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Abstract

Current large language model (LLM) applica-
tions often employ multi-component prompts,
comprising both system and user prompts, to
guide model behaviors. While recent advance-
ments have demonstrated the efficacy of au-
tomatically optimizing either the system or
user prompt to boost performance, such uni-
lateral approaches often yield suboptimal out-
comes due to the interdependent nature of
these components. In this work, we introduce
P3, a novel self-improvement framework that
concurrently optimizes both system and user
prompts through an iterative process. The of-
fline optimized prompts are further leveraged
to promote online prompting by performing
query-dependent prompt optimization. Exten-
sive experiments on general tasks (e.g., Arena-
hard and Alpaca-eval) and reasoning tasks
(e.g., GSM8K and GPQA) demonstrate that
P3 achieves superior performance in the realm
of automatic prompt optimization. Our results
highlight the effectiveness of a holistic opti-
mization strategy in enhancing LLM perfor-
mance across diverse domains.

1 Introduction

Large language models (LLMs) have achieved re-
markable success across a wide range of tasks,
becoming a cornerstone of modern AI applica-
tions. However, finetuning these models is often
costly and data-dependent, driving interest in ‘ex-
ternal’ tuning methods, e.g., prompt engineering
and retrieval-augmented generation, which opti-
mize outputs without retraining.

Among these methods, prompt engineering
stands out as a cost-effective and versatile approach,
enabling significant performance gains with min-
imal adjustments. Yet, crafting effective prompts
remains challenging, often requiring expertise and
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Who is Elon Musk?

Prompt Enhanced by P3

Optimized System Prompt

As a knowledgeable assistant, your task is to thoroughly analyze the 
user’s query while paying close attention to any complementary 
instructions provided. Utilize these hints ......

Optimized User Prompt

### User query
Who is Elon Musk?

### Complementary Instruction
Considering exploring his contribution to technology and innovation,
as well as his impact on the internet landscape.

Elon Musk is a prominent entrepreneur, inventor, and 
business magnate ......
Key Contributions to Technology and Innovation:
......
Impact on the Internet Landscape:
......

Figure 1: An illustration of P3’s optimization results.

iterative manual tuning. Recent advances in auto-
mated prompt optimization (APO) (Khattab et al.,
2023; Guo et al.; Fernando et al.; Pryzant et al.,
2023; Zhou et al.) address this by leveraging LLMs
to refine prompts based on objective metrics or sub-
jective feedbacks (LLM-as-judge). While these
methods show solid results on several benchmarks,
they lack real-time applicability, because their re-
liance on multiple model calls for each prompt
refinement can introduce huge computational over-
head.

To enable real-time prompt optimization, a new
class of techniques for online prompt optimization
has emerged, such as BPO (Cheng et al., 2023)
and PAS (Zheng et al., 2024). These methods can
be divided into two stages. In the first stage, they
optimize each user prompt and collect (prompt,
optimized prompt) pairs as datasets. Specifically,
BPO optimizes user prompts by rephrasing, and
PAS adds a complementary instruction as an ex-
pansion to the original prompt. In the second stage,
the collected dataset is used to finetune a smaller
language model, which is capable of dynamically
adjusting or extending the original prompt at test
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time. While promising, these approaches encounter
three key limitations:

Affinity Issue: System prompts significantly
influence the style and quality of LLM outputs.
Existing methods primarily focus on optimizing
user prompts, overlooking the potential of system
prompts. To fully unlock the capabilities of prompt
optimization, system prompts must adapt to the
structural changes introduced by optimized user
prompts, ensuring alignment and synergy between
the two components.

Diversity Issue: There are numerous possible
ways to rewrite or extend a prompt, making it diffi-
cult to ensure that any single adjustment is optimal.
Current methods rely on a fixed rephrasing or ex-
tension strategy, which can introduce bias and lack
exploration for global optimal solutions.

Inference Cost and Efficiency Issue: Existing
online prompt optimization methods require fine-
tuning smaller LLMs (e.g., 7B instruct models).
This still necessitates substantial resources. And
since these models operate serially alongside the
primary LLM, they introduce additional inference
latency and cost, further hindering real-time appli-
cations.

In response to these challenges, we propose
Prompts Promote Prompting (P3), which is a two-
stage prompt optimization framework leveraging
offline prompts to promote online prompting.
Given that system prompts are more suited for of-
fline optimization, while user prompts need to be
dynamically adjusted based on specific queries, our
method leverages both offline joint optimization
for system prompts and real-time user prompt com-
plement for more flexible and efficient application,
as shown in Figure 1.

For the affinity issue, we jointly optimize sys-
tem prompts and user prompt complements in the
offline stage. This involves iteratively refining the
system prompt to ensure it effectively guides the
model’s behavior and adapts to the paradigm of
user prompt complementation, ensuring both sys-
tem and user prompts work synergistically. For
the diversity issue, we synthesize diverse user
prompt complements in the offline optimization
phase. This strategy ensures that user prompt com-
plements cover diverse linguistic and contextual ex-
pressions, improving the flexibility and generaliza-
tion of prompt optimization. Finally, for inference
efficiency, we provide an alternative usage of the
collected offline dataset in the online stage. Apart
from finetuning a small LLM to perform online

optimization, we provide an alternative usage of
the dataset: retrieving samples from the dataset as
demonstrations for in-context learning. This allows
for prompt adjustments in real time while minimiz-
ing computational costs and inference time.

