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Abstract

Vague quantifiers such as a few and many are
influenced by various contextual factors, includ-
ing the number of objects present in a given
context. In this work, we evaluate the extent
to which vision-and-language models (VLMs)
are compatible with humans when producing
or judging the appropriateness of vague quan-
tifiers in visual contexts. We release a novel
dataset, VAQUUM, containing 20,300 human
ratings on quantified statements across a total
of 1089 images. Using this dataset, we com-
pare human judgments and VLM predictions
using three different evaluation methods. Our
findings show that VLMs, like humans, are
influenced by object counts in vague quanti-
fier use. However, we find significant incon-
sistencies across models in different evaluation
settings, suggesting that judging and produc-
ing vague quantifiers rely on two different pro-
cesses. We release our dataset and code at
https://github.com/hughmee/vaquum.

1 Introduction

Everyday conversations are replete with statements
containing vague quantifiers, such as “There are
many horses” (Figure 1). Despite the fact that they
are vague, they cause surprisingly little misunder-
standing among interlocutors (Jucker et al., 2003).
Vague quantifiers, unlike crisp quantifiers, allow
for borderline cases in which it is unclear whether
the quantifier applies or not, and where we can
also expect some variation in the extent to which
speakers would use it. For example, all does not
allow for borderline cases, but it is unclear when
a quantity ceases to be a few or how many many
is. Although vague quantifiers have long been a
subject of investigation among formal semanticists
(see e.g. Nouwen, 2010) and (psycho)linguists (e.g.
Moxey and Sanford, 1993a; van Deemter, 2010),
they have received relatively little attention within
the field of natural language processing (NLP).

How accurate is 
[Statement 1]?

0 100

Statement 1 
There are a lot of horses in the image

How would you describe 
the amount of horses?

P([Statement 1]) = 0.4 

Q: Between 0 and 100, 
how accurate is 
[Statement 1]?

A: 70

Which is most accurate?
(A) [Statement 1]       
(B) [Statement 2]

P(A) = 0.3

Statement 2 
There are a few horses in the image

80

1 2

3 4

Figure 1: Experiments in this work. We (1) ask human
participants to rate, using a slider, the appropriateness
of statements containing vague quantifiers in relation to
images. We (2) extract VLM generation probabilities
for those same statements, (3) prompt the models to
generate an accuracy score for them, and (4) evaluate
probabilities assigned to these statements in a multiple-
choice setup. The image above is originally from the
FSC-147 dataset (Ranjan et al., 2021).

In visually grounded settings, the use of vague
quantifiers can be influenced by factors related to
the scene itself, such as the number of entities ob-
served (e.g. Coventry et al., 2005); their sizes (Hör-
mann, 1983; Coventry et al., 2010); as well as in-
formation like the speaker’s and hearer’s personal
beliefs and attitudes (Moxey and Sanford, 2000;
Jucker et al., 2003). This broad range of factors,
coupled with their vagueness, raises the question
of how well multimodal language models can cap-
ture human patterns in the grounded comprehen-
sion and use of such expressions. In this paper,
we explore this question with vision-and-language
models (VLMs) in multimodal settings involving
quantified statements about images, using a novel
dataset. Studying alignment between human and
VLM judgments can reveal the extent to which such
models grasp the semantics of natural language.

11966

https://github.com/hughmee/vaquum


The inclusion of a vision modality allows us to
provide context in the form of both visual and tex-
tual information (Zhang et al., 2024; Ghosh et al.,
2024). We examine to what extent visual cues in-
fluence state-of-the-art VLMs’ understanding and
production of expressions containing vague quan-
tifiers, and how this compares to human linguistic
intuitions (Figure 1). By zooming in on such vi-
sual and contextual variables, our work follows the
spirit of recent research exploring the grounding ca-
pabilities of VLMs (e.g. Zellers et al., 2019; Thrush
et al., 2022; Zhang et al., 2022a; Parcalabescu et al.,
2022; Chen et al., 2023; Kamath et al., 2024; Wang
et al., 2024). The contributions of this paper are as
follows.

• We release VAQUUM (Vague Quantifiers
with Human Judgments), a new dataset pair-
ing images of different types of objects with
their counts, as well as human judgments of
different quantified statements corresponding
to the image. While designed for our research
objectives, the dataset’s wider utility is dis-
cussed in Section 7.

• We analyze the features of the visual con-
text that influence both human and model
judgments on the appropriateness of differ-
ent vague quantifiers, including counts, the
segmentation area occupied by the target ob-
jects, and aspects of world knowledge such as
their normative size.

• We show that VLMs do, to some extent, fol-
low human patterns in judging the appropriate-
ness of vague quantifiers. However, the behav-
ior of models and their degree of alignment
with human judgments depend on the evalu-
ation paradigm used (Figure 1): approaches
that rely on extracting probabilities for quan-
tified statement or that allow the model to
choose the most appropriate statement, yield
better alignment than methods which prompt
the models to numerically rate the statements
for their appropriateness given an image.

2 Related Work

The use and judgment of vague quantifiers have
been studied extensively in formal semantics and
psycholinguistics. Recent years have also seen a
growing but relatively limited interest in studying
(V)LM behavior with linguistic quantifiers.

Vague quantifiers in formal semantics Work
on vague quantifiers in formal semantics sits at the
crossroads of generalized-quantifier theory and de-
gree semantics. The foundational work of Barwise
and Cooper (1981) drew attention to properties of
natural language quantifiers such as monotonicity
and entailment; this serves as the basis for subse-
quent work extending generalized quantifier theory
to vague quantifiers (e.g. Partee, 1988; Fernando
and Kamp, 1996; Cohen, 2001). A parallel line of
work has focused on the treatment of vagueness in
natural language, e.g. in gradable adjectives. Here,
an important insight is that vague predicates are fre-
quently interpreted with respect to a standard that
is set by some salient frame of reference (e.g. Klein,
1980; Graff, 2000; Kennedy, 2007; van Deemter,
2010, i.a.). Solt (2011) shows that comparison
classes (frames of reference) also play an impor-
tant role in the interpretation of vague quantifiers
such as many and few.

