that the “Subjective” sections were gen-
erally of high quality and nearly indistinguishable
from notes authored by clinicians. However, the
“Assessment and Plan” sections could be improved
to more accurately and concisely reflect medical
reasoning.

D.3 Physician Reader Study

Four internal medicine physicians and one fam-
ily medicine physician, in a blinded review, evalu-
ated notes authored by physicians, LLaMA-Clinic,
and Gemini Pro based on three criteria: real-world
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readiness, completeness, and accuracy (Figure 4A).
The median word counts and interquartile ranges
(IQR) for notes authored by physicians, LLaMA-
Clinic, and Gemini Pro were 118 (IQR: 94-150),
128 (IQR: 108-145), and 128 (IQR: 100-164), re-
spectively. No statistically significant differences in
word counts were observed among the three groups
(Kruskal-Wallis H test: p = 0.292). We assessed
inter-rater reliability (IRR) utilizing Gwet’s AC2
statistics. The AC2 scores for the three metrics
ranged from 0.80 to 0.82, signifying a high degree
of agreement among reviewers.

D.4 Cost Analysis for Model Development
and Inference

We provided our estimations of both GPU and
human costs, measured in hours, for developing
LLaMA-Clinic in Appendix Figure 6A. For infer-
ence cost, we calculated the cost of deploying open-
source models in a serverless cloud environment
provided by a third-party vendor. We compared
these with the costs of using the proprietary models’
APIs (Appendix Figure 6B). Overall, proprietary
models are more expensive than the open-source
options. For proprietary models, costs significantly
increase with the more advanced models. Simi-
larly, for open-source models, costs increase with
larger model sizes, as measured by the number of
parameters. LLaMA-Clinic demonstrates a price
advantage compared to its teacher model, Gemini
1.0 Pro, with a 3.75-fold cost reduction based on
pricing information from May 2024. Assuming
one million requests for clinical note generation,
the estimated annual inference cost for LLaMA-
Clinic is $800 USD, compared to $3,000 USD for
Gemini 1.0 Pro. Moreover, the amount mentioned
is for the inference cost for one type of note. The
total cost of supporting all types of notes will be
significantly higher, but the relevant cost difference
should remain the same.

E Additional Discussion

E.1 Continued Pretraining vs. Supervised
Finetuning

Continued pretraining of an LLM using a domain-
specific corpus is recognized for enhancing per-
formance on downstream tasks (Wu et al., 2023b).
This phase is considered a knowledge injection pro-
cess, given that LLMs acquire the vast majority
of their knowledge during the pretraining phase
(Ovadia et al., 2023; Zhou et al., 2023a). Several

clinical LLMs that underwent continued pretrain-
ing with medical corpora, such as PubMed litera-
ture, combined with SFT have shown significant
improvements in medical knowledge benchmarks
(Chen et al., 2023; Wu et al., 2023a; Luo et al.,
2023).

However, a critical distinction exists between
tasks focused on medical knowledge (e.g., answer-
ing USMLE questions) and those aimed at clinical
note generation. Notably, GatorTronGPT (Peng
et al., 2023), the only LLM trained from scratch us-
ing EMR data from real patients to date, performed
lower in both MedQA and PubMedQA compared
to other clinical LLMs (Chen et al., 2023; Wu et al.,
2023a; Kweon et al., 2023; Wang et al., 2024b).
This outcome indicates that EMR data alone may
lack comprehensive medical knowledge. For the
task of note generation, we hypothesized that con-
tinued pretraining with clinical notes could offer
benefits by introducing greater lexical variance,
unique semantic patterns, and diverse formatting
similar to prior work (Lehman et al., 2023). Our
experiments did not conclusively demonstrate the
anticipated benefits of continued pretraining. Inter-
estingly, the LLaMA-2 model without continued
pretraining achieved the highest ROUGE-1 scores
after SFT and RLAIF in our early experiments (see
Appendix Table 2). We opted to proceed with the
continued pretrained model for RLHF due to sub-
tle peculiarities observed upon manual inspection.
Given the significant time and computational re-
sources required for continued pretraining, its util-
ity, particularly with clinical notes, merits further
exploration in future work.