To validate the effectiveness of our method, we
conducted comprehensive experiments across vari-
ous general and reasoning tasks, including Arean-
Hard (Li et al., 2024), Alpaca-Eval 2.0 (Li et al.,
2023), Alpaca-Eval (LC) (Dubois et al., 2024),
GSM8k (Cobbe et al., 2021) and GPQA (Rein
et al., 2024). The evaluation is performed on mul-
tiple LLMs, including GPT-4o (OpenAI, 2024b),
GPT-4 (OpenAI, 2024a), GPT-4-turbo, GPT-3.5-
turbo, Qwen-2 (Qwen, 2024), and LLaMA-3 (Meta,
2024). The results demonstrate that P3 consistently
outperforms existing prompt optimization methods
across all evaluated models. Additionally, the in-
context learning version of P3 (P3-ICL) achieves
a good balance between inference efficiency and
performance gains. These findings highlight the
robustness and versatility of P3 in enhancing LLM
performance in real-time applications.

2 Methodology

In this section, we introduce the background and
overall framework of P3. We first give the task
formulation for automatic prompt optimization in
Section 2.1. Then we describe the algorithm details
of P3 in section 2.2.

2.1 Task Definition
In this work, we address black-box prompt opti-
mization (Zheng et al., 2024; Cheng et al., 2023),
formulated as:

xopt = F(x), (1)

where x denotes an input prompt and xopt its opti-
mized counterpart, enhancing LLM output quality.
Our objective is to develop a black-box function
F mapping x to xopt. Drawing inspiration from
generative optimization approaches (Yuksekgonul
et al., 2024; Yang et al., 2024b; Cheng et al., 2024),
we implement F using an LLM-driven system.

In current LLM applications, prompts are logi-
cally divided into two parts: the system prompt
xs, which defines the role, capability, or other
global constraints for LLMs to follow, and the user
prompt xu, which gives the concrete requirements
for the current conversation. However, previous
methods mostly focus on either system prompt or
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Figure 2: The overall framework of our methods. The complete process includes the offline joint optimization for user
prompt and system prompt, which iteratively optimizes the system prompt and then generates the complementary
user prompts. The generated user prompts are fed to train a smaller model for online prompt optimization or serve
as a dataset for in-context learning. At test time, a user query is enhanced by a complement generated by the online
optimization model or few-shot demonstrations retrieved from the offline dataset, guiding LLMs to better respond
to the user query. The details of the offline joint optimization process are shown in the lower part of the figure.

user prompt optimization, while keeping the other
part fixed. It may lead to sub-optimal optimiza-
tion results because those two parts are intertwined
in LLMs’ decision process. Therefore, a holistic
prompt optimization framework needs to consider
the optimization of both system prompts and user
prompts. To alleviate this affinity issue, we propose
to jointly optimize the system and user prompts.

2.2 Prompts Promote Prompting (P3)

Figure 2 illustrates the complete process of P3. We
employ different optimization strategies for system
and user prompts, considering their different char-
acteristics. System prompts, which define knowl-
edge boundaries and establish behavioral guide-
lines for a given scenario, are optimized offline
using a representative dataset for that scenario.
This offline optimization allows for a fixed sys-
tem prompt during online deployment, ensuring
consistent behavior. User prompts, however, are
inherently dynamic and context-dependent, neces-
sitating adaptive online optimization. P3 amortizes
the learning of the online user prompt optimizer
during the offline stage, where user prompts are
jointly optimized alongside system prompts. These
optimized user prompts are then compiled into a

dataset, which serves as a foundation for efficient
and dynamic online adaptation.

2.2.1 User Prompt Optimization

For user prompt optimization, we follow Zheng
et al. (2024) to generate a piece of complemen-
tary instruction that provides feasible direction and
a short thought process for answering the user
prompt.

In the offline stage, we iteratively optimize the
complementary instruction for each user prompt.
As shown in Figure 2, for each user prompt, k
candidate instructions are generated by LLMs as
the initial population. We concatenate these candi-
dates with the user prompt and system prompt, and
prompt LLMs to generate answers. The answers
are evaluated using LLM-as-judge. The candidates
and their scores serve as few-shot demonstrations
for LLM-as-optimizer (Yang et al., 2024b) to gener-
ate refined instructions. This iterative process could
continue for multiple rounds, with each round’s op-
timized instructions selected as demonstrations for
the next. This optimization procedure ensures both
width (few-shot generation) and depth (multi-round
iteration), enhancing exploration in the solution
space, and thus addressing the aforementioned di-
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versity issue.
The highest-scoring complementary instruction

is selected as the final label for the user prompt. If
the final score is above a threshold ϵ, we collect
the (user prompt, complementary instruction) pair,
appending it to the dataset X∗

u used for finetuning
the online optimization model. Otherwise, it is
appended to a hard sample buffer Xu for periodic
system prompt optimization.

2.2.2 System Prompt Optimization
For system prompt optimization, we leverage the
hard samples identified during user prompt opti-
mization. These samples, which are of lower qual-
ity and unsuitable for online model fine-tuning,
are repurposed to enhance the resilience of system
prompts and improve the overall data efficiency of
our framework.

The optimization process for system prompts
follows an LLM-as-optimizer approach, similar
to that used for user prompts. We first initialize
a buffer of system prompt Xs based on the raw
system prompt xs by prompting an LLM to refine
it. Each time we sample a batch from the hard
sample buffer and k system prompts from Xs, and
evaluate each system prompt over the batch. Then
the system prompts and their scores (average score
over the batch) serve as few-shot demonstrations
to generate refined system prompts. Finally, the
refined system prompts with the high scores are
appended to Xs. And the best one is updated as the
current system prompt for subsequent user prompt
optimization, ensuring continuous improvement in
system prompt effectiveness. The pseudocodes of
the offline optimization procedure are provided in
Appendix 7.5. And we provide meta prompts in
Appendix 7.7.