Vague quantifiers in psycholinguistics It has
been suggested that humans make use of an approx-
imate number system (Feigenson et al., 2004; De-
haene, 2011; Coventry et al., 2005), where vague
terms might not refer to exact numbers but rather
approximations thereof. Related to this, subitizing
is the ability to instantly and accurately recognize
a small number of items without going through the
process of counting. Humans are generally able to
do this for object counts up to 4 (Kaufman et al.,
1949; Mandler and Shebo, 1982). Above this subiti-
zability threshold, they tend to use quantifiers (Barr
et al., 2013; Berger et al., 2023). However, it has
also been shown that quantifier comprehension and
use go beyond (approximations of) the cardinality
of the targeted object. Factors include object size
(Hörmann, 1983; Newstead and Coventry, 2000);
the number and proportions of other objects in
the scene (Coventry et al., 2005, 2010; Pezzelle
et al., 2018); set size (e.g. the answer to a question
such as: “Several marbles from a set of 12 marbles
would be marbles”; Newstead et al., 1987); the
functionality of objects in the scene (Newstead and
Coventry, 2000); and object grouping and spacing
(Coventry et al., 2005).

In conversations and texts, the choice of quan-
tifier influences the expected rhetorical impact of
a statement, and vice versa. Moxey and Sanford
(1993b) show that the choice of quantifier can re-
veal a speaker’s prior expectations regarding the
frequency of the object in the scene. Moreover,
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several works have outlined the different perspec-
tives that a few and few convey: while “a few peo-
ple were at the party” focuses on those who were
present, “few people were at the party” puts the
emphasis on those who did not attend (Moxey and
Sanford, 2000; Paterson et al., 2009).

(Vague) quantifiers in NLP Most work on eval-
uating VLMs on quantifiers has focused on crisp
quantifiers (e.g. none, all and more than half ) rather
than vague ones. Sorodoc et al. (2016) show that
neural networks can be trained to learn the quan-
tifiers no, some and all without the need for an
explicit counting system. Sorodoc et al. (2018) ex-
tend this to a visual question-answering (VQA)
task with natural images. They include vague
expressions with few and some, but define these
terms using specific proportions (e.g. few applies
for predications involving less than 17% of objects
in the domain). A similar definition is adapted
by Pezzelle et al. (2017), who show that models
require different mechanisms for learning cardi-
nals and quantifiers. Note that once the range of a
quantifier is defined, it can no longer be considered
vague as borderline cases are excluded.

Moving beyond the gold label approach, Testoni
et al. (2019) demonstrate that models using both au-
dio and visual input to select appropriate quantifiers
can achieve results that align with human distribu-
tions reported by Pezzelle et al. (2018). Enyan et al.
(2024) compare human and large language model
(LLM) responses on questions such as “There are
500 balls. 234 of them are yellow. Are many balls
yellow?” They find that responses generated by
LLMs align more closely with human judgments
on crisp quantifiers than on vague ones. Belém et al.
(2024) find that LLMs can map uncertainty expres-
sions such as probably and unlikely to probabilis-
tic (numerical) responses in a human-like fashion.
More akin to our experiments, Testoni et al. (2024)
evaluate three VLMs on their abilities to assign
appropriate quantifiers to visual scenes, prompting
models to select one out of nine quantifiers in re-
sponse to questions such as “How many animals
are there in the image?”, with synthetic images
generated by Pezzelle et al. (2018). Our approach
diverges from theirs on several points. First, we
use natural images rather than artificial ones, offer-
ing a more realistic setting for evaluating VLMs.
Additionally, we use a wider range of methods
to provide a more comprehensive assessment of
model behavior.

3 The VAQUUM Dataset

We construct and release the VAQUUM dataset:
Vague Quantifiers with Human Judgments.

Images We utilize annotated datasets used for
object counting in computer vision. FSC-147 (Ran-
jan et al., 2021) contains 6146 images across 147
object types, with annotated object counts ranging
from 7 to 3731. Hobley and Prisacariu (2023) re-
fine and deduplicate this dataset to release FSC-133
(containing 133 object types). We sample images
from FSC-133 and exclude a total of 22 object cate-
gories for several reasons, such as their uncountable
nature (e.g. fresh cut), obscurity (e.g. carrom board
pieces) or simply because the images do not depict
the object from the label. We also remap 37 cate-
gories to either their plural form, where necessary,
or their basic-level category (e.g. mapping crows
to birds; cf. Rosch et al., 1976). Since the lowest
count in FSC-133 is 7, we complement this dataset
with samples from the test set of TallyQA (Acharya
et al., 2019), which includes images and annotated
counts sourced from Visual Genome (Krishna et al.,
2017) and VQA2 (Antol et al., 2015; Goyal et al.,
2017). Here, we use images classified as “simple”
in TallyQA, which have counts between 1 and 15.
From this set, we exclude images for which the la-
belled object is not in the set of remapped FSC-133
labels. We discard all counts below 2 (from Tal-
lyQA) and above 100 (from FSC-133). We include
three types of object features in our dataset.

1. Count bin To address the imbalance in object
counts within the merged dataset, we group the 99
distinct counts (ranging from 2 to 100) into bins
of three (counts from 2 to 4, 5 to 7, etc). From
each bin, we randomly sample 33 images, yielding
1089 images, evenly distributed across 33 count
bins, covering counts from 2 to 100.