E.2 Data Selection for Continued Pretraining
Another potential factor in the less impressive im-
provement from continued pretraining may be at-
tributed to the variance in data distribution between
discharge summaries and outpatient notes. To
address this, we performed experiments focused
on a condensed version of discharge summaries
(Discharge-short), hypothesizing that the “brief
hospital course” section would contain data of
higher quality than the complete discharge sum-
mary. Indeed, models trained on the Discharge-
short outperformed those trained on the full sum-
maries (Table 1). Interestingly, we observe that
during the pretraining stage, models trained on full
summaries achieved lower training losses (see Fig-
ure 3). However, this did not lead to better per-
formance in the downstream task. We speculate
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that the structured nature of the full discharge sum-
maries, which include sections such as laboratory
results and medication lists, presents more straight-
forward learning targets for the model. This allows
it to achieve lower training losses, which do not nec-
essarily translate into improved task performance.
This observation underscores the necessity for thor-
ough analysis of the data used for pretraining.

F Prompts to Gemini Pro for Dialogue-G
Creation

We presented the prompt sent to Gemini Pro for
generating dialogues of Dialogue-G in Appendix
Table 6.

G Prompts to Gemini Pro for Reference
Note Generation

We presented the prompt used by Gemini Pro to
create reference notes in Appendix Table 7. We
demonstrated two examples of clinical notes before
and after the change in Appendix Figure 7.

H Instructions for Collecting Preference
Data

We presented the instructions used for collecting
physician preference data for RLHF in Appendix
Table 8.

I Instructions and Scoring Rubric for
Physician Reader Study

We presented the instructions used for the final
physician reader study in Appendix Table 9.

J Instructions for Harm Evaluation

We presented the instructions used for the harm
evaluation in Appendix Table 10.

K An Example of Patient-Doctor
Dialogue

We presented an example of doctor-patient dia-
logue from ACI-BENCH in Appendix Table 12.
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Stage 0: vanilla
LLaMa-2-chat

Sure! Here's the Assessment and Plan section of the clinical note based on the
patient's dialogue:

Assessment:
* Iron deficiency anemia (IDA)
* History of heavy menstrual Bleeding
....

Plan:
* Order upper endoscopy and colonoscopy to evaluate for possible GI bleeding
* Ask patient to take ferrous sulfate with orange juice (to improve absorption) for
the next 12 weeks
* Referral to hematologist for further evaluation and management of IDA
* Consider capsule endoscopy if initial tests are negative
....

Stage 1: s/p
continued pretraining

Okay. Based upon conversation with ___ from today's hospital stay, patient
denies drug use or history of trauma sustained, both of which could precipitate
aneurysms.
Patient reports recent work-up revealing mild thrombophilic gene mutation
(Factor V Leiden), and he underwent left upper extremity arteriogram previously
showing patency. The patient had ultralow circulatory volume pressure values
concerning for chronically impaired venospastic reflexes contributing to
decreased perfusion pressures resulting in decreased collaterals. Left carotid
artery stenosis thought to be possible source of embolism formation causing
patient symptoms prior to his vascular intervention in patient earlier in ___. He
currently reported being asymptomatic as part of the routine postcare regimen,
with stable pain free status of 3 months followed consistently throughout most
recent period. He received angioplasty to two distal graft lesions near the
bifurcation on June 30 before discharge;
....

Stage 2: s/p SFT

ASSESSMENT AND PLAN: 
1. Iron Deficiency Anemia
Assessment: The patient's symptoms, including fatigue, chills, and shortness of
breath suggest iron deficiency anemia (IDA). Her medical history includes
hysterectomy and early menopause and she reports menstrual irregularities
before her menses became regularly absent after her surgery. ... Differential
diagnosis include chronic kidney disease, hypothyroidism, thalassemia trait,
sickle cell trait....
Plan: 
- Will obtain CBC, MCV index, iron studies, BUN, Cr, reticulocyte count, serum
electrophoresis, and liver function tests...If results are supportive of IDA, will
initiate iron therapy (IV vs PO depending on response)...
- Referred patient to GI due to concern for gastrointestinal bleeding or occult
cancer, colon cancer screening and polyp removal, gastritis and dyspeptic
symptoms
...

Stage 3: s/p RLAIF

ASSESSMENT AND PLAN:
1. Iron Deficiency Anemia 
Assessment: Patient has a history of iron deficiency anemia, which has been
persistent despite trying to donate blood. Physical exam reveals mild
macrocytosis. She denies any rectal trauma or hematochezia. Her ferritin level is
low.
Plan:
- Recommend ferrous sulfate 25mg TID for 8-12 weeks. Encourage absorption
with orange juice.
- Schedule an EGD and colonoscopy to evaluate for GI bleed. If the test results
are negative, order a capsule endoscopy.
- Refer to hematology for further evaluation.
...