2.2.3 Online Optimization
After obtaining the optimized system prompt x∗s
and the user prompt complement dataset X∗

u (the
optimization results of the final round in Sec 2.2.2),
the online prediction process can be represented as:

y = LLM(x∗s, f(xu|X∗
u)) (2)

where f is the online optimization function
based on X∗

u. A common implementation of
f , as adopted in BPO (Cheng et al., 2023) and
PAS (Zheng et al., 2024), involves fine-tuning a
smaller language model on X∗

u.
Here we propose an alternative implementation

of f , in-context learning with the collected dataset

(P3-ICL). For each input user query, we retrieve
relevant user prompts along with their associated
complementary instructions from X∗

u to perform
few-shot in-context learning. The prompt template
is shown in Appendix 7.3. This approach miti-
gates the extra computational budget brought by
the online optimization model while still achiev-
ing competitive performance gains. By leveraging
retrieved demonstrations directly, we preserve in-
ference efficiency without sacrificing the benefits
of prompt optimization.

3 Experiments

In this section, we conduct thorough experiments to
analyze the performance of our proposed methods.
We report results with the user prompt optimiza-
tion iteration number set to 1. Additional experi-
ments demonstrating performance improvements
with increased iteration numbers are provided in
the Appendix 7.1. Other hyperparemeter settings
are listed in Appendix 7.6. Details of online model
training are shown in Appendix 7.8.

3.1 Evaluation on General QA Task
We first evaluate our method on general question-
answering scenarios. This domain serves as a crit-
ical testbed for prompt optimization frameworks
due to its practical relevance to industrial LLM
applications.

3.1.1 Baselines and Settings
Benchmark: In this part, we adopt three popular
general QA benchmarks as in PAS:

(1) Arena-hard (Li et al., 2024): A multi-
domain benchmark testing model robustness
through noise resilience, high-dimensional feature
handling, and adversarial robustness. It evaluates
both accuracy and generalization capabilities, in-
cluding perturbation resistance and performance
on unseen data.

(2) Alpaca-Eval 2.0 (Li et al., 2023): A com-
prehensive benchmark extending its predecessor
with diverse and challenging tasks to assess ad-
vanced LLMs across linguistic complexity, reason-
ing depth, and task variety.

(3) Alpaca-Eval 2.0 (LC) (Dubois et al., 2024):
the length-controlled version of Alpaca-Eval 2.0.
By introducing a regression-based debiasing strat-
egy, it ensures that the evaluation of models is not
skewed by the length of the responses. This ver-
sion demonstrates stronger correlation with human
evaluations, enabling fairer model comparisons.
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Dataset Main Model Raw BPO PAS P3 P3-ICL

Arena-hard

GPT-4-turbo-2024-04-09 76.60 76.60 76.90 78.00 76.27
GPT-4-1106-preview 74.80 74.60 78.80 77.21 77.18
GPT-3.5-turbo-1106 18.90 15.90 22.10 25.56 36.81
Qwen2-72b-Instruct 48.10 44.40 52.20 52.82 61.88
LLaMA-3-70b-Instruct 41.10 45.20 50.30 51.64 51.96
Average 51.90 51.34 56.06 57.05 60.82

Alpaca-Eval 2.0

GPT-4-turbo-2024-04-09 46.12 54.65 65.31 70.50 67.70
GPT-4-1106-preview 50.00 55.19 65.92 69.94 66.40
GPT-3.5-turbo-1106 9.20 10.25 15.82 34.53 45.77
Qwen2-72b-Instruct 31.70 31.25 45.53 61.37 64.84
LLaMA-3-70b-Instruct 33.18 38.92 45.01 49.44 50.75
Average 34.04 38.05 47.52 57.16 59.09

Alpaca-Eval 2.0 (LC)

GPT-4-turbo-2024-04-09 55.02 55.28 56.54 58.31 56.46
GPT-4-1106-preview 50.00 52.91 53.63 56.95 56.27
GPT-3.5-turbo-1106 19.30 20.29 23.31 35.35 42.20
Qwen2-72b-Instruct 39.24 39.02 44.31 55.72 50.35
LLaMA-3-70b-Instruct 34.42 39.24 40.52 42.15 42.10
Average 39.60 41.35 43.66 49.70 49.48

Table 1: Main results on different prompt optimization methods for general QA.

Baseline Methods. To verify the advantages of
P3 over other prompt optimization methods, we
select two preceding online prompt optimization
methods, PAS and BPO. These are two strong on-
line prompt optimization baselines for improving
human preference of LLMs’ outputs in general sce-
narios. For reference, we also report the original
results for LLMs without prompt optimization.
Settings. For these tasks, we use the dataset pro-
vided by PAS for offline optimization, ensuring
a fair comparison. We select GPT4o-mini (Ope-
nAI, 2024c) as the proposal and optimizer model,
and GPT-3.5-turbo-1106 as the base model for gen-
erating responses in the online stage. At the on-
line optimization stage, we finetune a Qwen2-7B-
instruct (Yang et al., 2024a) model as the online
optimization model. For P3-ICL, we use a light-
weight embedding model (SBERT, 2021) to re-
trieve data from the offline dataset. For benchmark
evaluation, we choose the same base models follow-
ing (Zheng et al., 2024) for fair comparisons: GPT-
4-turbo-2024-04-09, GPT-4-1106-preview, GPT-
3.5-turbo-1106, Qwen2-72b-Instruct, and LLaMA-
3-70b-Instruct (Dubey et al., 2024).

3.1.2 Results

As shown in Table 1, our methods demonstrate
significant improvements across all evaluation di-
mensions. The base P3 framework dominates BPO
and PAS in all but one model-dataset combination.
Particularly notable are its gains on smaller mod-

els, e.g., +18.71% over PAS for GPT-3.5-turbo on
Alpaca-Eval 2.0. This validates the effectiveness
of joint system-user prompt optimization. P3-ICL
provides a competitive alternative and eliminates
the need for dedicated model training. Remarkably,
P3-ICL even surpasses P3 on weaker models like
GPT-3.5-turbo and Qwen2, suggesting its partic-
ular value for resource-constrained deployments.
Notably, P3 maintains its performance advantage
even when using GPT-4o-mini as the optimizer, a
smaller and weaker model than the GPT-4o em-
ployed by PAS. This consistent outperformance
across diverse LLMs underscores the effectiveness
of P3’s joint optimization mechanism, despite be-
ing trained offline with only a single model.