2. Segmentation area We estimate the segmen-
tation area of the object(s) in each image, i.e. the
ratio of pixels in the objects’ bounding region over
the total image area. For each image, we prompt
CLIPSeg (Lüddecke and Ecker, 2022), with the
name of the object type (e.g birds). The output log-
its are then passed through a sigmoid function, and
the resulting values are thresholded. The resulting
binary mask is used to compute the segmentation
area, which essentially corresponds to “object size”
in previous work.
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Figure 2: Average human ratings with increasing counts, segmentation area and size norms. For each variable
and each quantifier, we also report Spearman’s ρ, which are all statistically significant (p < 0.05).

3. Size norm We investigate the impact of real-
world object size using the object-specific norms in
the THINGSplus database (Stoinski et al., 2024),
an extension of THINGS (Hebart et al., 2019).
Such norms are collected from human judges, and
they reflect “average” or “typical” values for spe-
cific properties. The size norm tells us something
about an object’s perceived real-life size, on an arbi-
trary scale. Objects that are not explicitly present in
this dataset are either mapped to the closest (base)
category or discarded in our size norm analyses.

3.1 Human Judgments

We recruited 203 participants, all native and pri-
mary speakers of English, through Prolific (52.2%
female; 45.8% male; 1.5% undisclosed). Partici-
pant ages ranged from 25 to 84, with the majority
aged 25-34 (31.5%) and 35-44 (25.6%).

3.1.1 Procedure

We presented each participant with 100 questions
in a random order. Each of these questions consists
of an image and a statement of the form “There are
[QUANT] [OBJECT] in the image.” Here, OBJECT is
the plural form of the object depicted and QUANT
∈ {few, a few, some, many, a lot of } (e.g. “There
are a lot of apples in the image.”). For each im-
age, we also include the unquantified statement
(omitting QUANT). Participants were asked to rate,
using a slider, how accurate the statement is for
the image (see Figure 1). The slider ranges from
“Completely inaccurate” to “Completely accurate”.
No participant saw the same image twice.

3.1.2 Analysis

We analyze the effects of count, segmentation area
and size norms on the collected appropriateness
ratings of the vague quantifiers. We summarize the
results in Figure 2.

few a few some many a lot of ME

C -0.37 -0.38 -0.20 0.38 0.42 0.03
SG -0.07 -0.10 -0.05 0.08 0.06 0.04
SN -0.13 -0.11 -0.07 0.14 0.17 0.01∗

ME -1.71 -1.60 -0.73 -0.60 -0.69

Table 1: Estimates of the linear mixed effects model
fit to data in VAQUUM. C=Count, SG=Segmentation,
SN=Size norm, ME=Main effect. All numbers are sta-
tistically significant (p < 0.05), except the one marked
(*). For main effects, the quantifier is releveled to the
unquantified case, with intercept estimated at β = 0.89.

We observe from Figure 2 that an increase in
count leads to an increase in the average ratings as-
signed to statements containing many and a lot of,
whose trajectories are nearly identical. Conversely,
for the complementary pair few and a few, we find
that average ratings decrease as object count in-
creases. As expected, judgments for unquantified
control statements are independent of count, with
the exception of a slightly lower rating for the low-
est counts. We also observe that few/a few and
many/a lot of exhibit opposing trends in relation to
count, again as expected. These observations are
broadly in line with findings by e.g. Coventry et al.
(2010). Average ratings for some also decrease as
count increases, though less steeply than for (a)
few. While the signs of Spearman’s coefficient are
the same across all predictors, the strength of the
correlation for segmentation area and size norm
is noticeably lower. Furthermore, few/a few and
many/a lot of do not exhibit opposing trends as
a function of area or size norm, as they do with
count.

To gain further insights into the relations be-
tween participants’ ratings and object count and
size, we fit a linear mixed effects model (LMM)
to our data, predicting human judgments from the
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fixed effects of quantifiers, count, segmentation
area and size norm and using participants and ob-
ject category as random effects. We include interac-
tion terms between pairs of predictors to investigate
their joint influence on judgments. For full details
of the LMM, we refer to Appendix B.

We report LMM estimates of the main effects
and two-way interaction effects in Table 1. All
main effects except those for size norm are statis-
tically significant. For the two-way interactions,
few, a few and some consistently show negative
estimates across all predictors, while many and a
lot of are consistently positive. As expected given
the trends in Figure 2, object count exhibits the
strongest impact on each quantifier. Estimates for
segmentation area and size norm display similar
trends, but with weaker effects. The LMM explains
50.3% of the total variance in our participant data
(R2c = 0.503, R2m = 0.459). The random effects
present moderate variability at the participant level,
with a variance of 0.042 suggesting that individual
differences among participants explain some of the
variance in judgments. In contrast, the object ran-
dom effect accounts for minimal variance (0.002),
indicating that differences between objects have lit-
tle influence on the judgments given by participants
in our experiments.

4 Experiment 1: Production Probabilities

Our first series of experiments studies the predicted
production probabilities of quantified statements by
SOTA VLMs. We prompt the models with “How
would you describe the amount of [OBJECT] in the
image?” We extract log probabilities, conditioned
on this prompt and the image, for the quantified
statements in VAQUUM, as well as the unquanti-
fied version. All extracted scores are normalized by
token length. We consider the following models.

BLIP-2 (Li et al., 2023). We use the checkpoint
powered by OPT-6.7B (Zhang et al., 2022b)
connected to a EVA-CLIP ViT-g (Radford
et al., 2021; Fang et al., 2023) image encoder
via a lightweight Query transformer.

InstructBLIP (Dai et al., 2023). We use the
checkpoint with a Vicuna-13B (Zheng et al.,
2023) language backbone, instruction-tuned
on BLIP-2.