Stage 4: s/p RLHF

ASSESSMENT AND PLAN:
1. Iron Deficiency Anemia
Assessment: The patient has a history of iron deficiency anemia, started iron
pills, but stopped due to side effects. She has been experiencing fatigue, fevers,
chills, shortness of breath, headaches, and chilling sensations.
Plan:
- Will obtain CBC, iron, ferritin, B12, and folate levels to evaluate the
effectiveness of current treatment.
- Recommend continuing ferrous sulfate 25mg TID with Vitamin C 1 glass of OJ
in AM and PM for the next 12 weeks.
- Arranged for EGD and Colonoscopy to rule out GI bleed or other causes of
anemia.
- Referred to Hematology for further evaluation.
...

Reference note

ASSESSMENT AND PLAN:
1. Iron deficiency anemia
Assessment: Patient has long-standing iron deficiency anemia, with low
hemoglobin and low ferritin. She has taken ferrous sulfate 25mg BID and over-
the-counter vitamin B12. 
Plan:
- Continue ferrous sulfate 25mg BID with orange juice for 8-12 weeks, then
recheck CBC, iron, ferritin, B12, and folate.
- Referred to hematology for further evaluation and management.
- Schedule EGD and colonoscopy to assess for potential sources of anemia or
GI bleed. If inconclusive, capsule endoscopy will be considered.
...

Appendix Figure 5: An Example of Model Outputs Progression with Training Steps. Case number D2N073
from ACI-BENCH validation set. The figure illustrates the model’s outputs for the same case following each training
step. Continued pretraining adopted the style of discharge summaries but impaired the model’s ability to follow
instructions. Post-SFT, output quality improved, though it remained verbose. RLAIF and RLHF effectively refined
outputs to match the format of reference notes and helped reduce hallucinations.
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Appendix Figure 6: Cost Estimation for Model Development and Inference. A. Model development cost for
LLaMA-Clinic. The Y-axis of the horizontal bar chart represents different stages of model development, while
the X-axis indicates costs, measured in total Nvidia A100 GPU hours or physician man hours. Importantly, the
displayed costs only consider the training steps directly involved in developing LLaMA-Clinic and do not include
the trial-and-error expenses from all experiments. B. Estimated inference costs for 1 million annual requests by
proprietary and open-source models. The horizontal bar chart displays the annual inference cost estimation for both
proprietary and open-source models, assuming 1 million requests for clinical note generation per year. The Y-axis
represents the model names, and the X-axis indicates the total annual inference cost in US dollars. These calculations
are based on the pricing per input and output tokens when using APIs on-demand. For proprietary models, pricing
information was obtained from the websites of OpenAI and Google. For open-source models, pricing information
was based on deploying models on Fireworks.ai with serverless inference. All pricing information was obtained in
May 2024. In our study, Gemini 1.0 Pro served as the teacher model, while LLaMA-Clinic was the student model
based on the LLaMA-2 13B.
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ACI-BENCH notes

ACI-BENCH notes Newly created reference notes

ASSESSMENT AND PLAN:
1. Breast mass 
Assessment: The patient is concerned about the size of her breast mass, which
has not decreased with progesterone therapy. She has a history of
fibroadenoma and increased breast cancer risk due to family history. 
Plan: 
- Will obtain bilateral mammogram.
- Will refer to a breast specialist for further evaluation and consideration of
biopsy. 

2. Anxiety 
Assessment: The patient's anxiety is improved with buspar. She has not
experienced anxiety since starting the medication. 
Plan: 
- Continue buspar 5mg Qday.
- Will assess response at next visit. 
......

Encounter ID: D2N030Encounter ID: D2N030

ASSESSMENT
• Follow-up bilateral breast cysts.
• Pap smear.

PLAN

Follow-up bilateral breast cysts

Encounter ID: D2N005

ASSESSMENT AND PLAN: 
1. Distal phalanx fracture of the right middle finger 
Assessment: Pain and tenderness over the distal phalanx of the right middle
finger, with a history of motor vehicle accident. X-ray confirmed the fracture. 
Plan: 
- Prescribe tramadol 50mg every 6 hours as needed for pain for 2 days. 
- Apply a finger splint. 
- Schedule a follow-up visit in 2 weeks for X-ray. 