3.2 Evaluation on Reasoning Task

We also conduct experiments on two complex rea-
soning tasks to examine P3’s efficacy to help im-
prove LLMs’ reasoning ability.

3.2.1 Baselines and Settings

Benchmark: In this domain, we choose two chal-
lenging benchmarks:

(1) GSM8k (Cobbe et al., 2021): A dataset of
linguistically diverse, high-quality math word prob-
lems at grade-school level. In this task, We opti-
mize GPT-3.5-turbo using GPT-4o, achieving per-
formance gains consistent with established method-
ologies (Yuksekgonul et al., 2024; Khattab et al.,
2024).
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Methods GSM8k GPQA
zero-shot CoT 72.9 51.0
few-shot CoT 81.4 49.5

TextGrad 81.1 55.0
DSPy 81.1 50.5
PAS 81.3 53.5

P3-ICL 82.1 52.0
P3 84.8 57.1

Table 2: Results on reasoning tasks.

(2) GPQA (Rein et al., 2024): A challenging
benchmark containing multiple-choice questions in
PhD-level science subjects. In this task, We deploy
GPT-4o for self-optimization. During evaluation,
iterative test-time updates (3 cycles) are aggregated
via majority voting to determine final predictions.
Baselines and Settings: For both tasks, we com-
pare the results of P3 and P3-ICL with popu-
lar APO methods, including 1) Zero-shot Chain-
of-Thought (CoT), 2) vanilla in-context learning
(ICL), 3) TextGrad (Yuksekgonul et al., 2024),
4) DSPy’s BootstrappedFewShotRandomSearch
(BFSR) optimizer (Khattab et al., 2024), 5) PAS. In
the offline optimization stage, unlike in Sec 3.1, we
perform separate optimization for the two bench-
marks, as they each provide training and evaluation
datasets. For all the ICL methods, we apply 4-shot
demonstrations.

3.2.2 Results

The evaluation results are listed in Table 2. P3
achieves marginal improvements against other
methods. In GSM8k, P3 improves the performance
of gpt-3.5-turbo-0125 from 72.9% (vanilla CoT)
to 84.8%, outperforming other methods by at least
3.4%. In GPQA, P3 also achieves promising re-
sults, which outperforms other baselines by at least
2.1%. Besides, P3-ICL shows consistent improve-
ments in both tasks against vanilla CoT and DSPy,
indicating that introducing explicit reasoning in-
struction in demonstrations can benefit LLMs’ rea-
soning performance.

3.3 Ablation Study

In this section, we conduct an ablation study to
evaluate the impact of our design choices on LLM
performance. Additionally, we analyze how these
design choices address the three key challenges
outlined earlier.

3.3.1 Improved Affinity via System Prompt
Optimization

By jointly optimizing system and user prompts, P3
achieves enhanced affinity between the two com-
ponents compared to previous methods. We ana-
lyze the effect of system prompt optimization in
this experiment. As shown in Table 3, P3 con-
sistently outperforms its variant without system
prompt optimization across all benchmarks and
LLMs, demonstrating the stability and effective-
ness of this approach. Notably, the improvements
are more pronounced in prompt-sensitive LLMs,
such as GPT-3.5-turbo and Qwen2. To further in-
vestigate the generalizability of this affinity, we
integrate P3’s system prompt into PAS. While PAS
with P3’s system prompt achieves remarkable gains
in Alpaca-Eval and Alpaca-Eval (LC), its perfor-
mance degrades badly in Arena Hard, underscoring
the necessity of joint optimization for robust per-
formance.

The benefits of joint system prompt optimiza-
tion are twofold. First, it leverages task-specific
information to steer LLMs toward task-aligned be-
haviors. Second, it enhances the model’s ability to
adhere to the details provided in complementary
instructions, ensuring more precise and context-
aware responses. We provide a comprehensive
case study in Appendix 7.4. And all the optimized
system prompts are listed in Appendix 7.2.

3.3.2 Enhanced Diversity in User Prompt
Complementary

The potential complements for each user prompt
typically result in multiple diverse outcomes. Pre-
vious methods, such as PAS and BPO, focus ex-
clusively on a singular complement or revision for
each user prompt, thus limiting exploration in the
massive solution space. That is because greedy
decoding does not necessarily lead to the best com-
plements. As shown in Fig. 3, there’s no posi-
tive correlation between log probability and eval
score. Thus, high log probability during generation
doesn’t guarantee a high score, demonstrating the
importance of diversity sampling in the comple-
mentary instruction optimization process.

P3 mitigates this limitation through diverse sam-
pling and generation. As illustrated in Table 4, the
results of P3 without system prompt demonstrate
superior performance compared with PAS. This
evinces that P3’s diverse sampling and generation
strategy effectively enhances overall performance.
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Main Model Methods AH AE 2.0 AE 2.0 Avg. △
(LC)

GPT-4-turbo-2024-04-09
P3 78.00 70.50 58.31 68.94 +9.69
P3 w/o system 78.43 66.02 57.96 67.47 +8.22
PAS + system 69.80 68.39 57.54 65.24 +5.99

GPT-4-1106-preview
P3 77.21 69.94 56.95 68.03 +9.76
P3 w/o system 77.87 65.86 56.92 66.88 +8.61
PAS + system 72.25 65.03 53.07 63.45 +5.18

GPT-3.5-turbo-1106
P3 25.56 34.53 35.35 31.81 +16.01
P3 w/o system 23.32 16.65 24.67 21.55 +5.75
PAS + system 23.40 35.19 35.16 31.25 +15.45

Qwen2-72b-Instruct
P3 52.82 61.37 55.72 56.64 +16.96
P3 w/o system 53.83 47.70 44.94 48.82 +9.14
PAS + system 48.23 55.96 49.40 51.20 +11.52

LLaMA-3-70b-Instruct
P3 51.64 49.44 42.15 47.74 +11.51
P3 w/o system 50.85 47.14 40.76 46.25 +10.02
PAS + system 47.26 46.52 39.86 44.55 +8.32

Table 3: Ablation study on system prompt optimization in P3.