LLaVA-NeXT (Liu et al., 2024). We use the 7B
checkpoint with a Mistral (Jiang et al., 2023)

Model few a few some many a lot of

BLIP-2 -0.18 -0.19 -0.06 0.14 0.13
InstBLIP 0.06 0.04 -0.03 -0.01 -0.04
LLaVA-N 0.34 0.39 0.21 0.43 0.52
LLaVA-O 0.30 0.40 0.22 0.52 0.54
Molmo 0.16 0.20 0.07 -0.17 -0.21

Table 2: Pearson’s correlation between human rat-
ings and model log probabilities. Numbers in bold-
face are statistically significant (p < 0.05). We provide
Spearman’s correlation scores in Appendix C.

language backbone. It integrates a CLIP-ViT
through an MLP vision-language connector.

LLaVA-OneVision (Li et al., 2024). We utilize
the 7B checkpoint, which integrates a SigLIP
(Zhai et al., 2023) vision encoder with a
Qwen2 (Yang et al., 2024) language decoder.

Molmo (Deitke et al., 2024). We use the 7B-D
checkpoint, which connects a ViT image en-
coder to Qwen2.7B via a connector MLP.

Figure 3 displays predicted log probabilities as a
function of count, segmentation area and size norm
and Table 2 reports correlations between model
predictions and human judgments.

Alignment with humans Of the VLMs tested,
the two LLaVA models exhibit the highest correla-
tion with the human data in VAQUUM. For these
models, we observe in Figure 3 patterns similar to
those of VAQUUM in Figure 2. Probabilities for
many and a lot of increase as a function of count,
while few and a few show a downward trend. Given
that the question in the prompt focused explicitly
on the amount of objects, the unquantified sen-
tence is expected to be generally dispreferred. The
trends in Figure 3 suggest that the LLaVA models
can indeed draw this distinction between quantified
and unquantified statements, as the unquantified
expression displays the lowest-ranking log proba-
bilities across count, segmentation and size norm.
However, other models do not reveal that same
ability. This is most pronounced for InstructBLIP
and Molmo, which generally tend to favor the un-
quantified statement as a response to the question.
These models also show the same pattern across
all quantifiers, further confirming their inability to
differentiate among them. While the behavior of
BLIP-2 is seemingly random, Figure 3 shows an
upward trend for all quantifiers as a function of
count.
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Figure 3: Log probabilities as functions of count, segmentation area and size norm. The patterns reported for
LLaVA-NeXT and LLaVA-OneVision are most similar to human ratings. We find that InstructBLIP and Molmo do
not distinguish between the quantifiers at all, whereas BLIP-2 moderately correlates with humans for many and a
lot of.

few a few some many a lot of ME

C 0.00 -0.01 -0.02 0.22 0.22 -0.09
SG -0.02 -0.01 0.01 0.07 0.05 -0.05
SN 0.04 0.05 -0.03 0.12 0.09 -0.05

ME 0.39 1.68 0.77 2.46 2.32

Table 3: Estimates of the LMM for log probabilities
of LLaVA-OneVision. C=Count, SG=Segmentation,
SN=Size norm, ME=Main effect. Boldface indicates
statistical significance (p < 0.05). For the main effects,
the quantifier is releveled to the unquantified case and
the estimate of the intercept is β = -1.25.

Linear mixed model In Table 3, we display the
estimates of a linear mixed effects model fit to
log probabilities of LLaVA-OneVision (see Ap-
pendix B for details and Appendix C for the re-
maining models). Following our approach in §3,
we predict model probabilities from the fixed ef-
fects of quantifiers, count, segmentation area and
size norm while including object category as a ran-
dom effect. The latter shows a variance of 0.056,
indicating that object category accounts for a mod-
erate amount of variance among predicted log prob-

ability scores. Moreover, we see in Table 3 that
many and a lot of show statistically significant in-
teractions with all predictors, with the strongest
effects observed with count, just as was the case
for the human judgments. The estimates for the
other quantifiers, however, are very different from
what we found for humans. Overall, the LMM
explains 91.2% of the total variance in our data
(R2m = 0.861, R2c = 0.912).

Prompts should target amounts For most mod-
els, we find that simply changing the question from
“How would you describe the amount of [OBJECT]
in the image?” to “How would you describe the
image?” yields different patterns in the results
(see Appendix C). Most notably, we find that the
observed similarity between trends in human judg-
ments and model predictions disappears once the
prompt does not focus on amounts.

Interim conclusion In §3.1, most estimates of
the LMM fit to participant data were statisti-
cally significant. Moreover, object count made
the biggest difference across all quantifiers. For
LLaVA-OneVision, the model displaying the high-
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est Pearson’s correlation with human data in Ta-
ble 2, a similar result can be found in Table 3 for
many and a lot of : effects of interaction with object
count are most pronounced, after which size norms
have a slightly higher impact than segmentation
area. However, these effects are absent for the other
quantifiers. BLIP-2, InstructBLIP and Molmo do
not show meaningful interactions between their
predicted log probabilities and the three contextual
variables.

5 Experiment 2: Generating Judgments

We now evaluate the instruction-tuned VLMs using
an approach that is more akin to the way VAQUUM
was constructed in §3. That is, we prompt the mod-
els to explicitly rate the acceptability of quantified
statements. We experimented with 10 different
prompts that are variations on the question shown
to human participants in §3.1. Drawing inspira-
tion from prompts used by Belém et al. (2024), we
center our analyses in the remainder of this sec-
tion around the following prompt: “On a scale of
0 (completely inaccurate) to 100 (completely ac-
curate), how accurate is the following statement
for the image? Please respond with one of the
following options: 0, 5, 10, 15, 20, 25, 30, 35,
40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95,
100. [Statement]”, where Statement is an ex-
pression from the VAQUUM dataset. We refer to
Appendix D for the complete list of prompts tested.