2. Atrial fibrillation 
Assessment: Patient has a history of atrial fibrillation and takes digoxin. 
Plan: 
- Continue digoxin. 
- Ensure tramadol is safe to take with digoxin. 
....

IMPRESSION

Right middle finger distal phalanx fracture.

PLAN

At this point, I discussed the diagnosis and treatment options with the
patient. I recommend a prescription for Tramadol 50 mg every 6 hours as
needed for pain, dispense 8. She is provided a finger splint and will return in
2 weeks for a follow-up x-ray. All questions were answered.

Encounter ID: D2N005

Newly created reference notes

A.

B.

Appendix Figure 7: Comparison of Newly Created Reference Notes with ACI-BENCH Notes. A. Example
with the encounter ID D2N030. B. Example with the encounter ID D2N005. We compared newly generated
reference notes using Gemini Pro with the original reference notes from two cases in ACI-BENCH. The newly
created reference notes adhere more closely to our defined “best practice” format and contain more relevant medical
information.
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Category Prompt
Dialogue Generate a synthetic patient-physician clinical dialogue encounter based on the clinical note below.

Make sure all pertinent details are represented in the generated dialogue, so that a physician can easily
write up the provided note. Pay close attention to make sure all details in the ‘ASSESSMENT AND
PLAN’, ‘HISTORY OF PRESENT ILLNESS’ and ‘SUBJECTIVE’ parts of the note are reflected in
the dialogue. You may expand details to make the dialogue resemble a real clinical encounter. Denote
doctor as [doctor] and patient as [patient].

Appendix Table 6: Prompts to Gemini Pro for Dialogue-G Creation.

Category Prompt
Subjective You are a physician writing a clinical note based on a dialogue with the patient. Only write the

“SUBJECTIVE” part of note, which include the section of [CHIEF COMPLAINT] and [HISTORY OF
PRESENT ILLNESS]. Only include information contained in the dialogue. Follow the format as the
example below:

SUBJECTIVE

CHIEF COMPLAINT

Annual health maintenance examination.

HISTORY OF PRESENT ILLNESS

The patient is a pleasant [age]-year-old male who presents for his annual health maintenance
examination. He reports no new complaints today. He denies any recent changes in his hearing. He
continues to take niacin for his dyslipidemia, and he has had no problems with hemorrhoids in the last 6
months. He also denies any problems with concha bullosa of the left nostril or septal deviation.

Assessment
and Plan

You are a physician writing a clinical note based on a dialogue with the patient. Only write the
“ASSESSMENT AND PLAN” section of note. List each medical problem separately. Under each
problem, include assessment (such as medical reasoning) and plan (both diagnostic and therapeutic ). At
the end, may include a short section on follow up instruction when applicable. Only include information
contained in the dialogue. Follow the format as the example below:

ASSESSMENT AND PLAN:

1. Possible COPD exacerbation
Assessment: Increased work of breathing with wheezing on exam, suggesting COPD exacerbation. He
does have frequent COPD exacerbation in the past. Differential diagnosis include pneumonia (though no
fever or cough), PE (though no risk factors) or simple viral infection.
Plan:
- WIll obtain CXR.
- Will start duoneb therapy and oral prednisone 30mg Qday.

2. Hypertension
Assessment: The patient’s blood pressure is well controlled.
Plan:
- Continue lisinopril 20mg Qday.

Follow-up instructions:
- return to clinic in 1 week, or sooner of failed to response with current treatment.

Appendix Table 7: Prompts to Gemini Pro for Reference Note Generation.
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Instructions

1. Please first read the dialogue and then pick your most and least preferred notes. Most conversation occurred in
the outpatient setting.

2. We will only look at the “Subjective” and “Assessment and Plan” parts of a note. There will be a separate row
for “Subjective” and “Assessment and Plan”, respectively.

3. On each row, you will be given three notes generated by LLMs. Pick the MOST preferred note, and the LEAST
preferred note by selecting the corresponding note number in the columns of “Preferred” and “Rejected”.

4. Focus on whether the clinical note accurately reflected information from the conversation. Ignore any error
related to medical knowledge, as long as the information was mentioned in the conversation.

5. Base your preference on factors like clinical readiness, correctness, and adherence to the desired format,
including:

a. Clinical readiness: Is the note ready for clinical use and does it capture important information?
b. Correctness: Does the note include less false information?
c. Adherence to format: Does the “Subjective” section include “Chief complaints” and “History of present

illness”? Does the “Assessment and Plan” section list each problem separately and include “Assessment:”
and “Plan:” with the required details?