Figure 3: Plots for complements’ evaluation score by
the generation log probability.

3.3.3 Inference Efficiency via In-Context
Learning

The offline constructed data can not only be used
for training a small language model to conduct
online optimization, but also for online in-context
learning, considering the efficiency of the inference
stage. Table 6 shows the ablation results for P3-
ICL, which shows its superior performance against
vanilla ICL. Considering the results from Table 1,
we can further conclude that P3-ICL can still out-
perform PAS and BPO across all benchmarks, and

Dataset Method Score

Arena Hard
PAS 22.10
P3 w/o system 23.32

Alpaca-Eval PAS 15.82
2.0 P3 w/o system 16.65

Alpaca-Eval PAS 23.32
2.0 (LC) P3 w/o system 24.67

GSM8k
PAS 81.30
P3 w/o system 83.10

Table 4: Ablation study for diverse generation. All
results are generated by GPT-3.5-turbo-1106.

gain stable improvements against vanilla ICL. We
can conclude that the offline constructed data is
also compatible with in-context learning and effec-
tive in guiding LLMs to produce better responses.

The core advantage of P3-ICL is more efficient
and economic inference. As shown in Table 5, P3-
ICL reduces the memory occupancy from 18000
MiB to 5000 MiB compared with using the on-
line model for query complement, and shortens
the extra latency from 530 ms to 70 ms and offers
a 25% lower first-token latency(on a single 3090
RTS GPU). Crucially, we observed that the longer
input prompts generated by P3-ICL did not lead to
a significant increase in overall latency. The rea-
son is that P3-ICL only increases the number of
tokens processed during the prefill phase, where
the efficiency of parallel processing on modern
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Methods PAS P3 P3-ICL
Param. (Billion) 7.62 7.62 0.02
Mem. (MiB) 18000 18000 5000
Extra Lat. (s) 0.53 0.53 0.07
FTL (s) 2.01 2.03 1.46
Overall Lat. (s) 13.86 13.89 13.40

Table 5: The computational complexity comparison
between PAS, P3, and P3-ICL. 1) Param represents
the model parameters used in the online optimization
stage. 2) Mem represents the memory occupancy in the
online optimization period. 3) Extra Lat. represents the
average extra latency brought by prompt optimization.
4) FTL represets the average first-token latency and 5)
Overall Lat. represents the average overall latency.

hardware can mitigate its impact on total inference
time. Thus, the overall latency is usually domi-
nated by the time spent generating tokens in the
decode phase, where P3 and PAS will bring larger
latency with their generated complements.

From the above observations, we can conclude
that the inference efficiency of P3 can be substan-
tially improved through in-context learning while
still achieving comparable performance with previ-
ous methods.

4 Related Work

4.1 Prompt Optimization

Prompt optimization is crucial for enhancing the
performance of pretrained language models (De-
vlin et al., 2019; Raffel et al., 2020; Radford et al.),
as it allows for more accurate and contextually rel-
evant outputs through revision the input prompt.
Traditional methods of prompt optimization, such
as soft prompt tuning (Li and Liang, 2021; Lester
et al., 2021), have shown significant improvements
in model performance by adjusting the prompts
during the training phase. Recently, hard prompt
optimizations have gained traction, where directly
modifying the discrete prompts can leverage the
efficacy of pretrained models (Brown et al., 2020;
Sanh et al., 2021; Chung et al., 2024).

4.2 Automatic Prompt Optimization

Automatic prompt optimization (Shin et al., 2020)
aims to develop algorithms that can autonomously
improve prompts without human efforts. For in-
stance, Deng et al. (2022) utilizes reinforcement
learning to dynamically adjust prompts. Guo et al.
employs evolutionary algorithms to iteratively gen-
erate and refine prompts. Yuksekgonul et al. (2024)

and Cheng et al. (2024) perform end-to-end op-
timization for agentic system with feedback pro-
posed by LLMs, analogy to AutoDiff in deep learn-
ing system. These automated techniques enhance
the scalability and adaptability of prompt optimiza-
tion across diverse domains.

4.3 Query-Dependent Automatic Prompt
Optimization

Query-dependent prompt optimization tailors
prompt optimization to the specific queries. This
approach recognizes that a one-size-fits-all prompt
may not be effective for diverse queries and seeks
to adapt prompts based on the input queries. Cheng
et al. (2023) proposed a method where the prompt
is dynamically adjusted according to the query
characteristics, leading to more precise and con-
textually relevant responses. Additionally, Zheng
et al. (2024) highlighted the risk of losing the orig-
inal meaning during online prompt modifications
and developed a framework that generates context-
aware prompt complements, thereby improving the
overall performance. These query-dependent ap-
proaches highlight the importance of contextual
adaptability in prompt optimization, ensuring pre-
cise and targeted optimization for a wide range of
user inputs. Our work falls within this category.