For VLMs, appropriateness is not gradable
We find that in this evaluation setup, BLIP-2 and
InstructBLIP generally fail to generate numerical
responses to the prompts we tested, despite some
prompts explicitly encouraging them to only re-
spond with a number. The two LLaVA models and
Molmo consistently provide numerical responses
to most of the prompt templates tested. However,
while we construct the prompts in such a way that
VLMs are encouraged to provide a response that
falls between a certain range, the vast majority of
model responses tend towards the extremes (i.e. on
the lower or upper bound of the specified range;
see Appendix D for a distribution of responses).

Some is generally appropriate When numeric
answers to prompts tend towards the extremes of a
scale, it can be informative to aggregate generated
scores, which is virtually the same as calculating
the relative frequency of a VLM dis/agreeing with
the statements. We report this in Figure 4 for ob-
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Figure 4: Scores generated by VLMs in Experiment 2.
Note that we do not display results for BLIP-2 and In-
structBLIP, as those models generally failed to provide
numerical responses to the prompt.

ject count and make the following observations.
First, statements containing the quantifier few are
rarely deemed appropriate. For the models in the
LLaVA family, arguably the most interesting de-
viation from Figure 3 is that in this setting, some
is considered an accurate quantifier, regardless of
object count. Indeed, we observe that the trajec-
tory of some in Figure 4 corresponds to that of the
unquantified condition. We hypothesize that in the
case of judging the appropriateness of some, this
vague quantifier could be interpreted as an existen-
tial quantifier. That is, “There are some apples in
the image” can be regarded as a confirmation of the
existence of apples in the image.

Interim conclusion Experiment 1 showed that
object count influences model predictions for many
and a lot of. Similar patterns emerge in Figure 4,
where average scores for these quantifiers increase
with count. Discrepancies between results from
Experiments 1 and 2 show that in a setting where
models are explicitly required to judge statements
(Exp 2), the outcomes are unrelated to the models’
log probabilities for the same statements (Exp 1).
In Experiment 1, probabilities are extracted using
an autoregressive method compatible with the pre-
training objective of the LLM backbone. In con-
trast, Experiment 2 relies on model abilities ac-
quired during post-training, which further modi-
fies model parameters. The discrepancies we ob-
serve align with independent observations that post-
training can negatively impact model calibration
(Kalai and Vempala, 2024; Zhu et al., 2023).
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Figure 5: Log probabilities extracted for multiple-choice labels in Experiment 3. We do not display results for
BLIP-2 because that model is not instruction-tuned.

6 Experiment 3: Multiple-Choice QA

Finally, we evaluate VLM judgments in a multiple-
choice question-answering (MCQA) setup using
a standard MCQA template of the form “Ques-
tion: Which statement is most accurate for the im-
age? Select the answer from the options below.
[OPTIONS] Answer: (”, with OPTIONS being the
set of all statements for an image in VAQUUM,
labeled (A) to (F). For each image, the order of
the expressions is shuffled to mitigate the effects of
positional biases (Zong et al., 2024). To compare
the different quantifiers and ensure that the VLMs
do not produce irrelevant output, we extract the
log probabilities of the labels rather than allowing
VLMs to generate a response. Note that, differ-
ently from §4 and §5, the VLMs are now presented
with all statements before being prompted for a
response.

In Figure 5, we report the predicted log proba-
bilities of instruction-tuned VLMs as a function of
count. Table 4 shows the correlation of these scores
with both the human judgments and the log prob-
abilities from Experiment 1. It is clear that in this
setup, too, InstructBLIP fails to differentiate be-
tween the various quantified statements. However,
while Molmo behaved similarly in Experiment 1,
it distinguishes between quantifiers in the current
setting. For Molmo and the two LLaVA models,
count influences predictions for many/a lot of and
for few/a few in the expected direction. This is
most pronounced in the lower count ranges. Pat-
terns for some once again differ from those found
in our earlier experiments. While probabilities for
some generally fell between those of few and a few
in Experiment 1, and some was generally judged
appropriate in Experiment 2, we now observe that
it follows the same trend as few and a few, while
being slightly preferred over these two by LLaVA-
OneVision.

few a few some many a lot of

IN
B r(VAQ) 0.00 0.00 0.01 -0.01 0.04

r(EXP1) -0.13 -0.14 -0.12 -0.13 -0.15

L
L

N r(VAQ) 0.32 0.27 0.14 0.42 0.33
r(EXP1) 0.36 0.35 0.26 0.44 0.35

L
L

O r(VAQ) 0.45 0.45 0.19 0.35 0.43
r(EXP1) 0.33 0.42 0.24 0.35 0.42

M
O

L r(VAQ) 0.26 0.31 0.15 0.28 0.35
r(EXP1) 0.25 0.28 0.25 -0.07 -0.12

Table 4: Pearson’s r of log probabilities in Experi-
ment 3 with human data (VAQ) and log probabili-
ties from Experiment 1 (EXP1). Models shown are
InstructBLIP (INB), LLaVA-NeXT (LLN), LLaVA-
OneVision (LLO) and Molmo (MOL). Boldfaced num-
bers are statistically significant. We display Spearman’s
correlation coefficients in Appendix E.

Interim conclusion The two LLaVA models and
Molmo show moderate correlation with human
scores in VAQUUM. They also correlate with their
log probabilities from Experiment 1. These models
are also the most self-consistent. While Molmo is
not self-consistent, in the multiple-choice setup it
correlates better with human ratings.