6. Make your preference judgement from a clinician’s perspective, considering which note would be most/least
helpful to you.

Appendix Table 8: Clinician Note Preference Instruction.
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Instruction and rubrics

1. In each row you will be given a synthetic outpatient patient-provider dialogue from ACI-BENCH, and three
clinical notes based on the same dialogue. Two notes are generated by large language model, and one note is
written by real physician. We have performed randomization of the notes (so that notes from the column of
note_1 are from different sources) and simple processing to unify the format of notes.

2. The dialogues from ACI-BENCH include conversations with (a) calls to a virtual assistant (b) unconstrained
directions or discussions with a scribe, and (c) natural conversations between a doctor and patient.

3. There are 40 dialogues. For each dialogue, we will evaluate “Subjective” and “Assessment and Plan” parts of
the note in separate rows. Therefore, there are 80 rows in total.

4. For each row, you will first read the entire dialogue and then read the 3 notes. You will subsequently score the
quality of each note for the 3 axes of “accuracy”, “completeness” and “readiness for real-world use”. For each
axis, you will give a score of 1 to 5 (very poor, poor, acceptable, good, or very good), where higher number
suggests better quality. It is OK to give the same score for different notes if you feel they are of similar quality.
For each row since there are 3 notes, you will give total 9 scores. In each row there is a section of “Comment”
for you to free text any feedback if you feel like to.

5. Accuracy: For this axis, answer the question “does the factual information from clinical note accurately match
that from the dialogue?” A note is accurate if it doesn’t say things that aren’t in the dialogue, it doesn’t mix up
facts, and generally is not misleading. It might be acceptable if the note contains reasonable medical reasoning
in the section of “Assessment”, for example in describing differential diagnosis. Please ignore any medical
knowledge error, as long as the information was discussed in the dialogue.

Rubric:

• Score of 1 (very poor): The note contains a significant amount of content that is either factually incorrect,
fabricated, or disconnected from the dialogue.

• Score of 3 (acceptable): The note contains some minor content that is either factually incorrect, fabricated,
or disconnected from the dialogue.

• Score of 5 (very good): The note has no incorrect statements or misleading implications.

6. Completeness: For this axis, answer the question “how well does the note cover the important information
from the dialogue?” An ideal clinical note would contain all clinically important information represented in
the dialogue. Also, just as in real-world scenario, a good clinical note could be short but pertinent. A note has
poor coverage if someone reading only the note would be missing several important pieces of information
about the clinical encounter. Give your score based on what is typically expected from a clinical note.

Rubric:

• Score of 1 (very poor): The note is missing a significant amount of important clinical information from
the dialogue.

• Score of 3 (acceptable): The note is missing some minor piece of clinical information from the dialogue.
• Score of 5 (very good): The note covers all important clinical information from the dialogue, as you

would expect from a real-world note.

7. Readiness for real-world use: For this axis, answer the question “which note is most ready for clinical use in
the real-world scenario?” Answer this question imagine you are adopting AI-generated clinical notes for your
everyday clinical work, and you will proofread and make edits to these notes before file into medical record.
In this workflow, which note would you prefer the most? For example, this might be the note that meet your
style and carries the most pertinent information without note bloating. Or a best note for you might be the one
that requires the least amounts of edits from you (even if it contains some minor error). In other words, you
can think of this as scoring the overall quality of the note for the workflow.

Rubric:

• Score of 1(very poor): The note is impossible to use or would require significant edits from you.
• Score of 3 (acceptable): The note requires some edits from you.
• Score of 5 (very good): The note is ready for clinical use without any further edits from you.

Appendix Table 9: Instructions for Physician Reader Study.
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Instructions

For those notes that you gave a score of less than 5 for “Accuracy” or “Completeness”, please answer two questions:
Suppose the note is used in the standard clinical workflow, what would be:

1. “... extent of possible harm?”
Rubric:

• Score of 1: None.
• Score of 2: Mild or moderate harm.
• Score of 3: Severe harm or death.

2. “... likelihood of possible harm?”
Rubric:

• Score of 1: Low.
• Score of 2: Medium.
• Score of 3: High.

Appendix Table 10: Harm Evaluation Instruction.