5 Conclusion

In this work, we introduce Prompts Promote
Prompting (P3), a novel framwork addressing three
fundamental challenges in online prompt optimiza-
tion: affinity alignment, response diversity, and
inference efficiency. Our solution establishes a
dual-phase optimization paradigm that combines
offline prompt optimization with online adaptation
of user prompts. By optimizing system prompts
offline and dynamically adjusting user prompts on-
line, P3 ensures the synergistic function of the two
core components in prompt engineering. P3-ICL,
the in-context learning variant of P3, achieves bet-
ter efficiency in online stage. Experimental results
show that P3 and P3-ICL significantly outperform
existing automatic prompt optimization methods
such as BPO and PAS across various LLMs and
domains. This approach provides a more flexible
and efficient solution for prompt optimization, pro-
viding a promising way for enhanced LLM appli-
cations in real-time scenarios.

11955



Main Model Methods AH AE 2.0 AE 2.0 Avg. △
(LC)

GPT-4-turbo-2024-04-09
P3-ICL 76.27 67.70 56.46 64.92 +5.67
ICL 74.02 64.97 56.94 63.80 +4.55

GPT-4-1106-preview
P3-ICL 77.18 66.40 56.27 64.53 +6.26
ICL 76.89 66.02 58.12 64.83 +6.56

GPT-3.5-turbo-1106
P3-ICL 36.81 45.77 42.20 41.59 +25.79
ICL 31.65 28.23 35.80 31.89 +16.09

Qwen2-72b-Instruct
P3-ICL 61.88 64.84 50.35 59.02 +19.34
ICL 60.57 57.58 49.88 56.01 +16.33

LLaMA-3-70b-Instruct
P3-ICL 51.96 50.75 42.10 48.27 +12.04
ICL 49.80 45.60 41.08 45.49 +9.26

Table 6: Ablation study for P3-ICL. We show the superior performance of P3-ICL against vanilla ICL.

6 Limitations

We identify that there may be some possible
limitations in this research. Firstly, due to the
limit of resources, we only choose Qwen2-7B-
Instruct as the base model for online optimiza-
tion. We believe using models of similar (e.g.,
Llama-3-8B (Meta, 2024)) or even smaller size
(e.g., Qwen2.5-3B (Qwen, 2025)) will reach com-
parable performance. We will conduct further ex-
periments to validate this point. Secondly, our
experiments focus on standard instruction-tuned
LLMs, aligning with other APO methods. We will
investigate the potential of leveraging P3 to en-
hance emerged reasoning models (e.g., OpenAI
O1 (Jaech et al., 2024), DeepSeek-R1 (Guo et al.,
2025)) in future research.
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7 Appendix

7.1 Ablation study on the search depths

Figure 4: Effect of different search depths

In this ablation, we examine whether increasing
the search depths will improve P3’s end-to-end per-
formance. We choose GPT-3.5-turbo-1106 as the
base model, and increase the search depth (num-
ber of iterations) from 1 to 3. The evaluation is
based on the Arena-hard and Alpaca-eval bench-
marks. As illustrated in Fig. 4, evaluation scores
increase with search depth across all three bench-
marks, justifying that P3 can generate more robust
complementary instructions when searching more
adequately on the solution space, thus improving
overall performance.

7.2 Optimized System prompts

Here we list the optimized system prompts in the
offline optimization stage for all datasets. Notice
that in GSM8k, we manfully include a piece of
instruction to control the output format for evalua-
tion.

7.2.1 Optimized system prompt for general
QA

Initial prompt: You are a helpful assistant.
Given a user query, please consider the hints
in the complementary instruction and provide
a comprehensive, step-by-step solution.
Optimized prompt: As an intelligent assistant,
your mission is to meticulously analyze user
queries alongside their complementary instruc-
tions. Deliver a comprehensive, step-by-step
response that not only meets the user’s spe-
cific needs but also deepens their understand-
ing of the topic. Ensure clarity, creativity, and

relevance in your answers, effectively utilizing
insights from the provided hints to create en-
gaging and informative content across a wide
range of subjects.

7.2.2 Optimized system prompt for GSM8k
(The text in blue is added manually for output
format control.)

Initial prompt: You are an expert in solving
math problems. Given a user query, please
consider the hints in the complementary in-
struction and provide a comprehensive, step-
by-step solution. Always conclude the last line
of your response should be of the following
format: "Answer: $VALUE" where VALUE is a
numerical value.
Optimized prompt: You are a mathematics ex-
pert tasked with solving a variety of math prob-
lems. Upon receiving a user query, carefully
analyze the provided hints in the complemen-
tary instruction to guide your solution process.
Offer a detailed, step-by-step explanation of
your approach, ensuring clarity and coherence
throughout. Always conclude the last line of
your response should be of the following for-
mat: "Answer: $VALUE" where VALUE is a
numerical value.

7.2.3 Optimized system prompt for GPQA
Initial prompt: You are an expert in solving
STEM problems. Given a user query, please
consider the hints in the complementary in-
struction and provide a comprehensive, step-
by-step solution.
Optimized prompt: As an expert in STEM
problem-solving, your task is to provide a
comprehensive and structured solution to the
user’s query. Begin by carefully analyzing the
complementary hints provided in the user’s
instructions. Your response should be a de-
tailed, step-by-step explanation that not only
addresses the specific problem but also inte-
grates relevant concepts and methodologies.
Strive for clarity and depth in your explanations,
while also encouraging creative approaches
or alternative solutions where applicable. En-
sure that your response is tailored to the user’s
needs, making it both informative and engag-
ing.
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7.3 Prompt Template for ICL and P3-ICL

Prompt template for ICL

Given a user query, please follow the
examples below to give a step-by-step and
comprehensive answer.

## Examples
User query:
{example query 1}

Answer:
{example answer 1}
...

User query:
{example query N}

Answer:
{example answer N}

## Task
User query:
{query}

Answer:

Prompt template for P3-ICL

Given a user query, please follow the
examples below to give a step-by-step and
comprehensive answer.

## Examples
User query:
{example query 1}

Answer:
<complementary_instruction>
{example complement 1}
</complementary_instruction>
<answer>
{example answer 1}
</answer>
...