7 Discussion

Alignment with humans In this paper, we ex-
plore how vision-and-language models produce
and evaluate simple expressions containing vague
quantifiers. We constructed the VAQUUM dataset
and used this to investigate whether object count,
segmentation area and size norm affect VLMs to
the same extent as they do humans. We showed that
in particular for object count, the patterns found in
some VLMs show striking similarities with the hu-
man data in VAQUUM. This result appears to con-
tradict the observation that VLMs perform poorly
on counting tasks (Parcalabescu et al., 2021, 2022).
However, our findings with vague quantifiers could
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be accounted for in terms of an approximate num-
ber system, which cognitive scientists have posited
to account for the human ability to rapidly esti-
mate quantities (Feigenson et al., 2004; Condry
and Spelke, 2008; Dehaene, 2011; Odic and Starr,
2018; Piantadosi, 2016). In the context of vague
quantifiers, it has been argued that there exists a
mapping between exact and approximate number
systems (Coventry et al., 2005, 2010). The extent
to which VLMs rely on something akin to an ANS
is a topic for future work.

To gather data that better aligns with Experi-
ment 1, one possible approach is to leverage ex-
isting human-annotated datasets from image cap-
tioning studies. However, commonly used datasets
such as MSCOCO (Lin et al., 2014) typically fea-
ture low count ranges, leading to a scarcity of rel-
evant images as counts increase. Moreover, while
some captions do include the quantifiers central
to our study, such instances are rare: most im-
ages have at most one caption containing a rel-
evant quantifier, and annotators often avoid us-
ing them altogether. Nevertheless, we see poten-
tial in incorporating naturalistic datasets that in-
clude human-generated descriptions. Expanding
our work to include such resources (potentially
through re-annotation with a focus on quantifiers)
could offer additional answers to the question of
human-model alignment on vague quantifiers.

Self-consistency Our experiments relied on
paradigms incorporating production (Experi-
ment 1) and judgment (Experiments 2 and 3). We
find that VLMs are not self-consistent across these
evaluation paradigms. That is, when a VLM is set
to judge the use of a quantifier—a meta-linguistic
task—its judgment is not necessarily rooted in the
log probabilities that govern the model’s genera-
tion of the quantifier. Questions of calibration and
consistency such as these go beyond the domain
of quantifiers and are an active area of ongoing
research (e.g. Krause et al., 2023; Giulianelli et al.,
2023; Zhu et al., 2023).

Perspectivism In this paper, we follow the stan-
dard practice of aggregating human judgments
through taking the average and focusing on the
general trends. This, however, might overlook
meaningful variability that emphasizes the com-
plexity of human judgments on vague expressions.
While developed with our specific research ques-
tions in mind, the VAQUUM dataset captures not
only quantifier judgments in visual contexts, but

also the variation and disagreement among humans.
Modeling disagreement among annotators is in-
creasingly recognized as an important focus for
NLP, as it reveals the shortcomings of assuming a
single ground truth (such as the opinion of the ma-
jority). This view is one of the cornerstones of per-
spectivist approaches to NLP (Frenda et al., 2024;
Cabitza et al., 2023; Abercrombie et al., 2024). We
see our dataset as a useful potential resource for
this community, as well as any community that
studies linguistic phenomena where variation is
bound to play a role. Vagueness is a case in point,
as it inherently gives rise to disagreements—not as
noise, but as a result of the context-sensitive nature
of language.

Outlook Psycholinguistics has shown that vague
quantifiers do not depend exclusively on the count
and size of target objects. This is further confirmed
by the residual variance (49.7%) in VAQUUM that
cannot be explained by the linear mixed effects
model (LMM) on human judgments. While the
LMM analysis yields a better fit for VLM log prob-
abilities, we find that there, too, the LMM cannot
explain all the variance (leaving a residual vari-
ance of 8.8% for LLaVA-OneVision). Future work
could focus on other contextual factors, such as the
number of other objects present, the object density
in the image, as well as the role of scene semantics
and other objects in the image background. In com-
bination with visual grounding capabilities, it is
worthwhile to investigate the role of commonsense
and world knowledge in vague quantifier usage:
while seeing 20 people at a conference will most
likely not be reason for one to exclaim that there
are many, the same amount of toddlers at such an
event might be.

Limitations

Model selection Our experiments focus on a se-
lection of vision-and-language models. While this
selection has allowed us to compare models from
the same model family (BLIP-2 and InstructBLIP;
LLaVA-NeXT and LLaVA-OneVision), as well as
models that share similar language model back-
bones (LLaVA-OneVision and Molmo), conclu-
sions drawn in this study can be better generalized
with experiments on a wider range of vision-and-
language models. We hope that the VAQUUM
dataset provides the impetus for further model com-
parisons.
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Segmentation area and size norm Given that
of the three contextual variables, the role of ob-
ject count has been most prominent in literature
on vague quantifiers, we focused on selecting im-
ages that balance a range of counts that we deemed
representative. Estimating the segmentation area
and extracting the size norms for these images may
subsequently have yielded distributions that do not
represent the full range of values that these vari-
ables can take on. It is therefore possible that the
distributions for segmentation area and size norm
were too sparse to say something more meaningful
about their roles in VAQUUM and model results.
Thus, while we at times find statistically significant
relationships between judgments and segmentation
area or size norm, future work could focus on in-
vestigating the practical significance. Additionally,
we recognize that using CLIPSeg to estimate the
segmentation area can introduce inaccuracies.

Ethical Considerations

The data collection for VAQUUM underwent an
ethics check in our institution. The data collected
via crowdsourcing does not contain any informa-
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A Data from Human Participants

A.1 Instructions and Consent
Below we include the information given to the par-
ticipants in our human experiment.