Type Models Cost / 1 Million Input Tokens (USD) Cost / 1 Million Output Tokens (USD)

Proprietary

Gemini 1.5 Pro 3.5 10.5

Gemini 1.0 Pro 0.5 1.5

GPT-4 Turbo 10.0 30.0

GPT-3.5 Turbo 1.0 2.0

Open-Source

LLaMA-Clinic 0.2 0.2

LLaMA-2 70B 0.9 0.9

Mixtral 8x7B 0.5 0.5

Mixtral 8x22B 1.2 1.2

Appendix Table 11: Pricing Information for Inference Cost Estimation. We sourced pricing information
from the websites of Google AI (Goo, 2024), OpenAI (Ope, 2024), and Fireworks.ai (Fir, 2024) in May 2024 for
on-demand API calls. The price of GPT-3.5 Turbo is based on the model gpt-3.5-turbo-1106. Fireworks.ai charges
the same price for both input and output tokens.
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Dialogue

Doctor: Hi, Martha. How are you?
Patient: I’m doing okay. How are you?
Doctor: I’m doing okay. So, I know the nurse told you about DAX. I’d like to tell DAX a little bit about you, okay?
Patient: Okay.
Doctor: Martha is a 50-year-old female with a past medical history significant for congestive heart failure, depression,
and hypertension who presents for her annual exam. So, Martha, it’s been a year since I’ve seen you. How are you
doing?
Patient: I’m doing well. I’ve been traveling a lot recently since things have, have gotten a bit lighter. And I got my
vaccine, so I feel safer about traveling. I’ve been doing a lot of hiking. Uh, went to Washington last weekend to hike
in northern cascades, like around the Mount Baker area.
Doctor: Nice. That’s great. I’m glad to hear that you’re staying active, you know. I just love this weather. I’m so
happy the summer is over. I’m definitely more of a fall person.
Patient: Yes, fall foliage is the best.
Doctor: Yeah. Um, so tell me, how are you doing with the congestive heart failure? How are you doing watching
your diet? I know we’ve talked about watching a low sodium diet. Are you doing okay with that?
Patient: I’ve been doing well with that. I resisted, as much, as I could, from the tater tots, you know, the soft pretzels,
the salty foods that I, I love to eat. And I’ve been doing a really good job.
...
Doctor: Hey, Dragon, show me the blood pressure. So, yeah, looking at your blood pressure today here in the office,
it is a little elevated. You know, it could just, you could just be nervous. Uh, let’s look at some of the past readings.
Hey, Dragon, show me the blood pressure readings. Here we go. Uh, so they are running on the higher side. Um, y-
you know, I, I do think that, you know, I’d like to see you take your medication a little bit more, so that we can get
that under control a little bit better, okay?
Patient: Okay.
Doctor: So, I’m just gonna check out your heart and your lungs. And you know, let you know what I find, okay?
Patient: Okay.
Doctor: Okay. So, on your physical examination, you know, everything looks good. On your heart exam, I do
appreciate a three out of six systolic ejection murmur, which I’ve heard in the past, okay? And on your lower
extremities, I do appreciate one plus pitting edema, so you do have a little bit of fluid in your legs, okay?
Patient: Okay.
Doctor: Let’s go ahead, I wanna look at some of your results, okay? Hey, Dragon, show me the echocardiogram. So,
this is the result of the echocardiogram that we did last year. It showed that you have that low-ish pumping function
of your heart at about 45%. And it also shows some mitral regurgitation, that’s that heart murmur that I heard, okay?
...
Doctor: Um, so I wanna just go over a little bit about my assessment and my plan for you, okay? So, for your
first problem your congestive heart failure, um, I wanna continue you on your current medications. But I do wanna
increase your lisinopril to 40 milligrams a day, just because your blood pressure’s high. And you know, you are
retaining a little bit of fluid. I also wanna start you on some Lasix, you know, 20 milligrams a day. And have you
continue to watch your, your diet, okay?
Patient: Okay.
Doctor: I also wanna repeat another echocardiogram, okay?
Patient: All right.
Doctor: Hey, Dragon, order an echocardiogram. From a depression standpoint, it sounds like you’re doing really
well with that. So, I’m, I’m really happy for you. I’m, I’m glad to see that you’re in therapy and you’re doing really
well. I don’t feel the need to start you on any medications this year, unless you feel differently.
Patient: No, I feel the same way.
...

Appendix Table 12: An Example of Patient-Doctor Dialogue from ACI-BENCH with Encounter ID D2N001.
We corrected minor grammatical and spelling errors for display purposes.
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