User query:
{example query N}

Answer:
<complementary_instruction>
{example complement N}
</complementary_instruction>
<answer>
{example answer N}
</answer>

## Task
User query:
{query}

Answer:

7.4 Case Study

To better showcase the effectiveness of P3, this section provides a case study on how the affinity between
the system prompt and user prompt affects the LLMs’ performance.

In Fig. 5, we show the affinity of the jointly optimized system prompt for guiding LLMs to better
adhere to the details of the complementary instruction. The query is a question from GSM8k dataset. For
PAS, we employ a predefined system prompt with zero-shot CoT prompting and structured output control.
For P3, we utilize the jointly optimized system prompt. PAS and P3 both output correct complementary
instructions: calculate the net profit by subtracting the total cost from the total revenue. However, analysis
of the LLM’s response generated with PAS reveals a deviation from its complementary instruction. The
LLM initially calculates the total number of candles that can be made, rather than the total revenue as
specified in the instruction. As a result, it got the final answer wrong. Conversely, the LLM’s answer
generated with P3 precisely follows P3’s complementary instruction, which leads to a correct answer.
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PAS system prompt: You will answer a mathematical reasoning question. Think step by step.
Always conclude the last line of your response should be of the following format: "Answer:
$VALUE" where VALUE is a numerical value.
PAS user prompt: Charlie wants to sell beeswax candles. For every pound of beeswax, he can
make 10 tapered candles. One pound of beeswax and the wicks cost $10.00 in supplies. If he sells
each candle for $2.00 each, what is his net profit if he makes and sells 20 candles?
To calculate Charlie’s net profit, determine the total revenue from selling 20 candles and subtract
the total cost of materials and wicks used in production. Ensure to use clear formulas and step-by-
step calculations for accuracy.
PAS answer: First, let’s calculate the total number of candles Charlie can make with 1 pound of
beeswax: 1 pound of beeswax * 10 candles/pound = 10 candles.
Next, let’s calculate the total cost of materials for making 20 candles: $10.00.
Now, let’s calculate the total revenue from selling 20 candles: 20 candles * $2.00/candle = $40.00.
Now, let’s calculate the total profit: Total revenue - Total cost = $40.00 - $10.00 = $30.00.
Answer: $30.00%

P3 system prompt: You are a mathematics expert tasked with solving a variety of math problems.
Upon receiving a user query, carefully analyze the provided hints in the complementary instruction
to guide your solution process. Offer a detailed, step-by-step explanation of your approach,
ensuring clarity and coherence throughout. Always conclude the last line of your response should
be of the following format: "Answer: $VALUE" where VALUE is a numerical value.
P3 user prompt: ### User prompt:
Charlie wants to sell beeswax candles. For every pound of beeswax, he can make 10 tapered
candles. One pound of beeswax and the wicks cost $10.00 in supplies. If he sells each candle for
$2.00 each, what is his net profit if he makes and sells 20 candles?
### Complementary instruction:
First, calculate the total cost of materials for making 20 candles , then determine the

total revenue from selling those candles . Finally, subtract the total cost from the total

revenue to find the net profit .
P3 answer: To find Charlie’s net profit, we need to calculate the total cost of materials for making
20 candles, then determine the total revenue from selling those candles, and finally subtract the
total cost from the total revenue.
First, let’s calculate the total cost of materials for making 20 candles :

- 1 pound of beeswax and wicks cost $10.00
- For 20 candles, he needs 2 pounds of beeswax (20 candles / 10 candles per pound)
- The cost of 2 pounds of beeswax and wicks is 2 * $10.00 = $20.00
Next, let’s determine the total revenue from selling 20 candles :

- He sells each candle for $2.00
- Total revenue = 20 candles * $2.00/candle = $40.00
Now, let’s calculate the net profit :

- Net profit = Total revenue - Total cost
- Net profit = $40.00 - $20.00 = $20.00
So, Charlie’s net profit from making and selling 20 candles is $20.00.
Answer: $20.00"

Figure 5: Comparison between PAS prompts and P3 prompts.
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7.5 Algorithm Pseudocode

Algorithm 1 P3 Offline Optimization

Require: Query dataset X , current system prompt xs, search depth D, system prompt optimization
interval T, good query buffer Xµ, hard query buffer X ′

µ

for x in X do
Generate k candidate complements {ej}j=1:k

Generate answers for those candidate complements with x and xs
Evaluate answers using LLM-as-judge, obtain scores {sj}j=1:k

for d = 1 to D do
Use {(ej , sj)}j=1:k as examplers to few-shot generate new candidates {ek+j}j=1:c

Generate answers for new candidate complements with x and xs
Evaluate new answers using LLM-as-judge, obtain scores {sk+j}j=1:c

Select the top k candidates in {ej}j=1:k+c

end for
Choose the best of those candidates as e∗, with its corresponding score s∗

if s∗ > threshold ϵ then
Append (x, e∗) to X ′

µ

else
Append (x, e∗) to Xµ

end if
if index(x) % T == 0 then

Optimize system prompt with Algorithm 2
end if

end for

Algorithm 2 P3 System Prompt Optimization

Require: current system prompt xs, hard query buffer Xµ, system prompt buffer Xs

1: Sample a batch B from Xµ

2: if Xs is empty then
3: Refine xs to generate k candidate system prompts
4: Evaluate those candidates on B
5: Update xs to the best candidate
6: Add those candidates to Xs

7: else
8: Sample {xjs}j=1:k from Xs with replacement
9: Evaluate those samples on B, obtain scores {sj}j=1:k

10: Use {(xjs, sj)}j=1:k as examplers to few-shot generate c new system prompts {xk+j
s }j=1:c

11: Evaluate new system prompts on B, obtain scores {sk+j}j=1:c

12: Update xs to the best of {xjs}j=1:k+c

13: Select top C new system prompts and append to Xs

14: end if

7.6 Hyperparameters for Offline Optimization
We set ϵ = 6, k = 5, c = 5 and C = 3 for all the experiments. We set T = 400 for PAS and GSM8k
datasets, and T = 80 for the GPQA dataset. Here ϵ is an empirical number which we adjust based on the
difficulty of the dataset.
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7.7 Meta Prompts for Offline Optimization

Meta Prompt for Complement Generation

System: You are a proficient prompt engineer. Your task is to add a complementary instruc-
tion at the end of the user’s prompt to enhance the quality of responses from a large language model.