Thank you for taking part in this experiment.
This survey should take approximately 20 minutes
to complete. You will be presented with 100 ques-
tions. Each question consists of an image and a
corresponding statement. Your task is to rate, us-
ing a slider, how accurate you find the statement in
relation to the image.

Please be assured that all responses will be kept
strictly confidential and anonymous. The data that
we collect will be processed in such a way that they
cannot be linked to you in any way. Participation
in this survey is entirely voluntary. If at any point
you wish to exit the survey without finishing the
survey, you can close this form and we will delete
your responses. You do not have to specify your
reason.

Should you wish to withdraw consent after you
have participated, please send an email to AU-
THORS at EMAIL. Note that if you withdraw
consent after completing the survey, we are not re-
quired to undo the processing of your data that has
taken place up until that time.

If you wish to participate in the study, please
check the following box. If you do not wish to do
so, you can close this tab.

A.2 Demographics

In §3.1, we mentioned that we recruited 203 partic-
ipants through Prolific. As reported in the Ethical
Considerations, we did not collect data that allows
anyone to trace the responses back to an individual.
All participants were native and primary speakers
of English. We have the following additional infor-
mation about the distribution of demographics.

Age 25-34 years (31.5%), 35-44 (25.6%), 18-24
(17.2%), 45-54 (15.3%), 55-64 (6.9%), 65-
74 (2.5%) and 75-84 (0.5%). 0.5% of the
participants prefer not to disclose their age.

Gender female (52.5%), male (45.8%), other
(0.5%). 1.5% of the participants prefer not
to say.

A.3 Participant reward

Participants were found through Prolific and were
paid £ 2.50 for 20 minutes (£ 7.50 per hour).

B Linear Mixed Effects Models

Below we provide the details for the linear mixed
effects models that we fit to our data. All LMMs
are fit using the lme4 package in R.

B.1 Human Data (VAQUUM)

In §3, we are interested in predicting human judg-
ments from the main effects of quantifiers, object
count, segmentation area and size norms, as well
as the interaction between these predictors. We
include the participants and object categories as
random effects. Put concretely,

judgment ~ quantifier * count
* segmentation * size_norm
+ (1|participant) + (1|object)

We scale judgments, count, segmentation area
and size norm to make sure they all have a mean of
0 and a standard deviation of 1. For example,

count <- scale(count,
center=TRUE,
scale=TRUE)

This way, we ensure that we can meaningfully in-
terpret the relation between one unit of change in
one variable with a change in another. Additionally,
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Figure 6: Log probabilities extracted for statements
as a response to “How would you describe the im-
age?” The most obvious deviation from Figure 3 in §4
are the plots for the two LLaVA models, that no longer
appear to distinguish between the different quantified
statements.

we make the variables for quantifier and object cat-
egory a factor and relevel the quantifier to use
the unquantified (base) condition as the reference
category.

quantifier <- relevel(quantifier,
ref="base")

B.2 Model Data (Experiment 1)
For the models, we follow the same steps taken
as those for fitting an LMM to human data, but
now we no longer have to account for different
participants. That is,

log_prob ~ quantifier * count
* segmentation * size_norm
+ (1|object)

C Supplementary Material Experiment 1

C.1 Targeting amounts
In Figure 6 we show the patterns of the VLMs
across all predictors for the prompt that does not
target the amount. The question presented to the
models is “How would you describe the image?”,
and we extract log probabilities for expressions
of the form “There are [QUANT] [OBJECT] in the
image” (unchanged from those used in §4).

Model few a few some many a lot of

BLIP-2 -0.18 -0.19 -0.07 0.25 0.13
InstBLIP 0.03 0.03 -0.02 0.03 -0.01
LLaVA-N 0.31 0.34 0.22 0.30 0.49
LLaVA-O 0.29 0.39 0.21 0.36 0.42
Molmo 0.13 0.19 0.08 -0.19 -0.22

Table 5: Spearman’s correlation between human rat-
ings and model log probabilities. Numbers in boldface
are statistically significant (p < 0.05).

For LLaVA-NeXT and LLaVA-OneVision, the
two models observed in §4 to have the highest
correlation with human ratings, we now find that
patterns are the same across all quantifiers. We
now find a “layered” or “stacked” pattern that is
indicative of a bias towards a specific quantifier:
while LLaVA-NeXT and LLaVA-OneVision tend
towards always responding with a lot of, Instruct-
BLIP and Molmo favor the unquantified statement.

C.2 Spearman’s Correlation

In §4 Table 2, we computed Pearson’s correlation
because our analyses showed strong reasons to
assume a linear relationship between human and
model scores. Moreover, we observed that in some
settings, the data distribution is highly concentrated
at one end of the scale (e.g. both human and model
scores are clustered towards the higher scores for
“many”). In such cases, rank-based correlations
such as Spearman’s can become unstable or less
informative, since small variations in scores can
change the overall ordering.

However, to provide a more complete analysis,
we include Spearman’s scores in Table 5. While
Pearson’s captures linear agreement, Spearman’s
provides additional insight into rank-order consis-
tency between human and model judgments. Im-
portantly, the overall trends and conclusions remain
consistent across both metrics.

C.3 LMMs for all remaining models

In Table 6, we report estimates of LMMs for BLIP-
2, InstructBLIP, LLaVA-NeXT and Molmo.

D Supplementary Material Experiment 2

D.1 Prompts for Score Generation

Below we list the 10 prompts that we have tested
for Experiment 2. The prompt listed in boldface
is discussed in §5. This prompt is the one that the
VLMs were least likely to interpret as a binary ques-
tion. That is, we sought a prompt that explicitly
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Intercept Main Quantifier
few a few some many a lot of

BLIP-2

Main effect

0.41

– -0.89 -0.09 -0.79 -0.26 -1.37
Count 0.03 0.21 0.02 -0.10 -0.03 0.01
Segmentation 0.03 0.06 -0.04 -0.02 0.09 -0.02
Size norm 0.02 0.01 -0.03 -0.07 -0.13 0.06

InstructBLIP

Main effect

0.57

– -0.76 -0.82 -0.86 -0.46 -1.20
Count -0.02 -0.02 -0.01 -0.01 0.03 0.00
Segmentation -0.11 -0.01 0.00 0.00 0.00 0.02
Size norm 0.33 -0.08 -0.09 -0.06 0.02 -0.09

LLaVA-NeXT

Main effect

-0.86

– -0.05 1.00 0.31 2.10 2.08
Count -0.12 -0.03 -0.07 -0.04 0.21 0.26
Segmentation -0.12 0.00 -0.03 0.02 0.14 0.13
Size norm -0.08 0.08 0.12 0.03 0.15 0.15

LLaVA-OneVision

Main effect

-1.25

– 0.39 1.68 0.77 2.46 2.32
Count -0.09 0.00 -0.01 -0.02 0.22 0.22
Segmentation -0.05 -0.02 -0.01 0.01 0.07 0.05
Size norm -0.05 0.04 0.05 -0.03 0.12 -0.09

Molmo

Main effect

0.73

– -0.71 -0.97 -1.35 -0.85 -1.30
Count -0.11 0.03 0.03 -0.05 0.02 0.04
Segmentation -0.19 0.00 0.00 -0.01 0.02 0.03
Size norm 0.22 -0.01 -0.04 -0.05 0.01 -0.06

Table 6: Linear Mixed Effects estimates for all VLMs tested. We discuss the estimates for LLaVA-OneVision in
§4.

encouraged the models to respond within a range
of values, akin to the graded responses from human
participants. Given that VLMs will generally have
encountered multiple-choice question-answering
prompts in training, we decided to mimic this for-
mat (following Belém et al. (2024)) for our prompt
in §5.

1. “On a scale of 0 (completely inaccurate) to
100 (completely accurate), how accurate is
the following statement for the image? Please
only respond with a number between 0 and
100.
[Statement]”

2. “Question: How accurate is the following
statement for the image? Respond only with a
rating between 0 (completely inaccurate) and
100 (completely accurate).
Statement: [Statement]
Answer: ”

3. “On a scale of 0 (completely inaccurate) to
100 (completely accurate), how accurate is the
following statement for the image? Respond
only with a number. Decimals are allowed.
[Statement]”

4. “How accurate is the statement for the image?
Please only respond with a number between

0 and 100, where 0 is ‘completely inaccurate’
and 100 ‘completely accurate’.
[Statement]”

5. “On a scale of 0 (completely inaccurate) to
100 (completely accurate), how accurate is
the following statement for the image?
Please respond with one of the following
options: 0, 5, 10, 15, 20, 25, 30, 35, 40, 45,
50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100.
[Statement]”

6. “How likely is the following caption given
the image? Please respond with a number
between 0 and 100, where
- 0 is ‘not likely at all’
- 100 is ‘highly likely’.
Caption: [Statement]”

7. “What is the probability that the following
sentence matches the image?
[Statement]”

8. “What is the probability that the following
sentence matches the image?
Sentence: [Statement]
Answer: ”

9. “What is the probability that the following sen-
tence matches the image? Please only respond
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Figure 7: Distributions for human ratings and scores
generated by VLMs per quantifier.

with a number between 0 and 100.
[Statement]”

10. “What is the probability that the following sen-
tence matches the image? Please only respond
with a number between 0 and 1.
Sentence: [Statement]
Answer: ”

D.2 Distribution of Generated Scores

Figure 7 shows density plots displaying the distri-
butions of human ratings in VAQUUM, as well as
scores generated by VLMs as a response to prompt
5 in Appendix D.1, discussed in §5. Note that for
LLaVA-NeXT, LLaVA-OneVision and Molmo, the
scores tend towards the extremes. However, in the
human distribution, this is only the case for the
unquantified control statement (as expected).

E Supplementary Material for
Experiment 3

Similar to what we did in Appendix C.2 for Exper-
iment 1, we now provide Spearman’s correlation
in Table 7 corresponding to the relations in Table 4
for Experiment 3 (§6). We discuss the rationale for
doing so in Appendix C.2.

few a few some many a lot of

IN
B r(VAQ) -0.01 -0.02 0.01 -0.01 0.05

r(EXP1) -0.11 -0.12 -0.10 -0.11 -0.13

L
L

N r(VAQ) 0.30 0.28 0.15 0.26 0.28
r(EXP1) 0.37 0.36 0.27 0.29 0.25

L
L

O r(VAQ) 0.39 0.39 0.19 0.28 0.36
r(EXP1) 0.32 0.42 0.26 0.15 0.25

M
O

L r(VAQ) 0.21 0.28 0.17 0.20 0.26
r(EXP1) 0.23 0.27 0.23 -0.06 -0.11

Table 7: Spearman’s ρ of log probabilities in Ex-
periment 3 with human data (VAQ) and log proba-
bilities from Experiment 1 (EXP1). Models shown
are InstructBLIP (INB), LLaVA-NeXT (LLN), LLaVA-
OneVision (LLO) and Molmo (MOL). Boldfaced num-
bers are statistically significant.

F Dataset Licenses

For the construction of the VAQUUM dataset, we
have used images from several existing datasets.
These datasets are released under open-source or
permissive licenses: Apache License 2.0 (Tal-
lyQA), MIT License (FSC-147/FSC-133), and Cre-
ative Commons Attribution 4.0 International Li-
cense (Visual Genome and VQA/VQA2). Our use
of these resources is consistent with the terms and
intended scope of their respective licenses.
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