### Note:
1. The instruction should serve as a guidance for the answer, providing feasible direction and
thought process, but not revealing the answer itself.
2. The complementary instruction should focus on general methodology. Try to keep it short and
concise.
3. The complementary instruction should be in the same language with the user prompt.
4. When generating your response, the complementary instruction should be bracketed with <INS>
and </INS>.

User: <user_prompt>prompt</user_prompt>

Meta Prompt for Complement Optimization

Your task is to generate an instruction as a complementary text for the user prompt.

### User prompt:
{prompt}

Below are some previous instructions with their scores. The score ranges from 0 to 10. Higher
score indicates higher quality.

### Examples:
{examplers}

Now generate a new complementary instruction that is superior than all the instructions above.
The instruction should serve as a guidance for the answer, providing feasible direction and thought
process, but not revealing the answer itself. Try to keep it short and concise. The complementary
instruction should begin with <INS> and end with </INS>.

Meta Prompt for LLM-as-judge

System: Please act as an impartial judge and evaluate the quality of the response provided by an
AI assistant to the user question displayed below. Your evaluation should consider factors such as
the helpfulness, relevance, accuracy, depth, creativity, and level of detail of the response. Begin
your evaluation by providing a short explanation. Be as objective as possible. After providing your
explanation, please rate the response on a scale of 1 to 10. The rating should begin with <score>
and end with </score>, for example: "<score>5</score>".

User: <Question>:
{question}

<Assistant’s Answer>:
{answer}
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Meta Prompt for LLM-as-judge with Reference Answer

System: Please act as an impartial judge and evaluate the quality of the response provided by an
AI assistant to the user question displayed below. Your evaluation should focus on correctness.
You will be given the original question, the assistant’s answer and the reference answer. Begin
your evaluation by comparing assistant’s final answer with the reference answer. Then check the
correctness of the reasoning steps in assistant’s answer. After providing your explanation, please
rate the response on a scale of 1 to 10. Correct answers should receive high scores while false
answers should receive low scores. The rating should begin with <score> and end with </score>,
for example: "<score>5</score>".

User: <Question>:{question}

<Assistant’s Answer>:{answer}

<Reference Answer>:{reference}

Meta Prompt for System Prompt Generation

You are a large language model prompt engineer, responsible for completing prompt optimization
tasks. Rewrite and refine user input prompts based on criteria such as usefulness (e.g., depth,
creativity, coherence), relevance, and fluency.

### User Prompt:
{prompt}

### Important Notes:
1. The optimized prompt should help LLMs to provide better answers for a wide range of queries.
2. There is always a piece of complementary instruction in user queries, which provides hints to
solve the queries. Make sure to make good use of this information.
3. When generating your response, the optimized prompt should be bracketed with <INS> and
</INS>.

Meta Prompt for System Prompt Optimization

You are a large language model prompt engineer responsible for completing prompt optimization
tasks by using historical prompt optimization records to derive more effective prompts.

Below are some historically optimized prompts along with their scores. The score range is from 0
to 10, with higher scores indicating better quality.

{examplers}

### Important Notes:
1. Analyze the evolution patterns and score trends of historical prompts, and summarize the
effective optimization rules.
2. Based on the summarized optimization rules, generate a new prompt that is superior than all the
previous ones.
3. There is always a piece of complementary instruction in user queries, which provide hints to
solve the queries. Make sure to make good use of this information.
4. The newly generated prompt must be bracketed with <INS> and </INS> tags.
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7.8 Details of Training Online Query Optimization Model
As for training the online query optimization model, we finetune a Qwen2-7b-instruct model on the offline
collected (user prompt, complement) pairs.

For the PAS dataset, we employ full-parameter finetuning with DeepSpeed Zero (Rajbhandari et al.,
2020). The optimizer is AdamW, and the learning rate is set to 1e-5. We collect 7605 samples out of 7729
in the original dataset, the rest is filtered as hard samples for system prompt optimization.

For the GSM8k dataset, we also employ full-parameter finetuning with DeepSpeed Zero (Rajbhandari
et al., 2020). The optimizer is AdamW, and the learning rate is set to 1e-5. We collect 7361 samples out
of 7473 in the original training dataset (train.json), the rest is filtered as hard samples for system prompt
optimization.

For the GPQA dataset, since the volume of this dataset is much smaller, we employ LoRA plus (Hayou
et al., 2024) as the SFT method, with rank r = 8, learning rate lr = 3e-4 and LoRA+ ratio λ = 16.
The optimizer is also AdamW. We create a training dataset by fetching unduplicated samples from
gpqa_main.csv and gpqa_extended.csv, then removing the duplicated samples in gpqa_diamond.csv.
We collect 299 samples out of 348 in this training set. And the rest is filtered as hard samples for system
prompt optimization.

For both training and inference, we set a system prompt for the online optimization model as follows:

System Prompt for Online Optimization Model

You are an expert in enhancing user prompts, and your task is to add a supplementary prompt at
the end of the user’s prompt to enhance the quality of responses from a large language model.

Note: The supplementary prompt should serve as a guide for the response, providing accurate
direction and thought process for the actual answer, but must not give away the answer itself. The
supplementary prompt should be concise and effective.
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